Course "Formal Methods" TEST

Roberto Sebastiani
DISI, Università di Trento, Italy

September $6^{\text {th }}, 2018$

Name (please print):
Surname (please print):

1

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in CTL*.
(a) $M \models \mathbf{A}(\mathbf{G F} p \rightarrow \mathbf{G F} q)$
(b) $M \models \mathbf{A}(\mathbf{G F} p)$
(c) $M \models \mathbf{A}(\mathbf{F G} \neg p)$
(d) $M \models \mathbf{A}(\neg p \mathbf{U} q)$
[SCORING [0...100]:

- +25 pts for each correct answer
- -25 pts for each incorrect answer
- 0pts for each unanswered question

2

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in CTL.
(a) $M \models \mathbf{E G} p$
(b) $M \models \mathbf{A F} \neg p$
(c) $M \models \mathbf{A G A F} q$
(d) $M \models \mathbf{E}(\neg p \mathbf{U} q)$
[SCORING [0...100]:

- +25 pts for each correct answer
- -25pts for each incorrect answer
- 0pts for each unanswered question

3

Consider the following fair Kripke Model M :

For each of the following facts, say if it is true or false in CTL.
(a) $M \models \mathbf{E G} p$
(b) $M \models \mathbf{A F} \neg p$
(c) $M \models \mathbf{A G A F} q$
(d) $M \models \mathbf{E}(\neg p \mathbf{U} q)$
[SCORING [0...100]:

- +25 pts for each correct answer
- -25pts for each incorrect answer
- 0pts for each unanswered question

Consider the following timed automaton A:

Considere the correponding Region automaton $R(A)$. For each of the following pairs of states of A, say if the two states belong to the same region. (States are represented as (Location, x_{1}, x_{2}).)
(a) $s_{0}=\left(L_{1}, 4.2,3.5\right), s_{1}=\left(L_{1}, 4.5,3.2\right)$
(b) $s_{0}=\left(L_{1}, 1.0,2.0\right), s_{1}=\left(L_{1}, 1.0,2.7\right)$
(c) $s_{0}=\left(L_{2}, 0.2,1.2\right), s_{1}=\left(L_{2}, 0.5,1.5\right)$
(d) $s_{0}=\left(L_{2}, 3.8,0.7\right), s_{1}=\left(L_{2}, 4.4,0.4\right)$
[SCORING [0...100]:

- +25 pts for each correct answer
- -25 pts for each incorrect answer
- 0pts for each unanswered question

5

Consider the following pair of ground and abstract machines M and M^{\prime} :

and the abstraction $\alpha: M \longmapsto M^{\prime}$ which, for every $j \in\{1, \ldots, 6\}$, maps $S j 1, S j 2, S j 3$ into $T j$.
For each of the following facts, say which is true and which is false.
(a) M simulates M^{\prime}.
(b) M^{\prime} simulates M.
(c) If φ is an LTL formula and $M^{\prime} \models \varphi$, then $M \models \varphi$
(d) If φ is an LTL formula and $M \models \varphi$, then $M^{\prime} \models \varphi$
[SCORING [0...100]:

- +25 pts for each correct answer
- -25pts for each incorrect answer
- 0pts for each unanswered question

6

Consider the following transition relation inside a NuXMV program:
(...)

TRANS
(b0 -> next(b0)) \& (b1 -> next(b1)) \& (b2 -> next(b2)) \& (b3 -> next(b3))
(...)

Adopting a suitable variable ordering of your choice, draw the OBDD representing such transition relation.

Use the following notation: B_{i} for bi and B_{i}^{\prime} for next (bi), for every $i \in[0, \ldots 3]$.
[SCORING: [0...100], 100 pts for a correct answer. No penalties for a wrong answer..]

7
Given the function

OBDD Preimage(OBDD X)

which computes symbolically the preimage of a set of states X wrt. the transition relation of the Kripke model, write the pseudo-code of the function:

OBDD CheckEU(OBDD $\left.X_{1}, X_{2}\right)$

computing symbolically the (OBDD representing) the denotation of $\mathbf{E}\left[\varphi_{1} \mathbf{U} \varphi_{2}\right], X_{1}, X_{2}$ being the OBDDs representing the denotation of φ_{1} and φ_{2}.
[SCORING: [0...100], 100 pts for a correct answer. No penalties for a wrong answer..]

Given the following LTL Model Checking problem $M \models \varphi$ expressed in NuXmv input language:
MODULE main
VAR x : boolean; y : boolean;
INIT (x \& !y)
TRANS ((next (y) <-> x)) \& (next (x) <-> (y))
LTLSPEC G ! (x <-> y)

1. Write a Boolean formula corresponding to the Bounded Model Checking problem with $\mathrm{k}=$ 2., and say if it is satisfiable.
2. What are the diameter and the recurrence diameter of this system?
3. From the previous answers (and only from them!) we can conclude:
(a) that $M \models \varphi$;
(b) that $M \not \vDash \varphi$;
(c) nothing.

Briefly explain your choice.
[SCORING: [0...100], $(1,2):+25$ pts each. (3) 50pts. No penalties for wrong answers.]

9

Consider the following fair Kripke model M :

Convert it into an equivalent Buchi automaton.
[SCORING: [0...100], 100 pts for a correct answer, no penalties for wrong anwers.]

10

Given the following finite state machine expressed in NuSMV input language:

```
MODULE main
VAR
    v1 : boolean;
    v2 : boolean;
    v3 : boolean;
ASSIGN
    init(v1) := FALSE;
    init(v2) := FALSE;
    init(v3) := TRUE;
TRANS
    (next(v1) <-> v2) &
    (next(v2) <-> v3) &
    (next(v3) <-> v1)
```

and consider the property $P \stackrel{\text { def }}{=}\left(v_{1} \wedge \neg v_{2} \wedge \neg v_{3}\right)$. Write:
(a) the Boolean formulas $I\left(v_{1}, v_{2}, v_{3}\right)$ and $T\left(v_{1}, v_{2}, v_{3}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right)$ representing respectively the initial states and the transition relation of M.
(b) the graph representing the FSM.
(Assume the notation " $v_{1} v_{2} v_{3}$ " for labeling the states: e.g. " 101 " means " $v_{1}=1, v_{2}=0, v_{3}=1$ ".)
(c) the Boolean formula representing symbolically $\mathbf{E X P}$. [The formula must be computed symbolically, not simply inferred from the graph of the previous question!]
[SCORING: $[0 \ldots 100],+25 \mathrm{pts}$ each for questions (a) and (b), 50pts question (c), no penalties for wrong answers.]

