Introduction to Formal Methods
Chapter 05: Symbolic CTL Model Checking

Roberto Sebastiani

DISI, Universita di Trento, ltaly — roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/fm2020/
Teaching assistant: Enrico Magnago —enrico.magnagoQunitn.it

CDLM in Informatica, academic year 2019-2020

last update: Monday 1gih May, 2020, 14:48

Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti, M.
Di Natale, P Pandya, M. Pistore, M. Roveri, and S.Tonetta, who detain its copyright. Some exampes displayed in these
slides are taken from [Clarke, Grunberg & Peled, “Model Checking”, MIT Press], and their copyright is detained by the

authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly
forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public
without containing this copyright notice.

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 1gth May, 2020 1/68

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fm2020/
enrico.magnago@unitn.it

.
Outline

0 Motivations

9 Ordered Binary Decision Diagrams
Q Symbolic representation of systems
@ Symbolic CTL Model Checking

e A simple example

@ Symbolic CTL M.C: efficiency issues

@ Exercises

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 1gth May, 2020 2/68

The Main Problem of CTL M.C. State Space Explosion

@ The bottleneck:
e Exhaustive analysis may require to store all the states of the Kripke
structure, and to explore them one-by-one
e The state space may be exponential in the number of components
and variables
(E.g., 300 Boolean vars = up to 2300 ~ 100 states!)
e State Space Explosion:

@ too much memory required
@ too much CPU time required to explore each state

@ A solution: Symbolic Model Checking

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 1gth May, 2020 4/68

Symbolic Model Checking

Symbolic representation:

@ manipulation of sets of states (rather than single states);
@ sets of states represented by formulae in propositional logic;
e set cardinality not directly correlated to size

@ expansion of sets of transitions (rather than single transitions);

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 1gth May, 2020 5/68

Symbolic Model Checking [cont.]

@ two main symbolic techniques:
e Binary Decision Diagrams (BDDs)
e Propositional Satisfiability Checkers (SAT solvers)
@ Different model checking algorithms:
Fix-point Model Checking (historically, for CTL)
Fix-point Model Checking for LTL (conversion to fair CTL MC)
Bounded Model Checking (historically, for LTL)
Invariant Checking

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 1gth May, 2020

6/68

Ordered Binary Decision Diagrams

Ordered Binary Decision Diagrams (OBDDs)
[Bryant, '85]

Canonical representation of Boolean formulas

@ “If-then-else” binary direct acyclic graphs (DAGs) with one root
and two leaves: 1,0 (or T, L;or T, F)

@ Variable ordering A+, Ao, ..., A, imposed a priori.
@ Paths leading to 1 represent models
Paths leading to 0 represent counter-models
Note

Some authors call them Reduced Ordered Binary Decision Diagrams
(ROBDDs)

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 1gth May, 2020 8/68

OBDD - Examples

OBDDs of (ay <» by) A (a2 <» b2) A (as < bs) with different variable
orderings

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 1gth May, 2020 9/68

Ordered Binary Decision Diagrams

Ordered Decision Trees

@ Ordered Decision Tree: from root to leaves, variables are
encountered always in the same order

@ Example: Ordered Decision tree for ¢ = (a A b) V (¢ A d)

@"’/

N\
g ©
©
b g %

7
Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 10/68

@/

S ORON
_;A/@‘ -~

@/

3%

Ow- _
Ow-
Yy
_L‘/
-
—

Ordered Binary Decision Diagrams

From Ordered Decision Trees to OBDD'’s: reductions

@ Recursive applications of the following reductions:
e share subnodes: point to the same occurrence of a subtree
(via hash consing)
e remove redundancies: nodes with same left and right children can
be eliminated (“if Athen Belse B = “B")

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 11/68

Reduction: example

Ordered Binary Decision Diagrams

Recursive structure of an OBDD

Assume the variable ordering A+, Ao, ..., Ap:

OBDD(T,{A1,As, ..., An}) = 1
OBDD(L,{A1,As, ..., As}) = 0
OBDD(p, {A1, A, ..., An}) = Iif A
then OBDD(¢[A1|T], {As, ..., An})
else OBDD(y[A1| L], {As, ..., An})

