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Motivations

Acknowledgments

Thanks for providing material to:

Rajeev Alur & colleagues (Penn University)
Paritosh Pandya (IIT Bombay)
Andrea Mattioli, Yusi Ramadian (Univ. Trento)
Marco Di Natale (Scuola Superiore S.Anna, Italy)

Disclaimer
very introductory
very-partial coverage
mostly computer-science centric
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Motivations

Hybrid Modeling

Hybrid machines = State machines + Dynamic Systems
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Motivations

Hybrid Modeling: Examples

Automotive Applications
Vehicle Coordination Protocols
Interacting Autonomous
Robots
Bio-molecular Regulatory
Networks
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Timed systems: Modeling and Semantics Timed automata

Timed Automata
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Timed systems: Modeling and Semantics Timed automata

Example: Simple light control

Requirement:
if Off and press is issued once, then the light switches on;
if Off and press is issued twice quickly, then the light gets brighter;
if Light/Bright and press is issued once, then the light switches off;

=⇒ cannot be achieved with standard automata
Solution: add real-valued clock x

x reset at first press
if next press before x reaches 3 time units,
then the light will get brighter;
otherwise the light is turned off
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Timed systems: Modeling and Semantics Timed automata

Modeling: timing constraints

Finite graph + finite set of (real-valued) clocks

Vertexes are locations
Time can elapse there
Constraints (invariants)

Edges are switches
Subject to constraints
Reset clocks

Meaning of clock value: time elapsed since the last time it was reset.
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Timed systems: Modeling and Semantics Timed automata

Timed Automata

Locations l1, l2, ... (like in standard automata)
discrete part of the state
may be implemented by discrete variables

Switches (discrete transitions like in standard aut.)
Labels, aka events, actions,... (like in standard aut.)

used for synchronization
Clocks: x, y,... ∈ Q+

value: time elapsed since the last time it was reset
Guards: (x ./ C) s.t. ./ ∈ {≤, <,≥, >}, C ∈ N

set of clock comparisons against integers bounds
constrain the execution of the switch

Resets (x := 0)

set of clock assignments to 0
Invariants: (x ./ C) s.t. ./ ∈ {≤, <,≥, >}, C ∈ N

set of clock comparisons against integers bounds
ensure progress

a

l1

l2

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1

l2

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)
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Timed systems: Modeling and Semantics Timed automata

Timed Automata: States and Transitions

State: 〈li , x1, x2〉
〈l1,4,7〉: OK!
〈l2,2,4〉: not OK! (violates invariant in l2)

Switch: 〈li , x , y〉
a−→ 〈lj , x ′, y ′〉

〈l1,4.5,2〉
a−→ 〈l2,4.5,0〉: OK!

〈l1,6,2〉
a−→ 〈l2,6,0〉: not OK! (violates invar. in l1)

〈l1,3,2〉
a−→ 〈l2,3,0〉: not OK! (violates guard)

〈l1,4.5,2〉
a−→ 〈l2,4.5,2〉: not OK! (violates reset)

〈l1,4,2〉
a−→ 〈l2,4,0〉: not OK! (violates invar. in l2)

Wait (time elapse): 〈li , x , y〉
δ−→ 〈li , x + δ, y + δ〉

〈l1,3,0〉
2−→ 〈l1,5,2〉: OK!

〈l1,3,0〉
3−→ 〈l1,6,3〉: not OK! (violates invar. in l1)

(x1 ≥ 4)
(x2 ≤ 2)

a

y := 0

L1

(x1 ≤ 5)

L2

(x1 > 4)
(x2 ≤ 3)
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Timed systems: Modeling and Semantics Timed automata

Timed Automata: Formal Syntax

Timed Automaton 〈L,L0,Σ,X ,Φ(X ),E〉
L: Set of locations
L0 ⊆ L: Set of initial locations
Σ: Set of labels
X : Set of clocks
Φ(X ): Set of invariants
E ⊆ L× Σ× Φ(X )× 2X × L: Set of switches
A switch 〈l ,a, ϕ, λ, l ′〉 s.t.

l : source location
a: label
ϕ: clock constraints
λ ⊆ X : clocks to be reset
l ′: target location

(x1 ≥ 4)
(x2 ≤ 2)

a

y := 0

L1

(x1 ≤ 5)

L2

(x1 > 4)
(x2 ≤ 3)
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Timed systems: Modeling and Semantics Timed automata

Clock constraints and clock interpretations

Grammar of clock constraints:
ϕ ::= x ≤ C | x < C | x ≥ C | x > C | ϕ ∧ ϕ

s.t. C positive integer values.
=⇒ allow only comparison of a clock with a constant
clock interpretation: ν

X = 〈x , y , z〉, ν = 〈1.0,1.5,0〉
clock interpretation ν after δ time: ν + δ

δ = 0.2, ν + δ = 〈1.2,1.7,0.2〉
clock interpretation ν after reset λ: ν[λ]

λ = {y}, ν[y := 0] = 〈1.0,0,0〉

A state for a timed automaton is a pair 〈l , ν〉,
where l is a location and ν is a clock interpretation

(x1 ≥ 4)
(x2 ≤ 2)

a

y := 0

L1

(x1 ≤ 5)

L2

(x1 > 4)
(x2 ≤ 3)
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Timed systems: Modeling and Semantics Timed automata

Remark: why integer constants in clock constraints?

