Formal Methods:
 Module I: Automated Reasoning Ch. 01: Propositional Satisfiability (SAT)

Roberto Sebastiani
DISI, Università di Trento, Italy - roberto.sebastiani@unitn. it
URL: http://disi.unitn.it/rseba/DIDATTICA/fm2022/
Teaching assistant: Giuseppe Spallitta - giuseppe.spallitta@unitn.it
M.S. in Computer Science, Mathematics, \& Artificial Intelligence Systems
Academic year 2021-2022
last update: Thursday $10^{\text {th }}$ March, 2022, 15:56

Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti, M. Di Natale, P. Pandya, M. Pistore, M. Roveri, C. Tinelli, and S. Tonetta, who detain its copyright. Some exampes displayed in these slides are taken from [Clarke, Grunberg \& Peled, "Model Checking", MIT Press], and their copyright is detained by the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public without containing this copyright notice.

Outline

(1) Boolean Logics and SAT
(2) Basic SAT-Solving Techniques

- Generalities
- Resolution
- Tableaux
- DPLL
(3) Modern CDCL SAT Solvers
- Limitations of Chronological Backtracking
- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
- SAT Under Assumptions \& Incremental SAT

4) Ordered Binary Decision Diagrams - OBDDs
(5) SAT Functionalities: proofs, unsat cores, interpolants, optimization

Outline

(1) Boolean Logics and SAT
(2) Basic SAT-Solving Techniques

- Generalities
- Resolution
- Tableaux
- DPLL
(2) Modern CDCL SAT Solvers
- Limitations of Chronological Backtracking
- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
- SAT Under Assumptions \& Incremental SAT

4 Ordered Binary Decision Diagrams - OBDDs
5. SAT Functionalities: proofs, unsat cores, interpolants, optimization

Propositional Logic（aka Boolean Logic）

Basic Definitions

- Propositional formula (aka Boolean formula)
- T, \perp are formulas
- a propositional atom $A_{1}, A_{2}, A_{3}, \ldots$ is a formula;
- if φ_{1} and φ_{2} are formulas, then
$\neg \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \varphi_{1} \vee \varphi_{2}, \varphi_{1} \rightarrow \varphi_{2}, \varphi_{1} \leftarrow \varphi_{2}, \varphi_{1} \leftrightarrow \varphi_{2}, \varphi_{1} \oplus \varphi_{2}$ are formulas.
- Ex: $\left.\varphi \stackrel{\text { def }}{=}\left(\neg\left(A_{1} \rightarrow A_{2}\right)\right) \wedge\left(A_{3} \leftrightarrow\left(\neg A_{1} \oplus\left(A_{2} \vee \neg A_{4}\right)\right)\right)\right)$
- Atoms (φ) : the set $\left\{A_{1}, \ldots, A_{N}\right\}$ of atoms occurring in φ.
- Ex: $\operatorname{Atoms}(\varphi)=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$
- Literal: a propositional atom A_{i} (positive literal) or its negation $\neg A_{i}$ (negative literal)
- Notation: if $I:=\neg A_{i}$, then $\neg l:=A_{i}$
- Clause: a disjunction of literals $\bigvee_{j} I_{j}\left(e . g .,\left(A_{1} \vee \neg A_{2} \vee A_{3} \vee \ldots\right)\right)$
- Cube: a conjunction of literals $\wedge_{j} I_{j}\left(\right.$ e.g., $\left.\left(A_{1} \wedge \neg A_{2} \wedge A_{3} \wedge \ldots\right)\right)$

Semantics of Boolean operators

Truth Table

α	β	$\neg \alpha$	$\alpha \wedge \beta$	$\alpha \vee \beta$	$\alpha \rightarrow \beta$	$\alpha \leftarrow \beta$	$\alpha \leftrightarrow \beta$	$\alpha \oplus \beta$
\perp	\perp	\top	\perp	\perp	\top	\top	\top	\perp
\perp	\top	\top	\perp	\top	\top	\perp	\perp	\top
\top	\perp	\perp	\perp	\top	\perp	\top	\perp	\top
\top	\top	\perp	\top	\top	\top	\top	\top	\perp

Semantics of Boolean operators (cont.)

Note

- $\wedge, \vee, \leftrightarrow$ and \oplus are commutative:

$$
\begin{array}{ll}
(\alpha \wedge \beta) & \Longleftrightarrow(\beta \wedge \alpha) \\
(\alpha \vee \beta) & \Longleftrightarrow(\beta \vee \alpha) \\
(\alpha \leftrightarrow \beta) & \Longleftrightarrow(\beta \leftrightarrow \alpha) \\
(\alpha \oplus \beta) & \Longleftrightarrow(\beta \oplus \alpha)
\end{array}
$$

- $\wedge, \vee, \leftrightarrow$ and \oplus are associative:

$$
\begin{array}{lll}
((\alpha \wedge \beta) \wedge \gamma) & \Longleftrightarrow(\alpha \wedge(\beta \wedge \gamma)) & \Longleftrightarrow(\alpha \wedge \beta \wedge \gamma) \\
((\alpha \vee \beta) \vee \gamma) & \Longleftrightarrow(\alpha \vee(\beta \vee \gamma)) & \Longleftrightarrow(\alpha \vee \beta \vee \gamma) \\
((\alpha \leftrightarrow \beta) \leftrightarrow \gamma) & \Longleftrightarrow(\alpha \leftrightarrow(\beta \leftrightarrow \gamma)) & \Longleftrightarrow(\alpha \leftrightarrow \beta \leftrightarrow \gamma) \\
((\alpha \oplus \beta) \oplus \gamma) & \Longleftrightarrow(\alpha \oplus(\beta \oplus \gamma)) & \Longleftrightarrow(\alpha \oplus \beta \oplus \gamma)
\end{array}
$$

- \rightarrow, \leftarrow are neither commutative nor associative:

$$
\begin{array}{lll}
(\alpha \rightarrow \beta) & \Longleftrightarrow & (\beta \rightarrow \alpha) \\
((\alpha \rightarrow \beta) \rightarrow \gamma) & \Longleftrightarrow & (\alpha \rightarrow(\beta \rightarrow \gamma))
\end{array}
$$

Syntactic Properties of Boolean Operators

$$
\begin{aligned}
\neg \neg \alpha & \Longleftrightarrow \alpha \\
(\alpha \vee \beta) & \Longleftrightarrow \neg(\neg \alpha \wedge \neg \beta) \\
\neg(\alpha \vee \beta) & \Longleftrightarrow(\neg \alpha \wedge \neg \beta) \\
(\alpha \wedge \beta) & \Longleftrightarrow \neg(\neg \alpha \vee \neg \beta) \\
\neg(\alpha \wedge \beta) & \Longleftrightarrow(\neg \alpha \vee \neg \beta) \\
(\alpha \rightarrow \beta) & \Longleftrightarrow(\neg \alpha \vee \beta) \\
\neg(\alpha \rightarrow \beta) & \Longleftrightarrow(\alpha \wedge \neg \beta) \\
(\alpha \leftarrow \beta) & \Longleftrightarrow(\alpha \vee \neg \beta) \\
\neg(\alpha \leftarrow \beta) & \Longleftrightarrow(\neg \alpha \wedge \beta) \\
(\alpha \leftrightarrow \beta) & \Longleftrightarrow((\rightarrow) \wedge) \wedge(\alpha \leftarrow \beta)) \\
\neg(\alpha \leftrightarrow \beta) & \Longleftrightarrow(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)) \\
& \Longleftrightarrow(\neg \alpha \leftrightarrow \beta) \\
& \Longleftrightarrow(\alpha \leftrightarrow \neg \beta) \\
(\alpha \oplus \beta) & \Longleftrightarrow((\alpha \vee \beta) \wedge(\neg \alpha \vee \neg \beta)) \\
& \Longleftrightarrow \neg(\alpha \leftrightarrow \beta)
\end{aligned}
$$

Syntactic Properties of Boolean Operators

$$
\begin{aligned}
\neg \neg \alpha & \Longleftrightarrow \alpha \\
(\alpha \vee \beta) & \Longleftrightarrow \neg(\neg \alpha \wedge \neg \beta) \\
\neg(\alpha \vee \beta) & \Longleftrightarrow(\neg \alpha \wedge \neg \beta) \\
(\alpha \wedge \beta) & \Longleftrightarrow \neg(\neg \alpha \vee \neg \beta) \\
\neg(\alpha \wedge \beta) & \Longleftrightarrow(\neg \alpha \vee \neg \beta) \\
(\alpha \rightarrow \beta) & \Longleftrightarrow(\neg \alpha \vee \beta) \\
\neg(\alpha \rightarrow \beta) & \Longleftrightarrow(\alpha \wedge \neg \beta) \\
(\alpha \leftarrow \beta) & \Longleftrightarrow(\alpha \vee \neg \beta) \\
\neg(\alpha \leftarrow \beta) & \Longleftrightarrow(\neg \alpha \wedge \beta) \\
(\alpha \leftrightarrow \beta) & \Longleftrightarrow((\rightarrow \beta) \wedge(\alpha \leftarrow \beta)) \\
\neg(\alpha \leftrightarrow \beta) & \Longleftrightarrow(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)) \\
& \Longleftrightarrow(\neg \alpha \leftrightarrow \beta) \\
& \Longleftrightarrow(\alpha \leftrightarrow \neg \beta) \\
(\alpha \oplus \beta) & \Longleftrightarrow((\alpha \vee \beta) \wedge(\neg \alpha \vee \neg \beta)) \\
& \Longleftrightarrow \neg(\alpha \leftrightarrow \beta)
\end{aligned}
$$

Boolean logic can be expressed in terms of $\{\neg, \wedge\}$ (or $\{\neg, \vee\}$) only!

Exercises

(1) For every pair of formulas $\alpha \Longleftrightarrow \beta$ below, show that α and β can be rewritten into each other by applying the syntactic properties of the previous slide

- $\left(A_{1} \wedge A_{2}\right) \vee A_{3} \Longleftrightarrow\left(A_{1} \vee A_{3}\right) \wedge\left(A_{2} \vee A_{3}\right)$
- $\left(A_{1} \vee A_{2}\right) \wedge A_{3} \Longleftrightarrow\left(A_{1} \wedge A_{3}\right) \vee\left(A_{2} \wedge A_{3}\right)$
- $A_{1} \rightarrow\left(A_{2} \rightarrow\left(A_{3} \rightarrow A_{4}\right)\right) \Longleftrightarrow\left(A_{1} \wedge A_{2} \wedge A_{3}\right) \rightarrow A_{4}$
- $A_{1} \rightarrow\left(A_{2} \wedge A_{3}\right) \Longleftrightarrow\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{1} \rightarrow A_{3}\right)$
- $\left(A_{1} \vee A_{2}\right) \rightarrow A_{3} \Longleftrightarrow\left(A_{1} \rightarrow A_{3}\right) \wedge\left(A_{2} \rightarrow A_{3}\right)$
- $A_{1} \oplus A_{2} \Longleftrightarrow\left(A_{1} \vee A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2}\right)$
- $\neg A_{1} \leftrightarrow \neg A_{2} \Longleftrightarrow A_{1} \leftrightarrow A_{2}$
- $A_{1} \leftrightarrow A_{2} \leftrightarrow A_{3} \Longleftrightarrow A_{1} \oplus A_{2} \oplus A_{3}$

Tree \& DAG Representations of Formulas

- Formulas can be represented either as trees or as DAGS (Directed Acyclic Graphs)
- DAG representation can be up to exponentially smaller
- in particular, when \leftrightarrow 's are involved

Tree \& DAG Representations of Formulas

- Formulas can be represented either as trees or as DAGS (Directed Acyclic Graphs)
- DAG representation can be up to exponentially smaller
- in particular, when \leftrightarrow 's are involved

$$
\begin{aligned}
\left(A_{1} \leftrightarrow A_{2}\right) & \leftrightarrow \\
& \Downarrow\left(A_{3} \leftrightarrow A_{4}\right) \\
& \Downarrow \\
\left(\left(A_{1} \leftrightarrow A_{2}\right)\right. & \left.\rightarrow\left(A_{3} \leftrightarrow A_{4}\right)\right) \wedge \\
\left(\left(A_{3} \leftrightarrow A_{4}\right)\right. & \left.\left.\rightarrow\left(A_{1} \leftrightarrow A_{2}\right)\right)\right)
\end{aligned}
$$

Tree \& DAG Representations of Formulas

- Formulas can be represented either as trees or as DAGS (Directed Acyclic Graphs)
- DAG representation can be up to exponentially smaller
- in particular, when \leftrightarrow 's are involved

$$
\begin{gathered}
\left(A_{1} \leftrightarrow A_{2}\right) \leftrightarrow\left(A_{3} \leftrightarrow A_{4}\right) \\
\Downarrow \\
\left(\left(\left(A_{1} \leftrightarrow A_{2}\right) \rightarrow\left(A_{3} \leftrightarrow A_{4}\right)\right) \wedge\right. \\
\left.\left(\left(A_{3} \leftrightarrow A_{4}\right) \rightarrow\left(A_{1} \leftrightarrow A_{2}\right)\right)\right) \\
\Downarrow \\
\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{2} \rightarrow A_{1}\right)\right) \rightarrow\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{4} \rightarrow A_{3}\right)\right)\right) \wedge \\
\left(\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{4} \rightarrow A_{3}\right)\right) \rightarrow\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{2} \rightarrow A_{1}\right)\right)\right)\right)
\end{gathered}
$$

Tree \＆DAG Representations of Formulas：Example

Semantics: Basic Definitions

- Total truth assignment μ for φ :
$\mu: \operatorname{Atoms}(\varphi) \longmapsto\{\top, \perp\}$.
- represents a possible world or a possible state of the world
- Partial Truth assignment μ for φ :
$\mu: \mathcal{A} \longmapsto\{T, \perp\}, \mathcal{A} \subset \operatorname{Atoms}(\varphi)$.
- represents 2^{k} total assignments, k is \# unassigned variables
- Notation: set and formula representations of an assignment
- μ can be represented as a set of literals:

$$
\text { EX: }\left\{\mu\left(A_{1}\right):=\top, \mu\left(A_{2}\right):=\perp\right\} \Longrightarrow\left\{A_{1}, \neg A_{2}\right\}
$$

- μ can be represented as a formula (cube):

$$
\operatorname{EX}:\left\{\mu\left(A_{1}\right):=\mathrm{T}, \mu\left(A_{2}\right):=\perp\right\} \Longrightarrow\left(A_{1} \wedge \neg A_{2}\right)
$$

Semantics: Basic Definitions [cont.]

- A total truth assignment μ satisfies φ (μ is a model of $\varphi, \mu \models \varphi$):

$$
\begin{aligned}
& \mu \models A_{i} \Longleftrightarrow \mu\left(\boldsymbol{A}_{i}\right)=\top \\
& \mu \models \neg \varphi \Longleftrightarrow \text { not } \mu \models \varphi \\
& \mu \models \alpha \wedge \beta \Longleftrightarrow \mu \models \alpha \text { and } \mu \models \beta \\
& \mu \models \alpha \vee \beta \Longleftrightarrow \mu \models \alpha \text { or } \mu \models \beta \\
& \mu \models \alpha \rightarrow \beta \Longleftrightarrow \text { if } \mu \models \alpha \text {, then } \mu \models \beta \\
& \mu \models \alpha \leftrightarrow \beta \Longleftrightarrow \mu \models \alpha \text { iff } \mu \models \beta \\
& \mu \models \alpha \oplus \beta \Longleftrightarrow \mu \models \alpha \text { iff not } \mu \models \beta
\end{aligned}
$$

- $M(\varphi) \stackrel{\text { def }}{=}\{\mu \mid \mu \models \varphi\}$ (the set of models of φ)
- A partial truth assignment μ satisfies φ iff all total assignments extending μ satisfy φ - Ex: $\left.\left\{A_{1}\right\} \models\left(A_{1} \vee A_{2}\right)\right)$ because both $\left\{A_{1}, A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)$ and $\left\{A_{1}, \neg A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)$
φ is satisfiable iff $\mu=\varphi$ for some μ (i.e. $M(\varphi) \neq \emptyset$)
- α entails $\beta(\alpha=\beta): \alpha=\beta$ iff $\mu=\alpha \Longrightarrow \mu \models \beta$ for all μ s (i.e., $M(\alpha) \subseteq M(\beta)$)
- ω is valid $(\models \varphi): \models \varphi$ iff $\mu=\varphi$ for all $\mu \mathrm{S}$
(i.e., $\mu \in M(\varphi)$ for all μ s)

Semantics: Basic Definitions [cont.]

- A total truth assignment μ satisfies φ (μ is a model of $\varphi, \mu \models \varphi$):

$$
\begin{aligned}
& \mu \models A_{i} \Longleftrightarrow \mu\left(A_{i}\right)=\mathrm{T} \\
& \mu \models \neg \varphi \Longleftrightarrow \text { not } \mu \models \varphi \\
& \mu \models \alpha \wedge \beta \Longleftrightarrow \mu \models \alpha \text { and } \mu \models \beta \\
& \mu \models \alpha \vee \beta \Longleftrightarrow \mu \models \alpha \text { or } \mu \models \beta \\
& \mu \models \alpha \rightarrow \beta \Longleftrightarrow \text { if } \mu \models \alpha \text {, then } \mu \models \beta \\
& \mu \models \alpha \leftrightarrow \beta \Longleftrightarrow \mu \models \alpha \text { iff } \mu \models \beta \\
& \mu \models \alpha \oplus \beta \Longleftrightarrow \mu \models \alpha \text { iff not } \mu \models \beta
\end{aligned}
$$

- $M(\varphi) \stackrel{\text { def }}{=}\{\mu \mid \mu \models \varphi\}$ (the set of models of φ)
- A partial truth assignment μ satisfies φ iff all total assignments extending μ satisfy φ
- Ex: $\left\{A_{1}\right\} \models\left(A_{1} \vee A_{2}\right)$) because both $\left\{A_{1}, A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)$ and $\left\{A_{1}, \neg A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)$
- φ is satisfiable iff $\mu=\varphi$ for some μ (i.e. $M(\varphi) \neq \emptyset$)
- α entails $\beta(\alpha \models \beta): \alpha \models \beta$ iff $\mu \models \alpha \Longrightarrow \mu \models \beta$ for all μ s
(i.e., $M(\alpha) \subseteq M(\beta)$)
- φ is valid $(=\varphi):=\varphi$ iff $\mu=\varphi$ for all $\mu \mathrm{S}$
(i.e., $\mu \in M(\varphi)$ for all $\mu \mathrm{s}$)

Semantics: Basic Definitions [cont.]

- A total truth assignment μ satisfies φ (μ is a model of $\varphi, \mu \models \varphi$):

$$
\begin{aligned}
& \mu \models A_{i} \Longleftrightarrow \mu\left(A_{i}\right)=\top \\
& \mu \models \neg \varphi \Longleftrightarrow \text { not } \mu \models \varphi \\
& \mu \models \alpha \wedge \beta \Longleftrightarrow \mu \models \alpha \text { and } \mu \models \beta \\
& \mu \models \alpha \vee \beta \Longleftrightarrow \mu \models \alpha \text { or } \mu \models \beta \\
& \mu \models \alpha \rightarrow \beta \Longleftrightarrow \text { if } \mu \models \alpha \text {, then } \mu \models \beta \\
& \mu \models \alpha \leftrightarrow \beta \Longleftrightarrow \mu \models \alpha \text { iff } \mu \models \beta \\
& \mu \models \alpha \oplus \beta \Longleftrightarrow \mu \models \alpha \text { iff not } \mu \models \beta
\end{aligned}
$$

- $M(\varphi) \stackrel{\text { def }}{=}\{\mu \mid \mu \models \varphi\}$ (the set of models of φ)
- A partial truth assignment μ satisfies φ iff all total assignments extending μ satisfy φ
- Ex: $\left.\left\{A_{1}\right\} \models\left(A_{1} \vee A_{2}\right)\right)$ because both $\left\{A_{1}, A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)$ and $\left\{A_{1}, \neg A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)$
- φ is satisfiable iff $\mu \models \varphi$ for some μ (i.e. $M(\varphi) \neq \emptyset$)
- α entails $\beta(\alpha=\beta)$:
- φ is valid $(\models \varphi): \models \varphi$ iff $\mu \models \varphi$ for all μ s
(i.e., $\mu \in M(\varphi)$ for all μ s)

Semantics: Basic Definitions [cont.]

- A total truth assignment μ satisfies φ (μ is a model of $\varphi, \mu \models \varphi$):

$$
\begin{aligned}
& \mu \models A_{i} \Longleftrightarrow \mu\left(A_{i}\right)=\top \\
& \mu \models \neg \varphi \Longleftrightarrow \text { not } \mu \models \varphi \\
& \mu \models \alpha \wedge \beta \Longleftrightarrow \mu \models \alpha \text { and } \mu \models \beta \\
& \mu \models \alpha \vee \beta \Longleftrightarrow \mu \models \alpha \text { or } \mu=\beta \\
& \mu \models \alpha \rightarrow \beta \Longleftrightarrow \text { if } \mu=\alpha \text {, then } \mu \models \beta \\
& \mu \models \alpha \leftrightarrow \beta \Longleftrightarrow \mu \models \alpha \text { iff } \mu \models \beta \\
& \mu \models \alpha \oplus \beta \Longleftrightarrow \mu \models \alpha \text { iff not } \mu \models \beta
\end{aligned}
$$

- $M(\varphi) \stackrel{\text { def }}{=}\{\mu \mid \mu \models \varphi\}$ (the set of models of φ)
- A partial truth assignment μ satisfies φ iff all total assignments extending μ satisfy φ
- Ex: $\left\{A_{1}\right\} \models\left(A_{1} \vee A_{2}\right)$) because both $\left\{A_{1}, A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)$ and $\left\{A_{1}, \neg A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)$
- φ is satisfiable iff $\mu \models \varphi$ for some μ (i.e. $M(\varphi) \neq \emptyset$)
- α entails $\beta(\alpha \models \beta)$: $\alpha \models \beta$ iff $\mu \models \alpha \Longrightarrow \mu \models \beta$ for all μ s (i.e., $M(\alpha) \subseteq M(\beta)$)
- φ is valid $(=\varphi):=\varphi$ iff $\mu=\varphi$ for all μ s
(i.e., $\mu \in M(\varphi)$ for all μ s)

Semantics: Basic Definitions [cont.]

- A total truth assignment μ satisfies φ (μ is a model of $\varphi, \mu \models \varphi$):

$$
\begin{aligned}
& \mu \models A_{i} \Longleftrightarrow \mu\left(\boldsymbol{A}_{i}\right)=\mathrm{T} \\
& \mu \models \neg \varphi \Longleftrightarrow \text { not } \mu \models \varphi \\
& \mu \models \alpha \wedge \beta \Longleftrightarrow \mu \models \alpha \text { and } \mu \models \beta \\
& \mu \models \alpha \vee \beta \Longleftrightarrow \mu \models \alpha \text { or } \mu \models \beta \\
& \mu \models \alpha \rightarrow \beta \Longleftrightarrow \text { if } \mu \models \alpha \text {, then } \mu \models \beta \\
& \mu \models \alpha \leftrightarrow \beta \Longleftrightarrow \mu \models \alpha \text { iff } \mu \models \beta \\
& \mu \models \alpha \oplus \beta \Longleftrightarrow \mu \models \alpha \text { iff not } \mu \models \beta
\end{aligned}
$$

- $M(\varphi) \stackrel{\text { def }}{=}\{\mu \mid \mu \models \varphi\}$ (the set of models of φ)
- A partial truth assignment μ satisfies φ iff all total assignments extending μ satisfy φ
- Ex: $\left.\left\{A_{1}\right\} \models\left(A_{1} \vee A_{2}\right)\right)$ because both $\left\{A_{1}, A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)$ and $\left\{A_{1}, \neg A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)$
- φ is satisfiable iff $\mu \models \varphi$ for some μ (i.e. $M(\varphi) \neq \emptyset$)
- α entails $\beta(\alpha \models \beta)$: $\alpha \models \beta$ iff $\mu \models \alpha \Longrightarrow \mu \models \beta$ for all μ s
(i.e., $M(\alpha) \subseteq M(\beta)$)
- φ is valid $(\models \varphi): \models \varphi$ iff $\mu \models \varphi$ for all μ s (i.e., $\mu \in M(\varphi)$ for all $\mu \mathrm{s}$)

Properties \& Results

Property

φ is valid iff $\neg \varphi$ is not satisfiable

Deduction Theorem

Corollary
iff $\alpha \wedge \neg \beta$ is not satisfiable

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!

Properties \& Results

```
Property
\varphi \text { is valid iff } \neg \varphi \text { is not satisfiable}
```


Deduction Theorem

$\alpha \models \beta$ iff $\alpha \rightarrow \beta$ is valid $(\models \alpha \rightarrow \beta)$

```
Corollary
    iff \alpha\wedge}\neg\beta\mathrm{ is not satisfiable
```


Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!

Properties \& Results

```
Property
\varphi \text { is valid iff } \neg \varphi \text { is not satisfiable}
```


Deduction Theorem

$\alpha \models \beta$ iff $\alpha \rightarrow \beta$ is valid $(\models \alpha \rightarrow \beta)$

Corollary

$\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ is not satisfiable

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!

Properties \& Results

```
Property
\varphi \text { is valid iff } \neg \varphi \text { is not satisfiable}
```

```
Deduction Theorem
\alpha\models\beta iff \alpha->\beta is valid (\models\alpha->\beta)
```

Corollary
$\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ is not satisfiable

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!

Equivalence and Equi-Satisfiability

- α and β are equivalent iff, for every $\mu, \mu \models \alpha$ iff $\mu \models \beta$
(i.e., if $M(\alpha)=M(\beta)$)
- α and β are equi-satisfiable iff exists μ_{1} s.t. $\mu_{1} \models \alpha$ iff exists μ_{2} s.t. $\mu_{2}=\beta$
(i.e., if $M(\alpha) \neq \emptyset$ iff $M(\beta) \neq \emptyset$)
- α, β equivalent
α, β equi-satisfiable
- EX: $A_{1} \vee A_{2}$ and $\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$ are equi-satisfiable, not equivalent. $\left\{\neg A_{1}, A_{2}, A_{3}\right\} \models\left(A_{1} \vee A_{2}\right)$, but $\left\{\neg A_{1}, A_{2}, A_{3}\right\} \not \vDash\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$
- Typically used when β is the result of applying some transformation T to $\alpha: \beta \stackrel{\text { dof }}{=} T(\alpha)$:
- T is validity-preserving [resp. satisfiability-preserving] iff
$T(\alpha)$ and α are equivalent [resp. equi-satisfiable]

Equivalence and Equi-Satisfiability

- α and β are equivalent iff, for every $\mu, \mu \models \alpha$ iff $\mu \models \beta$
(i.e., if $M(\alpha)=M(\beta)$)
- α and β are equi-satisfiable iff exists μ_{1} s.t. $\mu_{1} \models \alpha$ iff exists μ_{2} s.t. $\mu_{2} \models \beta$
(i.e., if $M(\alpha) \neq \emptyset$ iff $M(\beta) \neq \emptyset$)
- α, β equivalent

α, β equi-satisfiable

- EX: $A_{1} \vee A_{2}$ and $\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$ are equi-satisfiable, not equivalent.
- Typically used when β is the result of applying some transformation T to $\alpha: \beta \stackrel{\text { def }}{=} T(\alpha)$:
- T is validity-preserving [resp. satisfiability-preserving] iff
$T(\alpha)$ and α are equivalent [resp. equi-satisfiable]

Equivalence and Equi-Satisfiability

- α and β are equivalent iff, for every $\mu, \mu \models \alpha$ iff $\mu \models \beta$
(i.e., if $M(\alpha)=M(\beta)$)
- α and β are equi-satisfiable iff exists μ_{1} s.t. $\mu_{1} \models \alpha$ iff exists μ_{2} s.t. $\mu_{2} \models \beta$ (i.e., if $M(\alpha) \neq \emptyset$ iff $M(\beta) \neq \emptyset$)
- α, β equivalent
$\Downarrow \not \forall$
α, β equi-satisfiable
- EX: $A_{1} \vee A_{2}$ and $\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$ are equi-satisfiable, not equivalent.
- Typically used when β is the result of applying some transformation T to α : $\beta \stackrel{\text { def }}{=} T(\alpha)$:
- T is validity-preserving [resp. satisfiability-preserving] iff
$T(\alpha)$ and α are equivalent [resp. equi-satisfiable]

Equivalence and Equi-Satisfiability

- α and β are equivalent iff, for every $\mu, \mu \models \alpha$ iff $\mu \models \beta$
(i.e., if $M(\alpha)=M(\beta)$)
- α and β are equi-satisfiable iff exists μ_{1} s.t. $\mu_{1} \models \alpha$ iff exists μ_{2} s.t. $\mu_{2} \models \beta$
(i.e., if $M(\alpha) \neq \emptyset$ iff $M(\beta) \neq \emptyset$)
- α, β equivalent
$\Downarrow \not \approx$
α, β equi-satisfiable
- EX: $A_{1} \vee A_{2}$ and $\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$ are equi-satisfiable, not equivalent. $\left\{\neg A_{1}, A_{2}, A_{3}\right\} \models\left(A_{1} \vee A_{2}\right)$, but $\left\{\neg A_{1}, A_{2}, A_{3}\right\} \not \models\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$
- Typically used when β is the result of applying some transformation T to $\alpha: \beta \stackrel{\text { def }}{=} T(\alpha)$:
- T is validity-preserving [resp. satisfiability-preserving] iff
$T(\alpha)$ and α are equivalent [resp. equi-satisfiable]

Equivalence and Equi-Satisfiability

- α and β are equivalent iff, for every $\mu, \mu \models \alpha$ iff $\mu \models \beta$
(i.e., if $M(\alpha)=M(\beta)$)
- α and β are equi-satisfiable iff exists μ_{1} s.t. $\mu_{1} \models \alpha$ iff exists μ_{2} s.t. $\mu_{2} \models \beta$
(i.e., if $M(\alpha) \neq \emptyset$ iff $M(\beta) \neq \emptyset$)
- α, β equivalent
$\Downarrow \not \approx$
α, β equi-satisfiable
- EX: $A_{1} \vee A_{2}$ and $\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$ are equi-satisfiable, not equivalent. $\left\{\neg A_{1}, A_{2}, A_{3}\right\} \models\left(A_{1} \vee A_{2}\right)$, but $\left\{\neg A_{1}, A_{2}, A_{3}\right\} \not \models\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$
- Typically used when β is the result of applying some transformation T to α : $\beta \stackrel{\text { def }}{=} T(\alpha)$:
- T is validity-preserving [resp. satisfiability-preserving] iff $T(\alpha)$ and α are equivalent [resp. equi-satisfiable]

Boolean Quantification

Shannon's expansion:

- If v is a Boolean variable and f is a Boolean formula, then
$\exists v . \varphi:=\left.\left.\varphi\right|_{v=\perp} \vee \varphi\right|_{v=T}$
$\forall v . \varphi:=\left.\left.\varphi\right|_{v=\perp} \wedge \varphi\right|_{v=T}$
- v does no more occur in $\exists v . \varphi$ and $\forall v . \varphi$!!
- Multi-variable quantification: $\exists\left(w_{1}\right.$

Note
Naive expansion of quantifiers to propositional logic may cause a blow-up in size of the formulae

Boolean Quantification

Shannon's expansion:

- If v is a Boolean variable and f is a Boolean formula, then
$\exists v \cdot \varphi:=\left.\varphi\right|_{v=\left.\perp \vee \varphi\right|_{v=T}}$
$\forall v . \varphi:=\left.\left.\varphi\right|_{v=\perp} \wedge \varphi\right|_{v=T}$
- v does no more occur in $\exists v . \varphi$ and $\forall v . \varphi$!!
- Multi-variable quantification: \exists (w_{1}

Boolean Quantification

Shannon's expansion:

- If v is a Boolean variable and f is a Boolean formula, then

$$
\begin{aligned}
\exists v \cdot \varphi & :=\left.\left.\varphi\right|_{v=\perp} \vee \varphi\right|_{v=T} \\
\forall v \cdot \varphi & :=\left.\left.\varphi\right|_{v=\perp} \wedge \varphi\right|_{v=T}
\end{aligned}
$$

- v does no more occur in $\exists v . \varphi$ and $\forall v . \varphi$!!
- Multi-variable quantification: $\exists\left(w_{1}, \ldots, w_{n}\right) \cdot \varphi:=\exists w_{1} \ldots \exists w_{n} \cdot \varphi$

Boolean Quantification

Shannon's expansion:

- If v is a Boolean variable and f is a Boolean formula, then

$$
\begin{aligned}
& \exists v \cdot \varphi:=\left.\varphi\right|_{v=\left.\perp \vee \varphi\right|_{v=T}} ^{\forall v \cdot \varphi}:=\left.\left.\varphi\right|_{v=\perp} \wedge \varphi\right|_{v=T}
\end{aligned}
$$

- v does no more occur in $\exists v . \varphi$ and $\forall v . \varphi$!!
- Multi-variable quantification: $\exists\left(w_{1}, \ldots, w_{n}\right) \cdot \varphi:=\exists w_{1} \ldots \exists w_{n} \cdot \varphi$
- Intuition:
- $\mu \models \exists v . \varphi$ iff exists truthvalue $\in\{T, \perp\}$ s.t. $\mu \cup\{v:=$ truthvalue $\} \models \varphi$
- $\mu \models \forall v . \varphi$ iff forall truthvalue $\in\{T, \perp\}, \mu \cup\{v:=$ truthvalue $\} \models \varphi$
- Example:

Note
Naive expansion of quantifiers to propositional logic may cause a blow-up in size of the formulae

Boolean Quantification

Shannon's expansion:

- If v is a Boolean variable and f is a Boolean formula, then

$$
\begin{aligned}
& \exists v \cdot \varphi:=\left.\varphi\right|_{v=\left.\perp \vee \varphi\right|_{v=T}} ^{\forall v \cdot \varphi}:=\left.\left.\varphi\right|_{v=\perp} \wedge \varphi\right|_{v=T}
\end{aligned}
$$

- v does no more occur in $\exists v . \varphi$ and $\forall v . \varphi$!!
- Multi-variable quantification: $\exists\left(w_{1}, \ldots, w_{n}\right) \cdot \varphi:=\exists w_{1} \ldots \exists w_{n} \cdot \varphi$
- Intuition:
- $\mu \models \exists v . \varphi$ iff exists truthvalue $\in\{T, \perp\}$ s.t. $\mu \cup\{v:=$ truthvalue $\} \models \varphi$
- $\mu \models \forall v . \varphi$ iff forall truthvalue $\in\{T, \perp\}, \mu \cup\{v:=$ truthvalue $\} \models \varphi$
- Example: $\exists(b, c) .((a \wedge b) \vee(c \wedge d))=a \vee d$

Boolean Quantification

Shannon's expansion:

- If v is a Boolean variable and f is a Boolean formula, then

$$
\begin{aligned}
& \exists v \cdot \varphi:=\left.\varphi\right|_{v=\left.\perp \vee \varphi\right|_{v=T}} ^{\forall v \cdot \varphi}:=\left.\left.\varphi\right|_{v=\perp} \wedge \varphi\right|_{v=T}
\end{aligned}
$$

- v does no more occur in $\exists v . \varphi$ and $\forall v . \varphi$!!
- Multi-variable quantification: $\exists\left(w_{1}, \ldots, w_{n}\right) \cdot \varphi:=\exists w_{1} \ldots \exists w_{n} \cdot \varphi$
- Intuition:
- $\mu \models \exists v . \varphi$ iff exists truthvalue $\in\{T, \perp\}$ s.t. $\mu \cup\{v:=$ truthvalue $\} \models \varphi$
- $\mu \models \forall v . \varphi$ iff forall truthvalue $\in\{T, \perp\}, \mu \cup\{v:=$ truthvalue $\} \models \varphi$
- Example: $\exists(b, c) .((a \wedge b) \vee(c \wedge d))=a \vee d$

Note

Naive expansion of quantifiers to propositional logic may cause a blow-up in size of the formulae

Complexity

NP-Completeness of SAT

- For N variables, there are up to 2^{N} truth assignments to be checked.
- The problem of deciding the satisfiability of a propositional formula is NP-complete
\Longrightarrow The most important logical problems (validity, inference, entailment, equivalence, ...) can be straightforwardly reduced to (un)satisfiability, and are thus (co)NP-complete.
\Downarrow
No existing worst-case-polynomial algorithm.

POLARITY of subformulas

Polarity: the number of nested negations modulo 2.

- Positive/negative occurrences
- φ occurs positively in φ;
- if $\neg \varphi_{1}$ occurs positively [negatively] in φ, then φ_{1} occurs negatively [positively] in φ
- if $\varphi_{1} \wedge \varphi_{2}$ or $\varphi_{1} \vee \varphi_{2}$ occur positively [negatively] in φ, then φ_{1} and φ_{2} occur positively [negatively] in φ;
- if $\varphi_{1} \rightarrow \varphi_{2}$ occurs positively [negatively] in φ, then φ_{1} occurs negatively [positively] in φ and φ_{2} occurs positively [negatively] in φ;
- if $\varphi_{1} \leftrightarrow \varphi_{2}$ or $\varphi_{1} \oplus \varphi_{2}$ occurs in φ, then φ_{1} and φ_{2} occur positively and negatively in φ;

Negative Normal Form (NNF)

- φ is in Negative normal form iff it is given only by the recursive applications of \wedge, \vee to literals.
(i) substituting all \rightarrow 's and \leftrightarrow 's:
$\alpha \leftrightarrow \beta \Longrightarrow(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)$
(ii) pushing down negations recursively:
- The reduction is linear if a DAG representation is used.
- Preserves the equivalence of formulas.

Negative Normal Form (NNF)

- φ is in Negative normal form iff it is given only by the recursive applications of \wedge, \vee to literals.
- every φ can be reduced into NNF:
(i) substituting all \rightarrow 's and \leftrightarrow 's:

$$
\begin{array}{ll}
\alpha \rightarrow \beta & \Longrightarrow \neg \alpha \vee \beta \\
\alpha \leftrightarrow \beta & \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
\end{array}
$$

(ii) pushing down negations recursively:

$$
\begin{array}{ll}
\neg(\alpha \wedge \beta) & \Longrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \Longrightarrow \neg \alpha \wedge \neg \beta \\
\neg \neg \alpha & \Longrightarrow \alpha
\end{array}
$$

- The reduction is linear if a DAG representation is used.
- Preserves the equivalence of formulas.

Negative Normal Form (NNF)

- φ is in Negative normal form iff it is given only by the recursive applications of \wedge, \vee to literals.
- every φ can be reduced into NNF:
(i) substituting all \rightarrow 's and \leftrightarrow 's:

$$
\begin{array}{ll}
\alpha \rightarrow \beta & \Longrightarrow \quad \neg \alpha \vee \beta \\
\alpha \leftrightarrow \beta & \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
\end{array}
$$

(ii) pushing down negations recursively:

$$
\begin{array}{ll}
\neg(\alpha \wedge \beta) & \Longrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \Longrightarrow \neg \alpha \wedge \neg \beta \\
\neg \neg \alpha & \Longrightarrow \alpha
\end{array}
$$

- The reduction is linear if a DAG representation is used.
- Preserves the equivalence of formulas.

Negative Normal Form (NNF)

- φ is in Negative normal form iff it is given only by the recursive applications of \wedge, \vee to literals.
- every φ can be reduced into NNF:
(i) substituting all \rightarrow 's and \leftrightarrow 's:

$$
\begin{array}{ll}
\alpha \rightarrow \beta & \Longrightarrow \quad \neg \alpha \vee \beta \\
\alpha \leftrightarrow \beta & \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
\end{array}
$$

(ii) pushing down negations recursively:

$$
\begin{array}{ll}
\neg(\alpha \wedge \beta) & \Longrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \Longrightarrow \neg \alpha \wedge \neg \beta \\
\neg \neg \alpha & \Longrightarrow \alpha
\end{array}
$$

- The reduction is linear if a DAG representation is used.
- Preserves the equivalence of formulas.

NNF: Example

$$
\left(A_{1} \leftrightarrow A_{2}\right) \leftrightarrow\left(A_{3} \leftrightarrow A_{4}\right)
$$

NNF: Example

$$
\begin{aligned}
&\left(A_{1} \leftrightarrow A_{2}\right) \leftrightarrow \\
& \Downarrow \\
&\left(A_{3} \leftrightarrow A_{4}\right) \\
&\left(\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{1} \leftarrow A_{2}\right)\right) \rightarrow\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{3} \leftarrow A_{4}\right)\right)\right) \wedge\right. \\
&\left.\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{1} \leftarrow A_{2}\right)\right) \leftarrow\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{3} \leftarrow A_{4}\right)\right)\right)\right)
\end{aligned}
$$

NNF: Example

$$
\begin{gathered}
\left(A_{1} \leftrightarrow A_{2}\right) \leftrightarrow\left(A_{3} \leftrightarrow A_{4}\right) \\
\Downarrow \\
\left(\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{1} \leftarrow A_{2}\right)\right) \rightarrow\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{3} \leftarrow A_{4}\right)\right)\right) \wedge\right. \\
\left.\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{1} \leftarrow A_{2}\right)\right) \leftarrow\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{3} \leftarrow A_{4}\right)\right)\right)\right) \\
\Downarrow \\
\left(\left(\neg\left(\left(\neg A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right)\right) \vee\left(\left(\neg A_{3} \vee A_{4}\right) \wedge\left(A_{3} \vee \neg A_{4}\right)\right)\right) \wedge\right. \\
\left.\left.\left(\left(\left(\neg A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right)\right) \vee \neg\left(\left(\neg A_{3} \vee A_{4}\right) \wedge\left(A_{3} \vee \neg A_{4}\right)\right)\right)\right)\right)
\end{gathered}
$$

NNF: Example

$$
\begin{gathered}
\left(A_{1} \leftrightarrow A_{2}\right) \leftrightarrow\left(A_{3} \leftrightarrow A_{4}\right) \\
\Downarrow \\
\left(\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{1} \leftarrow A_{2}\right)\right) \rightarrow\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{3} \leftarrow A_{4}\right)\right)\right) \wedge\right. \\
\left.\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{1} \leftarrow A_{2}\right)\right) \leftarrow\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{3} \leftarrow A_{4}\right)\right)\right)\right) \\
\Downarrow \\
\left(\left(\neg\left(\left(\neg A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right)\right) \vee\left(\left(\neg A_{3} \vee A_{4}\right) \wedge\left(A_{3} \vee \neg A_{4}\right)\right)\right) \wedge\right. \\
\left.\left(\left(\left(\neg A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right)\right) \vee \neg\left(\left(\neg A_{3} \vee A_{4}\right) \wedge\left(A_{3} \vee \neg A_{4}\right)\right)\right)\right) \\
\Downarrow \\
\left(\left(\left(\left(A_{1} \wedge \neg A_{2}\right) \vee\left(\neg A_{1} \wedge A_{2}\right)\right) \vee\left(\left(\neg A_{3} \vee A_{4}\right) \wedge\left(A_{3} \vee \neg A_{4}\right)\right)\right) \wedge\right. \\
\left.\left.\left(\left(\neg A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right)\right) \vee\left(\left(A_{3} \wedge \neg A_{4}\right) \vee\left(\neg A_{3} \wedge A_{4}\right)\right)\right)\right)
\end{gathered}
$$

NNF: Example [cont.]

Note

For each non-literal subformula φ, φ and $\neg \varphi$ have different representations \Longrightarrow they are not shared.

Optimized polynomial representations

And-Inverter Graphs, Reduced Boolean Circuits, Boolean Expression Diagrams

- Maximize the sharing in DAG representations: $\{\wedge, \leftrightarrow, \neg\}$-only, negations on arcs, sorting of subformulae, lifting of \neg 's over $\leftrightarrow ' s, \ldots$

Conjunctive Normal Form (CNF)

- φ is in Conjunctive normal form iff it is a conjunction of disjunctions of literals:

- the disjunctions of literals $\bigvee_{j_{i}=1}^{K_{i}} J_{i j}$ are called clauses
- Easier to handle: list of lists of literals.
\Longrightarrow no reasoning on the recursive structure of the formula

Classic CNF Conversion $\operatorname{CNF}(\varphi)$

- Every φ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:
(ii) pushing down negations recursively:

(iii) applying recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \Longrightarrow(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$
- Resulting formula worst-case exponential:

。 ex: $\| \operatorname{CNF}\left(\vee_{i=1}^{N}\left(l_{11} \wedge I_{i 2}\right)\|=\|\left(I_{11} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge\left(I_{12} \vee I_{21} \vee \ldots \vee I_{N 1}\right)\right\rangle$

- $\operatorname{Atoms}(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi)$
- $\operatorname{CNF}(\varphi)$ is equivalent to φ.
- Rarely used in practice.

Classic CNF Conversion CNF (φ)

- Every φ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:

$$
\begin{aligned}
\alpha \rightarrow \beta & \Longrightarrow \neg \alpha \vee \beta \\
\alpha \leftrightarrow \beta & \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
\end{aligned}
$$

(ii) pushing down negations recursively:
(iii) applying recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \Longrightarrow(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$

- Resulting formula worst-case exponential:
- $\operatorname{Atoms}(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi)$
- $\operatorname{CNF}(\varphi)$ is equivalent to
- Rarely used in practice.

Classic CNF Conversion CNF (φ)

- Every φ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:

$$
\alpha \rightarrow \beta \quad \Longrightarrow \quad \neg \alpha \vee \beta
$$

$$
\alpha \leftrightarrow \beta \quad \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
$$

(ii) pushing down negations recursively:

$$
\begin{array}{ll}
\neg(\alpha \wedge \beta) & \Longrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \Longrightarrow \neg \alpha \wedge \neg \beta \\
\neg \neg \alpha & \Longrightarrow \alpha
\end{array}
$$

(iii) applying recursively the DeMorgan's Rule:

- Resulting formula worst-case exponential:
- $\operatorname{Atoms}(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi)$
- $\operatorname{CNF}(\varphi)$ is equivalent to
- Rarely used in practice.

Classic CNF Conversion CNF (φ)

- Every φ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:

$$
\begin{aligned}
& \alpha \rightarrow \beta \quad \Longrightarrow \quad \neg \alpha \vee \beta \\
& \alpha \leftrightarrow \beta \quad \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
\end{aligned}
$$

(ii) pushing down negations recursively:

$$
\begin{array}{ll}
\neg(\alpha \wedge \beta) & \Longrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \Longrightarrow \neg \alpha \wedge \neg \beta \\
\neg \neg \alpha & \Longrightarrow \alpha
\end{array}
$$

(iii) applying recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \Longrightarrow(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$

- Resulting formula worst-case exponential:

- ex: $\| C N F\left(V_{i=1}^{N}\left(l_{11} \wedge I_{i 2}\right)\|=\|\left(I_{11} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge\left(I_{12} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge \ldots \wedge\left(I_{12} \vee l_{22} \vee \ldots \vee I_{N 2}\right) \|=2^{N}\right.$
- $\operatorname{Atoms}(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi)$
- $\operatorname{CNF}(\varphi)$ is equivalent to
- Rarely used in practice.

Classic CNF Conversion $\operatorname{CNF}(\varphi)$

- Every φ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:

$$
\begin{aligned}
& \alpha \rightarrow \beta \quad \Longrightarrow \quad \neg \alpha \vee \beta \\
& \alpha \leftrightarrow \beta \quad \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
\end{aligned}
$$

(ii) pushing down negations recursively:

$$
\begin{aligned}
\neg(\alpha \wedge \beta) & \Longrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \Longrightarrow \neg \alpha \wedge \neg \beta \\
\neg \neg \alpha & \Longrightarrow \alpha
\end{aligned}
$$

(iii) applying recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \Longrightarrow(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$

- Resulting formula worst-case exponential:
- ex: $\| C N F\left(\bigvee_{i=1}^{N}\left(l_{11} \wedge l_{i 2}\right)\|=\|\left(I_{11} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge\left(I_{12} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge \ldots \wedge\left(I_{12} \vee I_{22} \vee \ldots \vee I_{N 2}\right) \|=2^{N}\right.$
- Atoms $(\operatorname{CNF}(\varphi))=$ Atoms
- $\operatorname{CNF}(\varphi)$ is equivalent to
- Rarely used in practice.

Classic CNF Conversion CNF (φ)

- Every φ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:

$$
\begin{array}{ll}
\alpha \rightarrow \beta & \Longrightarrow \neg \alpha \vee \beta \\
\alpha \leftrightarrow \beta & \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
\end{array}
$$

(ii) pushing down negations recursively:

$$
\begin{aligned}
\neg(\alpha \wedge \beta) & \Longrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \Longrightarrow \neg \alpha \wedge \neg \beta \\
\neg \neg \alpha & \Longrightarrow \alpha
\end{aligned}
$$

(iii) applying recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \quad \Longrightarrow \quad(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$

- Resulting formula worst-case exponential:
- ex: $\| C N F\left(\bigvee_{i=1}^{N}\left(l_{i 1} \wedge l_{i 2}\right)\|=\|\left(l_{11} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge\left(I_{12} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge \ldots \wedge\left(I_{12} \vee I_{22} \vee \ldots \vee I_{N 2}\right) \|=2^{N}\right.$
- $\operatorname{Atoms}(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi)$
- $\operatorname{CNF}(\varphi)$ is equivalent to
- Rarely used in practice.

Classic CNF Conversion CNF (φ)

- Every φ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:

$$
\begin{array}{ll}
\alpha \rightarrow \beta & \Longrightarrow \neg \alpha \vee \beta \\
\alpha \leftrightarrow \beta & \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
\end{array}
$$

(ii) pushing down negations recursively:

$$
\begin{aligned}
\neg(\alpha \wedge \beta) & \Longrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \Longrightarrow \neg \alpha \wedge \neg \beta \\
\neg \neg \alpha & \Longrightarrow \alpha
\end{aligned}
$$

(iii) applying recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \quad \Longrightarrow \quad(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$

- Resulting formula worst-case exponential:
- ex: $\| C N F\left(\bigvee_{i=1}^{N}\left(l_{i 1} \wedge l_{i 2}\right)\|=\|\left(l_{11} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge\left(I_{12} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge \ldots \wedge\left(I_{12} \vee I_{22} \vee \ldots \vee I_{N 2}\right) \|=2^{N}\right.$
- $\operatorname{Atoms}(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi)$
- $\operatorname{CNF}(\varphi)$ is equivalent to φ.
- Rarely used in practice.

Classic CNF Conversion CNF (φ)

- Every φ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:

$$
\begin{aligned}
& \alpha \rightarrow \beta \quad \Longrightarrow \quad \neg \alpha \vee \beta \\
& \alpha \leftrightarrow \beta \quad \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
\end{aligned}
$$

(ii) pushing down negations recursively:

$$
\begin{aligned}
\neg(\alpha \wedge \beta) & \Longrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \Longrightarrow \neg \alpha \wedge \neg \beta \\
\neg \neg \alpha & \Longrightarrow \alpha
\end{aligned}
$$

(iii) applying recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \quad \Longrightarrow \quad(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$

- Resulting formula worst-case exponential:
- ex: $\| C N F\left(\bigvee_{i=1}^{N}\left(l_{i 1} \wedge l_{i 2}\right)\|=\|\left(l_{11} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge\left(I_{12} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge \ldots \wedge\left(I_{12} \vee I_{22} \vee \ldots \vee I_{N 2}\right) \|=2^{N}\right.$
- $\operatorname{Atoms}(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi)$
- $\operatorname{CNF}(\varphi)$ is equivalent to φ.
- Rarely used in practice.

Labeling CNF conversion $C N F_{\text {label }}(\varphi)$

Labeling CNF conversion CNF $_{\text {label }}(\varphi)$ (aka Tseitin's CNF-ization)

- Every φ can be reduced into CNF by, e.g., applying recursively bottom-up the rules:
$\varphi \Longrightarrow \varphi\left[\left(l_{i} \vee l_{j}\right) \mid B\right] \wedge \operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \vee l_{j}\right)\right)$
$\varphi \Longrightarrow \varphi\left[\left(I_{i} \wedge I_{j}\right) \mid B\right] \wedge \operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \wedge I_{j}\right)\right)$
$\varphi \Longrightarrow \varphi\left[\left(I_{i} \leftrightarrow I_{j}\right) \mid B\right] \wedge \operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \leftrightarrow I_{j}\right)\right)$
l_{i}, l_{j} being literals and B being a "new" variable.
- Worst-case linear!
- Atoms $\left(\operatorname{CNF}_{\text {label }}(\varphi)\right) \supseteq \operatorname{Atoms}(\varphi)$
- $C N F_{\text {lahol }}(\varphi)$ is equi-satisfiable (but not equivalent) to - moreover: $\exists B_{1}, \ldots, B_{k} . C N F_{\text {label }}(\varphi)$ equivalent to φ, s.t. B_{1}, \ldots, B_{k} all fresh variables introduced
- Much more used than classic conversion in practice

Labeling CNF conversion CNF $_{\text {label }}(\varphi)$

Labeling CNF conversion CNF $_{\text {label }}(\varphi)$ (aka Tseitin's CNF-ization)

- Every φ can be reduced into CNF by, e.g., applying recursively bottom-up the rules:
$\varphi \Longrightarrow \varphi\left[\left(l_{i} \vee l_{j}\right) \mid B\right] \wedge \operatorname{CNF}\left(B \leftrightarrow\left(l_{i} \vee l_{j}\right)\right)$
$\varphi \Longrightarrow \varphi\left[\left(I_{i} \wedge I_{j}\right) \mid B\right] \wedge \operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \wedge l_{j}\right)\right)$
$\varphi \Longrightarrow \varphi\left[\left(I_{i} \leftrightarrow I_{j}\right) \mid B\right] \wedge \operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \leftrightarrow l_{j}\right)\right)$
ℓ_{i}, l_{j} being literals and B being a "new" variable.
- Worst-case linear!
- $\operatorname{Atoms}\left(\right.$ CNF $\left._{\text {label }}(\varphi)\right) \supseteq \operatorname{Atoms}(\varphi)$
- $C N F_{\text {label }}(\varphi)$ is equi-satisfiable (but not equivalent) to φ.
- moreover: $\exists B_{1}, \ldots, B_{k} . C N F_{\text {label }}(\varphi)$ equivalent to φ, s.t. B_{1}, \ldots, B_{k} all fresh variables introduced
- Much more used than classic conversion in practice

Labeling CNF conversion $C N F_{\text {label }}(\varphi)$ (cont.)

$\operatorname{CNF}\left(B \leftrightarrow\left(l_{i} \vee l_{j}\right)\right)$	\Longleftrightarrow	$\begin{aligned} & \left(\neg B \vee I_{i} \vee I_{j}\right) \wedge \\ & \left(B \vee \neg I_{i}\right) \wedge \\ & \left(B \vee \neg I_{j}\right) \end{aligned}$
$\operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \wedge l_{j}\right)\right)$	\Longleftrightarrow	$\begin{aligned} & \left(\neg B \vee l_{i}\right) \wedge \\ & \left(\neg B \vee l_{j}\right) \wedge \\ & \left(B \vee \neg l_{i} \neg l_{j}\right) \end{aligned}$
$\operatorname{CNF}\left(B \leftrightarrow\left(l_{i} \leftrightarrow l_{j}\right)\right)$		$\begin{aligned} & \left(\neg B \vee \neg I_{i} \vee I_{j}\right) \wedge \\ & \left(\neg B \vee I_{i} \vee \neg I_{j}\right) \wedge \\ & \left(B \vee I_{i} \vee I_{j}\right) \wedge \\ & \left(B \vee \neg I_{i} \vee \neg I_{j}\right) \\ & \hline \end{aligned}$

Labeling CNF Conversion $C N F_{\text {label }}$ - Example

Labeling CNF conversion $C N F_{\text {label }}$ (improved)

- As in the previous case, applying instead the rules:

$$
\begin{array}{rlll}
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \vee I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(B \rightarrow\left(I_{i} \vee I_{j}\right)\right) & \text { if }\left(I_{i} \vee I_{j}\right) \text { pos. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \vee I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(\left(I_{i} \vee I_{j}\right) \rightarrow B\right) & \text { if }\left(I_{i} \vee I_{j}\right) \text { neg. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \wedge I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(B \rightarrow\left(I_{i} \wedge I_{j}\right)\right) & \text { if }\left(I_{i} \wedge I_{j}\right) \text { pos. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \wedge I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(\left(I_{i} \wedge I_{j}\right) \rightarrow B\right) & \text { if }\left(I_{i} \wedge I_{j}\right) \text { neg. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \leftrightarrow I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(B \rightarrow\left(I_{i} \leftrightarrow I_{j}\right)\right) & \text { if }\left(I_{i} \leftrightarrow I_{j}\right) \text { pos. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \leftrightarrow I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(\left(I_{i} \leftrightarrow I_{j}\right) \rightarrow B\right) & \text { if }\left(I_{i} \leftrightarrow I_{j}\right) \text { neg. }
\end{array}
$$

- Smaller in size:

Labeling CNF conversion $C N F_{\text {label }}$ (improved)

- As in the previous case, applying instead the rules:

$$
\begin{array}{rlll}
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \vee I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(B \rightarrow\left(I_{i} \vee I_{j}\right)\right) & \text { if }\left(I_{i} \vee I_{j}\right) \text { pos. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \vee I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(\left(I_{i} \vee I_{j}\right) \rightarrow B\right) & \text { if }\left(I_{i} \vee I_{j}\right) \text { neg. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \wedge I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(B \rightarrow\left(I_{i} \wedge I_{j}\right)\right) & \text { if }\left(I_{i} \wedge I_{j}\right) \text { pos. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \wedge I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(\left(I_{i} \wedge I_{j}\right) \rightarrow B\right) & \text { if }\left(I_{i} \wedge I_{j}\right) \text { neg. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \leftrightarrow I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(B \rightarrow\left(I_{i} \leftrightarrow I_{j}\right)\right) & \text { if }\left(I_{i} \leftrightarrow I_{j}\right) \text { pos. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \leftrightarrow I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(\left(I_{i} \leftrightarrow I_{j}\right) \rightarrow B\right) & \text { if }\left(I_{i} \leftrightarrow I_{j}\right) \text { neg. }
\end{array}
$$

- Smaller in size:

$$
\begin{array}{ll}
\operatorname{CNF}\left(B \rightarrow\left(I_{i} \vee I_{j}\right)\right) & =\left(\neg B \vee I_{i} \vee I_{j}\right) \\
\operatorname{CNF}\left(\left(\left(I_{i} \vee I_{j}\right) \rightarrow B\right)\right) & =\left(\neg I_{i} \vee B\right) \wedge\left(\neg I_{j} \vee B\right)
\end{array}
$$

Labeling CNF conversion $C N F_{\text {label }}(\varphi)$ (cont.)