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 13/68

Incrementally building an OBDD

e obdd_build(T,{..}) =1,
@ obdd build(L,{..}) := o,
e obdd build(A;, {...}) := ite(A;, 1,0),

@ obdd_build((—¢),{A1, ..., An}) ==
apply (—, obdd_build(p,{A1, ..., An}))

e obdd_build((01 0p 2), {A1, ..., An}) i=

reduce(

apply(op,
obdd_build(p1,{A1,....,An}), op € {NV,—, +}
obdd_build(p2,{A1,...,An})

))

“ite(Ai, o, i) is “If A; Then ¢ Else ;"

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 14/68

Incrementally building an OBDD (cont.)

@ apply (op, O;, 0)) :=

(Ojop O)) if (O, Oy € {1,0})

° apply (-, ite(A, @] o7)) =
ite(Ar, apply (=,]), apply (=, ¢7"))
o apply (op, ite(Ar, o] o), ite(A,,so,-Twﬁ)) =

if (Aj = Aj) then ite(A;,
if (A; < Aj) then ite(A;,

if (Aj > A;) then ite(A;,

op € {A,V,—, ¢}

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking

apply (op, w, 45 i),
)

apply (op, 99, ,%7))

apply (op, ol T ite(A; Lr ¢)
apply (op, pi-, ite(A) 7@,)
apply (0p. ite(Ar o] 1),)
apply (op, ite(Ai, ¢, 1), 7))

Monday 18 May, 2020

15/68

Incrementally building an OBDD (cont.)

@ Ex: build the obdd for A; VV A, from those of Ay, As (order: Ay, Ao):
Ay Az
apply(V,ite(Ay, T, L), ite(Az, T, 1))

= ite(Aq, apply(Vv, T,ite(A,T,L)), apply(V, L, ite(A2, T, 1)))

= ite(Ay, T, ite(As, T, 1))
@ Ex: build the obdd for (A; v A2) A (A vV =Az) from those of

(A1 V Az), (A Vv —A) (order: Ay, Ay):
(A1VAz) (AjV-Ay)

apply (A, ite(Aq, T,ite(Az, T, 1)), ite(Aq, T,ite(Az, L, T)),
ite(A1, apply(A, T,T), apply(A, ite(A2, T, 1), ite(As, L, T))
ite(Aq, T, ite(Az, apply(N, T,L1), apply(A, L, T)))
ite(Ay, T, ite(A2, L, 1))
ite(Ay, T, 1)
Ch. 05: Symbolic CTL Model Checking Monday 181" May, 2020 16/68

Ordered Binary Decision Diagrams

OBBD incremental building — example
p = (A1 V A2) A (A1 V —\Ag) A (—\A1 V Ag) N (—\A1 V —\Ag)

(AlvA2) (Alv -A2) (-A1VA2) (-A2 v -A2)

@, @

S

(Alv A2) (AL v -A2) (-Alv A2) A (-Al v -A2)

(ALv A2) A (ALV -A2) A (-AlvA2) A (-Al v -A2)

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 17/68

Ordered Binary Decision Diagrams

Critical choice of variable Orderings in OBDD’s

(31 > b1) VAN (32 > bg) N (83 > b3)

Linear size Exponential size
Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020

18/68

Ordered Binary Decision Diagrams

OBDD’s as canonical representation of Boolean
formulas

@ An OBDD is a canonical representation of a Boolean formula:
once the variable ordering is established, equivalent formulas are
represented by the same OBDD:

01 ¢ p <= OBDD(p1) = OBDD(y)

@ equivalence check requires constant time!
—validity check requires constant time! (¢ < T)
=—(un)satisfiability check requires constant time! (¢ +> 1)

@ the set of the paths from the root to 1 represent all the models of
the formula

@ the set of the paths from the root to 0 represent all the
counter-models of the formula

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 19/68

Exponentiality of OBDD’s

@ The size of OBDD’s may grow exponentially wrt. the number of
variables in worst-case

@ Consequence of the canonicity of OBDD’s (unless P = co-NP)