The constant in clock constraints are assumed to be integer w.l.o.g.:
if rationals, multiply them for their greatest common denominator,
and change the time unit accordingly
in practice, multiply by 10k (resp 2k ), k being the number of
precision digits (resp. bits), and change the time unit accordingly
Ex: 1.345, 0.78, 102.32 seconds
=⇒ 1,345, 780, 102,320 milliseconds
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Timed systems: Modeling and Semantics Timed automata

Example

clocks {x , y} can be set/reset independently
x is reset to 0 from s0 to s1 on a
switches b and c happen within 1 time-unit from a because of
constraints in s1 and s2

delay between b and the following d is > 2
no explicit bounds on time difference between event c − d
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Timed systems: Modeling and Semantics Timed automata

Timed Automata: Semantics

Semantics of A defined in terms of a (infinite) transition system

SA
def
= 〈Q,Q0,→,Σ〉

Q: {〈l , ν〉} s.t. l location and ν clock evaluation
Q0: {〈l , ν〉} s.t. l ∈ L0 location and ν(X ) = 0
→:

state change due to location switch
state change due to time elapse

Σ: set of labels of Σ ∪Q+
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Timed systems: Modeling and Semantics Timed automata

State change in transition system

Initial State
〈q,0〉
Initial state

Time elapse

〈q,0〉 1.2−→ 〈q,1.2〉
state change due to elapse of time

Time Elapse, Switch and their Concatenation

〈q,0〉 1.2−→ 〈q,1.2〉 a−→ 〈q′,1.2〉 ”wait δ; switch;”

=⇒ 〈q,0〉 1.2+a−→ 〈q′,1.2〉 ”wait δ and switch;”

Roberto Sebastiani Ch. 11: Timed and Hybrid Systems Sunday 24th May, 2020 19 / 100



Timed systems: Modeling and Semantics Timed automata

Example

push push

click

Switch may be turned on whenever at least 2 time units has
elapsed since last “turn off”
Light automatically switches off after 9 time units.

Example execution

〈off ,0,0〉 3.5−→ 〈off ,3.5,3.5〉 push−→ 〈on,0,0〉 3.14−→ 〈on,3.14,3.14〉 push−→
〈on,0,3.14〉 3−→ 〈on,3,6.14〉 2.86−→ 〈on,5.86,9〉 click−→ 〈on,0,9〉
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Timed systems: Modeling and Semantics Timed automata

Remark: Non-Zenoness

Beware of Zeno! (paradox)

When the invariant is violated
some edge must be enabled

Automata should admit the
possibility of time to diverge
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Timed systems: Modeling and Semantics Timed automata

Combination of Timed Automata

Complex system = product of interacting systems

Let A1
def
= 〈L1,L0

1,Σ1,X1,Φ1(X1),E1〉,
A2

def
= 〈L2,L0

2,Σ2,X2,Φ2(X2),E2〉

Product: A1||A2
def
=

〈L1 × L2,L0
1 × L0

2,Σ1 ∪ Σ2,X1 ∪ X2,Φ1(X1) ∪ Φ2(X2),E1||E2〉
Transition iff:

Label a belongs to both alphabets =⇒ synchronized
blocking synchronization: a-labeled switches cannot be shot alone
Label a only in the alphabet of A1 =⇒ asynchronized
Label a only in the alphabet of A2 =⇒ asynchronized
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Timed systems: Modeling and Semantics Timed automata

Transition Product

Σ1
def
= {a,b}

Σ2
def
= {a, c}
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Timed systems: Modeling and Semantics Timed automata

Transition Product: Example
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Timed systems: Modeling and Semantics Timed automata

Example: Train-gate controller [Alur CAV’99]

Desired property: G(s2 → t2)
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Timed systems: Modeling and Semantics Timed automata

Train-gate controller: Product
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Symbolic Reachability for Timed Systems Making the state space finite

Reachability Analysis

Verification of safety requirement: reachability problem
Input: a timed automaton A and a set of target locations LF ⊆ L
Problem: Determining whether LF is reachable in a timed
automaton A
A location l of A is reachable if some state q with location
component l is a reachable state of the transition system SA
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Symbolic Reachability for Timed Systems Making the state space finite

Timed/hybrid Systems: problem

Problem
The system SA associated to A has infinitely-many states & symbols.

Is finite state analysis possible?
Is reachability problem decidable?
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Symbolic Reachability for Timed Systems Making the state space finite

Idea: Finite Partitioning

Goal
Partition the state space into finitely-many equivalence classes, so that
equivalent states exhibit (bi)similar behaviors

Roberto Sebastiani Ch. 11: Timed and Hybrid Systems Sunday 24th May, 2020 31 / 100



Symbolic Reachability for Timed Systems Making the state space finite

Reachability analysis
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Symbolic Reachability for Timed Systems Making the state space finite

Timed Vs Time-Abstract Relations

Idea
Infinite transition system associated with a timed/hybrid automaton A:

SA: Labels on continuous steps are delays in Q+

UA (time-abstract): actual delays are suppressed
=⇒ all continuous steps have same label

from ”wait δ and switch” to ”wait (sometime) and switch”
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Symbolic Reachability for Timed Systems Making the state space finite

Time-abstract transition system UA

UA (time-abstract): actual delays are suppressed
Only change due to location switch stated explicitly
Cut system to finitely many labels
UA (instead of SA) allows for capturing untimed properties (e.g.,
reachability, safety)

A: (“wait δ; switch;”)
〈l0,0,0〉

1.2−→ 〈l0,1.2,1.2〉
a−→ 〈l1,0,1.2〉

0.7−→ 〈l1,0.7,1.9〉
b−→ 〈l2,0.7,0〉

SA: (“wait δ and switch;”)
〈l0,0,0〉

1.2+a−→ 〈l1,0,1.2〉
0.7+b−→ 〈l2,0.7,0〉

UA: (“wait (sometime) and switch;”)
〈l0,0,0〉

a−→ 〈l1,0,1.2〉
b−→ 〈l2,0.7,0〉
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Symbolic Reachability for Timed Systems Making the state space finite

Stable quotients

Idea: Collapse states which are equivalent modulo “wait & switch”
Cut to finitely many states
Stable equivalence relation
Quotient of UA = transition system [UA]
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Symbolic Reachability for Timed Systems Making the state space finite

LF -sensitive equivalence relation

All equivalent states in a class belong to either LF or not LF

E.g.: states with different labels cannot be equivalent
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Symbolic Reachability for Timed Systems Making the state space finite

Stable Quotient: Intuitive example
Task: plan trip from DISI to VR train station
“take the next #5 bus to TN train station and then the 6pm train to VR”

Constraints:

It is 5.18pm
Train to VR leaves at TN train station at 6.00pm
it takes 3 minutes to walk from DISI to BUS stop
Bus #5 passes 5.20pm or at 5.40pm
Bus #5 takes 15 minutes to TN train station
it takes 2 minutes to walk from BUS stop to TN train station

