Course "Formal Methods" TEST

Roberto Sebastiani
DISI, Università di Trento, Italy
June $7^{\text {th }}, 2018$
[COPY WITH SOLUTIONS]

1

Consider the following fair Kripke Model M :

For each of the following facts, say if it is true or false in LTL.
(a) $M \models \mathbf{G F} \neg p$
[Solution: true]
(b) $M \models \mathbf{F G} p$
[Solution: false]
(c) $M \models q$
[Solution: true]
(d) $M \models(p \mathbf{U} \neg q)$
[Solution: false]

2

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in CTL.
(a) $M \models$ AGAF $\neg p$
[Solution: false]
(b) $M \models$ EFEG p
[Solution: true]
(c) $M \models(\mathbf{A G A F} p \wedge \mathbf{A G A F} \neg p \wedge \mathbf{A G A F} \neg q) \rightarrow q$
[Solution: true]
(d) $M \models \mathbf{E}(p \mathbf{U} \neg q)$
[Solution: false]

3

Consider the following fair Kripke Model M:

For each of the following facts, say if it is true or false in CTL.
(a) $M \models$ AGAF $\neg p$
[Solution: true]
(b) $M \models$ EFEG p
[Solution: false]
(c) $M \models q$
[Solution: true]
(d) $M \models \mathbf{E}(p \mathbf{U} \neg q)$
[Solution: false]

4

Let φ be a generic Boolean formula. Let:

- $\varphi_{\text {tree }}$ be the result of converting φ into Negative Normal Form, using a tree representation.
- $\varphi_{\text {dag }}$ be the result of converting φ into Negative Normal Form, using a DAG representation.

Let $|\varphi|,\left|\varphi_{\text {tree }}\right|$, and $\left|\varphi_{\text {dag }}\right|$ denote the size of $\varphi, \varphi_{\text {tree }}$, and $\varphi_{\text {dag }}$ respectively.
For each of the following sentences, say if it is true or false.
(a) $\left|\varphi_{\text {tree }}\right|$ is in worst-case exponential in size wrt. $|\varphi|$
[Solution: True. (Its size may blow exponentially on the number of " \leftrightarrow "s in φ.)]
(b) $\left|\varphi_{d a g}\right|$ is in worst-case exponential in size wrt. $|\varphi|$
[Solution: False. (The sharing of the nodes avoids the exponential blowup in size, so that $\left|\varphi_{\text {dag }}\right|$ is at most twice as big as $|\varphi|$.)]
(c) If φ is in the form

$$
\neg \bigvee_{j=1}^{N} \bigwedge_{i=1}^{K} l_{i j}
$$

s.t. $l_{i j}$'s are Boolean literals, then $\left|\varphi_{\text {tree }}\right|$ is exponential in size wrt. $|\varphi|$
[Solution: False. In fact there are no $\leftrightarrow ' s$ in φ.]
(d) If φ is in the form

$$
\left(\bigwedge_{j=1}^{N}\left(l_{j 1} \leftrightarrow l_{j 2}\right)\right) \leftrightarrow\left(\bigwedge_{i=1}^{K}\left(l_{i 1} \leftrightarrow l_{i 2}\right)\right)
$$

s.t. $l_{i j}$'s are Boolean literals, then $\left|\varphi_{\text {dag }}\right|$ is linear in size wrt. $|\varphi|$
[Solution: True. Due to node sharing, $\left|\varphi_{d a g}\right|$ is always linear, regardless the occurrences of \leftrightarrow 's.

5

For each of the following facts about Buchi automata, say if it true or false.
(a) The following BA represents the LTL formula $p \mathbf{U} q$.

(b) The following BA represents the LTL formula $\mathbf{F G} q$.

[Solution: Yes]
(c) The following BA represents the LTL formula $\mathbf{F G} q$.

[Solution: No]
(d) The following BA represents the LTL formula $p \mathbf{U} q$.

6

In a counter-example-guided-abstraction-refinement model checking process using localization reduction, variables $x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}$ are made invisible.

Suppose the process has identified a spurious counterexample with an abstract failure state [00], two ground deadend states d_{1}, d_{2} and two ground bad states b_{1}, b_{2} as described in the following table:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}
d_{1}	0	0	0	0	0	1	1	1
d_{2}	0	0	0	1	1	1	1	0
b_{1}	0	0	1	1	1	1	0	1
b_{2}	0	0	0	1	0	0	0	0

Identify a minimum-size subset of invisible variables which must be made visible in the next abstraction to avoid the above failure. Briefly explain why.
[Solution: The minimum-size subset is $\left\{x_{7}\right\}$. In fact, if x_{7} is made visible, then both d_{1}, d_{2} are made different from both b_{1}, b_{2}.]

