Course "Formal Methods" TEST

Roberto Sebastiani DISI, Università di Trento, Italy

June $7^{th},\,2018$

Name (please print):

769857918

Surname (please print):

Consider the following *fair* Kripke Model M:

For each of the following facts, say if it is true or false in LTL.

- (a) $M \models \mathbf{GF} \neg p$
- (b) $M \models \mathbf{FG}p$
- (c) $M \models q$
- (d) $M \models (p\mathbf{U}\neg q)$

- +25 pts for each correct answer
- -25pts for each incorrect answer
- Opts for each unanswered question

Consider the following Kripke Model M:

For each of the following facts, say if it is true or false in CTL.

- (a) $M \models \mathbf{AGAF} \neg p$
- (b) $M \models \mathbf{EFEG}p$
- (c) $M \models (\mathbf{AGAF}p \land \mathbf{AGAF} \neg p \land \mathbf{AGAF} \neg q) \rightarrow q$
- (d) $M \models \mathbf{E}(p\mathbf{U}\neg q)$

- +25 pts for each correct answer
- -25pts for each incorrect answer
- Opts for each unanswered question
-]

Consider the following fair Kripke Model M:

For each of the following facts, say if it is true or false in CTL.

- (a) $M \models \mathbf{AGAF} \neg p$
- (b) $M \models \mathbf{EFEG}p$
- $(c) \ M \models q$
- (d) $M \models \mathbf{E}(p\mathbf{U}\neg q)$

- +25 pts for each correct answer
- -25pts for each incorrect answer
- 0pts for each unanswered question
-]

Let φ be a generic Boolean formula. Let:

- φ_{tree} be the result of converting φ into Negative Normal Form, using a tree representation.
- φ_{dag} be the result of converting φ into Negative Normal Form, using a DAG representation.

Let $|\varphi|$, $|\varphi_{tree}|$, and $|\varphi_{dag}|$ denote the size of φ , φ_{tree} , and φ_{dag} respectively.

For each of the following sentences, say if it is true or false.

- (a) $|\varphi_{tree}|$ is in worst-case exponential in size wrt. $|\varphi|$
- (b) $|\varphi_{dag}|$ is in worst-case exponential in size wrt. $|\varphi|$
- (c) If φ is in the form

$$\neg \bigvee_{j=1}^{N} \bigwedge_{i=1}^{K} l_{ij}$$

s.t. l_{ij} 's are Boolean literals, then $|\varphi_{tree}|$ is exponential in size wrt. $|\varphi|$

(d) If φ is in the form

$$(\bigwedge_{j=1}^{N} (l_{j1} \leftrightarrow l_{j2})) \leftrightarrow (\bigwedge_{i=1}^{K} (l_{i1} \leftrightarrow l_{i2}))$$

s.t. l_{ij} 's are Boolean literals, then $|\varphi_{dag}|$ is linear in size wrt. $|\varphi|$

- +25 pts for each correct answer
- -25pts for each incorrect answer
- Opts for each unanswered question

$\mathbf{5}$

For each of the following facts about Buchi automata, say if it true or false.

(a) The following BA represents the LTL formula $p\mathbf{U}q$.

(b) The following BA represents the LTL formula $\mathbf{FG}q$.

(c) The following BA represents the LTL formula $\mathbf{FG}q$.

(d) The following BA represents the LTL formula $p\mathbf{U}q$.

[SCORING [0...100]:

]

- +25 pts for each correct answer
- -25pts for each incorrect answer
- Opts for each unanswered question

5

In a counter-example-guided-abstraction-refinement model checking process using localization reduction, variables $x_3, x_4, x_5, x_6, x_7, x_8$ are made invisible.

Suppose the process has identified a spurious counterexample with an abstract failure state [00], two ground deadend states d_1, d_2 and two ground bad states b_1, b_2 as described in the following table:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	
d_1	0	0	0	0	0	1	1	1	
d_2	0	0	0	1	1	1	1	0	
b_1	0	0	1	1	1	1	0	1	
b_2	0	0	0	1	0	0	0	0	

Identify a minimum-size subset of invisible variables which must be made visible in the next abstraction to avoid the above failure. Briefly explain why.

[SCORING: [0...100], 100 pts iff the solution is correct, minimum an properly explained. .]

Consider the following timed automaton.

- (a) What is the maximum amount of time units which can pass from two consecutive events b? Briefly explain why.
- (b) What is the minimum amount of time units which can pass from two consecutive events b? Briefly explain why.
- (c) What is the maximum amount of time which can pass from event c and the subsequent event d? Briefly explain why.
- (d) What is the minimum amount of time which can pass from event a and the subsequent event b? Briefly explain why.

[SCORING: [0...100], 25 pts for each correct answer, no penalties for wrong answers..]

Consider the following LTL formula:

$$\varphi \stackrel{\text{\tiny def}}{=} (p\mathbf{U}q) \wedge (\mathbf{F}r)$$

and the following three states of the construction of the tableau T_{φ} of φ :

 $S_{1} : \langle q, p, \neg \mathbf{X}(p\mathbf{U}q), r, \mathbf{XF}r \rangle$ $S_{2} : \langle \neg q, p, \mathbf{X}(p\mathbf{U}q), r, \neg \mathbf{XF}r \rangle$ $S_{3} : \langle q, \neg p, \neg \mathbf{X}(p\mathbf{U}q), \neg r, \neg \mathbf{XF}r \rangle$

For each of the following statements, say if it is true or false.

- (a) S_2 is a successor of S_1 in T_{φ} .
- (b) S_3 is a successor of S_2 in T_{φ} .
- (c) S_3 is an initial state of T_{φ} .
- (d) S_1 verifies all accepting conditions of T_{φ} .

[SCORING [0...100]:

- +25 pts for each correct answer
- -25pts for each incorrect answer
- Opts for each unanswered question

[SCORING: [0...100], 25 pts for each correct answer. No penalties for wrong answers.]

Let

$$\varphi \stackrel{\text{def}}{=} \neg \left(\begin{array}{ccc} (& A_1) & \wedge \\ (& A_1 \to & A_2) & \wedge \\ (& A_2 \to & A_3) & \wedge \\ (& A_3 \to & A_4) & \wedge \\ (& A_4 \to & A_5) & \wedge \end{array} \right)$$

Using the variable ordering:

" $A_1 A_2, A_3, A_4, A_5$ ",

draw the OBDD corresponding to the formula φ

[SCORING: [0...100], 100 pts for a correct answer. No penalties for a wrong answer..]

Given a symbolic representation of a finite state machine M, expressed in terms of the following two Boolean formulas: $I(x, y) \stackrel{\text{def}}{=} (x \wedge y), T(x, y, x', y') \stackrel{\text{def}}{=} ((x' \leftrightarrow (x \leftrightarrow y) \wedge (y' \leftrightarrow (\neg x \leftrightarrow y)),$ and given the LTL property: $\varphi \stackrel{\text{def}}{=} \neg \mathbf{G}(x \lor y),$

- (a) Write a Boolean formula whose models (if any) represent length-2 executions of M violating φ .
- (b) Is there a solution? If yes, find the corresponding execution. If not, explain why. [The answer must be based on the Boolean formula, not on the graphical representation of the FSM.]
- (c) What are the diameter and the recurrence diameter of this system?
- (d) From your answers to questions (b) and (c) you can conclude that:

(i)
$$M \models \neg \mathbf{G}(x \lor y)$$

- (ii) $M \not\models \neg \mathbf{G}(x \lor y)$
- (iii) you can conclude nothing.

[SCORING: [0...100], +25pts for each correct answer. No penalties for wrong answers.]