Time-Abstract plan (UA):
“walk to bus stop; take 5.40 #5 bus to TN train-station stop;
walk to train station; take the 6pm train to VR”

Actual (implicit) plan (A):
“wait δ1; walk to bus stop; wait δ2; take 5.40 #5 bus to TN train-station stop;
wait δ3 at bus stop; walk to train station; wait δ4; take the 6pm train to VR”
where δ1 + δ2 = 19min and δ3 + δ4 = 3min

all executions with distinct values of δi are bisimilar
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Symbolic Reachability for Timed Systems Region automata

Region Equivalence over clock interpretation
Preliminary definitions & terminology

Given a clock x :
bxc is the integral part of x (ex: b3.7c = 3)
fr(x) is the fractional part of x (ex: fr(3.7) = 0.7)
Cx is the maximum constant occurring in clock constraints x ./ Cx

Region Equivalence: ν ∼= ν ′

Given a timed automaton A, two clock interpretations ν, ν ′ are region
equivalent (ν ∼= ν ′) iff all the following conditions hold:
C1: For every clock x , either bν(x)c = bν ′(x)c or bν(x)c, bν ′(x)c ≥ Cx

C2: For every clock pair x , y s.t. ν(x), ν ′(x) ≤ Cx and ν(y), ν ′(y) ≤ Cy ,
fr(ν(x)) ≤ fr(ν(y)) iff fr(ν ′(x)) ≤ fr(ν ′(y))

C3: For every clock x s.t. ν(x), ν ′(x) ≤ Cx
fr(ν(x)) = 0 iff fr(ν ′(x)) = 0
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Symbolic Reachability for Timed Systems Region automata

Conditions: C1 + C2 + C3

Cx

x

y

Cy

1 2 3 4

1

2

3

0

Cx

x

y

Cy

1 2 3 4

1

2

3

0

Cx

x

y

Cy

1 2 3 4

1

2

3

0

Cx

x

y

Cy

1 2 3 4

1

2

3

0

C1: For every clock x , either bν(x)c = bν′(x)c or bν(x)c, bν′(x)c ≥ Cx

C2: For every clock pair x , y s.t. ν(x), ν′(x) ≤ Cx and ν(y), ν′(y) ≤ Cy ,
fr(ν(x)) ≤ fr(ν(y)) iff fr(ν′(x)) ≤ fr(ν′(y))

C3: For every clock x s.t. ν(x), ν′(x) ≤ Cx , fr(ν(x)) = 0 iff fr(ν′(x)) = 0
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Symbolic Reachability for Timed Systems Region automata

Regions, intuitive idea:

Cx

x

y

Cy

1 2 3 4

1

2

3

0

Intuition: ν ∼= ν ′ iff they satisfy the same set of constraints in the form
xi < c, xi > c, xi = c, xi − xj < c, xi − xj > c, xi − xj = c

s.t. c ≤ Cxi
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Symbolic Reachability for Timed Systems Region automata

Region Operations
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Symbolic Reachability for Timed Systems Region automata

Properties of Regions

The region equivalence relation ∼= is a time-abstract bisimulation:

Action transitions: if ν ∼= µ and 〈l , ν〉 a−→ 〈l ′, ν′〉 for some l ′, ν′,
then there exists µ′ s.t. ν′ ∼= µ′ and 〈l , µ〉 a−→ 〈l ′, µ′〉
Wait transitions: if ν ∼= µ,
then for every δ ∈ Q+ there exists δ′ ∈ Q+ s.t. ν + δ ∼= µ+ δ′

=⇒ If ν ∼= µ, then 〈l , ν〉 and 〈l , µ〉 satisfy the same temporal-logic
formulas
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Symbolic Reachability for Timed Systems Region automata

Time-abstract Bisimulation in Regions
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Symbolic Reachability for Timed Systems Region automata

Number of Clock Regions

Clock region: equivalence class of clock interpretations
Number of clock regions upper-bounded by

k ! · 2k · Πx∈X (2 · Cx + 2), s.t . k def
= ||X ||

finite!
exponential in the number of clocks
grows with the values of Cx

Example
2 clocks x,y, Cx = 2, Cy = 1

8 open regions
14 open line segments
6 corner points

=⇒ 28 regions
< 2 · 22 · (2 · 2 + 2) · (2 · 1 + 2) = 192
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Symbolic Reachability for Timed Systems Region automata

Region automaton

Equivalent states = identical location + ∼=-equivalent evaluations
Equivalent Classes (regions): finite, stable, LF -sensitive
R(A): Region automaton of A

States: 〈l , r(A)〉 s.t. r(A) regions of A
=⇒ Finite state automaton!

Reachability problem 〈A,LF 〉 =⇒ Reachability problem 〈R(A),LF 〉
=⇒ Reachability in timed automata reduced to that in finite automata!
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Symbolic Reachability for Timed Systems Region automata

Example: Region graph of a simple timed automata

May be further reduced (e.g., collapsing B, C, D into one state)
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Symbolic Reachability for Timed Systems Region automata

Complexity of Reasoning with Timed Automata

Reachability in Timed Automata
Decidable!
Linear with number of locations
Exponential in the number of clocks
Grows with the values of Cx

Overall, PSPACE-Complete

Language-containment with Timed Automata
Undecidable!

Roberto Sebastiani Ch. 11: Timed and Hybrid Systems Sunday 24th May, 2020 48 / 100



Symbolic Reachability for Timed Systems Zone automata

Zone Automata

Collapse regions by convex unions of clock regions
Clock Zone ϕ: set/conjunction of clock constraints in the form
(xi ./ c), (xi − xj ./ c), ./ ∈ {>,<,=,≥,≤}, c ∈ Z
ϕ is a convex set in the k-dimensional euclidean space

possibly unbounded
=⇒ Contains all possible relationship for all clock value in a set

Symbolic state: 〈l , ϕ〉
l: location
ϕ: clock zone

x

y
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Symbolic Reachability for Timed Systems Zone automata

Zone Automata

Definition: Zone Automaton

Given a Timed Automaton A def
= 〈L,L0,Σ,X ,Φ(X ),E〉,

the Zone Automaton Z(A) is a transition system 〈Q,Q0,Σ,→〉 s.t.