$\operatorname{CNF}\left(B \rightarrow\left(l_{i} \vee l_{j}\right)\right)$	\Longleftrightarrow	$\left(\neg B \vee I_{i} \vee I_{j}\right)$
$C N F\left(B \leftarrow\left(l_{i} \vee l_{j}\right)\right)$	\Longleftrightarrow	$\begin{aligned} & \left(B \vee \neg I_{i}\right) \wedge \\ & \left(B \vee \neg l_{j}\right) \end{aligned}$
$\operatorname{CNF}\left(B \rightarrow\left(I_{i} \wedge l_{j}\right)\right)$	\Longleftrightarrow	$\begin{aligned} & \left(\neg B \vee I_{i}\right) \wedge \\ & \left(\neg B \vee I_{j}\right) \end{aligned}$
$\operatorname{CNF}\left(B \leftarrow\left(l_{i} \wedge l_{j}\right)\right)$	\Longleftrightarrow	$\left(B \vee \neg l_{i} \neg l_{j}\right)$
$\operatorname{CNF}\left(B \rightarrow\left(l_{i} \leftrightarrow l_{j}\right)\right)$	\Longleftrightarrow	$\begin{aligned} & \left(\neg B \vee \neg I_{i} \vee I_{j}\right) \wedge \\ & \left(\neg B \vee I_{i} \vee \neg I_{j}\right) \end{aligned}$
$\operatorname{CNF}\left(B \leftarrow\left(I_{i} \leftrightarrow l_{j}\right)\right)$	\Longleftrightarrow	$\begin{aligned} & \left(B \vee I_{i} \vee I_{j}\right) \wedge \\ & \left(B \vee \neg I_{i} \vee \neg I_{j}\right) \end{aligned}$

Labeling CNF conversion $C N F_{\text {label }}$ - example

Labeling CNF conversion $C N F_{\text {label }}$ - further improvements

- Do not apply $C N F_{\text {label }}$ when not necessary:
(e.g., $\operatorname{CNF}_{\text {label }}\left(\varphi_{1} \wedge \varphi_{2}\right) \Longrightarrow \operatorname{CNF}_{\text {label }}\left(\varphi_{1}\right) \wedge \varphi_{2}$, if φ_{2} already in CNF)
- Apply DeMorgan's rules where it is more effective: (e.g., $C N F_{\text {label }}\left(\varphi_{1} \wedge(A \rightarrow(B \wedge C))\right) \Longrightarrow C N F_{\text {label }}\left(\varphi_{1}\right) \wedge(\neg A \vee B) \wedge(\neg A \vee C)$
- Exploit the associativity of \wedge 's and \vee 's:
$\ldots(\underbrace{\left(A_{1} \vee\left(A_{2} \vee A_{3}\right)\right)}_{B} \ldots \Longrightarrow \ldots \operatorname{CNF}\left(B \leftrightarrow\left(A_{1} \vee A_{2} \vee A_{3}\right)\right) \ldots$
- Before applying $C N F_{\text {label }}$, rewrite the initial formula so that to maximize the sharing of subformulas (RBC, BED)

Exercises

- Consider the following Boolean formula φ :

$$
\neg\left(\left(\left(\neg A_{1} \rightarrow A_{2}\right) \wedge\left(\neg A_{3} \rightarrow A_{4}\right)\right) \vee\left(\left(A_{5} \rightarrow A_{6}\right) \wedge\left(A_{7} \rightarrow \neg A_{8}\right)\right)\right)
$$

Compute the Negative Normal Form of φ
(2) Consider the following Boolean formula φ :
$\left(\left(\neg A_{1} \wedge A_{2}\right) \vee\left(A_{7} \wedge A_{4}\right) \vee\left(\neg A_{3} \wedge \neg A_{2}\right) \vee\left(A_{5} \wedge \neg A_{4}\right)\right)$
(1) Produce the CNF formula $\operatorname{CNF}(\varphi)$.
(2) Produce the CNF formula $\operatorname{CNF}_{\text {label }}(\varphi)$.
(0) Produce the CNF formula $\mathrm{CNF}_{\text {label }}(\varphi)$ (improved version)

Outline

(1) Boolean Logics and SAT
(2) Basic SAT-Solving Techniques

- Generalities
- Resolution
- Tableaux
- DPLL
(3) Modern CDCL SAT Solvers
- Limitations of Chronological Backtracking
- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
- SAT Under Assumptions \& Incremental SAT

4) Ordered Binary Decision Diagrams - OBDDs

5 SAT Functionalities: proofs, unsat cores, interpolants, optimization

Outline

(1) Boolean Logics and SAT
(2) Basic SAT-Solving Techniques

- Generalities
- Resolution
- Tableaux
- DPLL
(3) Modern CDCL SAT Solvers
- Limitations of Chronological Backtracking
- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
- SAT Under Assumptions \& Incremental SAT

4) Ordered Binary Decision Diagrams - OBDDs

5 SAT Functionalities: proofs, unsat cores, interpolants, optimization

Propositional Reasoning: Generalities

- Automated Reasoning in Propositional Logic fundamental task
- Al, formal verification, circuit synthesis, operational research,....
- Important in $\mathrm{Al}: K B=\alpha$: entail fact α from knowledge base $K B$ (aka Model Checking: $M(K B) \subseteq M(\alpha)$)
- typically KB
- All propositional reasoning tasks reduced to satisfiability (SAT)
- $K B \models \alpha \Longrightarrow \operatorname{SAT}(K B \wedge \neg \alpha)=$ false
- input formula CNF-ized and fed to a SAT solver
- Current SAT solvers dramatically efficient:
- handle industrial problems with $10^{6}-10^{7}$ variables \& clauses!
- used as backend engines in a variety of systems

Propositional Reasoning: Generalities

- Automated Reasoning in Propositional Logic fundamental task
- AI, formal verification, circuit synthesis, operational research,....
- Important in $\mathrm{Al}: K B \models \alpha$: entail fact α from knowledge base $K B$ (aka Model Checking: $M(K B) \subseteq M(\alpha)$)
- typically $K B \gg \alpha$
- All propositional reasoning tasks reduced to satisfiability (SAT)
- $K B \models \alpha \Longrightarrow \operatorname{SAT}(K B \wedge \neg \alpha)=$ false
- input formula CNF-ized and fed to a SAT solver
- Current SAT solvers dramatically efficient:
- handle industrial problems with $10^{6}-10^{7}$ variables \& clauses!
- used as backend engines in a variety of systems

Propositional Reasoning: Generalities

- Automated Reasoning in Propositional Logic fundamental task
- Al, formal verification, circuit synthesis, operational research,....
- Important in AI: $K B \models \alpha$: entail fact α from knowledge base $K B$ (aka Model Checking: $M(K B) \subseteq M(\alpha)$)
- typically $K B \gg \alpha$
- All propositional reasoning tasks reduced to satisfiability (SAT)
- $K B \vDash \alpha \Longrightarrow \operatorname{SAT}(K B \wedge \neg \alpha)=$ false
- input formula CNF-ized and fed to a SAT solver
- Current SAT solvers dramatically efficient
- handle industrial problems with $10^{6}-10^{7}$ variables \& clauses!
- used as backend engines in a variety of systems

Propositional Reasoning: Generalities

- Automated Reasoning in Propositional Logic fundamental task
- Al, formal verification, circuit synthesis, operational research,....
- Important in AI: $K B \models \alpha$: entail fact α from knowledge base $K B$ (aka Model Checking: $M(K B) \subseteq M(\alpha)$)
- typically $K B \gg \alpha$
- All propositional reasoning tasks reduced to satisfiability (SAT)
- $K B \vDash \alpha \Longrightarrow \operatorname{SAT}(K B \wedge \neg \alpha)=$ false
- input formula CNF-ized and fed to a SAT solver
- Current SAT solvers dramatically efficient:
- handle industrial problems with $10^{6}-10^{7}$ variables \& clauses!
- used as backend engines in a variety of systems

Truth Tables

- Exhaustive evaluation of all subformulas:

φ_{1}	φ_{2}	$\varphi_{1} \wedge \varphi_{2}$	$\varphi_{1} \vee \varphi_{2}$	$\varphi_{1} \rightarrow \varphi_{2}$	$\varphi_{1} \leftrightarrow \varphi_{2}$
\perp	\perp	\perp	\perp	\top	\top
\perp	\top	\perp	\top	\top	\perp
\top	\perp	\perp	\top	\perp	\perp
\top	\top	\top	\top	\top	\top

- Requires polynomial space (draw one line at a time).
- Requires analyzing $2^{\mid \text {Atoms(}()| |}$ lines.
- Never used in practice.

Outline

(1) Boolean Logics and SAT
(2) Basic SAT-Solving Techniques

- Generalities
- Resolution
- Tableaux
- DPLL
(3) Modern CDCL SAT Solvers
- Limitations of Chronological Backtracking
- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
- SAT Under Assumptions \& Incremental SAT
(4) Ordered Binary Decision Diagrams - OBDDs
(5) SAT Functionalities: proofs, unsat cores, interpolants, optimization

The Resolution Rule

- Resolution: deduction of a new clause from a pair of clauses with exactly one incompatible variable (resolvent):

- Ex:
- Noie: many standard inference rules subcases of resolution: (recall that $\alpha \rightarrow \beta \Longleftrightarrow \neg \alpha \vee \beta$)

(m. tollens)

The Resolution Rule

- Resolution: deduction of a new clause from a pair of clauses with exactly one incompatible variable (resolvent):

- Ex: $\frac{(A \vee B \vee C \vee D \vee E) \quad(A \vee B \vee \neg C \vee F)}{(A \vee B \vee D \vee E \vee F)}$
- Note: many standard inference rules subcases of resolution:
(recall that $\alpha \rightarrow \beta \Longleftrightarrow \neg \alpha \vee \beta$)

The Resolution Rule

- Resolution: deduction of a new clause from a pair of clauses with exactly one incompatible variable (resolvent):

- Ex: $\frac{(A \vee B \vee C \vee D \vee E) \quad(A \vee B \vee \neg C \vee F)}{(A \vee B \vee D \vee E \vee F)}$
- Note: many standard inference rules subcases of resolution:
(recall that $\alpha \rightarrow \beta \Longleftrightarrow \neg \alpha \vee \beta$)

$$
\frac{A \rightarrow B \quad B \rightarrow C}{A \rightarrow C} \text { (trans.) } \frac{A \quad A \rightarrow B}{B} \text { (m. ponens) } \frac{\neg B \quad A \rightarrow B}{\neg A} \text { (m. tollens) }
$$

Improvements: Subsumption \& Unit Propagation

Alternative "set" notation (Γ clause set):

$$
\frac{\Gamma, \phi_{1}, \ldots \phi_{n}}{\Gamma, \phi_{1}^{\prime}, \ldots \phi_{n^{\prime}}^{\prime}} \quad\left(\text { e.g., } \frac{\Gamma, C_{1} \vee p, C_{2} \vee \neg p}{\Gamma, C_{1} \vee p, C_{2} \vee \neg p, C_{1} \vee C_{2}}\right)
$$

- Clause Subsumption (C clause):
- Unit Resolution:
- Unit Subsumption:

- Unit Propagation = Unit Resolution + Unit Subsumption

"Deterministic" rule: applied before other "non-deterministic" rules!

Improvements: Subsumption \& Unit Propagation

Alternative "set" notation (Γ clause set):

$$
\frac{\Gamma, \phi_{1}, \ldots \phi_{n}}{\Gamma, \phi_{1}^{\prime}, \ldots \phi_{n^{\prime}}^{\prime}} \quad\left(\text { e.g., } \frac{\Gamma, C_{1} \vee p, C_{2} \vee \neg p}{\Gamma, C_{1} \vee p, C_{2} \vee \neg p, C_{1} \vee C_{2}}\right)
$$

- Clause Subsumption (C clause):

$$
\frac{\Gamma \wedge C \wedge\left(C \vee \bigvee_{i} l_{i}\right)}{\Gamma \wedge(C)}
$$

- Unit Resolution:
- Unit Subsumption:

- Unit Propagation $=$ Unit Resolution + Unit Subsumption

Improvements: Subsumption \& Unit Propagation

Alternative "set" notation (Γ clause set):

$$
\frac{\Gamma, \phi_{1}, \ldots \phi_{n}}{\Gamma, \phi_{1}^{\prime}, \ldots \phi_{n^{\prime}}^{\prime}} \quad\left(\text { e.g., } \frac{\Gamma, C_{1} \vee p, C_{2} \vee \neg p}{\Gamma, C_{1} \vee p, C_{2} \vee \neg p, C_{1} \vee C_{2}}\right)
$$

- Clause Subsumption (C clause):
- Unit Resolution:

$$
\frac{\Gamma \wedge C \wedge\left(C \vee \vee_{i} l_{i}\right)}{\Gamma \wedge(C)}
$$

$$
\frac{\Gamma \wedge(I) \wedge\left(\neg I \vee \bigvee_{i} I_{i}\right)}{\Gamma \wedge(I) \wedge\left(\bigvee_{i} l_{i}\right)}
$$

- Unit Subsumption:

- Unit Propagation = Unit Resolution + Unit Subsumption

Improvements: Subsumption \& Unit Propagation

Alternative "set" notation (Γ clause set):

$$
\frac{\Gamma, \phi_{1}, \ldots \phi_{n}}{\Gamma, \phi_{1}^{\prime}, \ldots \phi_{n^{\prime}}^{\prime}} \quad\left(\text { e.g., } \frac{\Gamma, C_{1} \vee p, C_{2} \vee \neg p}{\Gamma, C_{1} \vee p, C_{2} \vee \neg p, C_{1} \vee C_{2},}\right)
$$

- Clause Subsumption (C clause):
- Unit Resolution:
- Unit Subsumption:

$$
\frac{\Gamma \wedge C \wedge\left(C \vee \vee_{i} l_{i}\right)}{\Gamma \wedge(C)}
$$

$$
\begin{aligned}
& \frac{\Gamma \wedge(I) \wedge\left(\neg I \vee \bigvee_{i} l_{i}\right)}{\Gamma \wedge(I) \wedge\left(\bigvee_{i} l_{i}\right)} \\
& \frac{\Gamma \wedge(I) \wedge\left(I \vee \bigvee_{i} l_{i}\right)}{\Gamma \wedge(I)}
\end{aligned}
$$

- Unit Propagation = Unit Resolution + Unit Subsumption

Improvements: Subsumption \& Unit Propagation

Alternative "set" notation (Γ clause set):

$$
\frac{\Gamma, \phi_{1}, \ldots \phi_{n}}{\Gamma, \phi_{1}^{\prime}, \ldots \phi_{n^{\prime}}^{\prime}} \quad\left(\text { e.g., } \frac{\Gamma, C_{1} \vee p, C_{2} \vee \neg p}{\Gamma, C_{1} \vee p, C_{2} \vee \neg p, C_{1} \vee C_{2},}\right)
$$

- Clause Subsumption (C clause):
- Unit Resolution:

$$
\frac{\Gamma \wedge C \wedge\left(C \vee \vee_{i} l_{i}\right)}{\Gamma \wedge(C)}
$$

$$
\begin{aligned}
& \frac{\Gamma \wedge(I) \wedge\left(\neg I \vee \bigvee_{i} l_{i}\right)}{\Gamma \wedge(I) \wedge\left(\bigvee_{i} l_{i}\right)} \\
& \frac{\Gamma \wedge(I) \wedge\left(I \vee \bigvee_{i} l_{i}\right)}{\Gamma \wedge(I)}
\end{aligned}
$$

- Unit Propagation = Unit Resolution + Unit Subsumption

Improvements: Subsumption \& Unit Propagation

Alternative "set" notation (Γ clause set):

$$
\frac{\Gamma, \phi_{1}, \ldots \phi_{n}}{\Gamma, \phi_{1}^{\prime}, \ldots \phi_{n^{\prime}}^{\prime}} \quad\left(\text { e.g., } \frac{\Gamma, C_{1} \vee p, C_{2} \vee \neg p}{\Gamma, C_{1} \vee p, C_{2} \vee \neg p, C_{1} \vee C_{2},}\right)
$$

- Clause Subsumption (C clause):
- Unit Resolution:

$$
\frac{\Gamma \wedge C \wedge\left(C \vee \vee_{i} l_{i}\right)}{\Gamma \wedge(C)}
$$

$$
\begin{aligned}
& \frac{\Gamma \wedge(I) \wedge\left(\neg I \vee \bigvee_{i} l_{i}\right)}{\Gamma \wedge(I) \wedge\left(\bigvee_{i} l_{i}\right)} \\
& \frac{\Gamma \wedge(I) \wedge\left(I \vee \bigvee_{i} l_{i}\right)}{\Gamma \wedge(I)}
\end{aligned}
$$

- Unit Propagation = Unit Resolution + Unit Subsumption
"Deterministic" rule: applied before other "non-deterministic" rules!

Basic Propositional Inference: Resolution [33, 10]

- Assume input formula in CNF
- if not, apply Tseitin CNF-ization first
$\Longrightarrow \varphi$ is represented as a set of clauses
- Search for a refutation of φ (is φ unsatisfiable?)
- recall: $\alpha=\beta$ iff $\alpha \wedge \neg \beta$ unsatisfiable
- Basic idea: apply iteratively the resolutic n rule to pairs of clauses with a conflicting literal, producing novel clauses, until either
- a false clause is generated, or
- the resolution rule is no more applicable
- Correct: if returns an empty clause, then φ unsat $(\alpha=\beta)$
- Complete: if φ unsat $(\alpha \models \beta)$, then it returns an empty clause
- Time-inefficient
- Very Memory-inefficient (exponential in memory)
- Many different strategies

Basic Propositional Inference: Resolution [33, 10]

- Assume input formula in CNF
- if not, apply Tseitin CNF-ization first
$\Longrightarrow \varphi$ is represented as a set of clauses
- Search for a refutation of φ (is φ unsatisfiable?)
- recall: $\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ unsatisfiable
- Basic idea: apply iteratively the resolution rule to pairs of clauses with a conflicting literal, producing novel clauses, until either
- a false clause is generated, or
- the resolution rule is no more applicable
- Correct: if returns an empty clause, then φ unsat $(\alpha=\beta)$
- Complete: if φ unsat $(\alpha \equiv \beta)$, then it returns an empty clause
- Time-inefficient
- Very Memory-inefficient (exponential in memory)
- Many different strategies

Basic Propositional Inference: Resolution [33, 10]

- Assume input formula in CNF
- if not, apply Tseitin CNF-ization first
$\Longrightarrow \varphi$ is represented as a set of clauses
- Search for a refutation of φ (is φ unsatisfiable?)
- recall: $\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ unsatisfiable
- Basic idea: apply iteratively the resolution rule to pairs of clauses with a conflicting literal, producing novel clauses, until either
- a false clause is generated, or
- the resolution rule is no more applicable
- Correct: if returns an empty clause, then φ unsat $(\alpha=\beta)$
- Complete: if φ unsat $(\alpha \models \beta)$, then it returns an empty clause
- Time-inefficient
- Very Memory-inefficient (exponential in memory)
- Many different strategies

Basic Propositional Inference: Resolution [33, 10]

- Assume input formula in CNF
- if not, apply Tseitin CNF-ization first
$\Longrightarrow \varphi$ is represented as a set of clauses
- Search for a refutation of φ (is φ unsatisfiable?)
- recall: $\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ unsatisfiable
- Basic idea: apply iteratively the resolution rule to pairs of clauses with a conflicting literal, producing novel clauses, until either
- a false clause is generated, or
- the resolution rule is no more applicable
- Correct: if returns an empty clause, then φ unsat ($\alpha \models \beta$)
- Complete: if φ unsat $(\alpha=\beta)$, then it returns an empty clause
- Time-inefficient
- Very Memory-inefficient (exponential in memory)
- Many different strategies

Basic Propositional Inference: Resolution [33, 10]

- Assume input formula in CNF
- if not, apply Tseitin CNF-ization first
$\Longrightarrow \varphi$ is represented as a set of clauses
- Search for a refutation of φ (is φ unsatisfiable?)
- recall: $\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ unsatisfiable
- Basic idea: apply iteratively the resolution rule to pairs of clauses with a conflicting literal, producing novel clauses, until either
- a false clause is generated, or
- the resolution rule is no more applicable
- Correct: if returns an empty clause, then φ unsat ($\alpha \models \beta$)
- Complete: if φ unsat ($\alpha \models \beta$), then it returns an empty clause
- Time-inefficient
- Very Memory-inefficient (exponential in memory)
- Manv different strategies

Basic Propositional Inference: Resolution [33, 10]

- Assume input formula in CNF
- if not, apply Tseitin CNF-ization first
$\Longrightarrow \varphi$ is represented as a set of clauses
- Search for a refutation of φ (is φ unsatisfiable?)
- recall: $\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ unsatisfiable
- Basic idea: apply iteratively the resolution rule to pairs of clauses with a conflicting literal, producing novel clauses, until either
- a false clause is generated, or
- the resolution rule is no more applicable
- Correct: if returns an empty clause, then φ unsat ($\alpha \models \beta$)
- Complete: if φ unsat ($\alpha \models \beta$), then it returns an empty clause
- Time-inefficient
- Very Memory-inefficient (exponential in memory)
- Many different strategies

Basic Propositional Inference: Resolution [33, 10]

- Assume input formula in CNF
- if not, apply Tseitin CNF-ization first
$\Longrightarrow \varphi$ is represented as a set of clauses
- Search for a refutation of φ (is φ unsatisfiable?)
- recall: $\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ unsatisfiable
- Basic idea: apply iteratively the resolution rule to pairs of clauses with a conflicting literal, producing novel clauses, until either
- a false clause is generated, or
- the resolution rule is no more applicable
- Correct: if returns an empty clause, then φ unsat ($\alpha \models \beta$)
- Complete: if φ unsat ($\alpha \models \beta$), then it returns an empty clause
- Time-inefficient
- Very Memory-inefficient (exponential in memory)
- Many different strategies

Basic Propositional Inference: Resolution [33, 10]

- Assume input formula in CNF
- if not, apply Tseitin CNF-ization first
$\Longrightarrow \varphi$ is represented as a set of clauses
- Search for a refutation of φ (is φ unsatisfiable?)
- recall: $\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ unsatisfiable
- Basic idea: apply iteratively the resolution rule to pairs of clauses with a conflicting literal, producing novel clauses, until either
- a false clause is generated, or
- the resolution rule is no more applicable
- Correct: if returns an empty clause, then φ unsat ($\alpha \models \beta$)
- Complete: if φ unsat ($\alpha \models \beta$), then it returns an empty clause
- Time-inefficient
- Very Memory-inefficient (exponential in memory)
- Many different strategies

Resolution: basic strategy [10]

```
function DP(\Gamma)
    if }\perp\in\Gamma\quad/* unsat */
        then return False;
    if (Resolve() is no more applicable to \Gamma) /* sat */
        then return True;
    if {a unit clause (I) occurs in \Gamma} /* unit */
        then 「:= Unit_Propagate(I, Г));
        return DP(\Gamma)
    A := select-variable(Г); /* resolve */
    \Gamma=\Gamma\cup\bigcup \ A\in\mp@subsup{C}{}{\prime},\negA\in\mp@subsup{C}{}{\prime\prime}}{{\operatorname{Resolve}(\mp@subsup{C}{}{\prime},\mp@subsup{C}{}{\prime\prime})}\\mp@subsup{\bigcup}{A\in\mp@subsup{C}{}{\prime},\negA\in\mp@subsup{C}{}{\prime\prime}}{}{\mp@subsup{C}{}{\prime},\mp@subsup{C}{}{\prime\prime}}}
    return DP(\Gamma)
```

Hint: drops one variable $A \in \operatorname{Atoms}(\Gamma)$ at a time

Resolution: Examples

$$
\left(A_{1} \vee A_{2}\right)\left(A_{1} \vee \neg A_{2}\right)\left(\neg A_{1} \vee A_{2}\right)\left(\neg A_{1} \vee \neg A_{2}\right)
$$

$\left(A_{2}\right)\left(A_{2} \vee \neg A_{2}\right)\left(\neg A_{2} \vee A_{2}\right)\left(\neg A_{2}\right)$

Resolution: Examples

$$
\begin{gathered}
\left(A_{1} \vee A_{2}\right)\left(A_{1} \vee \neg A_{2}\right)\left(\neg A_{1} \vee A_{2}\right)\left(\neg A_{1} \vee \neg A_{2}\right) \\
\Downarrow \\
\left(A_{2}\right)\left(A_{2} \vee \neg A_{2}\right)\left(\neg A_{2} \vee A_{2}\right)\left(\neg A_{2}\right)
\end{gathered}
$$

Resolution: Examples

$$
\begin{array}{cl}
\left(A_{1} \vee A_{2}\right)\left(A_{1} \vee \neg A_{2}\right) & \left(\neg A_{1} \vee A_{2}\right)\left(\neg A_{1} \vee \neg A_{2}\right) \\
\Downarrow \\
\left(A_{2}\right)\left(A_{2} \vee \neg A_{2}\right) & \left(\neg A_{2} \vee A_{2}\right)\left(\neg A_{2}\right) \\
\Downarrow
\end{array}
$$

Resolution: Examples

$$
\begin{gathered}
\left(A_{1} \vee A_{2}\right)\left(A_{1} \vee \neg A_{2}\right)\left(\neg A_{1} \vee A_{2}\right)\left(\neg A_{1} \vee \neg A_{2}\right) \\
\left(A_{2}\right)\left(A_{2} \vee \neg A_{2}\right) \stackrel{\left(\neg A_{2} \vee A_{2}\right)\left(\neg A_{2}\right)}{\Downarrow}
\end{gathered}
$$

$$
\Longrightarrow \text { UNSAT }
$$

Resolution: Examples (cont.)

$$
\begin{gathered}
(A \vee B \vee C)(B \vee \neg C \vee \neg F)(\neg B \vee E) \\
(A \vee C \vee E)(\neg \subset \vee \neg F \vee E) \\
(A \vee E \vee \neg F)
\end{gathered}
$$

Resolution: Examples (cont.)

$$
\begin{gathered}
(A \vee B \vee C)(B \vee \neg C \vee \neg F)(\neg B \vee E) \\
(A \vee C \vee E)(\neg C \vee \neg F \vee E) \\
(A \vee E \vee \neg F)
\end{gathered}
$$

Resolution: Examples (cont.)

$$
\begin{gathered}
(A \vee B \vee C)(B \vee \neg C \vee \neg F)(\neg B \vee E) \\
(A \vee C \vee E)(\neg C \vee \neg F \vee E) \\
\forall \\
(A \vee E \vee \neg F)
\end{gathered}
$$

Resolution: Examples (cont.)

$$
\begin{gathered}
(A \vee B \vee C)(B \vee \neg C \vee \neg F)(\neg B \vee E) \\
\Downarrow \\
(A \vee C \vee E)(\neg C \vee \neg F \vee E) \\
\Downarrow \\
(A \vee E \vee \neg F)
\end{gathered}
$$

$$
\Longrightarrow \mathrm{SAT}
$$

Resolution: Examples

$$
(A \vee B)(A \vee \neg B)(\neg A \vee C)(\neg A \vee \neg C)
$$

$$
(A)(\neg A \vee C)(\neg A \vee \neg C)
$$

Resolution: Examples

$$
\begin{gathered}
(A \vee B)(A \vee \neg B)(\neg A \vee C)(\neg A \vee \neg C) \\
(A)(\neg A \vee C)(\neg A \vee \neg C)
\end{gathered}
$$

Resolution: Examples

$$
\begin{gathered}
(A \vee B)(A \vee \neg B)(\neg A \vee C)(\neg A \vee \neg C) \\
\Downarrow \\
(A)(\neg A \vee C)(\neg A \vee \neg C) \\
\Downarrow \\
(C)(\neg C)
\end{gathered}
$$

Resolution: Examples

$$
\begin{aligned}
(A \vee B)(A \vee \neg B) & (\neg A \vee C)(\neg A \vee \neg C) \\
(A)(\neg A \vee C) & (\neg A \vee \neg C) \\
(C) & (\neg C) \\
& \Downarrow \\
& \perp
\end{aligned}
$$

\Rightarrow UNSAT

Resolution - summary

- Requires CNF
- 「 may blow up
\Longrightarrow May require exponential space
- Not very much used in Boolean reasoning (unless integrated with DPLL procedure in recent implementations)

Outline

(1) Boolean Logics and SAT
(2) Basic SAT-Solving Techniques

- Generalities
- Resolution
- Tableaux
- DPLL
(3) Modern CDCL SAT Solvers
- Limitations of Chronological Backtracking
- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
- SAT Under Assumptions \& Incremental SAT
(4) Ordered Binary Decision Diagrams - OBDDs
(5) SAT Functionalities: proofs, unsat cores, interpolants, optimization

Semantic tableaux [39]

- Search for an assignment satisfying φ
- applies recursively elimination rules to the connectives
- If a branch contains A_{i} and $\neg A_{i},\left(\psi_{i}\right.$ and $\left.\neg \psi_{i}\right)$ for some i, the branch is closed, otherwise it is open.
- if no rule can be applied to an open branch μ, then $\mu \models \varphi$;
- if all branches are closed, the formula is not satisfiable;

Tableau elimination rules

$$
\begin{array}{cccl}
\frac{\Gamma,\left(\varphi_{1} \wedge \varphi_{2}\right)}{\Gamma, \varphi_{1}, \varphi_{2}} & \frac{\Gamma, \neg\left(\varphi_{1} \vee \varphi_{2}\right)}{\Gamma, \neg \varphi_{1}, \neg \varphi_{2}} & \frac{\Gamma, \neg\left(\varphi_{1} \rightarrow \varphi_{2}\right)}{\Gamma, \varphi_{1}, \neg \varphi_{2}} & \text { (^-elimination) } \\
& \frac{\Gamma, \neg \neg \varphi}{\Gamma, \varphi} & (\neg \neg \text {-elimination) } \\
\frac{\Gamma,\left(\varphi_{1} \vee \varphi_{2}\right)}{\Gamma, \varphi_{1} \Gamma, \varphi_{2}} & \frac{\Gamma, \neg\left(\varphi_{1} \wedge \varphi_{2}\right)}{\Gamma, \neg \varphi_{1} \Gamma, \neg \varphi_{2}} & \frac{\Gamma,\left(\varphi_{1} \rightarrow \varphi_{2}\right)}{\Gamma, \neg \varphi_{1} \Gamma, \varphi_{2}} & \text { (V-elimination) } \\
\frac{\Gamma,\left(\varphi_{1} \leftrightarrow \varphi_{2}\right)}{\Gamma, \varphi_{1}, \varphi_{2} \Gamma, \neg \varphi_{1} \neg \varphi_{2}} & \frac{\Gamma, \neg\left(\varphi_{1} \leftrightarrow \varphi_{2}\right)}{\Gamma, \varphi_{1}, \neg \varphi_{2} \Gamma, \neg \varphi_{1} \varphi_{2}} & \text { (} & \text {-elimination). }
\end{array}
$$

Semantic Tableaux－Example

$$
\varphi=\left(A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right) \wedge\left(\neg A_{1} \vee A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2}\right)
$$

Semantic Tableaux - Example

$$
\varphi=\left(A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right) \wedge\left(\neg A_{1} \vee A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2}\right)
$$

Tableau algorithm

function Tableau(Γ)
if $A_{i} \in \Gamma$ and $\neg A_{i} \in \Gamma \quad / *$ branch closed */
then return False;
if $\left(\varphi_{1} \wedge \varphi_{2}\right) \in \Gamma \quad /^{*} \wedge$-elimination */
then return Tableau($\left.\Gamma \cup\left\{\varphi_{1}, \varphi_{2}\right\} \backslash\left\{\left(\varphi_{1} \wedge \varphi_{2}\right)\right\}\right)$;
if $\left(\neg \neg \varphi_{1}\right) \in \Gamma \quad / * \neg \neg$-elimination */
then return Tableau $\left(\Gamma \cup\left\{\varphi_{1}\right\} \backslash\left\{\left(\neg \neg \varphi_{1}\right)\right\}\right)$;
if $\left(\varphi_{1} \vee \varphi_{2}\right) \in \Gamma \quad / * \vee$-elimination */
then return Tableau $\left(\Gamma \cup\left\{\varphi_{1}\right\} \backslash\left\{\left(\varphi_{1} \vee \varphi_{2}\right)\right\}\right)$ or Tableau $\left(\Gamma \cup\left\{\varphi_{2}\right\} \backslash\left\{\left(\varphi_{1} \vee \varphi_{2}\right)\right\}\right)$;
return True;
/* branch expanded */

Semantic Tableaux: Example

Semantic Tableaux: Example

Semantic Tableaux: Example

Semantic Tableaux - Summary

- Handles all propositional formulas (CNF not required).
- Branches on disjunctions
- Intuitive, modular, easy to extend \Longrightarrow loved by logicians.
- Rather inefficient
\Longrightarrow avoided by computer scientists.
- Requires polynomial space

Outline

(1) Boolean Logics and SAT
(2) Basic SAT-Solving Techniques

- Generalities
- Resolution
- Tableaux
- DPLL
(3) Modern CDCL SAT Solvers
- Limitations of Chronological Backtracking
- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
- SAT Under Assumptions \& Incremental SAT

4 Ordered Binary Decision Diagrams - OBDDs
5 SAT Functionalities: proofs, unsat cores, interpolants, optimization

DPLL [10, 9]

- Davis-Putnam-Longeman-Loveland procedure (DPLL)
- Tries to build an assignment μ satisfying φ;
- At each step assigns a truth value to (all instances of) one atom.
- Performs deterministic choices first.

DPLL rules

$$
\begin{aligned}
& \frac{\varphi_{1} \wedge(I)}{\varphi_{1}[I \mid T]}(\text { Unit }) \\
& \frac{\varphi}{\varphi[I \mid \top]}(I \text { Pure }) \\
& \frac{\varphi}{\varphi[I \mid \top] \quad \varphi[I \mid \perp]} \text { (split) }
\end{aligned}
$$

(/ is a pure literal in φ iff it occurs only positively).

