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The problem

@ Given a Kripke structure M and an LTL specification ¢, does M
satisfy p?:

M=o

@ Equivalent to the CTL* M.C. problem:

M= Ap

@ Dual CTL* M.C. problem:

M= E-p
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LTL Symbolic M.C.

@ Let M be a Kripke model and ¢ be an LTL formula:
M = Ay (CTL)
M \— (LTL)
L(M

L(M x )—
Mx T, y& EGirue

e T is a fair Kripke structure, called Tableau, which represents all
and only the paths that satisfy - (do not satisfy )
— M x T-, represents all and only the paths appearing in M and not
in .

10y
uéw
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LTL Symbolic M.C. (dual version)

@ Let M be a Kripke model and ¢ £ —¢ be an LTL formula:
M = Ey
— M A
= L(MxT,)#0
< M x T, = EGtrue

@ T, is a fair Kripke structure, called Tableau, which represents all
and only the paths that satisfy the LTL formula

— M x T, represents all and only the paths appearing in both M and
Ty.
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LTL Symbolic Model Checking

Three steps:
(i) Compute the tableau T,
(Ty is a fair Kripke structure)
(i) Compute the product M x T,
(M x T, is a fair Kripke structure)
(iii) Check the emptiness of L(M x T,)
(e.i., check that M x T, = EGTrue)
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Building the tableau T, for ¢: the set of states

@ Elementary subformulas of ¢: el(v)
o el(p) :={p}
o el(~p1) = el(y1)
o el(p1 N p2) := el(pr) U el(p2)
o el(Xp1) = {Xp1} Uel(pr)
o e/(<,:1 U’,Og) = {X(L,O1 Ukpg)} U 9/((,91) U e/(Lpg)
@ Intuition: el(v) is the set of propositions and X-formulas occurring
', ¢’ being the result of applying recursively the tableau
expansion rules to ¥

@ The set of states St of T, is given by 2¢/(+)

@ The labeling function L7, of T,, comes straightforwardly
(the label is the Boolean component of each state)
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Example: ¢ := pUqg

@ el(pUq) = el((q Vv (p A X(pUQ))) = {p.q,X(pUQq)}

= S71, ={
1: {p,q,X(pUq)}, [pUq]
2: {-p,q,X(pUq)}, [pUq]
3: {p,~q,X(pUqg)}, [pUq]
4: {-p,q,-X(pUq)}, [pUq]
5: {=p,—q,X(pUq)}, [-pUq]
6: {p,q,~X(pUq)}, [pUq]
7: {p,—q,-X(pUq)}, [-pUq]
} 8: {=-p,—q,-X(pUq)} [-pUq]
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The general algorithm Compute the tableau T,

Example: ¢ := pUq [cont.]

1‘ 2‘ | ‘
5 6
4‘ ‘ ‘
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Building the tableau T, for ¢: sat()

@ Set of states in St satisfying ;. sat(y;)
sat(p1) = {s | p1 € s}, o1 € el(y)
o sat(~g+) = Sr, /sat(p+)
o sat(p1 A g2) := sat(py) N sat(p2)
sat(p1Ugp2) == sat(p2) U (sat(p1) N sat(X(p1Ug2)))
@ intuition: sat() establishes in which states subformulas are true

Roberto Sebastiani Ch. 07: LTL Symbolic Model Checking Monday 18th May, 2020 13/56



The general algorithm Compute the tableau T,

Example: ¢ := pUq [cont.]

1‘ 2‘ | ‘
5 6
4‘ ‘ ‘
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The general algorithm Compute the tableau T,

Building the tableau T, for ¢: initial states and
transition relation

@ Set of states in Sr,, satisfying ¢;: sat(y;)

o sal(p1) == {s| 1 € s}, ¢1 € el(y)
e sat(—p1) := Sr,/sat(¢1)

@ sat(p1 A p2) := sat(p1) N sat(pz)

o sat(p1Uy») := sat(y2) U (sat(p1) N sat(X(e1Up2)))
@ Intuition: sat() establishes in which states subformulas are true
@ The set of initial states /7, is defined as

It = sat(i))

@ The transition relation Rr, is defined as

Rr,(s,8') = ﬂ {(s,8) | s € sat(Xy;) < s € sat(p;)}
Xpicel(i))
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The general algorithm Compute the tableau T,

Example: ¢ := pUq [cont.]
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The general algorithm Compute the tableau T,