@ Example: there exist no polynomial-size OBDD representing the
electronic circuit of a bitwise multiplier

Note

The size of intermediate OBDD’s may be bigger than that of the final
one (e.g., inconsistent formula)

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 20/68

Useful Operations over OBDDs

@ the equivalence check between two OBDDs is simple
e are they the same OBDD? (= constant time)

@ the size of a Boolean composition is up to the product of the size
of the operands: |f op g| = O(|f| - |g|)

AT

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 21/68

Ordered Binary Decision Diagrams

Boolean quantification

Shannon’s expansion:

@ If vis a Boolean variable and f is a Boolean formula, then
dv.f = f‘vzo\/f‘v:1

@ v does no more occur in 3v.f and Vv.f !l

@ Multi-variable quantification: J(wy, ..., wy).f == Jwy ... 3w,.f

@ Intuition:
o u E3Jv.fiffexists tvalue € {T, 1} s.t. pU{v:=tvalue} = f
o u E=Vv.fiffforall tvalue € {T, L}, pU{v := tvalue} = f

@ Example: 3b,c . ((anb)V (cnd)) = avd

Note

Naive expansion of quantifiers to propositional logic may cause a
blow-up in size of the formulae

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 22/68

Ordered Binary Decision Diagrams

OBDD’s and Boolean quantification

@ OBDD’s handle quantification operations quite efficiently

o if fis a sub-OBDD labeled by variable v, then f|,—y and f|,—o are
the “then” and “else” branches of f

— lots of sharing of subformulae!

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 23/68

OBDD — summary

@ Factorize common parts of the search tree (DAG)
@ Require setting a variable ordering a priori (criticall)
@ Canonical representation of a Boolean formula.

@ Once built, logical operations (satisfiability, validity, equivalence)
immediate.

@ Represents all models and counter-models of the formula.
@ Require exponential space in worst-case

@ Very efficient for some practical problems (circuits, symbolic
model checking).

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 24/68

Symbolic representation of systems

Symbolic Representation of Kripke Structures

@ Symbolic representation:
o sets of states as their characteristic function (Boolean formula)
e provide logical representation and transformations of characteristic
functions
@ Example:
o three state variables xq, xo, x3:
{ 000, 001, 010, 011 } represented as “first bit false”: —x;
o with five state variables x1, x2, X3, X4, Xs5:
{ 00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111,...,
01111} still represented as “first bit false”: —x;

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 26/68

Symbolic representation of systems

Kripke Structures in Propositional Logic

@ Let M= (S, I,R, L, AF) be a Kripke structure

@ States s € S are described by means of an array V of Boolean
state variables.

@ A state is a truth assignment to each atomic proposition in V.

e 0100 is represented by the formula (—x1 A X2 A =X3 A —X4)
e we call £(s) the formula representing the state s € S
(Intuition: £(s) holds iff the system is in the state s)

@ A set of states Q C S can be represented by (any formula which is
logically equivalent to) the formula £(Q):

\ &(s)
seQ

(Intuition: £(Q) holds iff the system is in one of the states s € Q)
@ Bijection between models of £(Q) and states in Q

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 27/68

Remark

@ every propositional formula is a (typically very compact)
representation of the set of assignments satisfying it

@ Any formula equivalent to £(Q) is a representation of Q
= Typically Q can be encoded by much smaller formulas than
Vsea(s)!

@ Example: Q ={ 00000, 00001, 00010, 00011, 00100, 00101,
00110, 00111,...,01111 } represented as “first bit false”: —x;

vseof(s) = (X1 A X2 A X3 A Xg A —X5) V
(_|X1 A = Xo AN =Xz A —Xg N\ x5) \Vi
(—x1 A X2 A=x3 AXg A-xs) Vo 24disjuncts

(—X1 A X2 A X3 A\ Xq A Xs)

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 28/68

Symbolic representation of systems

Symbolic Representation of Set Operators

One-to-one correspondence between sets and Boolean operators

@ Set of all the states: £(S) .= T

@ Empty set: £(0) := L

@ Union represented by disjunction:
§(PUQ) :=¢(P)vE(Q)