- Split applied if and only if the others cannot be applied.
- Richer formalisms described in [40, 29, 30]

DPLL - example

$$
\varphi=\left(A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right) \wedge\left(\neg A_{1} \vee A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2}\right)
$$

DPLL Algorithm

function $\operatorname{DPLL}(\varphi, \mu)$

if $\varphi=\top \quad / *$ base */
then return True;
if $\varphi=\perp \quad / *$ backtrack */
then return False;
if $\{$ a unit clause ($/$) occurs in φ \}
/* unit */
then return $\operatorname{DPLL}(\operatorname{assign}(I, \varphi), \mu \wedge I)$;
if $\{\mathrm{a}$ literal / occurs pure in φ \}
/* pure */
then return $\operatorname{DPLL}(\operatorname{assign}(I, \varphi), \mu \wedge I)$;
I := choose-literal(φ);
/* split */
return $\operatorname{DPLL}(\operatorname{assign}(I, \varphi), \mu \wedge I)$ or $\operatorname{DPLL}(\operatorname{assign}(\neg I, \varphi), \mu \wedge \neg I)$;

DPLL Algorithm

function $\operatorname{DPLL}(\varphi, \mu)$
if $\varphi=\top \quad / *$ base */
then return True;
if $\varphi=\perp \quad / *$ backtrack */
then return False;
if $\{$ a unit clause ($/$) occurs in φ \}
/* unit */
then return $\operatorname{DPLL}(\operatorname{assign}(I, \varphi), \mu \wedge I)$;
if $\{$ a literal / occurs pure in φ \}
/* pure */
then return $\operatorname{DPLL}(\operatorname{assign}(I, \varphi), \mu \wedge I)$;
I := choose-literal (φ);
/* split */
return $\operatorname{DPLL}(\operatorname{assign}(I, \varphi), \mu \wedge I)$ or $\operatorname{DPLL}(\operatorname{assign}(\neg I, \varphi), \mu \wedge \neg I)$;

- The pure-literal rule is nowadays obsolete.
- choose-literal (φ) picks only variables still occurring in the formula

DPLL Algorithm

function $\operatorname{DPLL}(\varphi, \mu)$
if $\varphi=\top \quad / *$ base */
then return True;
if $\varphi=\perp \quad / *$ backtrack */
then return False;
if $\{$ a unit clause ($/$) occurs in φ \}
/* unit */
then return $\operatorname{DPLL}(\operatorname{assign}(I, \varphi), \mu \wedge I)$;
if $\{$ a literal / occurs pure in φ \}
/* pure */
then return $\operatorname{DPLL}(\operatorname{assign}(I, \varphi), \mu \wedge I)$;
I := choose-literal (φ);
/* split */
return $\operatorname{DPLL}(\operatorname{assign}(I, \varphi), \mu \wedge I)$ or $\operatorname{DPLL}(\operatorname{assign}(\neg I, \varphi), \mu \wedge \neg I)$;

- The pure-literal rule is nowadays obsolete.
- choose-literal((φ) picks only variables still occurring in the formula

DPLL - example

DPLL (without pure-literal rule)

Here "choose-literal" selects variable in alphabetic, selecting true first.

$(\neg C$		\wedge
B	$\checkmark A$	$\vee C) \wedge$
$(\neg A$	$\vee D$	\wedge
$(\neg E$	$\vee \neg A$	$\vee F) \wedge$
$(\neg E$	$\vee \neg F$	$\vee \neg A) \wedge$
G	$\vee \neg A$	$\vee E) \wedge$
E	$\vee \neg G$	$\vee \neg A) \wedge$
A	$\vee H$	$\vee C) \wedge$
$(\neg H$	$\vee \neg 1$	$\vee A) \wedge$
(I	$\vee L$	$\vee M) \wedge$
$(\neg L$	$\vee C$	$\vee \neg M) \wedge$
A	$\checkmark \neg L$	$\vee M) \wedge$
L	$\vee N$	$\vee \neg H) \wedge$
1	$\vee L$	$\vee \neg N$)

UNSAT

DPLL - example

DPLL (without pure-literal rule)

Here "choose-literal" selects variable in alphabetic, selecting true first.

$$
\left.\begin{array}{l}
(\neg C \\
(\neg \\
(\neg
\end{array}\right) A
$$

UNSAT

DPLL - example

DPLL (without pure-literal rule)

Here "choose-literal" selects variable in alphabetic, selecting true first.

$(\neg C$) \wedge
(B	$\checkmark A$	$\vee C) \wedge$
$(\neg A$	$\vee D$	$) \wedge$
$(\neg E$	$\vee \neg A$	$\vee F) \wedge$
$(\neg E$	$\vee \neg F$	$\vee \neg A) \wedge$
G	$\vee \neg A$	$\vee E) \wedge$
E	$\vee \neg G$	$\vee \neg A) \wedge$
(A	$\vee H$	$\vee C) \wedge$
$(\neg H$	$\vee \neg 1$	$\vee A) \wedge$
(I	$\checkmark L$	$\vee M) \wedge$
$(\neg L$	$\vee C$	$\vee \neg M) \wedge$
(A	$\vee \neg L$	$\vee M) \wedge$
(L	$\checkmark N$	$\vee \neg H) \wedge$
I	$\checkmark L$	$\vee \neg N$)

[^0]
DPLL - summary

- Handles CNF formulas (non-CNF variant known [1, 15]).
- Branches on truth values
\Longrightarrow all instances of an atom assigned simultaneously
- Postpones branching as much as possible.
- Mostly ignored by logicians.
- (The grandfather of) the most efficient SAT algorithms \Longrightarrow loved by computer scientists.
- Requires polynomial space
- Choose_literal() critical!
- Many very efficient implementations [42, 38, 2, 28].

Outline

(1) Boolean Logics and SAT
2. Basic SAT-Solving Techniques

- Generalities
- Resolution
- Tableaux
- DPLL
(3) Modern CDCL SAT Solvers
- Limitations of Chronological Backtracking
- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
- SAT Under Assumptions \& Incremental SAT

4) Ordered Binary Decision Diagrams - OBDDs

5 SAT Functionalities: proofs, unsat cores, interpolants, optimization

Outline

(1) Boolean Logics and SAT

2 Basic SAT-Solving Techniques

- Generalities
- Resolution
- Tableaux
- DPLL
(3) Modern CDCL SAT Solvers
- Limitations of Chronological Backtracking
- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
- SAT Under Assumptions \& Incremental SAT
(4) Ordered Binary Decision Diagrams - OBDDs
(5) SAT Functionalities: proofs, unsat cores, interpolants, optimization

DPLL: "Classic" chronological backtracking

DPLL implements "classic" chronological backtracking:

- variable assignments (literals) stored in a stack
- each variable assignments labeled as "unit", "open", "closed"
- when a conflict is encountered, the stack is popped up to the most recent open assignment /
- I is toggled, is labeled as "closed", and the search proceeds.

DPLL Chronological Backtracking: Drawbacks

Chronological backtracking always backtracks to the most recent branching point, even though a higher backtrack could be possible
\Longrightarrow lots of useless search!

DPLL Chronological Backtracking: Example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{aligned}
$$

DPLL Chronological Backtracking: Example

$$
\neg A_{9}
$$

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{aligned}
$$

$$
\begin{gathered}
\neg A_{10} \\
\neg A_{11} \\
A_{12} \\
A_{13}
\end{gathered}
$$

$\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots\right\}$
(initial assignment)

DPLL Chronological Backtracking: Example

$$
\neg A_{9}
$$

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \vee \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{aligned}
$$

$$
\begin{gathered}
\left.\neg A_{10}\right\rangle \\
\neg A_{11} \\
\vdots \\
A_{12} \\
A_{13}
\end{gathered}
$$

$\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots, A_{1}\right\}$
... (branch on A_{1})

DPLL Chronological Backtracking: Example

DPLL Chronological Backtracking: Example

DPLL Chronological Backtracking: Example

DPLL Chronological Backtracking: Example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{aligned}
$$

$\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots\right\}$
\Longrightarrow backtrack up to A_{1}

DPLL Chronological Backtracking: Example

	$\neg A_{9}$
$c_{1}: \neg A_{1} \vee A_{2} \quad \sqrt{ }$	$\neg A_{10}$)
$c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \quad \sqrt{ }$	$\neg A_{11}$
$c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4}$	
$C_{4}: \neg A_{4} \vee A_{5} \vee A_{10}$	A_{12}
$C_{5}: \neg A_{4} \vee A_{6} \vee A_{11}$	$A_{13} /$
$c_{6}: \neg A_{5} \vee \neg A_{6}$	
$c_{7}: A_{1} \vee A_{7} \vee \neg A_{12}$	
$C_{8}: A_{1} \vee A_{8}$	
$c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}$	$A_{1} \checkmark A_{1}$
...	${ }^{A_{3}}$
$\begin{aligned} & \left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots, \neg A_{1}\right\} \\ & \text { (unit } \neg A_{1} \text {) } \end{aligned}$	

DPLL Chronological Backtracking: Example

DPLL Chronological Backtracking: Example

DPLL Chronological Backtracking: Example

Outline

(1) Boolean Logics and SAT
2. Basic SAT-Solving Techniques

- Generalities
- Resolution
- Tableaux
- DPLL
(3) Modern CDCL SAT Solvers
- Limitations of Chronological Backtracking
- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
- SAT Under Assumptions \& Incremental SAT

4 Ordered Binary Decision Diagrams - OBDDs
55 SAT Functionalities: proofs, unsat cores, interpolants, optimization

Modern Conflict-Driven Clause-Learning SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

Modern Conflict-Driven Clause-Learning SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

Modern Conflict-Driven Clause-Learning SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

Modern Conflict-Driven Clause-Learning SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

Modern Conflict-Driven Clause-Learning SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

Modern Conflict-Driven Clause-Learning SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- allow for reusing previous search on "similar" problems

Modern Conflict-Driven Clause-Learning SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

Modern Conflict-Driven Clause-Learning SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

Can handle industrial problems with $10^{6}-10^{7}$ variables and clauses!

Modern Conflict-Driven Clause-Learning SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

Can handle industrial problems with $10^{6}-10^{7}$ variables and clauses!

Modern Conflict-Driven Clause-Learning SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

Can handle industrial problems with $10^{6}-10^{7}$ variables and clauses!

Stack-based representation of a truth assignment μ

- assign one truth-value at a time (add one literal to a stack representing μ)
- stack partitioned into decision levels:
- one decision literal
- its implied literals
- each implied literal tagged with the clause causing its unit-propagation (antecedent clause)
- equivalent to an implication graph

Implication graph

- An implication graph is a DAG s.t.:
- each node represents a variable assignment (literal)
- each edge $I_{i} \stackrel{ }{ }$ c l is labeled with a clause
- the node of a decision literal has no incoming edges
- all edges incoming into a node I are labeled with the same clause c, s.t. $I_{1} \stackrel{c}{\longmapsto} I, \ldots, I_{n} \stackrel{c}{\longmapsto} I$ iff $c=\neg I_{1} \vee \ldots \vee \neg I_{n} \vee I$
(c is said to be the antecedent clause of I)
- when both $/$ and $\neg /$ occur in the graph, we have a conflict.
- Intuition:
- representation of the dependencies between literals in μ
- the graph contains $I_{1} \stackrel{c}{\longmapsto} I, \ldots, I_{n} \stackrel{c}{\longleftrightarrow} I$ iff I has been obtained from I_{1}, \ldots, I_{n} by unit propagation on c
- a partition of the graph with all decision literals on one side and the conflict on the other represents a conflict set

Example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{aligned}
$$

Example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{aligned}
$$

$$
\stackrel{\neg A_{10}}{\neg A_{11} \backslash}
$$

$$
A_{13}
$$

$\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots\right\}$
(Initial assignment. Note: c_{1}, \ldots, c_{9} inconsistent.)

Example

	$\neg A_{9}$	(A_{13}	A_{10}
$c_{1}: \neg A_{1} \vee A_{2}$	$\neg A_{10}$		
$c_{2}: \neg A_{1} \vee A_{3} \vee A_{9}$			
$c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4}$	$\neg A_{11}$	(A_{12}	
$C_{4}: \neg A_{4} \vee A_{5} \vee A_{10}$	A_{12}		
$C_{5}: \neg A_{4} \vee A_{6} \vee A_{11}$			
$c_{6}: \neg A_{5} \vee \neg A_{6}$	A_{13}	A_{1}	
$C_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \vee$			
$c_{8}: A_{1} \vee A_{8} \quad \checkmark$			
$c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}$	$A_{3}{ }^{3}$		
\ldots			
		$\checkmark A_{9}$	A_{11}
$\begin{aligned} & \left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots, A_{1}\right\} \\ & \ldots\left(\text { decide } A_{1}\right) \end{aligned}$			

Example

Example

Example

Unique implication point - UIP [44]

- A node I in an implication graph is an unique implication point (UIP) for the last decision level iff every path from the last decision node to both the conflict nodes passes through I.
- the most recent decision node is an UIP (last UIP)
- all other UIP's have been assigned after the most recent decision

Unique implication point - UIP - example

- A_{1} is the last UIP
- A_{4} is the $1^{\text {st }}$ UIP

Schema of a CDCL DPLL solver [38, 45]

```
Function CDCL-SAT (formula: }\varphi\mathrm{ , assignment & }\mu\mathrm{ ) {
    status := preprocess ( }\varphi,\mu)\mathrm{ ;
    while (1) {
        while (1) {
        status := deduce( }\varphi,\mu)\mathrm{ ;
        if (status == Sat)
            return Sat;
        if (status == Conflict) {
            \langleblevel, }\eta\rangle\mathrm{ := analyze_conflict ( }\varphi,\mu)\mathrm{ ;
            //\eta is a conflict set
            if (blevel == 0)
                return Unsat;
            else backtrack(blevel,}\varphi,\mu)
        }
        else break;
        }
        decide_next_branch ( }\varphi,\mu)\mathrm{ ;
} }
```


Schema of a CDCL DPLL solver $[38,45]$ (cont.)

- preprocess (φ, μ) simplifies φ into an easier equisatisfiable formula, updating μ.
- decide_next_branch (φ, μ) chooses a new decision literal from φ according to some heuristic, and adds it to μ
- deduce (φ, μ) performs all deterministic assignments (unit-propagations plus others), and updates φ, μ accordingly.
- analyze_conflict (φ, μ) Computes the subset η of μ causing the conflict (conflict set), and returns the "wrong-decision" level suggested by η (" 0 " means that η is entirely assigned at level 0 , i.e., a conflict exists even without branching);
- backtrack (blevel, φ, μ) undoes the branches up to blevel, and updates φ, μ accordingly

Backjumping and learning: general ideas $[2,38]$

- When a branch μ fails:
(i) conflict analysis: reveal the sub-assignment $\eta \subseteq \mu$ causing the failure (conflict set η)
(ii) learning: add the conflict clause $C \stackrel{\text { def }}{=} \neg \eta$ to the clause set
(iii) backjumping: use η to decide the point where to backtrack
- Jump back up much more than one decision level in the stack \Longrightarrow may avoid lots of redundant search!!.
- We illustrate two main backjumping \& learning strategies:
- the original strategy presented in [38]
- the state-of-the-art $1^{\text {st }}$ UIP strategy of [44]

Conflict analysis

1. $C:=$ falsified clause (conflicting clause)
2. repeat
(i) resolve the current clause C with the antecedent clause of the last unit-propagated literal l in C
until C verifies some given termination criteria

Conflict analysis

1. $C:=$ falsified clause (conflicting clause)
2. repeat
(i) resolve the current clause C with the antecedent clause of the last unit-propagated literal l in C
until C verifies some given termination criteria

criterion: decision

...until C contains only decision literals

$$
\begin{aligned}
& \neg A_{1} \vee A_{2} \frac{\neg A_{1} \vee A_{3} \vee A_{9} \frac{\neg A_{2} \vee \neg A_{3} \vee A_{4} \frac{\neg A_{4} \vee A_{5} \vee A_{10} \frac{\neg A_{4} \vee A_{6} \vee A_{11} \overbrace{\neg A_{5} \vee \neg A_{6}}^{\neg A_{4} \vee \neg A_{5} \vee A_{11}}\left(A_{5}\right)}{\neg A_{4} \vee A_{10} \vee A_{11}}}{\neg A_{2} \vee \neg A_{1} \vee A_{1} \vee A_{9} \vee A_{10} \vee A_{11}}\left(A_{4}\right)}{\neg A_{11} \vee\left(A_{2}\right)}\left(A_{3}\right)}{\text { Conticting cl. }} \text { (} A_{9} \vee A_{10} \vee A_{11}
\end{aligned}
$$

Conflict analysis

1. $C:=$ falsified clause (conflicting clause)
2. repeat
(i) resolve the current clause C with the antecedent clause of the last unit-propagated literal l in C
until C verifies some given termination criteria

criterion: last UIP

... until C contains only one literal assigned at current decision level: the decision literal (last UIP)

Conflict analysis

1. $C:=$ falsified clause (conflicting clause)
2. repeat
(i) resolve the current clause C with the antecedent clause of the last unit-propagated literal l in C
until C verifies some given termination criteria

criterion: 1st UIP

... until C contains only one literal assigned at current decision level (1st UIP)

$$
\frac{\neg A_{4} \vee A_{5} \vee A_{10} \frac{\neg A_{4} \vee A_{6} \vee A_{11} \overbrace{\neg A_{5} \vee \neg A_{6}}^{\text {Conficting cl. }}}{\neg A_{4} \vee \neg A_{5} \vee A_{11}\left(A_{5}\right)}}{\underbrace{\neg A_{4}}_{\text {1st UIP }} \vee A_{10} \vee A_{11}}\left(A_{6}\right)
$$

Conflict analysis

1. $C:=$ falsified clause (conflicting clause)
2. repeat
(i) resolve the current clause C with the antecedent clause of the last unit-propagated literal l in C
until C verifies some given termination criteria

Note:

$\varphi \models C$, so that C can be safely added to φ.

Note:
 Equivalent to finding a partition in the implication graph of μ with all decision literals on one side and the conflict on the other.

Conflict analysis

1. $C:=$ falsified clause (conflicting clause)
2. repeat
(i) resolve the current clause C with the antecedent clause of the last unit-propagated literal l in C
until C verifies some given termination criteria

Note:

$\varphi \models C$, so that C can be safely added to φ.

Note:

Equivalent to finding a partition in the implication graph of μ with all decision literals on one side and the conflict on the other.

Conflict analysis and implication graph - example

$c_{1}: \neg A_{1} \vee A_{2}$
$c_{2}: \neg A_{1} \vee A_{3} \vee A_{9}$
$c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4}$
$c_{4}: \neg A_{4} \vee A_{5} \vee A_{10}$
$c_{5}: \neg A_{4} \vee A_{6} \vee A_{11}$
$c_{6}: \neg A_{5} \vee \neg A_{6}$
$c_{7}: A_{1} \vee A_{7} \vee \neg A_{12}$
$C_{8}: A_{1} \vee A_{8}$
$c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}$
this case decision and last-UIP criteria produce the same partition

Note: in

[^1]

The original backjumping and learning strategy of [38]

- Idea: when a branch μ fails,
(i) conflict analysis: find the conflict set $\eta \subseteq \mu$ by generating the conflict clause $C \stackrel{\text { def }}{=} \neg \eta$ via resolution from the falsified clause (conflicting clause) using the "Decision" criterion;
(ii) learning: add the conflict clause C to the clause set
(iii) backjumping: backtrack to the most recent branching point s.t. the stack does not fully contain η, and then unit-propagate the unassigned literal on C

The Original Backjumping Strategy: Example

The Original Backjumping Strategy: Example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13} \\
& c_{10}: A_{9} \vee A_{10} \vee A_{11} \vee \neg A_{1}
\end{aligned}
$$

$\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots\right\}$
\Longrightarrow backtrack up to A_{1}

$$
\neg A_{10}
$$

$$
\neg A_{11}
$$

$$
A_{12}
$$

$$
A_{13}
$$

(A_{12}

The Original Backjumping Strategy: Example

The Original Backjumping Strategy: Example

$$
\begin{align*}
& c_{1}: \neg A_{1} \vee A_{2} \tag{11}\\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \tag{9}\\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13} \\
& c_{10}: A_{9} \vee A_{10} \vee A_{11} \vee \neg A_{1} \tag{10}\\
& c_{11}: A_{9} \vee A_{10} \vee A_{11} \vee \neg A_{12} \vee \neg A_{13}
\end{align*}
$$

$\neg A_{9}$

$$
\neg A_{10}
$$

$$
\begin{gathered}
\neg A_{11} \\
A_{12} \\
A_{13} \\
\vdots
\end{gathered}
$$

$$
\begin{aligned}
& A_{1} / \neg A_{1} \\
& A_{2} \\
& A_{3} \\
& A_{4} \\
& A_{5} \\
& A_{6} \\
& \times A_{7} \\
& \times
\end{aligned}
$$

(A_{12}
\Longrightarrow backtrack to $A_{13} \Longrightarrow$ Lots of search saved!

The Original Backjumping Strategy: Example

\Longrightarrow backtrack to A_{13}, then set A_{13} and A_{1} to \perp, \ldots

State-of-the-art backjumping and learning [44]

- Idea: when a branch μ fails,
(i) conflict analysis: find the conflict set $\eta \subseteq \mu$ by generating the conflict clause $C \stackrel{\text { def }}{=} \neg \eta$ via resolution from the falsified clause, according to the $1^{\text {st }}$ UIP strategy
(ii) learning: add the conflict clause C to the clause set
(iii) backjumping: backtrack to the highest branching point s.t. the stack contains all-but-one literals in η, and then unit-propagate the unassigned literal on C

1st UIP strategy - example (7)

\Longrightarrow Conflict set: $\left\{\neg A_{10}, \neg A_{11}, A_{4}\right\}$, learn $c_{10}:=A_{10} \vee A_{11} \vee \neg A_{4}$

1st UIP strategy and backjumping [44]

- The added conflict clause states the reason for the conflict
- The procedure backtracks to the most recent decision level of the variables in the conflict clause which are not the UIP.
- then the conflict clause forces the negation of the UIP by unit propagation.
E.g.: $c_{10}:=A_{10} \vee A_{11} \vee \neg A_{4}$
\Longrightarrow backtrack to A_{11}, then assign $\neg A_{4}$

1st UIP strategy - example (7)

\Longrightarrow Conflict set: $\left\{\neg A_{10}, \neg A_{11}, A_{4}\right\}$, learn $c_{10}:=A_{10} \vee A_{11} \vee \neg A_{4}$

1st UIP strategy - example (8)

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& C_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13} \\
& c_{10}: A_{10} \vee A_{11} \vee \neg A_{4} \\
& \Longrightarrow \text { backtrack up to } A_{11} \Longrightarrow\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}\right\}
\end{aligned}
$$

1st UIP strategy - example (9)

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \quad \checkmark \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \quad \sqrt{ } \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13} \\
& c_{10}: A_{10} \vee A_{11} \vee \neg A_{4} \sqrt{ } \\
& \cdots
\end{aligned}
$$

\Longrightarrow unit propagate $\neg A_{4} \Longrightarrow\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{4}\right\} \ldots$

1st UIP strategy and backjumping - intuition

- An UIP is a single reason implying the conflict at the current level
- substituting the 1st UIP for the last UIP
- does not enlarge the conflict
- requires less resolution steps to compute C
- may require involving less decision literals from other levels
- by backtracking to the most recent decision level of the variables in the conflict clause which are not the UIP:
- jump higher
- allows for assigning (the negation of) the UIP as high as possible in the search tree.

Learning [2, 38]

Idea: When a conflict set η is revealed, then $C \stackrel{\text { def }}{=} \neg \eta$ added to φ
\Longrightarrow the solver will no more generate an assignment containing η : when $|\eta|-1$ literals in η are assigned, the other is set \perp by unit-propagation on C
\Longrightarrow Drastic pruning of the search!

Learning - example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13} \\
& c_{10}: A_{9} \vee A_{10} \vee A_{11} \vee \neg A_{1} \quad \checkmark \vee \\
& c_{11}: A_{9} \vee A_{10} \vee A_{11} \vee \neg A_{12} \vee \neg A_{13} \vee \\
& \ldots \\
& \Longrightarrow \text { Unit: }\left\{\neg A_{1}, \neg A_{13}\right\}
\end{aligned}
$$

Drawbacks of Learning \& Clause discharging

Problem with Learning
Learning can generate exponentially-many clauses

- may cause a blowup in space
- may drastically slow down BCP

A solution: clause discharging
Techniques to drop learned clauses when necessary

- according to their size
- according to their activity

A clause is currently active if it occurs in the current implication graph (i.e., it is the antecedent

 clause of a literal in the current assignment)
Drawbacks of Learning \& Clause discharging

Problem with Learning

Learning can generate exponentially-many clauses

- may cause a blowup in space
- may drastically slow down BCP

A solution: clause discharging

Techniques to drop learned clauses when necessary

- according to their size
- according to their activity.

A clause is currently active if it occurs in the current implication graph (i.e., it is the antecedent clause of a literal in the current assignment).

Drawbacks of Learning \& Clause discharging

- Is clause-discharging safe?
- Yes, if done properly.

```
Property (see, e.g., [30])
In order to guarantee correctness, completeness & termination of a CDCL solver, it suffices to
keep each clause until it is active.
```

\Longrightarrow CDCL solvers require polynomial space
Lazy" Strategy

- when a clause is involved in conflict analisis, increase its activity
- when needed, drop the least-active clauses

Drawbacks of Learning \& Clause discharging

- Is clause-discharging safe?
- Yes, if done properly.

Property (see, e.g., [30])
In order to guarantee correctness, completeness \& termination of a CDCL solver, it suffices to keep each clause until it is active.
\Longrightarrow CDCL solvers require polynomial space

Lazy" Strategy

- when a clause is involved in conflict analisis, increase its activity
- when needed, drop the least-active clauses

Drawbacks of Learning \& Clause discharging

- Is clause-discharging safe?
- Yes, if done properly.

Property (see, e.g., [30])
In order to guarantee correctness, completeness \& termination of a CDCL solver, it suffices to keep each clause until it is active.
\Longrightarrow CDCL solvers require polynomial space
"Lazy" Strategy

- when a clause is involved in conflict analisis, increase its activity
- when needed, drop the least-active clauses

State-of-the-art backjumping and learning: intuitions

- Backjumping: allows for climbing up to many decision levels in the stack
- intuition: " go back to the oldest decision where you'd have done something different if only you
had known C"
may avoid lots of redundant search
- Learning: in future hranches, when all-but-one literals in η are assigned, the remaining literal is assigned to false by unit-propagation:

State-of-the-art backjumping and learning: intuitions

- Backjumping: allows for climbing up to many decision levels in the stack
- intuition: " go back to the oldest decision where you'd have done something different if only you had known C"
- Learning: in future branches, when all-but-one literals in η are assigned, the remaining literal is assigned to false by unit-propagation:

State-of-the-art backjumping and learning: intuitions

- Backjumping: allows for climbing up to many decision levels in the stack
- intuition: " go back to the oldest decision where you'd have done something different if only you had known C"
\Longrightarrow may avoid lots of redundant search
- Learning: in future branches, when all-but-one literals in η are assigned, the remaining literal is assigned to false by unit-propagation:

State-of-the-art backjumping and learning: intuitions

- Backjumping: allows for climbing up to many decision levels in the stack
- intuition: " go back to the oldest decision where you'd have done something different if only you had known C"
\Longrightarrow may avoid lots of redundant search
- Learning: in future branches, when all-but-one literals in η are assigned, the remaining literal is assigned to false by unit-propagation:
- intuition: "when you're about to repeat the mistake, do the opposite of the last step" avoid finding the same conflict again

State-of-the-art backjumping and learning: intuitions

- Backjumping: allows for climbing up to many decision levels in the stack
- intuition: " go back to the oldest decision where you'd have done something different if only you had known C"
\Longrightarrow may avoid lots of redundant search
- Learning: in future branches, when all-but-one literals in η are assigned, the remaining literal is assigned to false by unit-propagation:
- intuition: "when you're about to repeat the mistake, do the opposite of the last step"

State-of-the-art backjumping and learning: intuitions

- Backjumping: allows for climbing up to many decision levels in the stack
- intuition: " go back to the oldest decision where you'd have done something different if only you had known C"
\Longrightarrow may avoid lots of redundant search
- Learning: in future branches, when all-but-one literals in η are assigned, the remaining literal is assigned to false by unit-propagation:
- intuition: "when you're about to repeat the mistake, do the opposite of the last step"
\Longrightarrow avoid finding the same conflict again

Remark: the "quality" of conflict sets

- Different ideas of "good" conflict set
- Backjumping: if causes the highest backjump ("local" role)
- Learning: if causes the maximum pruning ("global" role)
- Many different strategies implemented (see, e.g., [2, 38, 44])

Outline

(1) Boolean Logics and SAT

2 Basic SAT-Solving Techniques

- Generalities
- Resolution
- Tableaux
- DPLL

3 Modern CDCL SAT Solvers

- Limitations of Chronological Backtracking
- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
- SAT Under Assumptions \& Incremental SAT

4 Ordered Binary Decision Diagrams - OBDDs
5. SAT Functionalities: proofs, unsat cores, interpolants, optimization

Preprocessing/Inprocessing

- Part of preprocess () and deduce () steps respectively
- Simplify current formula into an equivalently-satisfiable one
- Must be fast (in particular inprocessing)
- Some techniques:
- detect and remove subsumed clauses
- detect \& collapse equivalent literals
- apply basic resolution steps
- ...

Preprocessing/Inprocessing (cont.)

Detect and remove subsumed clauses:

$$
\begin{gathered}
\varphi_{1} \wedge\left(I_{2} \vee I_{1}\right) \wedge \varphi_{2} \wedge\left(I_{2} \vee I_{3} \vee I_{1}\right) \wedge \varphi_{3} \\
\Downarrow \\
\varphi_{1} \wedge\left(I_{1} \vee I_{2}\right) \wedge \varphi_{2} \wedge \varphi_{3}
\end{gathered}
$$

Preprocessing/Inprocessing (cont.)

Detect \& collapse equivalent literals [7]

Repeat:

(i) build the implication graph induced by binary clauses
(ii) detect strongly connected cycles \Longrightarrow equivalence classes of literals
(iii) perform substitutions
(iv) perform unit and pure literal.

Until (no more simplification is possible).

- Ex:
- Very effective in many application domains.

Preprocessing/Inprocessing (cont.)

Detect \& collapse equivalent literals [7]

Repeat:

(i) build the implication graph induced by binary clauses
(ii) detect strongly connected cycles \Longrightarrow equivalence classes of literals
(iii) perform substitutions
(iv) perform unit and pure literal.

Until (no more simplification is possible).

- Ex:
- Very effective in many application domains.