Q: set of all zones of A (a zone is 〈l , ϕ〉)
Q0 def

= {〈l , [X := 0]〉 | l ∈ L0}
Σ: set of labels/events in A
→: set of “wait&switch” symbolic transitions, in the form:
〈l , ϕ〉 a−→ 〈l ′, succ(ϕ,e)〉
succ(ϕ,e): successor of ϕ after (waiting and) executing the switch e

succ(〈l , ϕ〉,e)
def
= 〈l ′, succ(ϕ,e)〉
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Symbolic Reachability for Timed Systems Zone automata

Zone Automata: Symbolic Transitions

Definition: succ(ϕ,e)

Let e def
= 〈l ,a, ψ, λ, l ′〉, and φ, φ′ the invariants in l , l ′

Then
succ(ϕ,e)

def
= (((ϕ ∧ φ)⇑ ∧φ) ∧ ψ)[λ := 0]

∧: standard conjunction/intersection
⇑: projection to infinity: ψ⇑ def

= {ν + δ | ν ∈ ψ, δ ∈ [0,+∞)}
[λ := 0]: reset projection: ψ[λ := 0]

def
= {ν[λ := 0] | ν ∈ ψ}

note: ϕ is considered “immediately before entering l”
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Symbolic Reachability for Timed Systems Zone automata

Zone Automata: Symbolic Transitions (cont.)

Initial zone: values before entering the
location

Intersection with invariant φ: values allowed to
enter the location

Projection to infinity: values allowed to enter
the location, after waiting unbounded time

Intersection with invariant φ: values allowed to
enter the location, after waiting a legal amount
of time

Intersection with guard ψ: values allowed to
enter the location, after waiting a legal amount
of time, from which the switch can be shot

Reset projection λ: values ..., after reset

=⇒ Final!

ϕ

φ
ϕ

φ

ψ

succ(ϕ,e)
def
= (((ϕ ∧ φ)⇑ ∧φ) ∧ ψ)[λ := 0]succ(ϕ,e)

def
= (((ϕ ∧ φ)⇑ ∧φ) ∧ ψ)[λ := 0]succ(ϕ,e)

def
= (((ϕ ∧ φ)⇑ ∧φ) ∧ ψ)[λ := 0]succ(ϕ,e)

def
= (((ϕ ∧ φ)⇑ ∧φ) ∧ ψ)[λ := 0]succ(ϕ,e)

def
= (((ϕ ∧ φ)⇑ ∧φ) ∧ ψ)[λ := 0]succ(ϕ,e)

def
= (((ϕ ∧ φ)⇑ ∧φ) ∧ ψ)[λ := 0]succ(ϕ,e)

def
= (((ϕ ∧ φ)⇑ ∧φ) ∧ ψ)[λ := 0]succ(ϕ,e)

def
= (((ϕ ∧ φ)⇑ ∧φ) ∧ ψ)[λ := 0]succ(ϕ,e)

def
= (((ϕ ∧ φ)⇑ ∧φ) ∧ ψ)[λ := 0]succ(ϕ,e)

def
= (((ϕ ∧ φ)⇑ ∧φ) ∧ ψ)[λ := 0]succ(ϕ,e)

def
= (((ϕ ∧ φ)⇑ ∧φ) ∧ ψ)[λ := 0]
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Symbolic Reachability for Timed Systems Zone automata

Example: Zone Automata, Symbolic Transitions

Initial zone: (x ≥ 0) ∧ (x ≤ 2) ∧
(y ≥ 0) ∧ (y ≤ 3) ∧ (y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant φ : (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (x ≤ 2) ∧ (y ≥ 1) ∧
(y ≤ 3) ∧ (y − x ≤ 2)

Projection to infinity:
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant φ: (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with guard ψ : (y ≥ 4)
=⇒ (y ≥ 4) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Reset projection λ def
= {y := 0}

=⇒ (x ≥ 2) ∧ (x ≤ 6) ∧ (y ≥ 0) ∧ (y ≤ 0)

=⇒ Final!

ϕ

φ
ϕ

φ

ψ
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Symbolic Reachability for Timed Systems Zone automata

Remark on succ(ϕ,e)

In the above definition of succ(ϕ,e), ϕ is considered “immediately
before entering l”:

succ(ϕ,e)
def
= (((ϕ ∧ φ)⇑ ∧φ) ∧ ψ)[λ := 0]

Alternative definition of succ(ϕ,e), ϕ is considered “immediately
after entering l”:

succ(ϕ,e)
def
= (((ϕ⇑ ∧φ) ∧ ψ)[λ := 0] ∧ φ′)

no initial intersection with the invariant φ of source location l
(here ϕ is assumed to be already the result of such intersection)
final intersection with the invariant φ′ of target location l ′
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Symbolic Reachability for Timed Systems Zone automata

Symbolic Reachability Analysis
1: function Reachable (A, LF ) // A def

= 〈L,L0,Σ,X ,Φ(X ),E〉
2: Reachable = ∅
3: Frontier = {〈li , {X = 0}〉 | li ∈ L0}
4: while (Frontier 6= ∅) do
5: extract 〈l , ϕ〉 from Frontier
6: if (l ∈ LF and ϕ 6= ⊥) then
7: return True
8: end if
9: if (6 ∃ 〈l , ϕ′〉 ∈ Reachable s.t . ϕ ⊆ ϕ′) then

10: add 〈l , ϕ〉 to Reachable
11: for e ∈ outcoming(l) do
12: add succ(ϕ,e) to Frontier
13: end for
14: end if
15: end while
16: return False
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Symbolic Reachability for Timed Systems Zone automata

Canonical Data-structures for Zones: DBMs

Difference-bound Matrices (DBMs)
Matrix representation of constraints

bounds on a single clock
differences between 2 clocks

Reduced form computed by all-pairs shortest path algorithm
(e.g. Floyd-Warshall)
Reduced DBM is canonical:
equivalent sets of constraints produce the same reduced DBM
Operations s.a reset, time-successor, inclusion, intersection are
efficient