@ Intersection represented by conjunction:
§PNQ):=¢(P)nE(Q)

@ Complement represented by negation:
§(S/P) :==—¢(P)

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 29/68

Symbolic representation of systems

Symbolic Representation of Transition Relations

@ The transition relation R is a set of pairs of states: RC Sx S

@ Atransition is a pair of states (s, s’)

@ A new vector of variables V’ (the next state vector) represents the
value of variables after the transition has occurred

@ £(s,5') defined as £(s) A &(S') (Intuition: £(s, ') holds iff the
system is in the state s and moves to state s’ in next step)

@ The transition relation R can be (naively) represented by

\/ s.s)= \/ (Es)ns))

(s,s")ER (s,8')eR

Note

Each formula equivalent to £(R) is a representation of R
— Typically R can be encoded by a much smaller formula than

/
v(s,s’)eRS(S) N 5(3)!
Ch. 05: Symbolic CTL Model Checking Monday 181" May, 2020 30/68

Symbolic representation of systems

Example: a simple counter
MODULE main

VAR
v0 : boolean;
vl : boolean;
out : 0..3;
ASSIGN
init (v0) := 0;
next (v0) := !'vO0O;
init (vl) := 0;
next (vl) = (vO0 xor vl);

out := toint (v0) + 2+xtoint (vl);

O = = Ol
© = o =s

Vi
0
0
1
IS (of——{2)

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 31/68

—‘-O—‘Og

Symbolic representation of systems

Example: a simple counter [cont.]

- (o) (e
) O wH (a0 f——~{()

&(R) = (o)A o oW

- o= ols
o = = Ol
S

(—|V1 A1) /_'V1/ A V(/)) V
(Vi Ao AVy ATy V

Vi A=V AVE AV V
1\ Vo
(vi A Vo A=V A=)

32/68

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020

Symbolic representation of systems

Pre-Image

@ (Backward) pre-image of a set:

Prelmage(P) P

Evaluate one-shot all transitions ending in the states of the set

@ Set theoretic view:
Prelmage(P, R) := {s | forsome s’ € P,(s,s') € R}
@ Logical view: (Prelmage(P. R)) = IV'.(&(P)[V'] AE(R)[V, V)
@ pover Viss.tp = 3V.(E(P)V]AER)V, V) iff,
for some 1/ over V', we have: ;U i/ = (£(P)[V'] AE(R)[V, V),
e, 1 = E(P)[V/] and wU i/ |= E(R)[V, V1)
e Intuition: p <= s,/ <= s, puUy < (s,8)

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 33/68

Symbolic representation of systems

Example: simple counter

Vi
B . o W
0
1
1

o = = ol<
o = o —=|x

—'-O—‘Oo<

B

NI (0f——(n)

ER) = (V) < o) A (V] & o @ 1)
£(P) = (vo > v1) (i.e., P = {00, 11})

&(Prelmage(P, R))
VLE(PIVIALRIV, V) =
vgvi (V) < Vi) A (Vg < —Vo) A (V4 <—>vo@v1)) =
("Vo/\Vo@W)\/ \J_’/ V \J_/ Vo/\ V0®V1 =

Vi=Tvi=L Vi=L,v{=T

/. /. ! ! __
Vo=T,v3=T Vo=1,vi=1

vi (e, {10,11})

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 34/68

Symbolic representation of systems

Pre-Image [cont.]

. &(Prelmage(P, R)) =
y 0 V() o Vi) A (V) <5 Vo) A (V] 5 vo @
f(P) = Vo Wt \ | 2]
\ v
E(R) = (v <> ~vo) A (vi < oD 1)

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking

Monday 18" May, 2020 35/68

Symbolic representation of systems

Forward Image

@ Forward image of a set:

Image(P)

Evaluate one-shot all transitions from the states of the set
@ Set theoretic view:

Image(P, R) := {s'| for some s € P, (s,s’) € R}
@ Logical Characterization:

¢(Image(P, R)) = 3V.({(P)VIAE(R)V, V)

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 36/68

Symbolic representation of systems

Example: simple counter

<
- 0o Oo|s
—‘O—‘Og

o = = 0ol

O—LO—*O<

O (o)

E(R) = (v < o) A (V] & o @ 1)
£(P) = (vo > v1) (i.e., P = {00, 11})

¢(Image(P, R)) = 3V.(S(P)[VINE(RV, V)
= V. ((vo = vi)A (Vg < Vo)A (V] < voDw))

= v (i.e, {00,01})

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 37/68

Symbolic representation of systems

Forward Image [cont.]