Problems with U-subformulas

® Ry, does not guarantee that the U-subformulas are fulfilled

@ Example: state 3 {p, —q, X(pUQq)}:
although state 3 belongs to

sat(pUq) := sat(q) U (sat(p) N sat(X(pUQ))),

the path which loops forever in state 3 does not satisfy pUq, as q
never holds in that path.
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The general algorithm Compute the tableau T,

Tableaux rules: a quote

“After all... tomorrow is another day."
[Scarlett O’Hara, “Gone with the Wind’]
Ch. 07: LTL Symbolic Model Checking Monday 181" May, 2020

18/56



The general algorithm Compute the tableau T,

Fairness conditions for every U-subformula
@ it must never happen that we get into a state s’ from which we can

enter a path 7’ in which ¢1Up» holds forever and o never holds.
In CTL*: -EFEG((¢1Up2) A —¢2) (“bad loop”)

-2 -2 -2 -2

WUQZ o1U @2 elU @2 o@lU¢@2

— For every [positive] U-subformula ¢1Ug, of ¢, we must add a
fairness CTL* condition AGAF(—(¢1Ug2) V ¢2)
(in LTL: GF(=(p1Up2) V ¢2))
If no [positive] U-subformulas, then add one fairness condition
AGAFT.

— We restrict the admissible paths of T, to those which verify the
fairness condition: T, := <Srw, Ir,,Rr,. Lt,, FTw>

Fr, == {sat(=(p1Up2) V 2)) s.t. (p1Uyp2) occurs [positively]in i}
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The general algorithm Compute the tableau T,

Example: ¢ := pUq [cont.]
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The general algorithm Compute the tableau T,

Symbolic representation of T,

@ State variables: one Boolean variable for each formula in el(1))

e EX: p, gand x and primed versions p’, g’ and x’
[ x is a Boolean label for X(pUQ) ]

@ sat(yj):
e sat(p) := p, s.t. p Boolean state variable
o sat(—p1) := —sat(e1)
o sat(p1 A 2) := sat(p1) A sat(pz)
o sat(Xyj) = Xx,], S-t. X[x,,) Boolean state variable
o sat(p1Uyp2) := sat(p2) V (sat(p1) A sat(X(p1Ug2)))
= sat(p1Uyp2) := sat(p2) V (sat(¢1) A Xxp,Ups])
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The general algorithm Compute the tableau T,

Symbolic representation of T, [cont.]

° ..
o Initial states: I, = sat(v)
e EX: I(p,g,x)=qV (pAX)
@ Transition Relation:
Rr,(s,8") = Nxyeeiw) {(S:5') | s € sat(Xgj) < s € sat(yp;)}
® Rr, = Axypceiw) (5at(Xe;) <+ sat'(¢i))
where sat'(;) is sat(y;) on primed variables
® EX:Rr,(p,q,x,p',q" . X') =x < (q'V (P’ A X))
@ Fairness Conditions:
Fr, == {sat(=(p1Up2) V ¢2)) s.t. (p1Uyp2) occurs [positively]in 1}

e EX: Fr,(p,q,x)==(qV(pAX))Vg=..=-pV-XxVQqg
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The general algorithm Compute the tableau T,

Symbolic representation of T,,: examples

® I1,(p,q.x) =qV(pAX)
1: {p7q7x}':IT¢ a@x
3: {p,-q,x} EIr, 2
b {-p,—q,x} ¥ I,

o RT@;(pv q>X7p/7q/7X/) = t

X< (q'V(p'AX))

1=1: {p,g,x,p,q9,x'} FRr,
6=7: {p,q,~x,p,~q,~x'} = Rr,
6 7é> 1: {pa q, _'valv q/axl} b& RTw 7p

S 2
OFTw(p7q7X):_‘p\/—'X\/q é‘% N
1: {paq’x}):FTw

S: {—|p,—|q,X} ): FTw
B: {pa_'qax} l# FT¢
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Computing the product P := T, x M

@ Given M = <SM, IM, RM, LM> and Ti/’ = <STU7 /7'W RTW LTUN FTU)>,
we compute the product P := T, x M = (S, I, R, L, F) as follows:
e S:={(s,8)|secSr,, s €SuyandLy(s)ly = L1, (s)}
o I:={(s,8)|sclr, seclyand Ly(s)ly = Lr,(s)}
e Given (s,5'),(t,t') € S, ((s,9),(t,t')) € Riff (s,t) € Rr, and
(',t) € Ru
o L((s,8))=Lr,(s)ULm(s)
@ Extension of saf() and Fr, to P:
(s,8') € sat(y)) < s € sat(v)
F = {sat(—(p1Ug2) V v2) s.t. (p1Uy2) occurs [positivelyin 1)}
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Computing the product P := T, x M symbolically

