Course "Formal Methods" TEST

Roberto Sebastiani
DISI, Università di Trento, Italy

September $6^{\text {th }}, 2018$
[COPY WITH SOLUTIONS]

1

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in CTL*.
[Solution: Recall that an LTL formula φ represents the same property as the CTL* formula $\mathbf{A} \varphi$.]
(a) $M \models \mathbf{A}(\mathbf{G F} p \rightarrow \mathbf{G F} q)$
[Solution: true]
(b) $M \models \mathbf{A}(\mathbf{G F} p)$
[Solution: false]
(c) $M \models \mathbf{A}(\mathbf{F G} \neg p)$
[Solution: false]
(d) $M \models \mathbf{A}(\neg p \mathbf{U} q)$
[Solution: false]

2

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in CTL.
(a) $M \models \mathbf{E G} p$
[Solution: false]
(b) $M \models \mathbf{A F} \neg p$
[Solution: false]
(c) $M \models$ AGAF q
[Solution: false]
(d) $M \models \mathbf{E}(\neg p \mathbf{U} q)$
[Solution: true]

3

Consider the following fair Kripke Model M :

For each of the following facts, say if it is true or false in CTL.
(a) $M \models \mathbf{E G} p$
[Solution: false]
(b) $M \models \mathbf{A F} \neg p$
[Solution: true]
(c) $M \models \mathbf{A G A F} q$
[Solution: true]
(d) $M \models \mathbf{E}(\neg p \mathbf{U} q)$
[Solution: true]

Consider the following timed automaton A:

Considere the correponding Region automaton $\mathrm{R}(\mathrm{A})$. For each of the following pairs of states of A , say if the two states belong to the same region. (States are represented as (Location, x_{1}, x_{2}).)
(a) $s_{0}=\left(L_{1}, 4.2,3.5\right), s_{1}=\left(L_{1}, 4.5,3.2\right)$
[Solution: yes]
(b) $s_{0}=\left(L_{1}, 1.0,2.0\right), s_{1}=\left(L_{1}, 1.0,2.7\right)$
[Solution: no]
(c) $s_{0}=\left(L_{2}, 0.2,1.2\right), s_{1}=\left(L_{2}, 0.5,1.5\right)$
[Solution: yes]
(d) $s_{0}=\left(L_{2}, 3.8,0.7\right), s_{1}=\left(L_{2}, 4.4,0.4\right)$
[Solution: no]
[Solution: The regions of $R(A)$ are partitioned as follows:

5

Consider the following pair of ground and abstract machines M and M^{\prime} :

and the abstraction $\alpha: M \longmapsto M^{\prime}$ which, for every $j \in\{1, \ldots, 6\}$, maps $S j 1, S j 2, S j 3$ into $T j$.
For each of the following facts, say which is true and which is false.
(a) M simulates M^{\prime}.
[Solution: False. E.g.,: if M is in $S 23, M^{\prime}$ is in $T 2$ and M^{\prime} switches to $T 3$, there is no transition in M from $S 23$ to any state $S 3 i, i \in\{1,2,3\}$.]
(b) M^{\prime} simulates M.
[Solution: true]
(c) If φ is an LTL formula and $M^{\prime} \models \varphi$, then $M \models \varphi$
[Solution: true]
(d) If φ is an LTL formula and $M \models \varphi$, then $M^{\prime} \models \varphi$
[Solution: false]

6

Consider the following transition relation inside a NuXMV program:
(...)

TRANS
(b0 -> next(b0)) \& (b1 -> next(b1)) \& (b2 -> next(b2)) \& (b3 -> next(b3)) (...)

Adopting a suitable variable ordering of your choice, draw the OBDD representing such transition relation.

Use the following notation: B_{i} for bi and B_{i}^{\prime} for next (bi), for every $i \in[0, \ldots 3]$.
[Solution: The transition relation corresponds to the Boolean formula

$$
\left(B_{0} \rightarrow B_{0}^{\prime}\right) \wedge\left(B_{1} \rightarrow B_{1}^{\prime}\right) \wedge\left(B_{2} \rightarrow B_{2}^{\prime}\right) \wedge\left(B_{3} \rightarrow B_{3}^{\prime}\right)
$$

The obvious choice of variable ordering is $\left\{B_{0}, B_{0}^{\prime}, B_{1}, B_{1}^{\prime}, B_{2}, B_{2}^{\prime}, B_{3}, B_{3}^{\prime}\right\}$, and the corresponding OBDD is:

7
Given the function

OBDD Preimage(OBDD X)

which computes symbolically the preimage of a set of states X wrt. the transition relation of the Kripke model, write the pseudo-code of the function:

OBDD CheckEU(OBDD $\left.X_{1}, X_{2}\right)$
computing symbolically the (OBDD representing) the denotation of $\mathbf{E}\left[\varphi_{1} \mathbf{U} \varphi_{2}\right], X_{1}, X_{2}$ being the OBDDs representing the denotation of φ_{1} and φ_{2}.
[Solution:

OBDD CheckEU(OBDD $\left.X_{1}, X_{2}\right)$
$Y^{\prime}:=X_{2} ;$
repeat
$Y:=Y^{\prime} ;$
$Y^{\prime}:=X_{2} \vee\left(X_{1} \wedge \operatorname{Preimage}(Y)\right) ;$
until $\left(Y \leftrightarrow Y^{\prime}\right)$;
return Y;
\}
]