Preprocessing/Inprocessing (cont.)

Detect \& collapse equivalent literals [7]

Repeat:

(i) build the implication graph induced by binary clauses
(ii) detect strongly connected cycles \Longrightarrow equivalence classes of literals
(iii) perform substitutions
(iv) perform unit and pure literal.

Until (no more simplification is possible).

- Ex:
- Very effective in many application domains.

Preprocessing/Inprocessing (cont.)

Detect \& collapse equivalent literals [7]

Repeat:

(i) build the implication graph induced by binary clauses
(ii) detect strongly connected cycles \Longrightarrow equivalence classes of literals
(iii) perform substitutions
(iv) perform unit and pure literal.

Until (no more simplification is possible).

- Ex:
- Very effective in many application domains.

Preprocessing/Inprocessing (cont.)

Detect \& collapse equivalent literals [7]

Repeat:

(i) build the implication graph induced by binary clauses
(ii) detect strongly connected cycles \Longrightarrow equivalence classes of literals
(iii) perform substitutions
(iv) perform unit and pure literal.

Until (no more simplification is possible).

- Very effective in many application domains.

Preprocessing/Inprocessing (cont.)

Detect \& collapse equivalent literals [7]

Repeat:

(i) build the implication graph induced by binary clauses
(ii) detect strongly connected cycles \Longrightarrow equivalence classes of literals
(iii) perform substitutions
(iv) perform unit and pure literal.

Until (no more simplification is possible).

- Ex:

$$
\begin{gathered}
\varphi_{1} \wedge\left(\neg I_{2} \vee I_{1}\right) \wedge \varphi_{2} \wedge\left(\neg I_{3} \vee I_{2}\right) \wedge \varphi_{3} \wedge\left(\neg I_{1} \vee I_{3}\right) \wedge \varphi_{4} \\
\Downarrow I_{1 \leftrightarrow} \leftrightarrow l_{2} \leftrightarrow I_{3} \\
\left(\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4}\right)\left[I_{2} \leftarrow I_{1} ; l_{3} \leftarrow I_{1} ;\right]
\end{gathered}
$$

- Very effective in many application domains.

Preprocessing/Inprocessing (cont.)

Detect \& collapse equivalent literals [7]

Repeat:

(i) build the implication graph induced by binary clauses
(ii) detect strongly connected cycles \Longrightarrow equivalence classes of literals
(iii) perform substitutions
(iv) perform unit and pure literal.

Until (no more simplification is possible).

- Ex:

$$
\begin{gathered}
\varphi_{1} \wedge\left(\neg I_{2} \vee I_{1}\right) \wedge \varphi_{2} \wedge\left(\neg I_{3} \vee I_{2}\right) \wedge \varphi_{3} \wedge\left(\neg I_{1} \vee I_{3}\right) \wedge \varphi_{4} \\
\Downarrow I_{1} \leftrightarrow l_{2} \leftrightarrow I_{3} \\
\left(\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4}\right)\left[I_{2} \leftarrow I_{1} ; l_{3} \leftarrow I_{1} ;\right]
\end{gathered}
$$

- Very effective in many application domains.

Preprocessing/Inprocessing (cont.)

Apply some basic steps of resolution (and simplify)

$$
\begin{gathered}
\varphi_{1} \wedge\left(I_{2} \vee I_{1}\right) \wedge \varphi_{2} \wedge\left(I_{2} \vee \neg I_{1}\right) \wedge \varphi_{3} \\
\Downarrow_{\text {resolve }} \\
\varphi_{1} \wedge\left(I_{2}\right) \wedge \varphi_{2} \wedge \varphi_{3} \\
\Downarrow_{\text {unit-propagate }} \\
\left(\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}\right)\left[I_{2} \leftarrow \top\right]
\end{gathered}
$$

Literal-Decision Heuristics (aka Branching Heuristics)

- Implemented in decide_next_branch()
- Branch is the source of non-determinism for DPLL \Longrightarrow critical for efficiency
- Many literal-decision heuristics in literature (for DPLL \& CDCL)

Some Heuristics

- MOMS heuristics (DPLL): pick the literal occurring most often in the minimal size clauses \Longrightarrow fast and simple, many variants
- Jeroslow-Wang (DPLL): choose the literal with maximum

$$
\operatorname{score}(I):=\Sigma_{l \in c} \& c \in \varphi 2^{-|c|}
$$

\Longrightarrow estimates l's contribution to the satisfiability of φ

- Satz [21] (DPLL): selects a candidate set of literals, perform unit propagation, chooses the one leading to smaller clause set
\Longrightarrow maximizes the effects of unit propagation
- VSIDS [28] (CDCL+): variable state independent decaying sum
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses

Restarts [16]

Idea: (according to some strategy) restart the search

- abandon the current search tree and reconstruct a new one
- The clauses learned prior to the restart are still there after the restart and can help pruning the search space
- avoid getting stuck in certain areas of the search space
\Longrightarrow may significantly reduce the overall search space

Outline

(1) Boolean Logics and SAT
2. Basic SAT-Solving Techniques

- Generalities
- Resolution
- Tableaux
- DPLL
(3) Modern CDCL SAT Solvers
- Limitations of Chronological Backtracking
- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
- SAT Under Assumptions \& Incremental SAT
(4) Ordered Binary Decision Diagrams - OBDDs
(5) SAT Functionalities: proofs, unsat cores, interpolants, optimization

SAT under assumptions: $\operatorname{SAT}\left(\varphi,\left\{I_{1}, \ldots, I_{n}\right\}\right)[12]$

- Many SAT solvers allow for solving a CNF formula φ under a set of assumption literals $\mathcal{A} \stackrel{\text { def }}{=}\left\{I_{1}, \ldots, I_{n}\right\}: \operatorname{SAT}\left(\varphi,\left\{I_{1}, \ldots, I_{n}\right\}\right)$
- $\operatorname{SAT}\left(\varphi,\left\{1_{1}, \ldots, I_{n}\right\}\right)$: same result as $\operatorname{SAT}\left(\varphi \wedge \bigwedge_{i=1}^{n} l_{i}\right)$
- often useful to call the same formula with different assumption lists: $\operatorname{SAT}\left(\varphi, \mathcal{A}_{1}\right), \operatorname{SAT}\left(\varphi, \mathcal{A}_{2}\right), \ldots$

- Idea:

- I_{1}, \ldots, I_{n} "decided" at decision level 0 before starting the search
- if backjump to level 0 on $C \stackrel{\text { dof }}{=} \neg \eta$ s.t. $\eta \subseteq \mathcal{A}$, then return UNSAT

```
Property
If the "decision" strategy for conflict analysis is used,
then \(\eta\) is the subset of assumptions causing the inconsistency
```

SAT under assumptions: $\operatorname{SAT}\left(\varphi,\left\{I_{1}, \ldots, I_{n}\right\}\right)[12]$

- Many SAT solvers allow for solving a CNF formula φ under a set of assumption literals $\mathcal{A} \stackrel{\text { def }}{=}\left\{I_{1}, \ldots, I_{n}\right\}: \operatorname{SAT}\left(\varphi,\left\{I_{1}, \ldots, I_{n}\right\}\right)$
- $\operatorname{SAT}\left(\varphi,\left\{1_{1}, \ldots, l_{n}\right\}\right)$: same result as $\operatorname{SAT}\left(\varphi \wedge \bigwedge_{i=1}^{n} l_{i}\right)$
- often useful to call the same formula with different assumption lists: $\operatorname{SAT}\left(\varphi, \mathcal{A}_{1}\right), \operatorname{SAT}\left(\varphi, \mathcal{A}_{2}\right), \ldots$
- Idea:
- I_{1}, \ldots, I_{n} "decided" at decision level 0 before starting the search
- if backjump to level 0 on $C \stackrel{\text { def }}{=} \neg \eta$ s.t. $\eta \subseteq \mathcal{A}$, then return UNSAT

```
Property
If the "decision" strategy for conflict analysis is used,
then \(\eta\) is the subset of assumptions causing the inconsistency
```

SAT under assumptions: $\operatorname{SAT}\left(\varphi,\left\{I_{1}, \ldots, I_{n}\right\}\right)[12]$

- Many SAT solvers allow for solving a CNF formula φ under a set of assumption literals $\mathcal{A} \stackrel{\text { def }}{=}\left\{I_{1}, \ldots, I_{n}\right\}: \operatorname{SAT}\left(\varphi,\left\{I_{1}, \ldots, I_{n}\right\}\right)$
- $\operatorname{SAT}\left(\varphi,\left\{1_{1}, \ldots, I_{n}\right\}\right)$: same result as $\operatorname{SAT}\left(\varphi \wedge \bigwedge_{i=1}^{n} l_{i}\right)$
- often useful to call the same formula with different assumption lists: $\operatorname{SAT}\left(\varphi, \mathcal{A}_{1}\right), \operatorname{SAT}\left(\varphi, \mathcal{A}_{2}\right), \ldots$
- Idea:
- I_{1}, \ldots, I_{n} "decided" at decision level 0 before starting the search
- if backjump to level 0 on $C \stackrel{\text { def }}{=} \neg \eta$ s.t. $\eta \subseteq \mathcal{A}$, then return UNSAT

Property

If the "decision" strategy for conflict analysis is used, then η is the subset of assumptions causing the inconsistency

Selection of sub-formulas

Idea: select clauses [12, 23]
Let φ be $\bigwedge_{i=1}^{n} C_{i}$.

- let $S_{1} \ldots S_{n}$ be fresh Boolean atoms (selection variables).
- let $\mathcal{A} \stackrel{\text { def }}{=}\left\{S_{i_{1}}\right.$
$\operatorname{SAT}\left(\bigwedge_{i=1}^{n}\left(\neg S_{i} \vee C_{i}\right), \mathcal{A}\right)$: same as $\operatorname{SAT}\left(\bigwedge_{i=i_{1}}^{i_{k}}\left(C_{i}\right)\right)$
- if S_{i} is not assumed, then $\neg S_{i} \vee C_{i}$ does not contribute to search "Select" (activate) only a subset of the clauses in φ at each call.

Selection of sub-formulas

Idea: select clauses [12, 23]

Let φ be $\bigwedge_{i=1}^{n} C_{i}$.

- let $S_{1} \ldots S_{n}$ be fresh Boolean atoms (selection variables).
- let $\mathcal{A} \stackrel{\text { def }}{=}\left\{S_{i_{1}}, \ldots, S_{i_{k}}\right\} \subseteq\left\{S_{1}, \ldots, S_{n}\right\}$
$\operatorname{SAT}\left(\bigwedge_{i=1}^{n}\left(-S_{i} \vee C_{i}\right), \mathcal{A}\right)$: same as $\operatorname{SAT}\left(\bigwedge_{i=i_{i}}^{i_{k}}\left(C_{i}\right)\right)$
- if S_{i} is not assumed, then $\neg S_{i} \vee C_{i}$ does not contribute to search "Select" (activate) only a subset of the clauses in φ at each call.

Allows for "selecting" block of clauses at each call.

Selection of sub-formulas

Idea: select clauses [12, 23]

Let φ be $\bigwedge_{i=1}^{n} C_{i}$.

- let $S_{1} \ldots S_{n}$ be fresh Boolean atoms (selection variables).
- let $\mathcal{A} \stackrel{\text { def }}{=}\left\{S_{i_{1}}, \ldots, S_{i_{k}}\right\} \subseteq\left\{S_{1}, \ldots, S_{n}\right\}$
$\Longrightarrow \operatorname{SAT}\left(\bigwedge_{i=1}^{n}\left(\neg S_{i} \vee C_{i}\right), \mathcal{A}\right)$: same as $\operatorname{SAT}\left(\bigwedge_{i=i_{1}}^{i_{k}}\left(C_{i}\right)\right)$
- if S_{i} is not assumed, then $\neg S_{i} \vee C_{i}$ does not contribute to search "Select" (activate) only a subset of the clauses in φ at each call.

Allows for "selecting" block of clauses at each call.

Selection of sub-formulas

Idea: select clauses [12, 23]

Let φ be $\bigwedge_{i=1}^{n} C_{i}$.

- let $S_{1} \ldots S_{n}$ be fresh Boolean atoms (selection variables).
- let $\mathcal{A} \stackrel{\text { def }}{=}\left\{S_{i_{1}}, \ldots, S_{i_{k}}\right\} \subseteq\left\{S_{1}, \ldots, S_{n}\right\}$
$\Longrightarrow \operatorname{SAT}\left(\bigwedge_{i=1}^{n}\left(\neg S_{i} \vee C_{i}\right), \mathcal{A}\right)$: same as $\operatorname{SAT}\left(\bigwedge_{i=i_{1}}^{i_{k}}\left(C_{i}\right)\right)$
- if S_{i} is not assumed, then $\neg S_{i} \vee C_{i}$ does not contribute to search

Selection of sub-formulas

Idea: select clauses [12, 23]

Let φ be $\bigwedge_{i=1}^{n} C_{i}$.

- let $S_{1} \ldots S_{n}$ be fresh Boolean atoms (selection variables).
- let $\mathcal{A} \stackrel{\text { def }}{=}\left\{S_{i_{1}}, \ldots, S_{i_{k}}\right\} \subseteq\left\{S_{1}, \ldots, S_{n}\right\}$
$\Longrightarrow \operatorname{SAT}\left(\bigwedge_{i=1}^{n}\left(\neg S_{i} \vee C_{i}\right), \mathcal{A}\right)$: same as $\operatorname{SAT}\left(\bigwedge_{i=i_{1}}^{i_{k}}\left(C_{i}\right)\right)$
- if S_{i} is not assumed, then $\neg S_{i} \vee C_{i}$ does not contribute to search
\Longrightarrow "Select" (activate) only a subset of the clauses in φ at each call.

Selection of sub-formulas

Idea: select clauses [12, 23]
Let φ be $\bigwedge_{i=1}^{n} C_{i}$.

- let $S_{1} \ldots S_{n}$ be fresh Boolean atoms (selection variables).
- let $\mathcal{A} \stackrel{\text { def }}{=}\left\{S_{i_{1}}, \ldots, S_{i_{k}}\right\} \subseteq\left\{S_{1}, \ldots, S_{n}\right\}$
$\Longrightarrow \operatorname{SAT}\left(\bigwedge_{i=1}^{n}\left(\neg S_{i} \vee C_{i}\right), \mathcal{A}\right)$: same as $\operatorname{SAT}\left(\bigwedge_{i=i_{1}}^{i_{k}}\left(C_{i}\right)\right)$
- if S_{i} is not assumed, then $\neg S_{i} \vee C_{i}$ does not contribute to search
\Longrightarrow "Select" (activate) only a subset of the clauses in φ at each call.

Generalised Idea: select blocks of clauses

Let φ be $\bigwedge_{i=1}^{n}\left(\bigwedge_{j=1}^{n_{i}} C_{i j}\right)$.

- let $S_{1} \ldots S_{n}$ be fresh Boolean atoms (selection variables).
- let $\mathcal{A} \stackrel{\text { def }}{=}\left\{S_{i_{1}}, \ldots, S_{i_{K}}\right\} \subseteq\left\{S_{1}, \ldots, S_{n}\right\}$
- $\operatorname{SAT}\left(\bigwedge_{i=1}^{n}\left(\bigwedge_{j=1}^{n_{i}}\left(\neg S_{i} \vee C_{i j}\right)\right), \mathcal{A}\right)$: same as $\operatorname{SAT}\left(\bigwedge_{i=i_{1}}^{i_{k}}\left(\bigwedge_{j=1}^{n_{i}} C_{i j}\right)\right)$

[^2]
Example

- Initial formula φ :

$$
\begin{aligned}
& \left(\begin{array}{ccc}
A_{1} & \vee \neg A_{2} & \vee \neg A_{3}
\end{array}\right) \wedge \quad / / \text { group } 1 \\
& \left(\neg A_{3} \vee A_{2} \quad \vee \neg A_{5}\right) \wedge \quad / / \text { group } 1 \\
& \left(\neg A_{2} \vee A_{5} \vee A_{7}\right) \wedge \quad / / \text { group } 2 \\
& \left(\begin{array}{cccc}
A_{3} & \vee & A_{5} & \vee A_{8}
\end{array}\right) \wedge \quad / / \text { group } 2 \\
& \left(\neg A_{1} \quad \vee \neg A_{3} \vee A_{8}\right) \wedge / / \text { group } 3
\end{aligned}
$$

- Augmented formula φ^{\prime}

| $\left(\neg S_{1}\right.$ | $\vee A_{1}$ | $\vee \neg A_{2}$ | $\left.\vee \neg A_{3}\right) \wedge$ | $/ /$ group 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\left(\neg S_{1}\right.$ | $\vee \neg A_{3}$ | $\vee A_{2}$ | $\left.\vee \neg A_{5}\right) \wedge$ | $/ /$ group 1 |
| $\left(\neg S_{2}\right.$ | $\vee \neg A_{2}$ | $\vee A_{5}$ | $\left.\vee A_{7}\right) \wedge$ | $/ /$ group 2 |
| $\left(\neg S_{2}\right.$ | $\vee A_{2}$ | $\vee A_{5}$ | $\left.\vee \neg A_{8}\right) \wedge$ | $/ /$ group 2 |
| $\left(\neg S_{3}\right.$ | $\vee \neg A_{1}$ | $\vee \neg A_{3}$ | $\left.\vee A_{8}\right) \wedge$ | $/ /$ group 3 |

- $\operatorname{SAT}\left(\varphi^{\prime},\left\{S_{2}, S_{3}\right\}\right)$: activates aroup 2,3
- $\operatorname{SAT}\left(\varphi^{\prime},\left\{S_{1}, S_{3}\right\}\right)$: activates group 1,3

Example

- Initial formula φ :

$$
\begin{aligned}
& \left(\begin{array}{ccc}
A_{1} & \vee \neg A_{2} & \vee \neg A_{3}
\end{array}\right) \wedge / / \text { group } 1 \\
& \left(\neg A_{3} \vee A_{2} \vee \neg A_{5}\right) \wedge / / \text { group } 1 \\
& \left(\neg A_{2} \vee A_{5} \vee A_{7}\right) \wedge / / \text { group } 2 \\
& \left(\begin{array}{lll}
A_{3} & \left.\vee A_{5} \vee \neg A_{8}\right) \wedge / / \text { group 2 }
\end{array}\right. \\
& \left(\neg A_{1} \vee \neg A_{3} \vee A_{8}\right) \wedge / / \text { group } 3
\end{aligned}
$$

- Augmented formula φ^{\prime} :

$$
\begin{aligned}
& \left(\neg S_{1} \vee A_{1} \vee \neg A_{2} \vee \neg A_{3}\right) \wedge / / \text { group } 1 \text { inactive } \\
& \left(\neg S_{1} \vee \neg A_{3} \vee A_{2} \vee \neg A_{5}\right) \wedge / / \text { group } 1 \text { inactive } \\
& \left(\neg S_{2} \vee \neg A_{2} \vee A_{5} \vee A_{7}\right) \wedge / / \text { group } 2 \text { inactive } \\
& \left(\neg S_{2} \vee A_{2} \vee A_{5} \vee \neg A_{8}\right) \wedge / / \text { group } 2 \text { inactive } \\
& \left(\neg S_{3} \vee \neg A_{1} \quad \vee \neg A_{3} \vee A_{8}\right) \wedge / / \text { group } 3
\end{aligned}
$$

- $\operatorname{SAT}\left(\varphi^{\prime},\left\{S_{2}, S_{3}\right\}\right)$: activates group 2,3
- $\operatorname{SAT}\left(\varphi^{\prime},\left\{S_{1}, S_{3}\right\}\right)$: activates group 1,3

Example

- Initial formula φ :

$$
\begin{array}{lllll}
\left(\neg A_{2}\right. & \vee & A_{5} & \vee A_{7} &) \wedge \\
\left(A_{3}\right. & \vee & A_{5} & \vee \neg A_{8} &) \\
(\text { group } 2 \\
\left(\neg A_{1}\right. & \vee \neg A_{3} & \vee A_{8} &) \wedge & / / \text { group } 2 \\
(\text { group } 3
\end{array}
$$

- Augmented formula φ^{\prime} :

$\left(\neg S_{1}\right.$	$\vee A_{1}$	$\vee \neg A_{2}$	$\left.\vee \neg A_{3}\right) \wedge$	$/ /$ group 1, inactive
$\left(\neg S_{1}\right.$	$\left.\vee \neg A_{3} \vee A_{2} \vee \neg A_{5}\right) \wedge$	$/ /$ group 1, inactive		
$\left(\neg S_{2}\right.$	$\left.\vee \neg A_{2} \vee A_{5} \vee A_{7}\right) \wedge$	$/ /$ group 2 inactive		
$\left(\neg S_{2}\right.$	$\left.\vee A_{2} \vee A_{5} \vee \neg A_{8}\right) \wedge$	$/ /$ group 2 inactive		
$\left(\neg S_{3}\right.$	$\vee \neg A_{1}$	$\left.\vee \neg A_{3} \vee A_{8}\right) \wedge$	$/ /$ group 3	

- $\operatorname{SAT}\left(\varphi^{\prime},\left\{S_{2}, S_{3}\right\}\right)$: activates group 2,3
- $\operatorname{SAT}\left(\varphi^{\prime},\left\{S_{1}, S_{3}\right\}\right)$: activates group 1,3

Example

- Initial formula φ :

$$
\begin{aligned}
& \left(\begin{array}{ccc}
A_{1} & \vee \neg A_{2} & \vee \neg A_{3}
\end{array}\right) \wedge \quad / / \text { group } 1 \\
& \left(\neg A_{3} \quad \vee A_{2} \quad \vee \neg A_{5} \quad\right) \wedge \quad / / \text { group } 1 \\
& \left(\neg A_{1} \quad \vee \neg A_{3} \vee A_{8}\right) \wedge \quad / / \text { group } 3
\end{aligned}
$$

- Augmented formula φ^{\prime} :

| $\left(\neg S_{1}\right.$ | $\vee A_{1}$ | $\vee \neg A_{2}$ | $\left.\vee \neg A_{3}\right) \wedge$ | $/ /$ group 1 inactive |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\left(\neg S_{1}\right.$ | $\left.\vee \neg A_{3} \vee A_{2} \vee \neg A_{5}\right) \wedge$ | $/ /$ group 1 inactive | | |
| $\left(\neg S_{2}\right.$ | $\left.\vee \neg A_{2} \vee A_{5} \vee A_{7}\right) \wedge$ | $/ /$ group 2, inactive | | |
| $\left(\neg S_{2}\right.$ | $\left.\vee A_{2} \vee A_{5} \vee \neg A_{8}\right) \wedge$ | $/ /$ group 2, inactive | | |
| $\left(\neg S_{3}\right.$ | $\vee \neg A_{1}$ | $\left.\vee \neg A_{3} \vee A_{8}\right) \wedge$ | $/ /$ group 3 | |

- $\operatorname{SAT}\left(\varphi^{\prime},\left\{S_{2}, S_{3}\right\}\right)$: activates group 2,3
- $\operatorname{SAT}\left(\varphi^{\prime},\left\{S_{1}, S_{3}\right\}\right)$: activates group 1,3

Incremental SAT solving [12, 11]

- Many CDCL solvers provide a stack-based incremental interface
- it is possible to push/pop ϕ_{i} into a stack of subformulas $\left\{\phi_{1}, \ldots, \phi_{k}\right\}$
- check incrementally the satisfiability of $\varphi \stackrel{\text { def }}{=} \bigwedge_{i=1}^{k} \phi_{i}$.
- Maintains the status of the search from one call to the other
- in particular it records the learned clauses (plus other information)
\Longrightarrow reuses search from one call to another
- Verv useful in many anplications (in particular in FV)

Incremental SAT solving [12, 11]

- Many CDCL solvers provide a stack-based incremental interface
- it is possible to push/pop ϕ_{i} into a stack of subformulas $\left\{\phi_{1}, \ldots, \phi_{k}\right\}$
- check incrementally the satisfiability of $\varphi \stackrel{\text { def }}{=} \bigwedge_{i=1}^{k} \phi_{i}$.
- Maintains the status of the search from one call to the other
- in particular it records the learned clauses (plus other information)
\Longrightarrow reuses search from one call to another
- Very useful in many applications (in particular in FV)

Incremental SAT solving [12, 11]

- Many CDCL solvers provide a stack-based incremental interface
- it is possible to push/pop ϕ_{i} into a stack of subformulas $\left\{\phi_{1}, \ldots, \phi_{k}\right\}$
- check incrementally the satisfiability of $\varphi \stackrel{\text { def }}{=} \bigwedge_{i=1}^{k} \phi_{i}$.
- Maintains the status of the search from one call to the other
- in particular it records the learned clauses (plus other information)
\Longrightarrow reuses search from one call to another
- Very useful in many applications (in particular in FV)

Incremental SAT solving [12, 11]

- Many CDCL solvers provide a stack-based incremental interface
- it is possible to push/pop ϕ_{i} into a stack of subformulas $\left\{\phi_{1}, \ldots, \phi_{k}\right\}$
- check incrementally the satisfiability of $\varphi \stackrel{\text { def }}{=} \bigwedge_{i=1}^{k} \phi_{i}$.
- Maintains the status of the search from one call to the other
- in particular it records the learned clauses (plus other information)
\Longrightarrow reuses search from one call to another
- Very useful in many applications (in particular in FV)
- Idea: incremental calls $\operatorname{SAT}\left(\varphi^{\prime}, \mathcal{A}_{1}\right), \operatorname{SAT}\left(\varphi^{\prime}, \mathcal{A}_{2}\right), \ldots$
- $\varphi^{\prime} \stackrel{\text { def }}{=} \bigwedge_{i}\left(\neg S_{i} \vee \phi_{i}\right), \mathcal{A}_{j} \subseteq\left\{S_{1}, \ldots, S_{k}\right\},\left(\neg S_{i} \vee \bigwedge_{j} C_{i j}\right) \stackrel{\text { def }}{=} \bigwedge_{j}\left(\neg S_{i} \vee C_{i j}\right)$
- push/pop selection variables S_{i}
- in practice, also subformulas ϕ_{i} can be pushed/popped
- Key efficiency issue: learned clauses safely reused from call to call (even if assumptions have been popped)

Incremental SAT solving [12, 11]

- Many CDCL solvers provide a stack-based incremental interface
- it is possible to push/pop ϕ_{i} into a stack of subformulas $\left\{\phi_{1}, \ldots, \phi_{k}\right\}$
- check incrementally the satisfiability of $\varphi \stackrel{\text { def }}{=} \bigwedge_{i=1}^{k} \phi_{i}$.
- Maintains the status of the search from one call to the other
- in particular it records the learned clauses (plus other information)
\Longrightarrow reuses search from one call to another
- Very useful in many applications (in particular in FV)
- Idea: incremental calls $\operatorname{SAT}\left(\varphi^{\prime}, \mathcal{A}_{1}\right), \operatorname{SAT}\left(\varphi^{\prime}, \mathcal{A}_{2}\right), \ldots$
- $\varphi^{\prime} \stackrel{\text { def }}{=} \bigwedge_{i}\left(\neg S_{i} \vee \phi_{i}\right), \mathcal{A}_{j} \subseteq\left\{S_{1}, \ldots, S_{k}\right\},\left(\neg S_{i} \vee \bigwedge_{j} C_{i j}\right) \stackrel{\text { def }}{=} \bigwedge_{j}\left(\neg S_{i} \vee C_{i j}\right)$
- push/pop selection variables S_{i}
- in practice, also subformulas ϕ_{i} can be pushed/popped
- Key efficiency issue: learned clauses safely reused from call to call (even if assumptions have been popped)

Incremental SAT solving [12, 11]

- Many CDCL solvers provide a stack-based incremental interface
- it is possible to push/pop ϕ_{i} into a stack of subformulas $\left\{\phi_{1}, \ldots, \phi_{k}\right\}$
- check incrementally the satisfiability of $\varphi \stackrel{\text { def }}{=} \bigwedge_{i=1}^{k} \phi_{i}$.
- Maintains the status of the search from one call to the other
- in particular it records the learned clauses (plus other information)
\Longrightarrow reuses search from one call to another
- Very useful in many applications (in particular in FV)
- Idea: incremental calls $\operatorname{SAT}\left(\varphi^{\prime}, \mathcal{A}_{1}\right), \operatorname{SAT}\left(\varphi^{\prime}, \mathcal{A}_{2}\right), \ldots$
- $\varphi^{\prime} \stackrel{\text { def }}{=} \bigwedge_{i}\left(\neg S_{i} \vee \phi_{i}\right), \mathcal{A}_{j} \subseteq\left\{S_{1}, \ldots, S_{k}\right\},\left(\neg S_{i} \vee \bigwedge_{j} C_{i j}\right) \stackrel{\text { def }}{=} \bigwedge_{j}\left(\neg S_{i} \vee C_{i j}\right)$
- push/pop selection variables S_{i}
- in practice, also subformulas ϕ_{i} can be pushed/popped
- Key efficiency issue: learned clauses safely reused from call to call (even if assumptions have been popped)

Incremental SAT solving [12, 11]

- Many CDCL solvers provide a stack-based incremental interface
- it is possible to push/pop ϕ_{i} into a stack of subformulas $\left\{\phi_{1}, \ldots, \phi_{k}\right\}$
- check incrementally the satisfiability of $\varphi \stackrel{\text { def }}{=} \bigwedge_{i=1}^{k} \phi_{i}$.
- Maintains the status of the search from one call to the other
- in particular it records the learned clauses (plus other information)
\Longrightarrow reuses search from one call to another
- Very useful in many applications (in particular in FV)
- Idea: incremental calls $\operatorname{SAT}\left(\varphi^{\prime}, \mathcal{A}_{1}\right), \operatorname{SAT}\left(\varphi^{\prime}, \mathcal{A}_{2}\right), \ldots$
- $\varphi^{\prime} \stackrel{\text { def }}{=} \bigwedge_{i}\left(\neg S_{i} \vee \phi_{i}\right), \mathcal{A}_{j} \subseteq\left\{S_{1}, \ldots, S_{k}\right\},\left(\neg S_{i} \vee \bigwedge_{j} C_{i j}\right) \stackrel{\text { def }}{=} \bigwedge_{j}\left(\neg S_{i} \vee C_{i j}\right)$
- push/pop selection variables S_{i}
- in practice, also subformulas ϕ_{i} can be pushed/popped
- Key efficiency issue: learned clauses safely reused from call to call (even if assumptions have been popped)
- a learned clause $C \stackrel{\text { def }}{=} V_{j} \neg S_{j} \vee C^{\prime}$ is s.t. $\bigwedge_{j}\left(\neg S_{j} \vee \phi_{j}\right)=C$ $\Longrightarrow C$ contains the vars selecting the subformulas it is derived from n $\operatorname{SAT}\left(\varphi^{\prime}, \mathcal{A}\right)$, if some $S_{i} \notin \mathcal{A}$, then C is not active

Incremental SAT solving [12, 11]