Let V, W be the array of Boolean state variables of T, and M
respectively:

@ Initial states: /(V U W) = I (V) A Iu(W)
@ Transition Relation: R(VU W, V'UW') = Ry (V, V')A Ry(W, W’)
@ Fairness conditions:

{FI(VUW),...,Fk(VUW)} = {Fr,1(V), ..., FT k(V)}
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Main theorem [Clarke, Grumberg & Hamaguchi; 94]

Theorem

THEOREM: M.s' |= Ev iff there is a state siin Ty, s.t. (s,5') € sat(v)
and T, x M, (s,s’) = EGtrue under the fairness conditions:

{sat(—(¢1Up2) V ¢2)) s.t. (p1Up2) occurs in}.

— M EEyiff T, x M = E/Gtrue
— M= iff T, x M}~ EfGtrue

@ LTL M.C. reduced to Fair CTL M.C.!!!
@ Symbolic OBDD-based techniques apply.
Note

The transition relation R of T, x M may not be total.
— Check_FairEG does not need to consider states without
successors, restricting R to the remaining states.

Roberto Sebastiani Ch. 07: LTL Symbolic Model Checking Monday 18th May, 2020 28/56




A microwave oven

@ 4 variables: start, close, heat, error

@ Actions (implicit): start_oven,open_door, close_door, reset,
warmup, start_cooking, cook, done

@ Error situation: if oven is started while the door is open
@ Represented as a Kripke structure (and hence as a OBDD’s)
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An example

A microwave oven [cont.]

start_owen cook

| door
s¢_door

staft_owen
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An example

A microwave oven: symbolic representation

@ Initial states: /y(s,c,h,e) = —=s A —=hA—e

@ Transition relation: Ry(s,c, h,e, s’,c’, i, e') = [a simplification of]

—SA-CA-hA—eNn—=S' A AN~ N—¢€)
SA-cA-hA eN SA A=K A €)
—SA € A—eA-SA-CA-HN-€)
SA cA-hA eN SA-CA-H A €)
—SA CcA-hA—eA S'A cA-HN-€)
—SA=CA—-hA-eN S'A-C'A-H A €)
SA cA—-hA en—S'A A=W N—€)
SA cA—hhn—en S'A N WA-€)
SA cA ha-en—S'A N HA—€)
-SA ¢\ han—-en—S'A N HA=€)
-SA cA hAa—-en—S'A ' N-HNn—€)

N N N AN N N AN A~ A~

(close_door, no error)
(close_door, error)
(open_door, no error)
(open_door, error)
(start_oven, no error)
(start_oven, error)
(reset)

(warmup)
(start_cooking)
(cook)

(done)

Note: the third row represents two transitions: 3 — 1 and 4 — 1.
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An example

LTL specification

@ “necessarily, the oven’s door eventually closes and, till there, the
oven does not heat”:
M = A(—heat U close),

M = —E—(—heat U close)
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An example

Tableau construction for ¢» = —~(—heat U close)

@ ¢ := ) = (—heat U close)
@ Tableaux expansion:
1) = —(—heat U close) = —(close \ (—heat N X(—heat U close)))

@ el(v) = el(y) = {heat, close, Xy} ({h, c,Xp})

@ States:
1:= {_'h7 C, XSO}a 2:= {h7 C, XQO}, 3:= {_'h7 —C, XQO}>
4= {h7 c, ﬂXSO}a S:i= {h7_'Cv X(p}, 6:= {_‘h7 C, ﬂXQO}v
7 :={=h,—c, Xy}, 8:={h,—-c,—Xp}
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An example

Tableau construction for » = —=(—heat U close) [cont.]
&
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An example

Tableau construction for ¢» = —~(—heat U close)

° ..
@ States:
1:={=h,c,Xp}, 2:={h,c,Xp}, 3:={-h,—c, Xp},
4 :={h,c,—Xp}, 5:={h,—c,X¢}, 6 :={-h,c,~Xp},
7 :={=-h,—c,~Xp}, 8:={h,—c,— Xy}
@ sat():
sat(h) = {2,4,5,8} — sat(—-h)={1,3,6,7},
sat(c) = {1,2,4,6} — sat(—-c) ={3,5,7,8},
sat(Xyp) ={1,2,3,5} — sat(—Xy) =1{4,6,7,8},
sat(y ) = sat(c) U (sat(—h) n sat(X(-h U c))) ={1,2,3,4,6}
— sat(y) = sat(-¢) = {5,7,8}