=⇒ Popular choice in timed-automata-based tools
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Symbolic Reachability for Timed Systems Zone automata

Difference-bound matrices, DBMs

DBM: matrix (k + 1)× (k + 1), k being the number of clocks
added an implicit fake variable x0

def
= 0 s.t. xi ./ c =⇒ xi − x0 ./ c

each element is a pair (value,{0,1}), s.t “{0,1}” means “{<,≤}”
Example:

(0 ≤ x1) ∧(0 < x2) ∧(x1 < 2) ∧(x2 < 1) ∧(x1 − x2 ≥ 0)
(x0 − x1 ≤ 0) ∧(x0 − x2 < 0) ∧(x1 − x0 < 2) ∧(x2 − x0 < 1) ∧(x2 − x1 ≤ 0)
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Symbolic Reachability for Timed Systems Zone automata

Difference-bound matrices, DBMs (cont.)

Use all-pairs shortest paths, check DBM
idea: given xi − xj ./ c, xi − xk ./ c1 and xk − xj ./ c2 s.t. ./∈ {≤, <},
then c is updated with c1 + c2 if c1 + c2 < c
Satisfiable (no negative loops) =⇒ a non-empty clock zone
Canonical: Matrices with tightest possible constraints

Canonical DBMs represent clock zones:
equivalent sets of constraints⇐⇒ same reduced DBM
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Symbolic Reachability for Timed Systems Zone automata

Canonical Data-structures for Zones: DBMs
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Symbolic Reachability for Timed Systems Zone automata

Complexity Issues

In theory:

Zone automaton might be exponentially bigger than the region
automaton

In practice:

Fewer reachable vertices =⇒ performances much improved
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Symbolic Reachability for Timed Systems Zone automata

Timed Automata: summary

Only continuous variables are timers
Invariants and Guards: x ./ const , ./∈ {<,>,≤,≥}
Actions: x:=0
Reachability is decidable
Clustering of regions into zones desirable in practice
Tools: Uppaal, Kronos, RED ...
Symbolic representation: matrices
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Symbolic Reachability for Timed Systems Zone automata

Decidable Problems with Timed Automata

Model checking branching-time properties of timed automata
Reachability in rectangular automata
Timed bisimilarity: are two given timed automata bisimilar?
Optimization: Compute shortest paths (e.g. minimum time
reachability) in timed automata with costs on locations and edges
Controller synthesis: Computing winning strategies in timed
automata with controllable and uncontrollable transitions
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Hybrid Systems: Modeling and Semantics Hybrid automata

Hybrid Automata
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Hybrid Systems: Modeling and Semantics Hybrid automata

Hybrid Automata

Locations, Switches, Labels (like in standard aut.)
Continuous variables: X def

= {x1, x2, ..., xk} ∈ R
value evolves with time
e.g., distance, speed, pressure, temperature, ...

Guards: g(X ) ≥ 0
sets of inequalities (equalities) on functions on X
constrain the execution of the switch

Jump Transformations J(X ,X ′)

discrete transformation on the values of X
Invariants: X ∈ Invl(X )

set of invariant constraints on X
ensure progress

Continuous Flow: dX
dt ∈ flowl(X )

set of degree-1 differential (in)equalities
describe continuous dynamics

Initial: X ∈ Initl(X )

initial conditions (X ∈ Initl (X ) = ⊥ if l 6∈ L0)

a

l2

l1

a

l2

l1

g(X ) ≥ 0

a

l2

l1

g(X ) ≥ 0

a

J(X ,X ′)

l2

l1

g(X ) ≥ 0

a

J(X ,X ′)

l2

X ∈ Invl2(X)

l1

X ∈ Invl1(X)

g(X ) ≥ 0

a

J(X ,X ′)

l2

dX
dt ∈flowl1(X )
X ∈ Invl2(X)

l1

dX
dt ∈flowl1(X )
X ∈ Invl1(X)

g(X ) ≥ 0

a

J(X ,X ′)

l2
X ∈ Initl2(X )
dX
dt ∈flowl1(X )
X ∈ Invl2(X)

l1
X ∈ Initl1(X )
dX
dt ∈flowl1(X )
X ∈ Invl1(X)
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Hybrid Systems: Modeling and Semantics Hybrid automata

Hybrid Automata A = 〈L,L0,X ,Σ,Φ(X ),E〉
L: Set of locations,
L0 ∈ L: Set of initial locations
X : Set of k continuous variables
Φ(X ): Set of Constraints on X
Σ: Set of synchronization labels (alphabet)
E : Set of edges
State space: L× Rk ,

state: 〈l , ψ〉 s.t. l ∈ L and ψ ∈ Rk

region ψ: subset of Rk

For each location l :
Initial states: region Initl (X )
Invariant: region Invl (X)
Continuous dynamics: dX

dt ∈ flowl (X )
For each edge e from location l to location l ′

Guard: region g(X ) ≥ 0
Update relation “Jump” J(X ,X ′) over Rk × Rk

Synchronization label a ∈ Σ (communication information)
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Hybrid Systems: Modeling and Semantics Hybrid automata

Remark: Degree of flowl(X )

Continuous dynamics described w.l.o.g. with sets of degree-1
differential (in)equalities flowl(X )

Sets/conjunctions of higher-degree differential (in)equalities can
be reduced to degree 1 by renaming
Ex:

(a1
d2s
dt2 + a2

ds
dt + a3s + a4 ./ 0)

⇓
(v = ds

dt ) ∧ (a1
dv
dt + a2v + a3s + a4 ./ 0)
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Hybrid Systems: Modeling and Semantics Hybrid automata

(Finite) Executions of Hybrid Automata

State: pair 〈l ,X 〉 such that X ∈ Invl(X)

Initialization: 〈l ,X 〉 such that X ∈ Initl(X )

Two types of state updates (transitions)

Discrete switches: 〈l ,X 〉 a−→ 〈l ′,X ′〉
if there there is an a-labeled edge e from l to l ′ s.t.