- Many CDCL solvers provide a stack-based incremental interface
- it is possible to push/pop ϕ_{i} into a stack of subformulas $\left\{\phi_{1}, \ldots, \phi_{k}\right\}$
- check incrementally the satisfiability of $\varphi \stackrel{\text { def }}{=} \bigwedge_{i=1}^{k} \phi_{i}$.
- Maintains the status of the search from one call to the other
- in particular it records the learned clauses (plus other information)
\Longrightarrow reuses search from one call to another
- Very useful in many applications (in particular in FV)
- Idea: incremental calls $\operatorname{SAT}\left(\varphi^{\prime}, \mathcal{A}_{1}\right), \operatorname{SAT}\left(\varphi^{\prime}, \mathcal{A}_{2}\right), \ldots$
- $\varphi^{\prime} \stackrel{\text { def }}{=} \bigwedge_{i}\left(\neg S_{i} \vee \phi_{i}\right), \mathcal{A}_{j} \subseteq\left\{S_{1}, \ldots, S_{k}\right\},\left(\neg S_{i} \vee \bigwedge_{j} C_{i j}\right) \stackrel{\text { def }}{=} \bigwedge_{j}\left(\neg S_{i} \vee C_{i j}\right)$
- push/pop selection variables S_{i}
- in practice, also subformulas ϕ_{i} can be pushed/popped
- Key efficiency issue: learned clauses safely reused from call to call (even if assumptions have been popped)
- a learned clause $C \stackrel{\text { def }}{=} \bigvee_{j} \neg S_{j} \vee C^{\prime}$ is s.t. $\bigwedge_{j}\left(\neg S_{j} \vee \phi_{j}\right) \models C$
$\Longrightarrow C$ contains the vars selecting the subformulas it is derived from

Incremental SAT solving [12, 11]

- Many CDCL solvers provide a stack-based incremental interface
- it is possible to push/pop ϕ_{i} into a stack of subformulas $\left\{\phi_{1}, \ldots, \phi_{k}\right\}$
- check incrementally the satisfiability of $\varphi \stackrel{\text { def }}{=} \bigwedge_{i=1}^{k} \phi_{i}$.
- Maintains the status of the search from one call to the other
- in particular it records the learned clauses (plus other information)
\Longrightarrow reuses search from one call to another
- Very useful in many applications (in particular in FV)
- Idea: incremental calls $\operatorname{SAT}\left(\varphi^{\prime}, \mathcal{A}_{1}\right), \operatorname{SAT}\left(\varphi^{\prime}, \mathcal{A}_{2}\right), \ldots$
- $\varphi^{\prime} \stackrel{\text { def }}{=} \bigwedge_{i}\left(\neg S_{i} \vee \phi_{i}\right), \mathcal{A}_{j} \subseteq\left\{S_{1}, \ldots, S_{k}\right\},\left(\neg S_{i} \vee \bigwedge_{j} C_{i j}\right) \stackrel{\text { def }}{=} \bigwedge_{j}\left(\neg S_{i} \vee C_{i j}\right)$
- push/pop selection variables S_{i}
- in practice, also subformulas ϕ_{i} can be pushed/popped
- Key efficiency issue: learned clauses safely reused from call to call (even if assumptions have been popped)
- a learned clause $C \stackrel{\text { def }}{=} \bigvee_{j} \neg S_{j} \vee C^{\prime}$ is s.t. $\bigwedge_{j}\left(\neg S_{j} \vee \phi_{j}\right) \models C$
$\Longrightarrow C$ contains the vars selecting the subformulas it is derived from
\Longrightarrow in $\operatorname{SAT}\left(\varphi^{\prime}, \mathcal{A}\right)$, if some $S_{j} \notin \mathcal{A}$, then C is not active

Example

- Initial formula φ :

$$
\left.\begin{array}{llll}
\cdots & & \wedge \\
\left(\neg A_{1}\right. & \vee \neg A_{2} & \vee \neg A_{3} &) \wedge \\
\left(\neg A_{3}\right. & \vee A_{2} & \vee \neg A_{5} &) \wedge \\
\hline
\end{array} \right\rvert\, / \phi_{1}
$$

- Augmented formula φ^{\prime} :

```
\(\begin{array}{lllllll}\left(-S_{1}\right. & \vee A_{1} & \vee \neg A_{2} & \vee \neg A_{3} & ) \wedge & / / \phi_{1} \\ \left(-S_{1}\right. & \vee \neg A_{3} & \vee A_{2} & \vee \neg A_{5} & ) \wedge & / / \phi_{1}\end{array}\)
```

$\left[p \operatorname{push}\left(S_{1}\right)\right]: \operatorname{SAT}\left(\varphi^{\prime},\left\{\ldots, S_{1}\right\}\right): \phi_{1}$ active \longrightarrow learn C_{1} from ϕ_{1}

- C_{1} derived from $\phi_{1} \Longrightarrow C_{1}$ active only when ϕ_{1} is active
- C_{2} derived from $\phi_{1}, \phi_{2} \Longrightarrow C_{2}$ active only when both ϕ_{1}, ϕ_{2} are active

Example

- Initial formula φ :

$$
\begin{array}{lllll}
\cdots & \vee \neg A_{1} & \vee \neg A_{2} & \vee \neg A_{3} &) \wedge \\
\left(\neg A_{3}\right. & \vee A_{2} & \vee \neg A_{5} &) \wedge & / / \phi_{1} \\
\left(/ \phi_{1}\right.
\end{array}
$$

- Augmented formula φ^{\prime} :
$\left.\begin{array}{llllll}\cdots & & \\ \left(\neg S_{1}\right. & \vee A_{1} & \vee \neg A_{2} & \vee \neg A_{3} &) \wedge & / / \phi_{1} \\ \left(\neg S_{1}\right. & \vee \neg A_{3} & \vee A_{2} & \vee \neg A_{5}\end{array}\right) \wedge \quad / / \phi_{1}$
$\left(\neg S_{1} \quad \vee A_{1} \quad \vee \neg A_{3} \quad \vee \neg A_{5} \quad\right) \wedge \quad / /$ learned C_{1}
$\left[\operatorname{push}\left(S_{1}\right)\right]: \operatorname{SAT}\left(\varphi^{\prime},\left\{\ldots, S_{1}\right\}\right): \phi_{1}$ active \Longrightarrow learn C_{1} from ϕ_{1}
- C_{1} derived from $\phi_{1} \Longrightarrow C_{1}$ active only when ϕ_{1} is active
- C_{2} derived from $\phi_{1}, \phi_{2} \Longrightarrow C_{2}$ active only when both ϕ_{1}, ϕ_{2} are active

Example

- Initial formula φ :

$$
\begin{array}{lllll}
\left(\cdots A_{1}\right. & \vee \neg A_{2} & \left.\vee \neg A_{3}\right) &) & \| \\
\hline
\end{array} \phi_{1} \phi_{1}
$$

- Augmented formula φ^{\prime} :

$$
\begin{array}{llllll}
\cdots & \vee S_{1} & \vee A_{1} & \vee \neg A_{2} & \vee \neg A_{3} &) \wedge \\
\hline\left(/ \phi_{1}\right. \\
\left(\neg S_{1}\right. & \vee \neg A_{3} & \vee A_{2} & \vee \neg A_{5} &) \wedge & / / \phi_{1} \\
\left(\neg S_{2}\right. & \vee \neg A_{2} & \vee A_{5} & \vee A_{7} &) \wedge & / / \phi_{2} \\
\left(\neg S_{2}\right. & \vee \neg A_{1} & \vee \neg A_{3} & \vee \neg A_{5} &) \wedge & / / \phi_{2} \text { inactive } \\
& \\
\left(\neg S_{1}\right. & \vee A_{1} & \vee \neg A_{3} & \vee \neg A_{5} &) \wedge & / / \text { learned } C_{1}
\end{array}
$$

$\left[p u s h\left(S_{2}\right)\right]: \operatorname{SAT}\left(\varphi^{\prime},\left\{\ldots, S_{1}, S_{2}\right\}\right): \phi_{1}, \phi_{2}$ active \Longrightarrow learn C_{2} from ϕ_{1}, ϕ_{2}

- C_{1} derived from $\phi_{1} \Longrightarrow C_{1}$ active only when ϕ_{1} is active
- C_{2} derived from $\phi_{1}, \phi_{2} \Longrightarrow C_{2}$ active only when both ϕ_{1}, ϕ_{2} are active

Example

- Initial formula φ :

$$
\begin{array}{lllll}
(\cdots & A_{1} & \vee \neg A_{2} & \vee \neg A_{3} &) \wedge \\
\left(\neg A_{3}\right. & \vee A_{2} & \vee \neg A_{5} &) \wedge & / / \phi_{1} \\
\left(\neg \phi_{1}\right. \\
\left(A_{2}\right. & \vee A_{5} & \left.\vee A_{7}\right) &) & / / \phi_{2} \\
\left(\neg A_{1}\right. & \vee \neg A_{3} & \vee \neg A_{5} &) \wedge & / / \phi_{2}
\end{array}
$$

- Augmented formula φ^{\prime} :

$$
\begin{array}{llllll}
\cdots & & & \wedge \\
\left(-S_{1}\right. & \vee A_{1} & \vee \neg A_{2} & \vee \neg A_{3} &) \wedge & / / \phi_{1} \\
\left(\neg S_{1}\right. & \vee \neg A_{3} & \vee A_{2} & \vee \neg A_{5} &) \wedge & / / \phi_{1} \\
\left(\neg S_{2}\right. & \vee \neg A_{2} & \vee A_{5} & \vee A_{7} &) \wedge & / / \phi_{2} \\
\left(\neg S_{2}\right. & \vee \neg A_{1} & \vee \neg A_{3} & \left.\vee \neg A_{5}\right) \wedge & / / \phi_{2} \\
& & & \text { inactive } \\
\left(-S_{1}\right. & \vee A_{1} & \vee \neg A_{3} & \vee \neg A_{5} &) \wedge & / / \text { learned } C_{1} \\
\left(-S_{1}\right. & \vee \neg S_{2} & \vee \neg A_{3} & \vee \neg A_{5} &) \wedge & / / \text { learned } C_{2}
\end{array}
$$

[push($\left.\left.S_{2}\right)\right]: \operatorname{SAT}\left(\varphi^{\prime},\left\{\ldots, S_{1}, S_{2}\right\}\right): \phi_{1}, \phi_{2}$ active \Longrightarrow learn C_{2} from ϕ_{1}, ϕ_{2}

- C_{1} derived from $\phi_{1} \Longrightarrow C_{1}$ active only when ϕ_{1} is active
- C_{2} derived from $\phi_{1}, \phi_{2} \Longrightarrow C_{2}$ active only when both ϕ_{1}, ϕ_{2} are active

Example

- Initial formula φ :

$$
\begin{array}{lllll}
\cdots & & \wedge & \\
\left(A_{1}\right. & \vee \neg A_{2} & \vee \neg A_{3} &) \wedge & / / \phi_{1} \\
\left(\neg A_{3}\right. & \vee & A_{2} & \vee \neg A_{5} &) \wedge
\end{array} / / \phi_{1}
$$

$$
\left(\neg A_{1} \quad \vee \neg A_{3} \quad \vee A_{8} \quad\right) \wedge \quad / / \phi_{3}
$$

- Augmented formula φ^{\prime} :
- C_{1} derived from $\phi_{1} \Longrightarrow C_{1}$ active only when ϕ_{1} is active
- C_{2} derived from $\phi_{1}, \phi_{2} \Longrightarrow C_{2}$ active only when both ϕ_{1}, ϕ_{2} are active

$$
\begin{aligned}
& \begin{array}{llllll}
\cdots & & \\
\left(\neg S_{1}\right. & \vee A_{1} & \vee \neg A_{2} & \vee \neg A_{3} &) \wedge & / / \phi_{1} \\
\left(\neg S_{1}\right. & \vee \neg A_{3} & \vee A_{2} & \vee \neg A_{5} &) \wedge & / / \phi_{1} \\
\left(\neg S_{2}\right. & \vee \neg A_{2} & \vee A_{5} & \left.\vee A_{7}\right) \wedge & / / \phi_{2} \text {, inactive } \\
\left(\neg S_{2}\right. & \vee \neg A_{1} & \vee \neg A_{3} & \left.\vee \neg A_{5}\right) \wedge & / / \phi_{2}, \text { inactive } \\
\left(\neg S_{3}\right. & \vee \neg A_{1} & \vee \neg A_{3} & \left.\vee A_{8}\right) \wedge & / / \phi_{3} \\
\left(\neg S_{1}\right. & \vee A_{1} & \vee \neg A_{3} & \left.\vee \neg A_{5}\right) \wedge & / / \text { learned } C_{1} \\
\left(\neg S_{1}\right. & \vee \neg S_{2} & \vee \neg A_{3} & \left.\vee \neg A_{5}\right) &) \wedge & / / \text { learned } C_{2} \text {, inactive }
\end{array} \\
& {\left[p o p\left(S_{2}\right) ; \operatorname{push}\left(S_{3}\right)\right]: \operatorname{SAT}\left(\varphi^{\prime},\left\{\ldots, S_{1}, S_{3}\right\}\right): \phi_{1}, \phi_{3} \text { active }}
\end{aligned}
$$

Example

- Initial formula φ :

$$
\begin{array}{lllll}
\left(\begin{array}{llll}
A_{1} & \vee \neg A_{2} & \vee \neg A_{3} &) \wedge
\end{array} \| \phi_{1}\right. \\
\left(\neg A_{3}\right. & \vee A_{2} & \vee \neg A_{5} &) \wedge & / / \phi_{1} \\
\left(\neg A_{1}\right. & \vee \neg A_{3} & \vee A_{8} &) \wedge & / / \phi_{3}
\end{array}
$$

- Augmented formula φ^{\prime} :

\cdots			\wedge		
$\left(\neg S_{1}\right.$	$\vee A_{1}$	$\vee \neg A_{2}$	$\vee \neg A_{3}$	$) \wedge$	$/ / \phi_{1}$
$\left(\neg S_{1}\right.$	$\vee \neg A_{3}$	$\vee A_{2}$	$\vee \neg A_{5}$	$) \wedge$	$/ / \phi_{1}$
$\left(\neg S_{2}\right.$	$\vee \neg A_{2}$	$\vee A_{5}$	$\vee A_{7}$	$) \wedge$	$/ / \phi_{2}$, inactive
$\left(\neg S_{2}\right.$	$\vee \neg A_{1}$	$\vee \neg A_{3}$	$\vee \neg A_{5}$	$) \wedge$	$/ / \phi_{2}$, inactive
$\left(\neg S_{3}\right.$	$\vee \neg A_{1}$	$\vee \neg A_{3}$	$\vee A_{8}$	$) \wedge$	$/ / \phi_{3}$
$\left(\neg S_{1}\right.$	$\vee A_{1}$	$\vee \neg A_{3}$	$\vee \neg A_{5}$	$) \wedge$	$/ /$ learned C_{1}
$\left(-S_{1}\right.$	$\vee \neg S_{2}$	$\vee \neg A_{3}$	$\vee \neg A_{5}$	$) \wedge$	$/ /$ learned C_{2}, inactive

$\left[p o p\left(S_{2}\right) ; \operatorname{push}\left(S_{3}\right)\right]: \operatorname{SAT}\left(\varphi^{\prime},\left\{\ldots, S_{1}, S_{3}\right\}\right): \phi_{1}, \phi_{3}$ active $\Longrightarrow \ldots$

- C_{1} derived from $\phi_{1} \Longrightarrow C_{1}$ active only when ϕ_{1} is active
- C_{2} derived from $\phi_{1}, \phi_{2} \Longrightarrow C_{2}$ active only when both ϕ_{1}, ϕ_{2} are active

Outline

(1) Boolean Logics and SAT

2 Basic SAT-Solving Techniques

- Generalities
- Resolution
- Tableaux
- DPLL
(3) Modern CDCL SAT Solvers
- Limitations of Chronological Backtracking
- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
- SAT Under Assumptions \& Incremental SAT

4 Ordered Binary Decision Diagrams - OBDDs
(5) SAT Functionalities: proofs, unsat cores, interpolants, optimization

Ordered Binary Decision Diagrams (OBDDs) [8]]

Canonical representation of Boolean formulas

- "If-then-else" binary direct acyclic graphs (DAGs) with one root and two leaves: 1, 0 (or \top, \perp; or T, F)
- Variable ordering $A_{1}, A_{2}, \ldots, A_{n}$ imposed a priori.
- Paths leading to 1 represent models

Paths leading to 0 represent counter-models

Ordered Binary Decision Diagrams (OBDDs) [8]]

Canonical representation of Boolean formulas

- "If-then-else" binary direct acyclic graphs (DAGs) with one root and two leaves: 1, 0 (or \top, \perp; or T, F)
- Variable ordering $A_{1}, A_{2}, \ldots, A_{n}$ imposed a priori.
- Paths leading to 1 represent models

Paths leading to 0 represent counter-models

Note

Some authors call them Reduced Ordered Binary Decision Diagrams (ROBDDs)

OBDD - Examples

OBDDs of $\left(a_{1} \leftrightarrow b_{1}\right) \wedge\left(a_{2} \leftrightarrow b_{2}\right) \wedge\left(a_{3} \leftrightarrow b_{3}\right)$ with different variable orderings

Ordered Decision Trees

- Ordered Decision Tree:
from root to leaves, variables are encountered always in the same order
- Example: Ordered Decision tree for $\varphi \stackrel{\text { def }}{=}(a \wedge b) \vee(c \wedge d)$

From Ordered Decision Trees to OBDD's: reductions

- Recursive applications of the following reductions:
- share subnodes: point to the same occurrence of a subtree (via hash consing)
- remove redundancies: nodes with same left and right children can be eliminated:
if A then B else B " $\longrightarrow B$

From Ordered Decision Trees to OBDD's: reductions

- Recursive applications of the following reductions:
- share subnodes: point to the same occurrence of a subtree (via hash consing)
- remove redundancies: nodes with same left and right children can be eliminated: if A then B else B " \Longrightarrow " B "

From Ordered Decision Trees to OBDD's: reductions

- Recursive applications of the following reductions:
- share subnodes: point to the same occurrence of a subtree (via hash consing)
- remove redundancies: nodes with same left and right children can be eliminated:
"if A then B else B " \Longrightarrow " B "

Reduction: example

$$
\varphi \stackrel{\text { def }}{=}(a \wedge b) \vee(c \wedge d)
$$

Reduction: example

$$
\varphi \stackrel{\text { def }}{=}(a \wedge b) \vee(c \wedge d)
$$

Detect redundacies: a

Reduction: example

$$
\varphi \stackrel{\text { def }}{=}(a \wedge b) \vee(c \wedge d)
$$

Reduction: example

$$
\varphi \stackrel{\text { def }}{=}(a \wedge b) \vee(c \wedge d)
$$

Reduction: example

Reduction: example

$$
\varphi \stackrel{\text { def }}{=}(a \wedge b) \vee(c \wedge d)
$$

Share identical nodes: a

Reduction: example

$$
\varphi \stackrel{\text { def }}{=}(a \wedge b) \vee(c \wedge d)
$$

Detect redundancies: \mathbf{a}

Reduction: example

$$
\varphi \stackrel{\text { dof }}{=}(a \wedge b) \vee(c \wedge d)
$$

Remove redundancies: \mathbf{a}

Final OBDD!

If-Then-Else Operators: "ite(...)"

If-Then-Else Operators: "ite(...)"

- ite $\left(\phi, \varphi^{\top}, \varphi^{\perp}\right)$: "If ϕ Then φ^{\top} Else $\varphi^{\perp "}$
- ite $\left(\phi, \varphi^{\top}, \varphi^{\perp}\right) \stackrel{\text { def }}{=}\left(\left(\neg \phi \vee \varphi^{\top}\right) \wedge\left(\phi \vee \varphi^{\perp}\right) \Longleftrightarrow\left(\left(\phi \wedge \varphi^{\top}\right) \vee\left(\neg \phi \wedge \varphi^{\perp}\right)\right)\right.$
- properties:

If-Then-Else Operators: "ite(...)"

If-Then-Else Operators: "ite(...)"

- ite $\left(\phi, \varphi^{\top}, \varphi^{\perp}\right)$: "If ϕ Then φ^{\top} Else $\varphi^{\perp "}$
- ite $\left(\phi, \varphi^{\top}, \varphi^{\perp}\right) \stackrel{\text { def }}{=}\left(\left(\neg \phi \vee \varphi^{\top}\right) \wedge\left(\phi \vee \varphi^{\perp}\right) \Longleftrightarrow\left(\left(\phi \wedge \varphi^{\top}\right) \vee\left(\neg \phi \wedge \varphi^{\perp}\right)\right)\right.$

- properties:

If-Then-Else Operators: "ite(...)"

If-Then-Else Operators: "ite(...)"

- ite $\left(\phi, \varphi^{\top}, \varphi^{\perp}\right)$: "If ϕ Then φ^{\top} Else $\varphi^{\perp "}$
- ite $\left(\phi, \varphi^{\top}, \varphi^{\perp}\right) \stackrel{\text { def }}{=}\left(\left(\neg \phi \vee \varphi^{\top}\right) \wedge\left(\phi \vee \varphi^{\perp}\right) \Longleftrightarrow\left(\left(\phi \wedge \varphi^{\top}\right) \vee\left(\neg \phi \wedge \varphi^{\perp}\right)\right)\right.$
- properties:
ite $\left(\phi, \varphi_{1}, \varphi_{1}^{\top}\right)$ op ite $\left(\phi_{,}, \varphi_{2}, \varphi_{2}^{\frac{1}{2}}\right)=\operatorname{ite}\left(\phi_{,}\left(\varphi_{1}\right.\right.$ op $\left.\varphi_{2}\right),\left(\varphi_{1}^{\frac{1}{1}}\right.$ op $\left.\left.\varphi_{2}^{\frac{1}{2}}\right)\right)$
ite $\left(\phi_{1}, \varphi_{1}^{\top}, \varphi_{1}^{\top}\right)$ op ite $\left(\phi_{2}, \varphi_{2}^{\top}, \varphi_{2}^{\frac{1}{2}}\right)=\operatorname{ite}\left(\phi_{1},\left(\varphi_{1}^{\top}\right.\right.$ op ite $\left.\left(\phi_{2}, \varphi_{2}^{\top}, \varphi_{2}^{\frac{1}{2}}\right)\right)$,

$$
o p \in\{\wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus\}
$$

If-Then-Else Operators: "ite(...)"

If-Then-Else Operators: "ite(...)"

- ite $\left(\phi, \varphi^{\top}, \varphi^{\perp}\right)$: "If ϕ Then φ^{\top} Else $\varphi^{\perp "}$
- ite $\left(\phi, \varphi^{\top}, \varphi^{\perp}\right) \stackrel{\text { def }}{=}\left(\left(\neg \phi \vee \varphi^{\top}\right) \wedge\left(\phi \vee \varphi^{\perp}\right) \Longleftrightarrow\left(\left(\phi \wedge \varphi^{\top}\right) \vee\left(\neg \phi \wedge \varphi^{\perp}\right)\right)\right.$
- properties:
$\neg \operatorname{ite}\left(\phi, \varphi^{\top}, \varphi^{\perp}\right)$

$$
=\operatorname{ite}\left(\phi, \neg \varphi^{\top}, \neg \varphi^{\perp}\right)
$$

$\operatorname{ite}\left(\phi_{1}, \varphi_{1}^{\top}, \varphi_{1}^{\frac{1}{1}}\right)$ op ite $\left(\phi_{2}, \varphi_{2}^{\top}, \varphi_{2}^{\frac{1}{2}}\right)=\operatorname{ite}\left(\phi_{1},\left(\varphi_{1}^{\top}\right.\right.$ op ite $\left.\left(\phi_{2}, \varphi_{2}^{\top}, \varphi_{2}^{\frac{1}{2}}\right)\right)$,

$$
o p \in\{\wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus\}
$$

If-Then-Else Operators: "ite(...)"

If-Then-Else Operators: "ite(...)"

- ite $\left(\phi, \varphi^{\top}, \varphi^{\perp}\right)$: "If ϕ Then φ^{\top} Else φ^{\perp} "
- ite $\left(\phi, \varphi^{\top}, \varphi^{\perp}\right) \stackrel{\text { def }}{=}\left(\left(\neg \phi \vee \varphi^{\top}\right) \wedge\left(\phi \vee \varphi^{\perp}\right) \Longleftrightarrow\left(\left(\phi \wedge \varphi^{\top}\right) \vee\left(\neg \phi \wedge \varphi^{\perp}\right)\right)\right.$
- properties:

$$
\begin{aligned}
& \neg \operatorname{ite}\left(\phi, \varphi^{\top}, \varphi^{\perp}\right) \quad=\operatorname{ite}\left(\phi, \neg \varphi^{\top}, \neg \varphi^{\perp}\right) \\
& \operatorname{ite}\left(\phi, \varphi_{1}^{\top}, \varphi_{1}^{\perp}\right) \text { op ite }\left(\phi, \varphi_{2}^{\top}, \varphi_{2}^{\perp}\right)=\operatorname{ite}\left(\phi,\left(\varphi_{1}^{\top} \text { op } \varphi_{2}^{\top}\right),\left(\varphi_{1}^{\perp} \text { op } \varphi_{2}^{\perp}\right)\right) \\
& o p \in\{\wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus\} \\
& =\operatorname{ite}\left(\phi_{2},\left(\operatorname{ite}\left(\phi_{1}, \varphi_{1}^{\top}, \varphi_{1}^{\frac{1}{2}}\right) o p \varphi_{2}^{\top}\right)\right. \text {, } \\
& \text { (ite } \left.\left(\phi_{1}, \varphi_{1}^{\top}, \varphi_{1}^{\perp}\right) \text { op } \varphi_{2}^{\frac{\perp}{2}}\right) \text {) }
\end{aligned}
$$

If-Then-Else Operators: "ite(...)"

If-Then-Else Operators: "ite(...)"

- ite $\left(\phi, \varphi^{\top}, \varphi^{\perp}\right)$: "If ϕ Then φ^{\top} Else $\varphi^{\perp "}$
- ite $\left(\phi, \varphi^{\top}, \varphi^{\perp}\right) \stackrel{\text { def }}{=}\left(\left(\neg \phi \vee \varphi^{\top}\right) \wedge\left(\phi \vee \varphi^{\perp}\right) \Longleftrightarrow\left(\left(\phi \wedge \varphi^{\top}\right) \vee\left(\neg \phi \wedge \varphi^{\perp}\right)\right)\right.$
- properties:
$\neg \operatorname{ite}\left(\phi, \varphi^{\top}, \varphi^{\perp}\right) \quad=\operatorname{ite}\left(\phi, \neg \varphi^{\top}, \neg \varphi^{\perp}\right)$
$\operatorname{ite}\left(\phi, \varphi_{1}^{\top}, \varphi_{1}^{\perp}\right)$ op ite $\left(\phi, \varphi_{2}^{\top}, \varphi_{2}^{\perp}\right)=\operatorname{ite}\left(\phi,\left(\varphi_{1}^{\top}\right.\right.$ op $\left.\varphi_{2}^{\top}\right),\left(\varphi_{1}^{\perp}\right.$ op $\left.\left.\varphi_{2}^{\perp}\right)\right)$
$\operatorname{ite}\left(\phi_{1}, \varphi_{1}^{\top}, \varphi_{1}^{\perp}\right)$ op ite $\left(\phi_{2}, \varphi_{2}^{\top}, \varphi_{2}^{\perp}\right)=\operatorname{ite}\left(\phi_{1},\left(\varphi_{1}^{\top}\right.\right.$ op ite $\left.\left(\phi_{2}, \varphi_{2}^{\top}, \varphi_{2}^{\frac{\perp}{2}}\right)\right)$,

If-Then-Else Operators: "ite(...)"

If-Then-Else Operators: "ite(...)"