Roberto Sebastiani Ch. 07: LTL Symbolic Model Checking Monday 18th May, 2020 36/56



An example

Tableau construction for » = —=(—heat U close) [cont.]

sat(h)
2 3

sat(—h)

8
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An example

Tableau construction for » = —=(—heat U close) [cont.]

sat(—h)

38/56
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An example

Tableau construction for » = —=(—heat U close) [cont.]
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An example

Tableau construction for » = —=(—heat U close) [cont.]

1 2 3

4

sat( @)

sat(—Q)

6

Roberto Sebastiani
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Tableau construction for » = —=(—heat U close) [cont.]

° ..
@ sat():
sat(h) = {2,4,5,8} — sat(—-h) ={1,3,6,7},
sat(c) = {1,2,4,6} — sat(-c) ={3,5,7,8},
sat(Xp) = {1 2,3,5} = sat(—Xy)=1{4,6,7,8},
sat(y) = sat(c) U (sat(—h) nsat(X(-h U c))) ={1,2,3,4,6}

@ Initial states I: sat(y)) = sat(—y) = {5,7,8}
@ Transition Relation R:

e add an edge from every state in to every state in sat(y)
e add an edge from every state in sat(—X¢) to every state in sat(—y)
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An example

Tableau construction for » = —=(—heat U close) [cont.]

sat( @) sat(X @ )

,,,,,,,,,,,,,,,,,,,,,

sat(X —)

,,,,,,,,

sat(—9 )
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An example

Tableau construction for » = —=(—heat U close) [cont.]
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An example

Problems with U-subformulas

@ R does not guarantee that —heatUclose is fulfilled

@ Example: although state 3 belongs to sat(—heatUclose), the path
which loops forever in 3 does not satisfy —heatUclose, as close
never holds in that path.

@ We restrict the admissible paths of T, to those which verify the
fairness condition:

{sat(—(—heat Uclose) V close)}

Remark

Alternatively, since (—heat Uclose) occurs with negative polarity in ,
here we can simply state the fairness condition “T”.
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An example

Symbolic representation of Ty, s.t. ¢ ;== =(=hUc)

@ State variables: h, ¢ and x and primed versions /, ¢’ and x’
[ x is a Boolean label for X(—hUc) ]

o Initial states: I, = sat(+)
= I(h,¢,x) = =(cV (=h A x))

o Transition Relation: Ry, = Ax,, cei(y) (Sat(Xepi) <> sat'(¢i))
= Ry, (h,c,x,N,c . X')=x (¢' V(=N AX))

@ Fairness Property:

Fr, = {sat(—(¢1Up2) V ¢2)) s.t. (p1Up2) in 1}
= Fr,(h,c,x)=—(cV(-hAXx))ve=..=hVv-xVec

@ Alternative (due to negative polarity of (—heat Uclose) in 1)):
Fr,(h,e,x)=T
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An example

Product P=T, x M
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An example

Product P = T, x M [cont.]

D __ A/ o ahla etatae Anhi\
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An example

Product P = T, x M: symbolic representation

@ Initial states: /(s,c, h,e, x) = (=s A —=hA—-e)A=(cV (-hAX))=
-SA—-hA—-eA-CA—X
@ Transition relation: R(s,c, h,e,x,s’,c’, i, €, x") = (an OBDD for)

(x < (VA AX)))A(
—SA=CA-hA—eA=S'N AW N—-e
SA—cA—hA en S'A dA-HA e

c A—=eA-S' A=’ A\=h A—e

cA—-hA en SA-C'A-HN e

—SA
SA

( )
( )
( )
( )
( =sA cA—-hn-en SN dA-H A-€)
( —sA—cA—hn—en SIA-CA-HA €)
( )
( )
( )
( )
( ')

SA
SA
SA
—SA
—1SA

cA—hA en—s'A
cA—han—en s'A
cN han—en—s'A
cA han—en—s'A
cN han—en—s'A

c/'A—-H N—e
cn Wh—e
N Wnh-e
cn Wh—e
c/'A—-H n—e

V
V
V
V
V
V
V
V
V
V
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An example