X , X ′ satisfy Invl (X) and Invl′(X) respectively
X satisfies the guard of e (i.e. g(X ) ≥ 0) and
〈X ,X ′〉 satisfies the jump condition of e (i.e., 〈X ,X ′〉 ∈ J(X ,X ′))

Continuous flows: 〈l ,X 〉 f−→ 〈l ,X ′〉
f is a continuous function in [0, δ] s.t.

f (0) = X
f (δ) = X ′

for every t ∈ [0, δ], f (t) ∈ Invl (X)

for every t ∈ [0, δ], df (t)
dt ∈ flowl (X )
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Hybrid Systems: Modeling and Semantics Hybrid automata

Example: Gate for a railroad controller

Notation: “dh” shortcut for “dh
dt ”
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Hybrid Systems: Modeling and Semantics Hybrid automata

Example: Gate for a railroad controller

10 20 30

90
h

0 t

loweringOpen closed lowering raising Open

?l
o
w

er

?l
o
w

er

?r
ai

se

?r
ai

se

raising Open
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Symbolic Reachability for Hybrid Systems

General Symbolic-Reachability Schema
1: R = I(X)
2: while (True) do
3: if (R intersects F) then
4: return True
5: else
6: if (Image(R) ⊆ R) then
7: return False
8: else
9: R = R ∪ Image(R)

10: end if
11: end if
12: end while

I: initial; F: Final; R: Reachable; Image(R): successors of R
need a data type to representt state sets (regions)
Termination may or may not be guaranteed
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Symbolic Reachability for Hybrid Systems

Symbolic Representations

Necessary operations on Regions

Union
Intersection
Negation
Projection
Renaming
Equality/containment test
Emptiness test

Different choices for different classes of problems

BDDs for Boolean variables in hardware verification
DBMs in Timed automata
Polyhedra in Linear Hybrid Automata
...
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Symbolic Reachability for Hybrid Systems

Reachability for Hybrid Systems

Same algorithm works in principle
Problem: What is a suitable representation of regions?

Region: subset of Rk

Main problem: handling continuous dynamics
Precise solutions available for restricted continuous dynamics

Timed automata
Multi-rate & Rectangular Hybrid Automata (reduced to Timed aut.)
Linear Hybrid Automata

Even for linear systems, over-approximations of reachable set
needed
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Symbolic Reachability for Hybrid Systems

Reachability Analysis for Dynamical Systems

Goal: Given an initial region, compute whether a bad state can be
reached
Key step: compute Reach(X) for a given set X under dX

dt = f (X )

Notation: (hereafter we often use “dX ” or “Ẋ ” as a shortcut of “dX
dt ”
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Symbolic Reachability for Hybrid Systems Multi-Rate and Rectangular Hybrid Automata

Simple Hybrid Automata: Multi-Rate and Rectangular

Two simple forms of Hybrid Automata
Multi-Rate Automata
Rectangular Automata
Idea: can be reduced to Timed Automata
typically used as over-approximations of complex hybrid automata
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Symbolic Reachability for Hybrid Systems Multi-Rate and Rectangular Hybrid Automata

Multi-rate Automata

Modest extension of timed automata
Dynamics of the form dX

dt = const
s.t. the rate of of each variable is the same in all locations
Guards and invariants: x < const , x > const
Resets: x := const

Simple translation to timed automata by shifting and scaling:
if xi := di then rename it with a fresh var vi s.t. vi + di = xi
if dxi

dt = ci , then rename it with a fresh var ui s.t. ci · ui = xi
shift & rescale constants in constraints accordingly
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Symbolic Reachability for Hybrid Systems Multi-Rate and Rectangular Hybrid Automata

Rectangular Automata (simplified)

More interesting extension of timed automata
Dynamics of the form dX

dt ∈ [const1, const2]
s.t. the rate of each variable is the same in all locations
Guards and invariants: x < const , x > const
Jumps: x := const

Translation to multi-rate automata (hints). For each x :
Introduce xM , xm describing the greatest/least possible x values
flow: substitute ẋ < cu with ẋM = cu and ẋ > cl with ẋm = cl
invariants: substitute Invl (x) with Invl (xM), Invl (xm)
guards: substitute x > c with xM > c, add jump xm := c (if none)
guards: substitute x < c with xm < c, add jump xM := c (if none)
jump: if x := c, then both xM := c and xm := c
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Symbolic Reachability for Hybrid Systems Linear Hybrid Automata

Linear Hybrid Automata

Polyhedron ϕ: set/conjunction of linear inequalities on X in the
form (A · X ≥ B), s.t. A ∈ Rm × Rk and B ∈ Rm for some m.
ϕ is a convex set in the k-dimensional euclidean space

possibly unbounded
=⇒ Contains all possible values for all variables in a set

Symbolic state: 〈l , ϕ〉
l: location
ϕ: polyhedron

(generalization of zone automata)

x

y
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Symbolic Reachability for Hybrid Systems Linear Hybrid Automata

Linear Hybrid Automata A = 〈L,L0,X ,Σ,Φ(X ),E〉
State space: L× Rk ,

state: 〈l , ψ〉 s.t. l ∈ L and ψ ∈ Rk

polyhedron ψ: subset of Rk in the form A · X ≥ B
For each edge e from location l to location l ′

Guard: region (A · X ≥ B): polyhedron on X
Update relation “Jump” J(X ,X ′): X ′ := T · X , T ∈ Rk × Rk

Synchronization label a ∈ Σ (communication information)
For each location l :

Initial states: region Initl (X ): polyhedron on X
Invariant: region Invl(X): polyhedron on X
Continuous dynamics flowl (X ): polyhedron on dX

dt

Continuous Dynamics
Time-invariant, state-independent dynamics specified by a convex
polyhedron constraining first derivatives
Es: dx

dt ≥ 3, dx
dt = dy

dt , 2.1dx
dt − 3.5dy

dt + 1.7dz
dt ≥ 3.1, ...
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Symbolic Reachability for Hybrid Systems Linear Hybrid Automata

Example: Gate for a railroad controller
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Symbolic Reachability for Hybrid Systems Linear Hybrid Automata