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 38/68

Symbolic representation of systems

Application of the Transition Relation

@ Image and Prelmage of a set of states S computed by means of
quantified Boolean formulae

@ The whole set of transitions can be fired (either forward or
backward) in one logical operation

@ The symbolic computation of Prelmage and Image provide the
primitives for symbolic search of the state space of FSM’s

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 39/68

Symbolic CTL model checking

@ Problem: M |= ©?,
e M=(S,I,R, L, AP) being a Kripke structure and
@ ¢ being a CTL formula
@ Solution: represent / and R as Boolean formulas £(/), £(R) and
encode them as OBDDs, and
@ Apply fix-point CTL M.C. algorithm:

e using OBDDs to represent sets of states and relations,
e using OBDD operations to handle set operations
e using OBDD quantification technique to compute Prelmages

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 41/68

Symbolic CTL Model Checking

General Schema

Assume ¢ written in terms of —, A, EX, EU, EG
@ A general M.C. algorithm (fix-point):
(i) represent / and R as Boolean formulas ¢(/), £(R)
(ii) for every ¢; € Sub(y), find £([¢)])
(iii) Check if £(1) — &([¢])
Subformulas Sub(y) of ¢ are checked bottom-up
@ ¢([wi]) computed directly, without computing [¢;] explicitly!!!

e Boolean operators handled directly by OBDDs
e next temporal operators EX: handled by symbolic Prelmage

computation
e other temporal operators EG, EU: handled by fix-point symbolic

computation

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 42/68

Symbolic Denotation of a CTL formula ¢: £([¢])

{(le]) :=E({s € S M, s = ¢})

&([false)) = 1

&([true)) = T

&([mD) = p

E([=pr]) = &([e1]

E(lpr Ap2]) = E(lwr]) AElwal)

S([EX¢]) = AV.(E([eDVTAERIV, V'])
§([EGA]) = vZ.(&([8]) NE([EXZ]))
S(E(B1UB)]) = npZ.(&([B2]) Vv (&([81]) A E([EXZ]))

Notation: if X; and X, are OBDDs and op is a Boolean operator, we
write “X; op Xo” for “reduce(apply(op,Xi,X2))”

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 43/68

Symbolic CTL Model Checking

General M.C. Procedure

OBDD Check(CTL_formula 3) {
if (In_OBDD_Hash(;3))
return OBDD_Get_From_Hash(3);

case 5 of

true: return obdd_true;

false: return obdd false;

-3 return — Check(531);

B1 A Bo: return (Check(31) A Check(32));

EX34: return Prelmage(Check(f4));

EG3:: return Check_EG(Check(34));
E(81UB2): return Check_EU(Check(s1),Check(f2));

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 44/68

Symbolic CTL Model Checking

Prelmage

OBDD Prelmage(OBDD X) {
return IV'.(X[V AE(R)V, V));
1

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking

Monday 18 May, 2020

45/68

Check EG

OBDD Check_EG(OBDD X) {
Y =X, =1,
repeat
Y =Y, j=j+1;
Y’ :=Y A Prelmage(Y));
until (Y’ «+ Y);
return Y;

}

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 46/68

Check EU

OBDD Check_EU(OBDD Xj,X») {
Y =Xo, j =1,
repeat
Y=Y =]+1;
Y =YV (Xi A Prelmage(Y));
until (Y’ «+ Y);
return Y,

}

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking

Monday 18 May, 2020

47/68

CTL Symbolic Model Checking — Summary

@ Based on fixed point CTL M.C. algorithms

@ Kripke structure encoded as Boolean formulas (OBDDs)
@ All operations handled as (quantified) Boolean operations
@ Avoids building the state graph explicitly

@ reduces dramatically the state explosion problem
— problems of up to 10'2° states handled!!