- ite $\left(\phi, \varphi^{\top}, \varphi^{\perp}\right)$: "If ϕ Then φ^{\top} Else $\varphi^{\perp "}$
- ite $\left(\phi, \varphi^{\top}, \varphi^{\perp}\right) \stackrel{\text { def }}{=}\left(\left(\neg \phi \vee \varphi^{\top}\right) \wedge\left(\phi \vee \varphi^{\perp}\right) \Longleftrightarrow\left(\left(\phi \wedge \varphi^{\top}\right) \vee\left(\neg \phi \wedge \varphi^{\perp}\right)\right)\right.$
- properties:
$\neg i t e\left(\phi, \varphi^{\top}, \varphi^{\perp}\right) \quad=\operatorname{ite}\left(\phi, \neg \varphi^{\top}, \neg \varphi^{\perp}\right)$
$\operatorname{ite}\left(\phi, \varphi_{1}^{\top}, \varphi_{1}^{\perp}\right)$ op ite $\left(\phi, \varphi_{2}^{\top}, \varphi_{2}^{\perp}\right)=\operatorname{ite}\left(\phi,\left(\varphi_{1}^{\top}\right.\right.$ op $\left.\varphi_{2}^{\top}\right),\left(\varphi_{1}^{\perp}\right.$ op $\left.\left.\varphi_{2}^{\perp}\right)\right)$
$\operatorname{ite}\left(\phi_{1}, \varphi_{1}^{\top}, \varphi_{1}^{\perp}\right)$ op ite $\left(\phi_{2}, \varphi_{2}^{\top}, \varphi_{2}^{\perp}\right)=\operatorname{ite}\left(\phi_{1},\left(\varphi_{1}^{\top}\right.\right.$ op ite $\left.\left(\phi_{2}, \varphi_{2}^{\top}, \varphi_{2}^{\frac{\perp}{2}}\right)\right)$,
$\left(\varphi_{1}^{\perp}\right.$ op ite $\left.\left.\left(\phi_{2}, \varphi_{2}^{\top}, \varphi_{2}^{\perp}\right)\right)\right)$) $o p \in\{\wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus\}$
$=\operatorname{ite}\left(\phi_{2},\left(\operatorname{ite}\left(\phi_{1}, \varphi_{1}^{\top}, \varphi_{1}^{\perp}\right)\right.\right.$ op $\left.\varphi_{2}^{\top}\right)$,

$$
\left.\left(\operatorname{ite}\left(\phi_{1}, \varphi_{1}^{\top}, \varphi_{1}^{\frac{1}{1}}\right) o p \varphi_{2}^{\frac{1}{2}}\right)\right)
$$

Recursive structure of an OBDD

Assume the variable ordering $A_{1}, A_{2}, \ldots, A_{n}$:

$$
\begin{aligned}
& \operatorname{OBDD}\left(\top,\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}\right)= 1 \\
& \operatorname{OBDD}\left(\perp,\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}\right)= 0 \\
& \operatorname{OBDD(\varphi ,\{ A_{1},A_{2},\ldots ,A_{n}\})=} \begin{aligned}
& \text { if } A_{1} \\
& \text { then } \operatorname{OBDD}\left(\varphi\left[A_{1} \mid \top\right],\left\{A_{2}, \ldots, A_{n}\right\}\right) \\
& \text { else } \operatorname{OBDD}\left(\varphi\left[A_{1} \mid \perp\right],\left\{A_{2}, \ldots, A_{n}\right\}\right)
\end{aligned} \\
&
\end{aligned}
$$

Incrementally building an OBDD

- obdd_build $(\top,\{\ldots\}):=\top$,
- obdd_build $(\perp,\{\ldots\}):=\perp$,
- obdd_build $\left(A_{i},\{\ldots\}\right):=\operatorname{ite}\left(A_{i}, \top, \perp\right)$,
- obdd_build $\left((\neg \varphi),\left\{A_{1}, \ldots, A_{n}\right\}\right):=$ apply (obdd_build $\left.\left(\varphi,\left\{A_{1}, \ldots, A_{n}\right\}\right)\right)$
- obdd_build $\left(\left(\varphi_{1}\right.\right.$ op $\left.\left.\varphi_{2}\right),\left\{A_{1}, \ldots, A_{n}\right\}\right):=$ reduce(
apply(0
obdd_build $\left(\varphi_{1},\left\{A_{1}, \ldots, A_{n}\right\}\right), \quad o p \in\{\wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus\}$
obdd_build $\left(\varphi_{2},\left\{A_{1}, \ldots, A_{n}\right\}\right)$

Incrementally building an OBDD

- obdd_build $(\top,\{\ldots\}):=\top$,
- obdd_build $(\perp,\{\ldots\}):=\perp$,
- obdd_build $\left(A_{i},\{\ldots\}\right):=\operatorname{ite}\left(A_{i}, \top, \perp\right)$,
- obdd_build(($\left.\neg \varphi),\left\{A_{1}, \ldots, A_{n}\right\}\right):=$ apply $\left(\neg\right.$, obdd_build $\left.\left(\varphi,\left\{A_{1}, \ldots, A_{n}\right\}\right)\right)$
- obdd_build $\left(\left(\varphi_{1}\right.\right.$ op $\left.\left.\varphi_{2}\right),\left\{A_{1}, \ldots, A_{n}\right\}\right):=$
reduce(
apply (op
obdd build $\left(\varphi_{1},\left\{A_{1}, \ldots, A_{n}\right\}\right), o p \in\{\wedge, V, \rightarrow, \leftarrow, \leftrightarrow, \oplus\}$
obdd_build $\left(\varphi_{2},\left\{A_{1}, \ldots, A_{n}\right\}\right)$

Incrementally building an OBDD

- obdd_build $(\top,\{\ldots\}):=\top$,
- obdd_build $(\perp,\{\ldots\}):=\perp$,
- obdd_build $\left(A_{i},\{\ldots\}\right):=\operatorname{ite}\left(A_{i}, \top, \perp\right)$,
- obdd_build(($\left.\neg \varphi),\left\{A_{1}, \ldots, A_{n}\right\}\right):=$ apply $\left(\neg\right.$, obdd_build $\left.\left(\varphi,\left\{A_{1}, \ldots, A_{n}\right\}\right)\right)$
- obdd_build $\left(\left(\varphi_{1}\right.\right.$ op $\left.\left.\varphi_{2}\right),\left\{A_{1}, \ldots, A_{n}\right\}\right):=$
reduce(
apply op
obdd_build $\left(\varphi_{1},\left\{A_{1}, \ldots, A_{n}\right\}\right), \quad O p \in\{\wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus\}$
obdd_build $\left(\varphi_{2},\left\{A_{1}, \ldots, A_{n}\right\}\right)$

Incrementally building an OBDD

- obdd_build $(\top,\{\ldots\}):=\top$,
- obdd_build $(\perp,\{\ldots\}):=\perp$,
- obdd_build $\left(A_{i},\{\ldots\}\right):=\operatorname{ite}\left(A_{i}, \top, \perp\right)$,
- obdd_build $\left((\neg \varphi),\left\{A_{1}, \ldots, A_{n}\right\}\right):=$ apply $\left(\neg\right.$, obdd_build $\left.\left(\varphi,\left\{A_{1}, \ldots, A_{n}\right\}\right)\right)$
o obdd_build $\left(\left(\varphi_{1}\right.\right.$ op $\left.\left.\varphi_{2}\right),\left\{A_{1}, \ldots, A_{n}\right\}\right):=$
reduce(
apply(
Dp
obdd_build $\left(\varphi_{1},\left\{A_{1}, \ldots, A_{n}\right\}\right), \quad O p \in\{\wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus\}$
obdd_build $\left(\varphi_{2},\left\{A_{1}, \ldots, A_{n}\right\}\right)$

Incrementally building an OBDD

- obdd_build $(\top,\{\ldots\}):=\top$,
- obdd_build $(\perp,\{\ldots\}):=\perp$,
- obdd_build $\left(A_{i},\{\ldots\}\right):=\operatorname{ite}\left(A_{i}, \top, \perp\right)$,
- obdd_build $\left((\neg \varphi),\left\{A_{1}, \ldots, A_{n}\right\}\right):=$ apply $\left(\neg\right.$, obdd_build $\left.\left(\varphi,\left\{A_{1}, \ldots, A_{n}\right\}\right)\right)$
- obdd_build $\left(\left(\varphi_{1}\right.\right.$ op $\left.\left.\varphi_{2}\right),\left\{A_{1}, \ldots, A_{n}\right\}\right):=$ reduce(apply (op,
obdd_build $\left(\varphi_{1},\left\{A_{1}, \ldots, A_{n}\right\}\right), \quad o p \in\{\wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus\}$
obdd_build ($\varphi_{2},\left\{A_{1}, \ldots, A_{n}\right\}$)
))

Incrementally building an OBDD (cont.)

- apply (op, $\left.O_{i}, O_{j}\right):=\left(O_{i}\right.$ op $\left.O_{j}\right)$ if $\left(O_{i} \in\{T, \perp\}\right.$ or $\left.O_{j} \in\{T, \perp\}\right)$
\qquad
ite $\left(A_{i}, \operatorname{apply}\left(\neg, \varphi_{i}^{\top}\right)\right.$, apply $\left.\left(\neg, \varphi_{i}^{\perp}\right)\right)$
a apply (op. ite (A_{i}.
if $\left(A_{i}=A_{j}\right)$ then $\operatorname{ite}\left(A_{i}\right.$
if $\left(A_{i}<A_{j}\right)$ then $i t e\left(A_{i}\right.$
apply (op,
if $\left(A_{i}>A_{j}\right)$ then $i t e\left(A_{j}\right.$
apply (op, ite (A_{i}
apply (op, ite (A_{i}
$o p \in\{\wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus\}$

Incrementally building an OBDD (cont.)

- apply (op, $\left.O_{i}, O_{j}\right):=\left(O_{i}\right.$ op $\left.O_{j}\right)$ if $\left(O_{i} \in\{T, \perp\}\right.$ or $\left.O_{j} \in\{T, \perp\}\right)$
- apply $\left(\neg\right.$, ite $\left.\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right)\right):=$ $\operatorname{ite}\left(A_{i}, \operatorname{apply}\left(\neg, \varphi_{i}^{\top}\right), \operatorname{apply}\left(\neg, \varphi_{i}^{\perp}\right)\right)$
- apply (op, ite(A if $\left(A_{i}=A_{j}\right)$ then ite $\left(A_{i}\right.$, if $\left(A_{i}<A_{j}\right)$ then ite $\left(A_{i}\right.$, if $\left(A_{i}>A_{j}\right)$ then $i t e\left(A_{j}\right.$, apply (op epply (op. apply (op, apply (op apply (op, ite(A apply (op, ite(A)
$o p \in\{\wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus\}$

Incrementally building an OBDD (cont.)

- apply (op, $\left.O_{i}, O_{j}\right):=\left(O_{i}\right.$ op $\left.O_{j}\right)$ if $\left(O_{i} \in\{T, \perp\}\right.$ or $\left.O_{j} \in\{T, \perp\}\right)$
- apply $\left(\neg\right.$, ite $\left.\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right)\right):=$ ite $\left(A_{i}, \operatorname{apply}\left(\neg, \varphi_{i}^{\top}\right), \operatorname{apply}\left(\neg, \varphi_{i}^{\perp}\right)\right)$
- apply (op, ite $\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right)$, ite $\left.\left(A_{j}, \varphi_{j}^{\top}, \varphi_{j}^{\perp}\right)\right):=$ if $\left(A_{i}=A_{j}\right)$ then ite $\left(A_{i}, \quad\right.$ apply $\left(o p, \varphi_{i}^{\top}, \varphi_{j}^{\top}\right)$, apply (op, $\left.\varphi_{i}^{\perp}, \varphi_{j}^{\perp}\right)$)
if $\left(A_{i}<A_{j}\right)$ then ite $\left(A_{i}, \quad\right.$ apply $\left(o p, \varphi_{i}^{\top}\right.$, ite $\left.\left(A_{j}, \varphi_{j}^{\top}, \varphi_{j}^{\perp}\right)\right)$, apply $\left(o p, \varphi_{i}^{\perp}\right.$, ite $\left.\left.\left(A_{j}, \varphi_{j}^{\top}, \varphi_{j}^{\perp}\right)\right)\right)$
if $\left(A_{i}>A_{j}\right)$ then ite $\left(A_{j}, \quad\right.$ apply $\left(o p\right.$, ite $\left.\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right), \varphi_{j}^{\top}\right)$, apply (op, ite $\left.\left.\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right), \varphi_{j}^{\perp}\right)\right)$

$$
o p \in\{\wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus\}
$$

Incrementally building an OBDD: Examples

- Ex: build the obdd for $A_{1} \vee A_{2}$ from those of A_{1}, A_{2} (order: A_{1}, A_{2}):

$$
\begin{aligned}
& \operatorname{apply}(\vee, \overbrace{\operatorname{ite}\left(A_{1}, \top, \perp\right)}^{A_{1}}, \overbrace{\left.\operatorname{ite}\left(A_{2}, \top, \perp\right)\right)}^{A_{2}} \\
= & \operatorname{ite}\left(A_{1}, \operatorname{apply}\left(\vee, \top, \operatorname{ite}\left(A_{2}, \top, \perp\right)\right), \operatorname{apply}\left(\vee, \perp, \operatorname{ite}\left(A_{2}, \top, \perp\right)\right)\right) \\
= & \operatorname{ite}\left(A_{1}, \top, \operatorname{ite}\left(A_{2}, \top, \perp\right)\right)
\end{aligned}
$$

- Ex: build the obdd for $\left(A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right)$ from those of $\left(A_{1} \vee A_{2}\right)$, $\left(A_{1} \vee \neg A_{2}\right)$ (order: A_{1}, A_{2}):
$=\operatorname{ite}\left(A_{1}\right.$,
ite $\left(A_{1}\right.$
ite $\left(A_{1}\right.$

ite $\left(A_{2}, T, \perp\right)$, ite $\left.\left(A_{2}, \perp, T\right)\right)$ apply $(\wedge, \perp, T))$)
\square

Incrementally building an OBDD: Examples

- Ex: build the obdd for $A_{1} \vee A_{2}$ from those of A_{1}, A_{2} (order: A_{1}, A_{2}):

$$
\begin{aligned}
& \operatorname{apply}(\vee, \overbrace{\operatorname{ite}\left(A_{1}, \top, \perp\right)}^{A_{1}} \overbrace{\left.\operatorname{ite}\left(A_{2}, \top, \perp\right)\right)}^{A_{2}} \\
= & \operatorname{ite}\left(A_{1}, \operatorname{apply}\left(\vee, \top, \operatorname{ite}\left(A_{2}, \top, \perp\right)\right), \operatorname{apply}\left(\vee, \perp, i t e\left(A_{2}, \top, \perp\right)\right)\right) \\
= & \operatorname{ite}\left(A_{1}, \top, \operatorname{ite}\left(A_{2}, \top, \perp\right)\right)
\end{aligned}
$$

- Ex: build the obdd for $\left(A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right)$ from those of $\left(A_{1} \vee A_{2}\right),\left(A_{1} \vee \neg A_{2}\right)$ (order: A_{1}, A_{2}):

$$
\begin{aligned}
& \operatorname{apply}(\wedge, \overbrace{\operatorname{ite}\left(A_{1}, \top, \text { ite }\left(A_{2}, \top, \perp\right)\right)}^{\left(A_{1} \vee A_{2}\right)}, \overbrace{\operatorname{ite}\left(A_{1}, \top, \text { ite }\left(A_{2}, \perp, \top\right)\right)}^{\left(A_{1} \vee A_{2}\right)}, \\
= & \operatorname{ite}\left(A_{1}, \operatorname{apply}(\wedge, \top, \top), \operatorname{apply}\left(\wedge \text {, ite }\left(A_{2}, \top, \perp\right), \text { ite }\left(A_{2}, \perp, \top\right)\right)\right. \\
= & \operatorname{ite}\left(A_{1}, \top, \operatorname{ite}\left(A_{2}, \operatorname{apply}(\wedge, \top, \perp), \operatorname{apply}(\wedge, \perp, \top)\right)\right) \\
= & \operatorname{ite}\left(A_{1}, \top, \operatorname{ite}\left(A_{2}, \perp, \perp\right)\right) \\
= & \operatorname{ite}\left(A_{1}, \top, \perp\right)
\end{aligned}
$$

OBBD incremental building - example

$$
\varphi=\left(A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right) \wedge\left(\neg A_{1} \vee A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2}\right)
$$

OBBD incremental building - example

$$
\varphi=\left(A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right) \wedge\left(\neg A_{1} \vee A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2}\right)
$$

$$
(-\mathrm{A} 1 \mathrm{v} 2)^{\wedge}(-\mathrm{A} 1 \mathrm{v}-\mathrm{A} 2)
$$

$(\mathrm{A} 1 \vee \mathrm{~A} 2)^{\wedge}(\mathrm{A} 1 \mathrm{v}-\mathrm{A} 2) \wedge(-\mathrm{A} 1 \mathrm{v} 2)^{\wedge}(-\mathrm{A} 1 \mathrm{v}-\mathrm{A} 2)$

Critical choice of variable Orderings in OBDD's

$$
\left(a_{1} \leftrightarrow b_{1}\right) \wedge\left(a_{2} \leftrightarrow b_{2}\right) \wedge\left(a_{3} \leftrightarrow b_{3}\right)
$$

Critical choice of variable Orderings in OBDD's

Critical choice of variable Orderings in OBDD's

OBDD's as canonical representation of Boolean formulas

- An OBDD is a canonical representation of a Boolean formula: once the variable ordering is established, equivalent formulas are represented by the same OBDD:

$$
\varphi_{1} \leftrightarrow \varphi_{2} \Longleftrightarrow \operatorname{OBDD}\left(\varphi_{1}\right)=\operatorname{OBDD}\left(\varphi_{2}\right)
$$

- equivalence check requires constant time!
\Longrightarrow validity check requires constant time! $(\varphi \leftrightarrow T)$
\Longrightarrow (un)satisfiability check requires constant time! $(\varphi \leftrightarrow \perp)$
- the set of the paths from the root to 1 represent all the models of the formula
- the set of the paths from the root to 0 represent all the counter-models of the formula

OBDD's as canonical representation of Boolean formulas

- An OBDD is a canonical representation of a Boolean formula: once the variable ordering is established, equivalent formulas are represented by the same OBDD:

$$
\varphi_{1} \leftrightarrow \varphi_{2} \Longleftrightarrow O B D D\left(\varphi_{1}\right)=O B D D\left(\varphi_{2}\right)
$$

- equivalence check requires constant time!
\Longrightarrow validity check requires constant time! $(\varphi \leftrightarrow \top)$
\Longrightarrow (un)satisfiability check requires constant time! ($\varphi \leftrightarrow \perp$)
- the set of the paths from the root to 1 represent all the models of the formula
- the set of the paths from the root to 0 represent all the counter-models of the formula

OBDD's as canonical representation of Boolean formulas

- An OBDD is a canonical representation of a Boolean formula: once the variable ordering is established, equivalent formulas are represented by the same OBDD:

$$
\varphi_{1} \leftrightarrow \varphi_{2} \Longleftrightarrow O B D D\left(\varphi_{1}\right)=\operatorname{OBDD}\left(\varphi_{2}\right)
$$

- equivalence check requires constant time!
\Longrightarrow validity check requires constant time! $(\varphi \leftrightarrow \top)$
\Longrightarrow (un)satisfiability check requires constant time! ($\varphi \leftrightarrow \perp$)
- the set of the paths from the root to 1 represent all the models of the formula
- the set of the paths from the root to 0 represent all the counter-models of the formula

Exponentiality of OBDD's

- The size of OBDD's may grow exponentially wrt. the number of variables in worst-case
- Consequence of the canonicity of OBDD's (unless P = co-NP)
- Example: there exist no polynomial-size OBDD representing the electronic circuit of a bitwise multiplier

```
Note
The size of intermediate OBDD's may be bigger than that of the final one (e.g., inconsistent
formula)
```


Exponentiality of OBDD's

- The size of OBDD's may grow exponentially wrt. the number of variables in worst-case
- Consequence of the canonicity of OBDD's (unless $\mathrm{P}=\mathrm{co}-\mathrm{NP}$)
- Example: there exist no polynomial-size OBDD representing the electronic circuit of a bitwise multiplier

```
Note
The size of intermediate OBDD's may be bigger than that of the final one (e.g., inconsistent
formula)
```


Exponentiality of OBDD's

- The size of OBDD's may grow exponentially wrt. the number of variables in worst-case
- Consequence of the canonicity of OBDD's (unless $\mathrm{P}=\mathrm{co-NP}$)
- Example: there exist no polynomial-size OBDD representing the electronic circuit of a bitwise multiplier

Note
 The size of intermediate OBDD's may be bigger than that of the final one (e.g., inconsistent formula)

Exponentiality of OBDD's

- The size of OBDD's may grow exponentially wrt. the number of variables in worst-case
- Consequence of the canonicity of OBDD's (unless $\mathrm{P}=\mathrm{co}-\mathrm{NP}$)
- Example: there exist no polynomial-size OBDD representing the electronic circuit of a bitwise multiplier

Note

The size of intermediate OBDD's may be bigger than that of the final one (e.g., inconsistent formula)

Useful Operations over OBDDs

- the equivalence check between two OBDDs is simple
- are they the same OBDD? $(\Longrightarrow$ constant time $)$
- the size of a Boolean composition is up to the product of the size of the operands: $\mid f$ op $g \mid=O(|f| \cdot|g|)$
(but typically much smaller on average).

Useful Operations over OBDDs

- the equivalence check between two OBDDs is simple
- are they the same OBDD? $(\Longrightarrow$ constant time)
- the size of a Boolean composition is up to the product of the size of the operands:
$\mid f$ op $g \mid=O(|f| \cdot|g|)$

$\mathbf{O}(|f| \mathbf{g} \mid)$
(but typically much smaller on average).

[Recall] Boolean Quantification

Shannon's expansion:

- If v is a Boolean variable and f is a Boolean formula, then

$$
\begin{aligned}
\exists v \cdot \varphi & :=\left.\left.\varphi\right|_{v=\perp} \vee \varphi\right|_{v=T} \\
\forall v \cdot \varphi & :=\left.\left.\varphi\right|_{v=\perp} \wedge \varphi\right|_{v=T}
\end{aligned}
$$

- v does no more occur in $\exists v . \varphi$ and $\forall v . \varphi$!!
- Multi-variable quantification: $\exists\left(w_{1}, \ldots, w_{n}\right) \cdot \varphi:=\exists w_{1} \ldots \exists w_{n} \cdot \varphi$
- Intuition:
- $\mu \models \exists v . \varphi$ iff exists truthvalue $\in\{T, \perp\}$ s.t. $\mu \cup\{v:=$ truthvalue $\} \models \varphi$
- $\mu \models \forall v . \varphi$ iff forall truthvalue $\in\{T, \perp\}, \mu \cup\{v:=$ truthvalue $\} \models \varphi$
- Example: $\exists(b, c) .((a \wedge b) \vee(c \wedge d))=a \vee d$

Note

Naive expansion of quantifiers to propositional logic may cause a blow-up in size of the formulae

OBDD's and Boolean quantification

- OBDD's handle quantification operations quite efficiently
- if f is a sub-OBDD labeled by variable v, then $\left.\varphi\right|_{v=T}$ and $\left.\varphi\right|_{v=\perp}$ are the "then" and "else" branches of f

\Longrightarrow lots of sharing of subformulae!

Example

Let $\varphi \stackrel{\text { dot }}{=}(A \wedge(B \vee C))$ and $\varphi^{\prime} \stackrel{\text { dot }}{=} \exists A . \forall B . \varphi$. Using the variable ordering " $A, B, C^{\prime \prime}$, draw the OBDD corresponding to the formulas φ and φ^{\prime}.

Example

Let $\varphi \stackrel{\text { def }}{=}(A \wedge(B \vee C))$ and $\varphi^{\prime} \stackrel{\text { def }}{=} \exists A . \forall B . \varphi$. Using the variable ordering " A, B, C ", draw the OBDD corresponding to the formulas φ and φ^{\prime}.
$\varphi \stackrel{\text { def }}{=}(A \wedge(B \vee C))$

Example

Let $\varphi \stackrel{\text { def }}{=}(A \wedge(B \vee C))$ and $\varphi^{\prime} \stackrel{\text { def }}{=} \exists A . \forall B . \varphi$. Using the variable ordering " A, B, C ", draw the OBDD corresponding to the formulas φ and φ^{\prime}.
$\varphi \stackrel{\text { def }}{=}(A \wedge(B \vee C))$

Example (cont.)

$$
\varphi^{\prime} \stackrel{\text { def }}{=} \exists A . \forall B .(A \wedge(B \vee C))
$$

which corresponds to the following OBDD:

Example (cont.)

$$
\begin{aligned}
& \varphi^{\prime} \stackrel{\text { def }}{=} \exists A \cdot \forall B .(A \wedge(B \vee C)) \\
& \varphi^{\prime} \stackrel{\text { def }}{=} \exists A . \forall B . \varphi \\
& =\forall B \cdot(A \wedge(B \vee C)))[A:=\top] \\
& =\forall B \cdot(B \vee C)) \\
& =((B \vee C)[B:=\top] \\
& \begin{array}{l}
=\quad(\mathrm{T} \\
=C
\end{array} \\
& \begin{array}{l}
\wedge(B \vee C)[B:=\perp]) \quad \vee \quad \perp \\
\wedge \quad C)
\end{array}
\end{aligned}
$$

which corresponds to the following OBDD:

Example (cont.)

$$
\begin{aligned}
& \varphi^{\prime} \stackrel{\text { def }}{=} \exists A \cdot \forall B .(A \wedge(B \vee C)) \\
& \varphi^{\prime} \stackrel{\text { def }}{=} \quad \exists A . \forall B . \varphi \\
& =\forall B .(A \wedge(B \vee C)))[A:=\top] \\
& =\forall B \cdot(B \vee C)) \\
& =((B \vee C)[B:=\top] \\
& \begin{array}{l}
=(\mathrm{T} \\
=C
\end{array} \\
& \begin{array}{l}
\wedge(B \vee C)[B:=\perp]) \quad \vee \perp \\
\wedge \quad C)
\end{array}
\end{aligned}
$$

which corresponds to the following OBDD:

OBDD - summary

- Factorize common parts of the search tree (DAG)
- Require setting a variable ordering a priori (critical!)
- Canonical representation of a Boolean formula.
- Once built, logical operations (satisfiability, validity, equivalence) immediate.
- Represents all models and counter-models of the formula.
- Require exponential space in worst-case
- Very efficient for some practical problems (circuits, symbolic model checking).

Outline

(1) Boolean Logics and SAT

2 Basic SAT-Solving Techniques

- Generalities
- Resolution
- Tableaux
- DPLL
(3) Modern CDCL SAT Solvers
- Limitations of Chronological Backtracking
- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
- SAT Under Assumptions \& Incremental SAT
(4) Ordered Binary Decision Diagrams - OBDDs
(5) SAT Functionalities: proofs, unsat cores, interpolants, optimization

Advanced functionalities

Advanced SAT functionalities (very important in formal verification):

- Building proofs of unsatisfiability
- Extracting unsatisfiable Cores
- Computing Craig Interpolants
- Enumeration in SAT: AllSAT (hints)
- Optimization in SAT: MaxSAT (hints)

Building Proofs of Unsatisfiability

- When φ is unsat, it is very important to build a (resolution) proof of unsatisfiability:
- to verify the result of the solver
- to understand a "reason" for unsatisfiability
- to build unsatisfiable cores and interpolants
- Can be built by keeping track of the resolution steps performed when constructing the conflict clauses.

Building Proofs of Unsatisfiability

- When φ is unsat, it is very important to build a (resolution) proof of unsatisfiability:
- to verify the result of the solver
- to understand a "reason" for unsatisfiability
- to build unsatisfiable cores and interpolants
- Can be built by keeping track of the resolution steps performed when constructing the conflict clauses.

Building Proofs of Unsatisfiability

- Recall: each conflict clause C_{i} learned is computed from the conflicting clause C_{i-k} by backward resolving with the antecedent clause of one literal

- C_{1}, \ldots, C_{k}, and C_{i-k} can be either original or learned clauses
- each resolution (suh)nroof can he eacily tracked:

Building Proofs of Unsatisfiability

- Recall: each conflict clause C_{i} learned is computed from the conflicting clause C_{i-k} by backward resolving with the antecedent clause of one literal

- C_{1}, \ldots, C_{k}, and C_{i-k} can be either original or learned clauses
- each resolution (sub)proof can be easily tracked:

Building Proofs of Unsatisfiability

- Recall: each conflict clause C_{i} learned is computed from the conflicting clause C_{i-k} by backward resolving with the antecedent clause of one literal

- C_{1}, \ldots, C_{k}, and C_{i-k} can be either original or learned clauses
- each resolution (sub)proof can be easily tracked:
k i-k $->$ i-k-1

2 i-2 -> i-1
1 i-1 -> i

Building Proofs of Unsatisfiability

- ... in particular, if φ is unsatisfiable, the last step produces "false" as conflict clause:

- note: $C_{1}=I, C_{i-1}=\neg /$ for some literal I
- C_{1}, \ldots, C_{k}, and C_{i-k} can be original or learned clauses...

Building Proofs of Unsatisfiability

Starting from the previous proof of unsatisfiability, repeat recursively:

- for every learned leaf clause C_{i}, substitute C_{i} with the resolution proof generating it until all leaf clauses are original clauses

\Longrightarrow We obtain a resolution proof of unsatisfiability for (a subset of) the clauses in φ

Building Proofs of Unsatisfiability: example

Extraction of unsatisfiable cores

- Problem: given an unsatisfiable set of clauses, extract from it a (possibly small/minimal/minimum) unsatisfiable subset
\Longrightarrow unsatisfiable cores (aka (Minimal) Unsatisfiable Subsets, (M)US)
- Lots of literature on the topic [46, 24, 26, 31, 43, 19, 13, 6]
- We recognize two main approaches:
- Proof-based approach [46]: byproduct of finding a resolution proof
- Assumption-based approach [24]: use extra variables labeling clauses
- Many optimizations for further reducing the size of the core:
- repeat the process up to fixpoit
- remove clauses one-by one, until satisfiability is obtained
- combinations of the two processed above
- ...

The proof-based approach to core extraction [46]

Unsat core: the set of leaf clauses of a resolution proof

$$
\begin{aligned}
& \left(B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg B_{2} \vee \neg B_{4}\right) \wedge \\
& \left(\neg A_{2} \vee B_{2}\right) \wedge\left(\neg A_{1} \vee B_{3}\right) \wedge B_{4} \wedge\left(A_{2} \vee B_{5}\right) \wedge\left(\neg B_{6} \vee \neg B_{4}\right) \wedge\left(B_{6} \vee \neg A_{1}\right) \wedge B_{7} \\
& \left(\neg B_{0} \vee \neg B_{1}\right) \\
& \begin{array}{l}
\left(B_{1} \vee \neg B_{0} \vee A_{2}\right) \\
\left.\vee A_{2}\right)
\end{array} \\
& (B_{0} \vee \neg \underbrace{\left(B_{1} \vee A_{0} \vee A_{2}\right)}_{\left(B_{0} \vee A_{1} \vee A_{2}\right)} \\
& \left(\neg A_{1} \vee B_{6}\right) \quad\left(A_{1} \vee A_{2}\right) \\
& \left(B_{6} \vee A_{2}\right) \\
& \left(A_{2} \vee \neg B_{4}\right) \quad\left(\neg B_{6} \vee \neg B_{4}\right) \\
& B_{4}
\end{aligned}
$$

The assumption-based approach to core extraction [24]

Based on the following process:
(i) each clause C_{i} is substituted by $\neg S_{i} \vee C_{i}$, s.t. S_{i} fresh "selector" variable
(ii) before starting the search each S_{i} is forced to true.
(iii) final conflict clause at dec. level $0: V_{i} \neg S_{j}$
$\Longrightarrow\left\{C_{j}\right\}_{j}$ is the unsat core!

The assumption-based approach to core extraction [24]

Based on the following process:
(i) each clause C_{i} is substituted by $\neg S_{i} \vee C_{i}$, s.t. S_{i} fresh "selector" variable
(ii) before starting the search each S_{i} is forced to true.
(iii) final conflict clause at dec. level 0 :
$\Longrightarrow\left\{C_{j}\right\}_{j}$ is the unsat core!

The assumption-based approach to core extraction [24]

Based on the following process:
(i) each clause C_{i} is substituted by $\neg S_{i} \vee C_{i}$, s.t. S_{i} fresh "selector" variable
(ii) before starting the search each S_{i} is forced to true.
(iii) final conflict clause at dec. level 0 :

The assumption-based approach to core extraction [24]

Based on the following process:
(i) each clause C_{i} is substituted by $\neg S_{i} \vee C_{i}$, s.t. S_{i} fresh "selector" variable
(ii) before starting the search each S_{i} is forced to true.
(iii) final conflict clause at dec. level $0: \bigvee_{j} \neg S_{j}$

The assumption-based approach to core extraction [24]

Based on the following process:
(i) each clause C_{i} is substituted by $\neg S_{i} \vee C_{i}$, s.t. S_{i} fresh "selector" variable
(ii) before starting the search each S_{i} is forced to true.
(iii) final conflict clause at dec. level $0: \bigvee_{j} \neg S_{j}$
$\Longrightarrow\left\{C_{j}\right\}_{j}$ is the unsat core!