Reachability Computation: Key Steps

Compute “discrete” successors of 〈l , ψ〉
Compute “continuous” successor of 〈l , ψ〉
Check if ψ intersects with “bad” region
Check if newly found ψ is covered by already visited polyhedra
ψ1, ..., ψn (expensive!)
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Symbolic Reachability for Hybrid Systems Linear Hybrid Automata

Computing Discrete Successors of 〈l , ψ〉

Intersect ψ with the guard φ
=⇒ result is a polyhedron
Apply linear transformation of J to the result
=⇒ result is a polyhedron
Intersect with the invariant of target location l ′

=⇒ result is a polyhedron
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Symbolic Reachability for Hybrid Systems Linear Hybrid Automata

Computing Time Successor

Consider maximum and minimum rates between derivatives
(external vertices in the flow polyhedron)
Apply these extremal rates for computing the projection to infinity
(to be intersected with invariant)

Hint: dx
dy =

dx
dt
dy
dt

, s.t. maxx,y
dx
dy = maxx,y

dx
dt
dy
dt

and minx,y
dx
dy = minx,y

dx
dt
dy
dt

dy/dt

dx/dt

(1,4)

(3,2)

x

y

min dy/dx = 2/3

max dy/dx = 4

x

y
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Symbolic Reachability for Hybrid Systems Linear Hybrid Automata

Linear Hybrid Automata: Symbolic Transitions

Definition: succ(ϕ,e)

Let e def
= 〈l ,a, ψ, J, l ′〉, and φ, φ′ the invariants in l , l ′

Then
succ(ϕ,e)

def
= J(((ϕ∧φ)⇑ ∧φ) ∧ ψ)

(ϕ immediately before entering the location)

succ(ϕ,e)
def
= J((ϕ⇑ ∧φ) ∧ ψ) ∧ φ′

(ϕ immediately after entering the location):
∧: standard conjunction/intersection
⇑: continuous successor ψ⇑
J: Jump transformation J(X )

def
= T · X

note: ϕ is considered “immediately after entering l”
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Symbolic Reachability for Hybrid Systems Linear Hybrid Automata

Linear Hybrid Automata: Symbolic Transitions (cont.)

Initial zone: values allowed to
enter location l
Projection to infinity: ... after
waiting unbounded time
Intersection with invariant φ: ...
waiting a legal amount of time
Intersection with guard ψ: ... from
which the switch can be shot
Jump J: ..., after jump
Intersection with invariant φ′: ...
values allowed to enter location l ′

=⇒ Final!

x

y

x

y

min dy/dx = 2/3

max dy/dx = 4

x

y

min dy/dx = 2/3

max dy/dx = 4

x

y

φ

min dy/dx = 2/3

max dy/dx = 4

x

y

x

y

ψ

x

y

x

y

x

y

x

y

φ’

x

y

x

y

x

y

succ(ϕ,e)
def
= J((ϕ⇑ ∧φ) ∧ ψ) ∧ φ′succ(ϕ,e)

def
= J((ϕ⇑ ∧φ) ∧ ψ) ∧ φ′succ(ϕ,e)

def
= J((ϕ⇑ ∧ φ) ∧ ψ) ∧ φ′succ(ϕ,e)

def
= J((ϕ⇑ ∧φ) ∧ ψ) ∧ φ′succ(ϕ,e)

def
= J((ϕ⇑ ∧φ) ∧ ψ) ∧ φ′succ(ϕ,e)

def
= J((ϕ⇑ ∧ φ) ∧ ψ) ∧ φ′succ(ϕ,e)

def
= J((ϕ⇑ ∧ φ) ∧ ψ) ∧ φ′succ(ϕ,e)

def
= J((ϕ⇑ ∧ φ) ∧ ψ) ∧ φ′succ(ϕ,e)

def
= J((ϕ⇑ ∧ φ) ∧ ψ) ∧ φ′succ(ϕ,e)

def
= J((ϕ⇑ ∧ φ) ∧ ψ) ∧ φ′succ(ϕ,e)

def
= J((ϕ⇑ ∧ φ) ∧ ψ) ∧ φ′succ(ϕ,e)

def
= J((ϕ⇑ ∧ φ) ∧ ψ) ∧ φ′
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Symbolic Reachability for Hybrid Systems Linear Hybrid Automata

Symbolic Reachability Analysis
1: function Reachable (A, F ) // A def

= 〈L,L0,Σ,X ,Φ(X ),E〉,F def
= {〈li , φi〉}i

2: Reachable = ∅
3: Frontier = {〈l , Initl(X )〉 | l ∈ L0}
4: while (Frontier 6= ∅) do
5: extract 〈l , ϕ〉 from Frontier
6: if ((ϕ ∧ φ) 6= ⊥ for some 〈l , φ〉 ∈ F ) then
7: return True
8: end if
9: if (6 ∃ 〈l , ϕ′〉 ∈ Reachable s.t . ϕ ⊆ ϕ′) then

10: add 〈l , ϕ〉 to Reachable
11: for e ∈ outcoming(l) do
12: add succ(ϕ,e) to Frontier
13: end for
14: end if
15: end while
16: return False
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Symbolic Reachability for Hybrid Systems Linear Hybrid Automata

Summary: Linear Hybrid Automata

Strategy implemented in HyTech
Core computation: manipulation of polyhedra
Bottlenecks

proliferation of polyhedra (unions)
computing with high-dimension polyhedra

Many case studies
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Exercises

Ex: Execution of a Timed System
Consider only the following piece of a timed automaton A, x1 and x2 being clocks.