[EGtrue]: symbolic representation

@ Emerson-Lei returns (an OBDD equivalent to):

EGtrue =

( ~sA—cA—hA—en
( sA—cA—hA en
( —~sA cA—hhn—en
( SN cN han—en
(

(

(

>

>

—

>

SA cA—hA en
SA cA—-hA—eA
SA cA hAa—en

<< <<<<<

>

A~ N N S N S
N === w
NOoorhs WO =

>

~— e N N N N

(other unreachables states

@ Initial states: /(s,c, h,e,x) = s A—=hA—-eAN—-CA—x
= I(s,c, h, e, x) |~ EGtrue
— | Z [EGtrue]
— Ty x M = EGtrue
—> Property verified!
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An example

The property verified is...
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Ex: Symbolic LTL Model Checking

Given the following LTL formula: ¢ % -((GFp A GFq) — GFr)

(a) Compute the Negative Normal Form of ¢ (NNF(y)).
¢ <= —((GFpA GFq) — GFr)
o < —(~(GFp A GFq) Vv GFr)
[Solution: . (GFp A GFq A ~GFr) ]
< (GFp A GFgAFG-r) < NNF(p)
(b) Compute the set of elementary subformulas of ¢.

[ Solution: First write the formula in terms of X and U’s (write “Fq" for “TU”):

¢ <= ~((GFpAGFq) — GFr)
<= —((-F-Fp A -F-Fq) — —-F=Fr)

el(F-Fp) = {XF-Fp} U el(-=Fp) = {XF-=Fp} U {XFp} U el(p) = {XF-Fp, XFp, p}.
Hence: el(p) = el(-((-F-Fp A -F=Fq) — —F-Fr))
= el(F-Fp) U el(F-Fq) U el(F-Fr) ]
= {XF-Fp,XFp, p, XF-Fq, XFq, q, XF-Fr, XFr, r}
(c) What is the (maximum) number of states of a fair Kripke Model representing ©?

Solution: By definition it is 2/(¥)l = 2° = 512, |
Roberto Sebastiani Ch. 07: LTL Symbolic Model Checking

Monday 181 May, 2020  52/56



Ex: Symbolic LTL Model Checking

Given the following LTL formula e —F-p, compute and draw the tableau 7, of ¢. [
Solution:

(i) The set of elementary subformulas of ¥ is el(1)) & {p, XF—p}. Hence, the set of

states is
{s1: (P, =XF=p), sz : (p,XF-p), s3: (=P, ~XF-p), s4: (—p, XF-p)}

(i) The set of initial states of Ty, is sat(v)) *'s \ (sat(—p) U sat(XF-p)) = {s1}.

(iii) Since s is the only state in sat(—F—p), then s; is the only successor of itself, so
that the only relevant transition is a self-loop over s;.
(One can also —un-necessarily— draw all transitions from states where =XF-p
holds into {si} and from from states where XF—p holds into {s;, s3, S4}.)

(iv) There is one U-subformula, F—p, so that there is one fairness condition defined as
sat(—=F—-p Vv —p) . Since F—p is false in sy, then sy is part of the fairness condition.
[Alternatively: there is no positive U-subformula, so that we must add a AGAFT

fairness condition, which is equivalent to say that all states belong to the fairness
condition. ]
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Exercises

Ex: Symbolic LTL Model Checking (cont.)

[ Solution:
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Ex: Symbolic LTL Model Checking

Given the following LTL formula % Gp, compute and draw the tableau 7, of .
[Without converting anything into X, U].
[ Solution:

(i) The set of elementary subformulas of ¥ is el(1)) o {p, XGp}. Hence, the set of

states is

{s1:(p,XGp), sz : (P, ~XGp), s5: (—p,XGp), 4 : (~p, ~XGp)}
(i) The set of initial states of Ty, is sat(v)) = sat(p) N sat(XGp) = {s1}.
(iii) Since s is the only state in sat(Gp), then s; is the only successor of itself, so that
the only relevant transition is a self-loop over sj.
(One can also —un-necessarily— draw all transitions from states where XGp
holds into {s{} and from from states where =XGp holds into {s5, s3, S4}.)

(iv) Since there is no “U” subformula, we must add a AGAF T fairness condition, which
is equivalent to say that all states belong to the fairness condition.

] v
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Exercises

Ex: Symbolic LTL Model Checking (cont.)

[ Solution:

C

or, alternatively without simplifications:
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