7

Consider the following timed automaton.

(a) What is the maximum amount of time units which can pass from two consecutive events b ? Briefly explain why.
[Solution: $6+4=10$. You need at most 6 from b to d and at most 4 to pass from d to b.]
(b) What is the minimum amount of time units which can pass from two consecutive events b ? Briefly explain why.
[Solution: $5+3=8$. You need at least 5 from b to d and at least 3 to pass from d to b.]
(c) What is the maximum amount of time which can pass from event c and the subsequent event d ? Briefly explain why.
[Solution: $6-4=2 . c$ can happen when $y \geq 4$ and d can happen when $y \leq 6$.]
(d) What is the minimum amount of time which can pass from event a and the subsequent event b ? Briefly explain why.
[Solution: $3-3=0$. a can happen when $x \leq 3$ and b can happen when $x \geq 3$.]

8

Consider the following LTL formula:

$$
\varphi \stackrel{\text { def }}{=}(p \mathbf{U} q) \wedge(\mathbf{F} r)
$$

and the following three states of the construction of the tableau T_{φ} of φ :

$$
\begin{aligned}
& S_{1}:\langle q, \quad p, \neg \mathbf{X}(p \mathbf{U} q), \quad r, \quad \mathbf{X F} r\rangle \\
& S_{2}:\langle\neg q, \quad p, \mathbf{X}(p \mathbf{U} q), \quad r, \neg \mathbf{X F} r\rangle \\
& S_{3}:\langle q, \neg p, \neg \mathbf{X}(p \mathbf{U} q), \neg r, \neg \mathbf{X F} r\rangle
\end{aligned}
$$

For each of the following statements, say if it is true or false.
[Solution: recall that

- $\operatorname{sat}(p \mathbf{U} q) \stackrel{\text { def }}{=} \operatorname{sat}(q) \cup(\operatorname{sat}(p) \cap \operatorname{sat}(\mathbf{X}(p \mathbf{U} q)))$
- $\operatorname{sat}(\mathbf{F} r) \stackrel{\text { def }}{=} \operatorname{sat}(r) \cup \operatorname{sat}(\mathbf{X F} r)$

Thus
$S_{1} \in \operatorname{sat}(p \mathbf{U} q), S_{1} \in \operatorname{sat}(\mathbf{F} r)$,
$S_{2} \in \operatorname{sat}(p \mathbf{U} q), S_{2} \in \operatorname{sat}(\mathbf{F} r)$,
$\left.S_{3} \in \operatorname{sat}(p \mathbf{U} q), S_{3} \notin \operatorname{sat}(\mathbf{F} r).\right]$
(a) S_{2} is a successor of S_{1} in T_{φ}.
[Solution: No. In fact, every successor of S_{1} should not belong to $\operatorname{sat}(p \mathbf{U} q)$.]
(b) S_{3} is a successor of S_{2} in T_{φ}.
[Solution: Yes. In fact, every successor of S_{2} should belong to $\operatorname{sat}(p \mathbf{U} q)$ and should not belong to $\operatorname{sat}(\mathbf{F} r)$ as defined above, which is the case of S_{3}.]
(c) S_{3} is an initial state of T_{φ}.
[Solution: No. In fact, every initial state T_{φ} should belong to $(\operatorname{sat}(p \mathbf{U} q) \cap \operatorname{sat}(\mathbf{F} r))$ as defined above, which is not the case of S_{3}.
(d) S_{1} verifies all accepting conditions of T_{φ}.
[Solution: Yes. In fact, since there are two positive until-subformulas $p \mathbf{U} q$ and $\mathbf{F r}$, so that to verify the first accepting condition it should belong to $\operatorname{sat}(\neg(p \mathbf{U} q)) \cup \operatorname{sat}(q)$, for the secomnd it should belong to $\operatorname{sat}(\neg(\mathbf{F} r)) \cup \operatorname{sat}(r)$, which is the case of S_{1}.]

9

Let

$$
\varphi \stackrel{\text { def }}{=} \neg\left(\begin{array}{ccc}
& \left(A_{1}\right) & \wedge \\
\left(\begin{array}{cc}
A_{1} & \rightarrow
\end{array} A_{2}\right) & \wedge \\
\left(A_{2} \rightarrow\right. & \left.A_{3}\right) & \wedge \\
A_{3} \rightarrow & \left.A_{4}\right) & \wedge \\
A_{4} \rightarrow & A_{5} & \wedge
\end{array}\right)
$$

Using the variable ordering:

$$
" A_{1} A_{2}, A_{3}, A_{4}, A_{5} "
$$

draw the OBDD corresponding to the formula φ
[Solution: It corresponds to the following OBDD:

(Notice also that the formula is equivalent to $\left.\neg\left(A_{1} \wedge A_{2} \wedge A_{3} \wedge A_{4} \wedge A_{5}\right)\right)$

10

Given a symbolic representation of a finite state machine M, expressed in terms of the following two Boolean formulas: $I(x, y) \stackrel{\text { def }}{=}(x \wedge y), T\left(x, y, x^{\prime}, y^{\prime}\right) \stackrel{\text { def }}{=}\left(\left(x^{\prime} \leftrightarrow(x \leftrightarrow y) \wedge\left(y^{\prime} \leftrightarrow(\neg x \leftrightarrow y)\right)\right.\right.$, and given the LTL property: $\varphi \stackrel{\text { def }}{=} \neg \mathbf{G}(x \vee y)$,
(a) Write a Boolean formula whose models (if any) represent length-2 executions of M violating φ. [Solution: The question corresponds to the Bounded Model Checking problem $M \not \models_{2} \mathbf{E} \mathbf{G} f$ s.t. $f(x, y) \stackrel{\text { def }}{=}(x \vee y)$. Thus we have:

$$
\begin{array}{lll}
\left(x_{0} \wedge y_{0}\right) & \wedge & / / I\left(x_{0}, y_{0}\right) \wedge \\
\left(\left(x_{1} \leftrightarrow\left(x_{0} \leftrightarrow y_{0}\right) \wedge\left(y_{1} \leftrightarrow\left(\neg x_{0} \leftrightarrow y_{0}\right)\right)\right.\right. & \wedge & / / T\left(x_{0}, y_{0}, x_{1}, y_{1}\right) \wedge \\
\left(\left(x_{2} \leftrightarrow\left(x_{1} \leftrightarrow y_{1}\right) \wedge\left(y_{2} \leftrightarrow\left(\neg x_{1} \leftrightarrow y_{1}\right)\right)\right.\right. & \wedge & / / T\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \wedge \\
\left(\left(x_{0} \vee y_{0}\right)\right. & \wedge & / /\left(f\left(x_{0}, y_{0}\right) \wedge\right. \\
\left(x_{1} \vee y_{1}\right) & \wedge & / / f\left(x_{1}, y_{1}\right) \wedge \\
\left.\left(x_{2} \vee y_{2}\right)\right) & \wedge & \left./ / f\left(x_{2}, y_{2}\right)\right) \wedge \\
\left(\left(x_{0} \leftrightarrow\left(x_{2} \leftrightarrow y_{2}\right) \wedge\left(y_{0} \leftrightarrow\left(\neg x_{2} \leftrightarrow y_{2}\right)\right)\right.\right. & \vee & / /\left(T\left(x_{2}, y_{2}, x_{0}, y_{0}\right) \vee\right. \\
\left(\left(x_{1} \leftrightarrow\left(x_{2} \leftrightarrow y_{2}\right) \wedge\left(y_{1} \leftrightarrow\left(\neg x_{2} \leftrightarrow y_{2}\right)\right)\right.\right. & \vee & / / T\left(x_{2}, y_{2}, x_{1}, y_{1}\right) \vee \\
\left(\left(x_{2} \leftrightarrow\left(x_{2} \leftrightarrow y_{2}\right) \wedge\left(y_{2} \leftrightarrow\left(\neg x_{2} \leftrightarrow y_{2}\right)\right)\right)\right. & & \left./ / T\left(x_{2}, y_{2}, x_{2}, y_{2}\right)\right)
\end{array}
$$

]
(b) Is there a solution? If yes, find the corresponding execution. If not, explain why. [The answer must be based on the Boolean formula, not on the graphical representation of the FSM.]
[Solution: yes, because the formula is satisfiable. In fact, the first two rows force the assignment $\left\{x_{0}, y_{0}, x_{1}, \neg y_{1}, \neg x_{2}, y_{2}\right\}$ which satisfies the whiole formula, -in particular, it satisfies the third loopback - corresponding to the cyclic execution path: $\underbrace{(1,1)}_{s_{0}} \rightarrow \underbrace{(1,0)}_{s_{1}} \rightarrow \underbrace{(0,1)}_{s_{2}} \leftrightarrow \underbrace{(0,1)}_{s_{2}}$.]
(c) What are the diameter and the recurrence diameter of this system?
[Solution:

]

(d) From your answers to questions (b) and (c) you can conclude that:
(i) $M \models \neg \mathbf{G}(x \vee y)$
(ii) $M \not \vDash \neg \mathbf{G}(x \vee y)$
(iii) you can conclude nothing.
[Solution: (ii) $M \not \vDash \neg \mathbf{G}(x \vee y)$, since we have found a counter-example.]