8

Given the following LTL Model Checking problem $M \models \varphi$ expressed in NuXmv input language:
MODULE main
VAR x : boolean; y : boolean;
INIT (x \& !y)
TRANS ((next (y) <-> x)) \& (next (x) <-> (y))
LTLSPEC G ! (x <-> y)

1. Write a Boolean formula corresponding to the Bounded Model Checking problem with $\mathrm{k}=$ 2., and say if it is satisfiable.
[Solution: The question corresponds to the Bounded Model Checking problem

$$
M \models_{2} \mathbf{E} \mathbf{F} f
$$

s.t. $f(x, y) \stackrel{\text { def }}{=}(x \leftrightarrow y)$. Thus we have:

$$
\begin{array}{lll}
\left(x_{0} \wedge \neg y_{0}\right) & \wedge & / / I\left(x_{0}, y_{0}\right) \wedge \\
\left(\left(y_{1} \leftrightarrow x_{0}\right) \wedge\left(x_{1} \leftrightarrow y_{0}\right)\right) & \wedge & / / T\left(x_{0}, y_{0}, x_{1}, y_{1}\right) \wedge \\
\left(\left(y_{2} \leftrightarrow x_{1}\right) \wedge\left(x_{2} \leftrightarrow y_{1}\right)\right) & \wedge & / / T\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \wedge \\
\left(\left(x_{0} \leftrightarrow y_{0}\right)\right. & \vee & / /\left(f\left(x_{0}, y_{0}\right) \vee\right. \\
\left(x_{1} \leftrightarrow y_{1}\right) & \vee & / / f\left(x_{1}, y_{1}\right) \vee \\
\left.\left(x_{2} \leftrightarrow y_{2}\right)\right) & & \left./ / f\left(x_{2}, y_{2}\right)\right)
\end{array}
$$

The formula is not satisfiable: the first three conjuncts force the assignment $\left\{x_{0}, \neg y_{0}, \neg x_{1}, y_{1}, x_{2}, \neg y_{2}\right\}$ which falsifies all three disjuncts.]
2. What are the diameter and the recurrence diameter of this system?

[Solution: \quad diameter $=$ recurrence diameter $=1 \quad$]
3. From the previous answers (and only from them!) we can conclude:
(a) that $M \models \varphi$;
(b) that $M \not \vDash \varphi$;
(c) nothing.

Briefly explain your choice.
[Solution: a) $M \models \varphi$. In fact, there is no counter-example of length up to k s.t. $k>$ diameter (M).

9

Consider the following fair Kripke model M :

Convert it into an equivalent Buchi automaton.
[Solution:

10

Given the following finite state machine expressed in NuSMV input language:

```
MODULE main
VAR
    v1 : boolean;
    v2 : boolean;
    v3 : boolean;
ASSIGN
    init(v1) := FALSE;
    init(v2) := FALSE;
    init(v3) := TRUE;
TRANS
    (next(v1) <-> v2) &
    (next(v2) <-> v3) &
    (next(v3) <-> v1)
```

and consider the property $P \stackrel{\text { def }}{=}\left(v_{1} \wedge \neg v_{2} \wedge \neg v_{3}\right)$. Write:
(a) the Boolean formulas $I\left(v_{1}, v_{2}, v_{3}\right)$ and $T\left(v_{1}, v_{2}, v_{3}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right)$ representing respectively the initial states and the transition relation of M.
[Solution: $I\left(v_{1}, v_{2}, v_{3}\right)$ is $\left(\neg v_{1} \wedge \neg v_{2} \wedge v_{3}\right), T\left(v_{1}, v_{2}, v_{3}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right)$ is $\left(v_{1}^{\prime} \leftrightarrow v_{2}\right) \wedge\left(v_{2}^{\prime} \leftrightarrow v_{3}\right) \wedge\left(v_{3}^{\prime} \leftrightarrow v_{1}\right)$
(b) the graph representing the FSM.
(Assume the notation " $v_{1} v_{2} v_{3}$ " for labeling the states: e.g. " 101 " means " $v_{1}=1, v_{2}=0, v_{3}=1$ ".)
[Solution:

(c) the Boolean formula representing symbolically EXP. [The formula must be computed symbolically, not simply inferred from the graph of the previous question!]
[Solution:

$$
\begin{aligned}
& \mathbf{E X}(P)=\exists v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime} .\left(T\left(v_{1}, v_{2}, v_{3}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right) \wedge P\left(v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right)\right) \\
& =\exists v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime} .\left(\left(v_{1}^{\prime} \leftrightarrow v_{2}\right) \wedge\left(v_{2}^{\prime} \leftrightarrow v_{3}\right) \wedge\left(v_{3}^{\prime} \leftrightarrow v_{1}\right) \wedge\left(v_{1}^{\prime} \wedge \neg v_{2}^{\prime} \wedge \neg v_{3}^{\prime}\right)\right) \\
& =\exists v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime} .\left(\left(v_{2} \wedge \neg v_{3} \wedge \neg v_{1}\right) \wedge\left(v_{1}^{\prime} \wedge \neg v_{2}^{\prime} \wedge \neg v_{3}^{\prime}\right)\right) \\
& =\perp \vee \perp \vee \overbrace{\left(v_{2} \wedge \neg v_{3} \wedge \neg v_{1}\right)}^{v_{1}^{\prime}=\mathrm{T}, v_{2}^{\prime}=v_{3}^{\prime}=\perp} \vee \perp \vee \perp \vee \perp \vee \perp \vee \perp \\
& =\left(v_{2} \wedge \neg v_{3} \wedge \neg v_{1}\right)
\end{aligned}
$$