L1

(x1 ≤ 2)
L2

(x2 ≤ 3)

e1 : (x1 ≥ 1) a

e2 : x1 := 0 b (x2 ≥ 2)

(a) In general, what is the minimum amount of time from an occurrence of event b and
the subsequent occurrence of the event a? [ Solution: 1 time unit. ]

(b) Write a legal execution from state 〈L1, 0.0, 2.0〉 to state 〈L1, 0.0, 3.0〉. [ Solution:
〈L1, 0.0, 2.0〉

1.0−→ 〈L1, 1.0, 3.0〉
a−→ 〈L2, 1.0, 3.0〉

0.0−→ 〈L2, 1.0, 3.0〉
b−→ 〈L1, 0.0, 3.0〉

]
(c) Is it possible to have a legal execution in which switches e2, e1, e2 are shot

consecutively (possibly interleaved by time elapses), without being interleaved by
other switches? If yes, write one such execution. If not, explain why. [ Solution:
Yes: 〈L2, ..., 2.0〉

b−→ 〈L1, 0.0, 2.0〉
1.0−→ 〈L1, 1.0, 3.0〉

a−→ 〈L2, 1.0, 3.0〉
0.0−→

〈L2, 1.0, 3.0〉
b−→ 〈L1, 0.0, 3.0〉

Note: if the guard of e2 were strictly greater than 2, this would not be possible. ]
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Exercises

Ex: Timed Automata: Regions
Consider the following timed automaton A.

L1

(x1 ≤ 2)
L2

(x2 ≤ 3)

(x1 ≥ 1) a x2 := 0

x1 := 0 b (x2 ≥ 2)

Considere the correponding Region automaton R(A). For each of the following pairs of
states of A, say if the two states belong to the same region.

(a) s0 = (L1, 2.5, 3.2), s1 = (L1, 2.5, 3.7)
[ Solution: yes ]

(b) s0 = (L1, 1.5, 2.2), s1 = (L1, 1.5, 2.7)
[ Solution: no ]

(c) s0 = (L2, 0.5, 1.4), s1 = (L2, 0.5, 1.0)
[ Solution: no ]

(d) s0 = (L2, 1.7, 0.5), s1 = (L2, 1.5, 0.1)
[ Solution: yes ]

(2.5,3.2)

(1.5,2.7)

(1.5,2.2)

(0.5,1.0)

(0.5,1.4)

(2.5,3.7)

(1.5,0.1)

(1.7,0.5)

2

3

x1

x2

Roberto Sebastiani Ch. 11: Timed and Hybrid Systems Sunday 24th May, 2020 95 / 100



Exercises

Ex: Timed Automata: Zones
Consider the following switch e in a timed automaton, x and y being clocks:

L1

y ≥ 4
y ≤ 6

L2

x > 5 a y := 0

and let Z1
def
= 〈L1, ϕ〉 s.t ϕ def

= (x ≥ 2) ∧ (x ≤ 3) ∧ (y ≥ 2) ∧ (y ≤ 5) ∧ (y − x ≤ 2).
Compute succ(Z1, e), drawing the process on the cartesian space 〈x , y〉.
[ Solution: The solution is succ(Z1, e) = 〈Z2,⊥〉. In fact, the zone reached by waiting
in L1 has empty intersection with the guard, as displayed in figure:

y ≤ 5

y ≥ 2

x > 5

y − x ≥ 1y − x ≤ 2

x ≤ 3x ≥ 2

y

x

ϕ

y ≤ 6

y ≥ 4

ϕ′

]
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Exercises

Hybrid Automata

A railway-crossing gate, whose dynamics is represented by the hybrid automaton in
the figure, receives from a controller two possible input signals {lower,raise}. (θ, in
degrees, represents the angle between the bar and the ground.)
When the gate is open the controller receives a signal “incoming” when a train is
incoming, it waits a fixed amount of time ∆t , then it sends the gate the lower order.
It is known that an incoming train takes an amount of time within the interval [70,100]
time units to get from the remote sensor to the gate.
Compute the maximum amount of time ∆t which guarantees that the train does not
reach the gate before the bar is completely lowered, and briefly explain why.

lower

raise

lower
raise

Open
θ = 90
dθ
dt = 0

Raising
θ ≤ 90

dθ
dt ∈ [9, 10]

Closed
θ = 0
dθ
dt = 0

Lowering
θ ≥ 0

dθ
dt ∈ [−10,−9]

(θ = 0)
(θ = 90)
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Exercises

Hybrid Automata

[ Solution: ∆t is 60 time units. In fact, the maximum value of ∆t the controller can
afford waiting is given by the minimum time the train may take to reach the gate (70),
minus the maximum time taken by the bar to lower, that is, the time taken to lower the
angle from 90 to 0 at the lowest absolute speed (90/|-9|). Overall, we have thus
∆t = 70− 90/(| − 9|) = 60. ]
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Exercises

Difference Bound Matrices

Consider the zone:
ϕ

def
= (x1 ≤ 3) ∧ (x2 ≤ 2) ∧ (x3 ≤ 5)∧

(x1 − x3 ≤ 2) ∧ (x2 − x1 ≤ −2) ∧ (x3 − x1 ≤ 3) ∧ (x3 − x2 ≤ 1)

(a) Compute the corresponding DBM
(b) Compute the reduced DBM
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Exercises

Difference Bound Matrices

[ Solution: ϕ
def
= (x1 ≤ 3) ∧ (x2 ≤ 2) ∧ (x3 ≤ 5)∧

(x1 − x3 ≤ 2) ∧ (x2 − x1 ≤ −2) ∧ (x3 − x1 ≤ 3) ∧ (x3 − x2 ≤ 1)

Initial DBM:
x0 x1 x2 x3

x0 〈∞,≤〉 〈∞,≤〉 〈∞,≤〉 〈∞,≤〉
x1 〈3,≤〉 〈∞,≤〉 〈∞,≤〉 〈2,≤〉
x2 〈2,≤〉 〈−2,≤〉 〈∞,≤〉 〈∞,≤〉
x3 〈5,≤〉 〈3,≤〉 〈1,≤〉 〈∞,≤〉

x0

x1

x2

x3

2
3

3

∞

∞

5
−2

∞

2
∞ ∞

1

Reduced DBM:
x0 x1 x2 x3

x0 〈0,≤〉 〈∞,≤〉 〈∞,≤〉 〈∞,≤〉
x1 〈3,≤〉 〈0,≤〉 〈3,≤〉 〈2,≤〉
x2 〈1,≤〉 〈−2,≤〉 〈0,≤〉 〈0,≤〉
x3 〈2,≤〉 〈−1,≤〉 〈1,≤〉 〈0,≤〉

x0

x1

x2

x3

2
−1

3

∞

∞

2
−2

3

1
∞ 0

1

]
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