The assumption-based approach to core extraction

$$
\begin{aligned}
& \text { Example } \\
& \begin{array}{l}
\left(B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge \\
\left(\neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg B_{2} \vee \neg B_{4}\right) \wedge\left(\neg A_{2} \vee B_{2}\right) \wedge\left(\neg A_{1} \vee B_{3}\right) \wedge \\
B_{4} \wedge\left(A_{2} \vee B_{5}\right) \wedge\left(\neg B_{6} \vee \neg B_{4}\right) \wedge\left(B_{6} \vee \neg A_{1}\right) \wedge B_{7}
\end{array}
\end{aligned}
$$

The assumption-based approach to core extraction

Example	
$\begin{aligned} & \left(B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge \\ & \left(\neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg B_{2} \vee \neg B_{4}\right) \wedge\left(\neg A_{2} \vee B_{2}\right) \wedge\left(\neg A_{1} \vee B_{3}\right) \wedge \\ & B_{4} \wedge\left(A_{2} \vee B_{5}\right) \wedge\left(\neg B_{6} \vee \neg B_{4}\right) \wedge\left(B_{6} \vee \neg A_{1}\right) \wedge B_{7} \end{aligned}$	
(i) add selector variables:	$\begin{aligned} & \left(\neg S_{1} \vee B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(\neg S_{2} \vee B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg S_{3} \vee \neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge \\ & \left(\neg S_{4} \vee \neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg S_{5} \vee \neg B_{2} \vee \neg B_{4}\right) \wedge\left(\neg S_{6} \vee \neg A_{2} \vee B_{2}\right) \wedge \\ & \left(\neg S_{7} \vee \neg A_{1} \vee B_{3}\right) \wedge\left(\neg S_{8} \vee B_{4}\right) \wedge\left(\neg S_{9} \vee A_{2} \vee B_{5}\right) \wedge\left(\neg S_{10} \vee \neg B_{6} \vee \neg B_{4}\right) \wedge \\ & \left(\neg S_{11} \vee B_{6} \vee \neg A_{1}\right) \wedge\left(\neg S_{12} \vee B_{7}\right) \end{aligned}$
(ii) The conflict analysis returns: $\neg S_{1} \vee \neg S_{2} \vee \neg S_{3} \vee \neg S_{4} \vee \neg S_{5} \vee \neg S_{6} \vee \neg S_{8} \vee \neg S_{10} \vee \neg S_{11}$,	
(iii) corresponding to the unsat core:	
$\begin{aligned} & \left(B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(B_{0} \vee\right. \\ & \left(-B_{0} \vee \neg B_{1} \wedge\left(-B_{2} \vee\right.\right. \\ & B_{4} \wedge\left(\neg B_{6} \vee \neg B_{4}\right) \wedge\left(B_{6}\right) \end{aligned}$	$\begin{aligned} & \left.3_{1} \vee A_{2}\right) \wedge\left(-B_{0} \vee B_{1} \vee A_{2}\right) \\ & \left(\neg A_{2} \vee B_{2}\right) \wedge \end{aligned}$

The assumption-based approach to core extraction

Example

$$
\begin{aligned}
& \left(B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge \\
& \left(\neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg B_{2} \vee \neg B_{4}\right) \wedge\left(\neg A_{2} \vee B_{2}\right) \wedge\left(\neg A_{1} \vee B_{3}\right) \wedge \\
& B_{4} \wedge\left(A_{2} \vee B_{5}\right) \wedge\left(\neg B_{6} \vee \neg B_{4}\right) \wedge\left(B_{6} \vee \neg A_{1}\right) \wedge B_{7}
\end{aligned}
$$

(i) add selector variables:

$$
\begin{aligned}
& \left(\neg S_{1} \vee B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(\neg S_{2} \vee B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg S_{3} \vee \neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge \\
& \left(\neg S_{4} \vee \neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg S_{5} \vee \neg B_{2} \vee \neg B_{4}\right) \wedge\left(\neg S_{6} \vee \neg \neg A_{2} \vee B_{2}\right) \wedge \\
& \left(\neg S_{7} \vee \neg A_{1} \vee B_{3}\right) \wedge\left(\neg S_{8} \vee B_{4}\right) \wedge\left(\neg S_{9} \vee A_{2} \vee B_{5}\right) \wedge\left(\neg S_{10} \vee \neg B_{6} \vee \neg B_{4}\right) \wedge \\
& \left(\neg S_{11} \vee B_{6} \vee \neg A_{1}\right) \wedge\left(\neg S_{12} \vee B_{7}\right)
\end{aligned}
$$

(ii) The conflict analysis returns: $\neg S_{1} \vee \neg S_{2} \vee \neg S_{3} \vee \neg S_{4} \vee \neg S_{5} \vee \neg S_{6} \vee \neg S_{8} \vee \neg S_{10} \vee \neg S_{11}$,
(iii) corresponding to the unsat core:

The assumption-based approach to core extraction

Example

$$
\begin{aligned}
& \left(B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge \\
& \left(\neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg B_{2} \vee \neg B_{4}\right) \wedge\left(\neg A_{2} \vee B_{2}\right) \wedge\left(\neg A_{1} \vee B_{3}\right) \wedge \\
& B_{4} \wedge\left(A_{2} \vee B_{5}\right) \wedge\left(\neg B_{6} \vee \neg B_{4}\right) \wedge\left(B_{6} \vee \neg A_{1}\right) \wedge B_{7}
\end{aligned}
$$

(i) add selector variables:

$$
\begin{aligned}
& \left(\neg S_{1} \vee B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(\neg S_{2} \vee B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg S_{3} \vee \neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge \\
& \left(\neg S_{4} \vee \neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg S_{5} \vee \neg B_{2} \vee \neg B_{4}\right) \wedge\left(\neg S_{6} \vee \neg \neg A_{2} \vee B_{2}\right) \wedge \\
& \left(\neg S_{7} \vee \neg A_{1} \vee B_{3}\right) \wedge\left(\neg S_{8} \vee B_{4}\right) \wedge\left(\neg S_{9} \vee A_{2} \vee B_{5}\right) \wedge\left(\neg S_{10} \vee \neg B_{6} \vee \neg B_{4}\right) \wedge \\
& \left(\neg S_{11} \vee B_{6} \vee \neg A_{1}\right) \wedge\left(\neg S_{12} \vee B_{7}\right)
\end{aligned}
$$

(ii) The conflict analysis returns: $\neg S_{1} \vee \neg S_{2} \vee \neg S_{3} \vee \neg S_{4} \vee \neg S_{5} \vee \neg S_{6} \vee \neg S_{8} \vee \neg S_{10} \vee \neg S_{11}$,
(iii) corresponding to the unsat core:

$$
\begin{aligned}
& \left(B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge \\
& \left(\neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg B_{2} \vee \neg B_{4}\right) \wedge\left(\neg A_{2} \vee B_{2}\right) \wedge \\
& B_{4} \wedge\left(\neg B_{6} \vee \neg B_{4}\right) \wedge\left(B_{6} \vee \neg A_{1}\right)
\end{aligned}
$$

Computing Craig Interpolants in SAT

Notation: Let " $X \preceq Y$ ", X, Y being Boolean formulas, denote the fact that all Boolean atoms in X occur also in Y.

Definition: Craig Interpolant
Given an ordered pair (A, B) of formulas such that $A \wedge B \mid=\perp$,
a Craig interpolant is a formula I s.t.

- Very important in many Formal Verification applications
- A few works presented [32, 25, 27$]$

Computing Craig Interpolants in SAT

Notation: Let " $X \preceq Y$ ", X, Y being Boolean formulas, denote the fact that all Boolean atoms in X occur also in Y.

Definition: Craig Interpolant
Given an ordered pair (A, B) of formulas such that $A \wedge B \vDash \perp$, a Craig interpolant is a formula / s.t.:

- Very important in many Formal Verification applications
- A few works presented [32, 25, 27$]$

Computing Craig Interpolants in SAT

Notation: Let " $X \preceq Y$ ", X, Y being Boolean formulas, denote the fact that all Boolean atoms in X occur also in Y.

Definition: Craig Interpolant

Given an ordered pair (A, B) of formulas such that $A \wedge B \vDash \perp$, a Craig interpolant is a formula / s.t.:
a) $A \models I$,

- Very important in many Formal Verification applications
- A few works presented [32, 25, 27$]$

Computing Craig Interpolants in SAT

Notation: Let " $X \preceq Y$ ", X, Y being Boolean formulas, denote the fact that all Boolean atoms in X occur also in Y.

Definition: Craig Interpolant

Given an ordered pair (A, B) of formulas such that $A \wedge B \vDash \perp$, a Craig interpolant is a formula / s.t.:
a) $A \models I$,
b) $I \wedge B \models \perp$,
c) $I \preceq A$ and $I \preceq B$.

- Very important in many Formal Verification applications
- A few works presented [32, 25, 27]

Computing Craig Interpolants in SAT

Notation: Let " $X \preceq Y$ ", X, Y being Boolean formulas, denote the fact that all Boolean atoms in X occur also in Y.

Definition: Craig Interpolant

Given an ordered pair (A, B) of formulas such that $A \wedge B \vDash \perp$, a Craig interpolant is a formula / s.t.:
a) $A \models I$,
b) $I \wedge B \models \perp$,
c) $I \preceq A$ and $I \preceq B$.

- Very important in many Formal Verification applications
- A few works presented [32, 25, 27$]$

Computing Craig Interpolants in SAT

Notation: Let " $X \preceq Y$ ", X, Y being Boolean formulas, denote the fact that all Boolean atoms in X occur also in Y.

Definition: Craig Interpolant

Given an ordered pair (A, B) of formulas such that $A \wedge B \vDash \perp$, a Craig interpolant is a formula / s.t.:
a) $A \models I$,
b) $I \wedge B \models \perp$,
c) $I \preceq A$ and $I \preceq B$.

- Very important in many Formal Verification applications
- A few works presented [32, 25, 27]

Computing Craig Interpolants in SAT: a General Algorithm [32]

Algorithm: Interpolant generation (for SAT)

```
(i) Generate a resolution proof of unsatisfiability \mathcal{P}\mathrm{ for }A\wedgeB\mathrm{ .}
(iii) For every leaf clause C in }\mathcal{P
    - set }\mp@subsup{I}{C}{}\stackrel{\mathrm{ def }}{=}C\downarrowB\mathrm{ if }C\subset
    - set I}\mp@subsup{I}{C}{}\stackrel{\mathrm{ def }}{=}T\quad\mathrm{ if }C\inB\mathrm{ .
(iv) For every inner node C of \mathcal{P obtained by resolution from C}\mp@subsup{C}{1}{}\stackrel{\mathrm{ def }}{=}p\vee\mp@subsup{\phi}{1}{}\mathrm{ and }\mp@subsup{C}{2}{}\stackrel{\mathrm{ def }}{=}\negp\vee\mp@subsup{\phi}{2}{}\mathrm{ ,}
    - set IC Idef }\mp@subsup{I}{C}{}\wedge\wedge\mp@subsup{I}{\mp@subsup{C}{2}{}}{}\mathrm{ if }p\mathrm{ occurs in }B\mathrm{ .
    - set I}\mp@subsup{I}{C}{}\stackrel{\mathrm{ def }}{=}\mp@subsup{I}{\mp@subsup{C}{1}{}}{}\vee\mp@subsup{I}{\mp@subsup{C}{2}{}}{}\mathrm{ if }p\mathrm{ does not occur in }B\mathrm{ .
(v) Output I}\mp@subsup{I}{\perp}{}\mathrm{ as an interpolant for (A,B).
```

$\bar{"} \eta \downarrow B$ " [resp. " $\eta \backslash B "]$ is the set of literals in η whose atoms do [resp. do] occur in B.
- optimized versions for the purely-propositional case $[25,27]$

Computing Craig Interpolants in SAT: a General Algorithm [32]

Algorithm: Interpolant generation (for SAT)

(i) Generate a resolution proof of unsatisfiability \mathcal{P} for $A \wedge B$.
(iii) For every leaf clause C in \mathcal{P}

(iv) For every inner node C of \mathcal{P} obtained by resolution from $C_{1} \stackrel{\text { def }}{=} p \vee \phi_{1}$ and $C_{2} \stackrel{\text { def }}{=} \neg p \vee \phi_{2}$,

- set $I_{C} \stackrel{\text { def }}{=} I_{C_{1}} \wedge I_{C_{2}}$ if p occurs in B,
- set $I_{C} \xlongequal{\text { def }} I_{C_{1}} \vee I_{C_{2}}$ if p does not occur in B.
(v) Output I_{\perp} as an interpolant for (A, B).
" $\eta \downarrow B$ " [resp. " $\eta \backslash B$ "] is the set of literals in η whose atoms do [resp. do] occur in B.
- optimized versions for the purely-propositional case $[25,27]$

Computing Craig Interpolants in SAT: a General Algorithm [32]

Algorithm: Interpolant generation (for SAT)

(i) Generate a resolution proof of unsatisfiability \mathcal{P} for $A \wedge B$.
(ii) ...

For every leaf clause C in \mathcal{P}

$\bar{"} \eta \downarrow B$ " [resp. " $\eta \backslash B "]$ is the set of literals in η whose atoms do [resp. do] occur in B.

- optimized versions for the purely-propositional case [25, 27]

Computing Craig Interpolants in SAT: a General Algorithm [32]

Algorithm: Interpolant generation (for SAT)

(i) Generate a resolution proof of unsatisfiability \mathcal{P} for $A \wedge B$.
(ii) ...
(iii) For every leaf clause C in \mathcal{P},

- set $I_{C} \stackrel{\text { def }}{=} C \downarrow B$ if $C \in A$,
- set $I_{C} \stackrel{\text { def }}{=} T \quad$ if $C \in B$.

$\bar{"} \eta \downarrow B$ " [resp. " $\eta \backslash B$ "] is the set of literals in η whose atoms do [resp. do] occur in B.
- optimized versions for the purely-propositional case [25, 27]

Computing Craig Interpolants in SAT: a General Algorithm [32]

Algorithm: Interpolant generation (for SAT)

(i) Generate a resolution proof of unsatisfiability \mathcal{P} for $A \wedge B$.
(ii) ...
(iii) For every leaf clause C in \mathcal{P},

- set $I_{C} \stackrel{\text { def }}{=} C \downarrow B$ if $C \in A$,
- set $I_{C} \stackrel{\text { def }}{=} T \quad$ if $C \in B$.
(iv) For every inner node C of \mathcal{P} obtained by resolution from $C_{1} \stackrel{\text { def }}{=} p \vee \phi_{1}$ and $C_{2} \stackrel{\text { def }}{=} \neg p \vee \phi_{2}$,
- set $I_{C} \xlongequal{\text { def }} I_{C_{1}} \wedge I_{C_{2}}$ if p occurs in B,
- set $I_{C} \xlongequal{\text { def }} I_{C_{1}} \vee I_{C_{2}}$ if p does not occur in B.

(v) Output I_{\perp} as an interpolant for (A, B).

" $\eta \downarrow B$ " [resp. " $\eta \backslash B$ "] is the set of literals in η whose atoms do [resp. do] occur in B.

Computing Craig Interpolants in SAT: a General Algorithm [32]

Algorithm: Interpolant generation (for SAT)

(i) Generate a resolution proof of unsatisfiability \mathcal{P} for $A \wedge B$.
(ii) ...
(iii) For every leaf clause C in \mathcal{P},

- set $I_{C} \stackrel{\text { def }}{=} C \downarrow B$ if $C \in A$,
- set $I_{C} \stackrel{\text { def }}{=} T \quad$ if $C \in B$.
(iv) For every inner node C of \mathcal{P} obtained by resolution from $C_{1} \stackrel{\text { def }}{=} p \vee \phi_{1}$ and $C_{2} \stackrel{\text { def }}{=} \neg p \vee \phi_{2}$,
- set $I_{C} \xlongequal{\text { def }} I_{C_{1}} \wedge I_{C_{2}}$ if p occurs in B,
- set $I_{C} \xlongequal{\text { def }} I_{C_{1}} \vee I_{C_{2}}$ if p does not occur in B.
(v) Output I_{\perp} as an interpolant for (A, B).
" $\eta \downarrow B$ " [resp. " $\eta \backslash B$ "] is the set of literals in η whose atoms do [resp. do] occur in B.

Computing Craig Interpolants in SAT: a General Algorithm [32]

Algorithm: Interpolant generation (for SAT)

(i) Generate a resolution proof of unsatisfiability \mathcal{P} for $A \wedge B$.
(ii) ...
(iii) For every leaf clause C in \mathcal{P},

- set $I_{C} \stackrel{\text { def }}{=} C \downarrow B$ if $C \in A$,
- set $I_{C} \stackrel{\text { def }}{=} T \quad$ if $C \in B$.
(iv) For every inner node C of \mathcal{P} obtained by resolution from $C_{1} \stackrel{\text { def }}{=} p \vee \phi_{1}$ and $C_{2} \stackrel{\text { def }}{=} \neg p \vee \phi_{2}$,
- set $I_{C} \xlongequal{\text { def }} I_{C_{1}} \wedge I_{C_{2}}$ if p occurs in B,
- set $I_{C} \xlongequal{\text { def }} I_{C_{1}} \vee I_{C_{2}}$ if p does not occur in B.
(v) Output I_{\perp} as an interpolant for (A, B).
" $\eta \downarrow B$ " [resp. " $\eta \backslash B$ "] is the set of literals in η whose atoms do [resp. do] occur in B.
- optimized versions for the purely-propositional case [25, 27]

Computing Craig Interpolants in SAT: example

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(B_{1} \vee A_{1}\right) \wedge A_{2} \wedge\left(\neg B_{2} \vee \neg A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2} \vee \neg B_{3} \vee \neg B_{4}\right) \\
& B \stackrel{\text { def }}{=}\left(\neg B_{3} \vee B_{4}\right) \wedge\left(\neg B_{1} \vee B_{2}\right) \wedge\left(B_{1} \vee B_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \neg A_{1} \vee \neg A_{2} \vee \\
& \neg B_{3} \vee \neg B_{4}
\end{aligned}
$$

$B_{1} \vee A_{1}$

Computing Craig Interpolants in SAT: example

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(B_{1} \vee A_{1}\right) \wedge A_{2} \wedge\left(\neg B_{2} \vee \neg A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2} \vee \neg B_{3} \vee \neg B_{4}\right) \\
& B \stackrel{\text { def }}{=}\left(\neg B_{3} \vee B_{4}\right) \wedge\left(\neg B_{1} \vee B_{2}\right) \wedge\left(B_{1} \vee B_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \neg A_{1} \vee \neg A_{2} \vee \\
& \neg B_{3} \vee \neg B_{4}
\end{aligned}
$$

$\Longrightarrow\left(B_{1} \vee \neg B_{3} \vee \neg B_{4}\right) \wedge \neg B_{2}$ is an interpolant

All-SAT (hints)

- All-SAT: enumerate all truth assignments satisfying φ
- All-SAT over an "important" subset of atoms $\mathbf{P} \stackrel{\text { def }}{=}\left\{P_{i}\right\}_{i}$: enumerate all assignments over \mathbf{P} which can be extended to satisfiable truth assignments propositionally satisfying φ
- Algorithms
- BCLT [Lahiri et al, CAV'06]:
each time a satisfiable assignment $\left\{I_{1}, \ldots, I_{n}\right\}$ is found, perform conflict-driven backjumping as if the restricted clause $\left(\bigvee_{i} \neg l_{i}\right) \downarrow \mathbf{P}$ belonged to the clause set
- MathSAT/NuSMV [Cavada et al, FMCAD'07]:

As above, plus the Boolean search of the SAT solver is driven by an OBDD.

MaxSAT (hints)

- MaxSAT: given a pair of CNF formulas $\left\langle\varphi_{h}, \varphi_{s}\right\rangle$ s.t. $\varphi_{h} \wedge \varphi_{s} \models \perp, \varphi_{s} \stackrel{\text { def }}{=}\left\{C_{1}, \ldots, C_{k}\right\}$, find a truth assignment μ satisfying φ_{h} and maximizing the amount of the satisfied clauses in φ_{s}.
- Weighted MaxSAT: given also the positive integer penalties $\left\{w_{1}, \ldots, w_{k}\right\}, \mu$ must satisfy φ_{h} and maximize the sum of penalties of the satisfied clauses in φ_{s}
- Generalization of SAT to optimization
\Longrightarrow much harder than SAT
- Many different approaches (see e.g. [22])
- EX:

$\Longrightarrow \mu=\left\{A_{1}, A_{2}\right\}$ (penalty $=2$)

MaxSAT (hints)

- MaxSAT: given a pair of CNF formulas $\left\langle\varphi_{h}, \varphi_{s}\right\rangle$ s.t. $\varphi_{h} \wedge \varphi_{s} \models \perp, \varphi_{s} \stackrel{\text { def }}{=}\left\{C_{1}, \ldots, C_{k}\right\}$, find a truth assignment μ satisfying φ_{h} and maximizing the amount of the satisfied clauses in φ_{s}.
- Weighted MaxSAT: given also the positive integer penalties $\left\{w_{1}, \ldots, w_{k}\right\}, \mu$ must satisfy φ_{h} and maximize the sum of penalties of the satisfied clauses in φ_{s}
- Generalization of SAT to optimization
\Longrightarrow much harder than SAT
- Many different approaches (see e.g. [22])
- EX:

$\Longrightarrow \mu=\left\{A_{1}, A_{2}\right\}$ (penalty $=2$)

MaxSAT (hints)

- MaxSAT: given a pair of CNF formulas $\left\langle\varphi_{h}, \varphi_{s}\right\rangle$ s.t. $\varphi_{h} \wedge \varphi_{s} \models \perp, \varphi_{s} \stackrel{\text { def }}{=}\left\{C_{1}, \ldots, C_{k}\right\}$, find a truth assignment μ satisfying φ_{h} and maximizing the amount of the satisfied clauses in φ_{s}.
- Weighted MaxSAT: given also the positive integer penalties $\left\{w_{1}, \ldots, w_{k}\right\}, \mu$ must satisfy φ_{h} and maximize the sum of penalties of the satisfied clauses in φ_{s}
- Generalization of SAT to optimization
\Longrightarrow much harder than SAT
- Many different approaches (see e.g. [22])
- EX:

$\Longrightarrow \mu=\left\{A_{1}, A_{2}\right\}$ (penalty $=2$)

MaxSAT (hints)

- MaxSAT: given a pair of CNF formulas $\left\langle\varphi_{h}, \varphi_{s}\right\rangle$ s.t. $\varphi_{h} \wedge \varphi_{s} \models \perp, \varphi_{s} \stackrel{\text { def }}{=}\left\{C_{1}, \ldots, C_{k}\right\}$, find a truth assignment μ satisfying φ_{h} and maximizing the amount of the satisfied clauses in φ_{s}.
- Weighted MaxSAT: given also the positive integer penalties $\left\{w_{1}, \ldots, w_{k}\right\}, \mu$ must satisfy φ_{h} and maximize the sum of penalties of the satisfied clauses in φ_{s}
- Generalization of SAT to optimization
\Longrightarrow much harder than SAT
- Many different approaches (see e.g. [22])
- EX:

$$
\varphi_{h} \stackrel{\text { def }}{=}\left(A_{1} \vee A_{2}\right) \quad \varphi_{s} \stackrel{\text { def }}{=}\left(\begin{array}{ccc}
\left(A_{1} \vee \neg A_{2}\right) & \wedge & {[4]} \\
\left(\neg A_{1} \vee A_{2}\right) & \wedge & {[3]} \\
\left(\neg A_{1} \vee \neg A_{2}\right) & \wedge & {[2]}
\end{array}\right)
$$

$\Longrightarrow \mu=\left\{A_{1}, A_{2}\right\}$ (penalty $=2$)

References I

A. Armando and E. Giunchiglia.

Embedding Complex Decision Procedures inside an Interactive Theorem Prover.
Annals of Mathematics and Artificial Intelligence, 8(3-4):475-502, 1993.

R. J. Bayardo, Jr. and R. C. Schrag.

Using CSP Look-Back Techniques to Solve Real-World SAT instances.
In Proc. AAAl'97, pages 203-208. AAAI Press, 1997.
A. Belov and Z. Stachniak.

Improving variable selection process in stochastic local search for propositional satisfiability. In SAT'09, LNCS. Springer, 2009.
A. Belov and Z. Stachniak.

Improved local search for circuit satisfiability. In SAT, volume 6175 of LNCS, pages 293-299. Springer, 2010.
A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability.
IOS Press, February 2009
Booleforce, http://fmv.jku.at/booleforce/
R. Brafman.

A simplifier for propositional formulas with many binary clauses.
In Proc. IJCAIO1, 2001.
R. E. Bryant.

Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, C-35(8):677-691, Aug. 1986.

References II

M. Davis, G. Longemann, and D. Loveland.

A machine program for theorem proving.
Journal of the ACM, 5(7), 1962.
M. Davis and H. Putnam.

A computing procedure for quantification theory.

 Journal of the ACM, 7:201-215, 1960.N. Eén and N. Sörensson.
Temporal induction by incremental sat solving.
Electr. Notes Theor. Comput. Sci., 89(4):543-560, 2003.
N. Eén and N. Sörensson.
An extensible SAT-solver.
In Theory and Applications of Satisfiability Testing (SAT 2003), volume 2919 of LNCS, pages 502-518. Springer, 2004.
R. Gershman, M. Koifman, and O. Strichman.

Deriving Small Unsatisfiable Cores with Dominators.
In Proc. CAV'06, volume 4144 of LNCS. Springer, 2006.
E. Giunchiglia, M. Narizzano, A. Tacchella, and M. Vardi.

Towards an Efficient Library for SAT: a Manifesto.

In Proc. SAT 2001, Electronics Notes in Discrete Mathematics. Elsevier Science., 2001.
E. Giunchiglia and R. Sebastiani.

Applying the Davis-Putnam procedure to non-clausal formulas.
In Proc. $A I^{*} \mid A^{\prime} 99$, volume 1792 of $L N A I$. Springer, 1999.

References III

C. Gomes, B. Selman, and H. Kautz.

Boosting Combinatorial Search Through Randomization.
In Proceedings of the Fifteenth National Conference on Artificial Intelligence, 1998.

C. P. Gomes, A. Sabharwal, and B. Selman.

Model Counting, chapter 20, pages 633-654.

In Biere et al. [5], February 2009
H. H. Hoos and T. Stutzle.

Stochastic Local Search Foundation And Application.
Morgan Kaufmann, 2005.

J. Huang.

MUP: a minimal unsatisfiability prover.
In Proc. ASP-DAC '05. ACM Press, 2005.H. A. Kautz, A. Sabharwal, and B. Selman. Incomplete Algorithms, chapter 6, pages 185-203. In Biere et al. [5], February 2009.

C. M. Li and Anbulagan.

Heuristics based on unit propagation for satisfiability problems.
In Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI-97), pages 366-371, 1997.
C. M. Li and F. Manyà.

MaxSAT, Hard and Soft Constraints, chapter 19, pages 613-631.
In Biere et al. [5], February 2009 ,

References IV

I．Lynce and J．Marques－Silva．
On Computing Minimum Unsatisfiable Cores．
In 7th International Conference on Theory and Applications of Satisfiability Testing， 2004.
I．Lynce and J．P．Marques－Silva．
On computing minimum unsatisfiable cores．
In SAT， 2004.
K．McMillan．
Interpolation and SAT－based model checking．
In Proc．CAV， 2003.

K．McMillan and N．Amla．
Automatic abstraction without counterexamples． In Proc．of TACAS， 2003.

K．L．McMillan．
An interpolating theorem prover．
Theor．Comput．Sci．，345（1）：101－121， 2005.
M．W．Moskewicz，C．F．Madigan，Y．Z．，L．Zhang，and S．Malik．
Chaff：Engineering an efficient SAT solver．
In Design Automation Conference， 2001.

R．Nieuwenhuis，A．Oliveras，and C．Tinelli．
Abstract DPLL and abstract DPLL modulo theories．
In F．Baader and A．Voronkov，editors，Proceedings of the 11th International Conference on Logic for Programming，Artificial Intelligence and Reasoning（LPAR＇04），Montevideo， Uruguay，volume 3452 of LNCS，pages 36－50．Springer， 2005.

References V

R. Nieuwenhuis, A. Oliveras, and C. Tinelli.

Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM, 53(6):937-977, November 2006.

Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L. Markov.

Amuse: A Minimally-Unsatisfiable Subformula Extractor. In Proc. DAC'04. ACM/IEEE, 2004.
P. Pudlák.

Lower bounds for resolution and cutting planes proofs and monotone computations.
J. of Symb. Logic, 62(3), 1997.

A. Robinson.

A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12:23-41, 1965.
R. Sebastiani.

Applying GSAT to Non-Clausal Formulas.
Journal of Artificial Intelligence Research, 1:309-314, 1994.
B. Selman and H. Kautz.

Domain-Independent Extension to GSAT: Solving Large Structured Satisfiability Problems.
In Proc. of the 13th International Joint Conference on Artificial Intelligence, pages 290-295, 1993.
B. Selman, H. Kautz, and B. Cohen.

Local Search Strategies for Satisfiability Testing.
In Cliques, Coloring, and Satisfiability, volume 26 of DIMACS, pages 521-532, 1996.

References VI

B. Selman, H. Levesque., and D. Mitchell.

A New Method for Solving Hard Satisfiability Problems.
In Proc. of the 10th National Conference on Artificial Intelligence, pages 440-446, 1992.

J. P. M. Silva and K. A. Sakallah.

GRASP - A new Search Algorithm for Satisfiability.
In Proc. ICCAD'96, 1996.
R. M. Smullyan.

First-Order Logic.
Springer-Verlag, NY, 1968.
C. Tinelli.

A DPLL-based Calculus for Ground Satisfiability Modulo Theories.
In Proc. JELIA-02, volume 2424 of LNAI, pages 308-319. Springer, 2002.D. Tompkins and H. Hoos.

UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT and MAX-SAT. In SAT, volume 3542 of LNCS. Springer, 2004.
H. Zhang and M. Stickel.

Implementing the Davis-Putnam algorithm by tries.
Technical report, University of lowa, August 1994.
J. Zhang, S. Li, and S. Shen.

Extracting Minimum Unsatisfiable Cores with a Greedy Genetic Algorithm.
In Proc. ACAI, volume 4304 of LNCS. Springer, 2006.

References VII

L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik.

Efficient conflict driven learning in a boolean satisfiability solver.
In ICCAD '01: Proceedings of the 2001 IEEE/ACM international conference on Computer-aided design, pages 279-285, Piscataway, NJ, USA, 2001. IEEE Press.
L. Zhang and S. Malik.

The quest for efficient boolean satisfiability solvers.
In Proc. CAV'02, number 2404 in LNCS, pages 17-36. Springer, 2002.

L. Zhang and S. Malik.

Extracting small unsatisfiable cores from unsatisfiable boolean formula. In Proc. of SAT, 2003.

Disclaimer

The list of references above is by no means intended to be all-inclusive. The author of these slides apologizes both with the authors and with the readers for all the relevant works which are not cited here.

The papers (co)authored by the author of these slides are availlable at: http://disi.unitn.it/rseba/publist.html.

Related web sites:

- Combination Methods in Automated Reasoning
http://combination.cs.uiowa.edu/
- The SAT Association
http://satassociation.org/
- SATLive! - Up-to-date links for SAT
http://www.satlive.org/index.jsp
- SATLIB - The Satisfiability Library
http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/

[^0]: \Longrightarrow UNSAT

[^1]: A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{6}
 \times

[^2]: \Longrightarrow Allows for "selecting" block of clauses at each call.