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 48/68

A simple example

A simple example

MODULE main
VAR

b0 : boolean;
bl : boolean;

ASSIGN
init (b0) = 0;
next (b0) = case
b0 : 1;
'b0 {0,1};
esac;
init (bl) := 0;
next (bl) = case
bl : 1;
'bl {0,1};
esac;

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking

Monday 18 May, 2020

50/68

A simple example [cont.]

@ N Boolean variables b0, b1, ...

@ Initially, all variables set to 0

@ Each variable can pass from 0 to 1, but not vice-versa
o 2N states, all reachable

@ (Simplified) model of a student career behaviour.

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 51/68

A simple example: FSM

RN

‘xg é

R}

oy NS S
P

-’

(transitive trans. omitted)
2N STATES
O(2V) TRANSITIONS

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020

.-

52/68

A simple example: OBDD(¢(R))

ON + 2 NODES |

True False

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 53/68

A simple example: states vs.

350

300

250

200

150

100

50

Roberto Sebastiani Ch.

A simple example

70000

BDD NODES —+—

60000

50000

40000

30000

20000

10000

VAR #

05: Symbolic CTL Model Checking

OBDD nodes [NuSMV.2]

STATES ——
BDD NODES -

Monday 18 May, 2020

54/68

A simple example

A simple example: reaching K bits true

@ Property EF(b0 + b1+ ...+ b(N — 1) > K) (K < N)
(it may be reached a state in which K bits are true)

@ E.g.: “itis reachable a state where K exams are passed”

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020

55/68

A simple example: FSM

(%) + (k1) + -+ () tT
K K+1 o N o
Ch. 05: Symbolic CTL Model Checking Monday 181" May, 2020 56/68

A simple example: OBDD(£(y))

/ true
\ false

(N—K+1)-K+2NODES

True False

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 57/68

A simple example

A simple example: states vs.

1000 T T T T T T 8e+08
BDD NODES —+—

900
7e+08

800
6e+08

700
5e+08

600 -
500 4e+08

400
3e+08

300
2e+08

200
1e+08

100
0 L L L L L L 0

2 4 6 8 10 12 14 16

VAR #

Roberto Sebastiani Ch.

05: Symbolic CTL Model Checking

OBDD nodes [NuSMV.2]

STATES ——
BDD NODES -

Monday 18 May, 2020

58/68

Back to OBDDs: Efficiency Issues

OBDD packages provides efficient basis for Symbolic Model Checking:

@ unique representant for each OBDD via hash tables
@ complement-based representation of negation

@ memoizing partial computations

@ garbage collection mechanisms

@ variable reordering algorithms, dynamic activation

@ specialized algorithms for relational products
for Image/Prelmage computations

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 60/68

Symbolic Model Checkers

@ Most hardware design companies have their own Symbolic Model
Checker(s)
e Intel, IBM, Motorola, Siemens, ST, Cadence, ...
e very advanced tools
e proprietary technolgy!
@ On the academic side
CMU SMV [McMillan]
VIS [Berkeley, Colorado]
Bwolen Yang’s SMV [CMU]
NuSMV [CMU, IRST, UNITN, UNIGE]

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 61/68

Ex: OBDDs

Let ¢ - (AA(BvV C))and ¢’ £ JAVB.e. Using the variable ordering “A, B, C”, draw

the OBDD corresponding to the formulas ¢ and ¢'.

o Z (AA(BVC))

[Solution:

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 63/68

Ex: OBDDs (cont.)

¢ € 3AVB.(AA(BVC))
[Solution:

~
o
@),

JAVB.¢

VB.(AA(BV C)))[A:=T] vV (VB.(AA(BVC)))[A:=1]
VB.(BV C)) VvV VB.L

((BvO)[B:=T] A (BvO)B:=1]) v L

(T AN C)

c

S,

which corresponds to the following OBDD:

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 64/68

Ex: Symbolic CTL Model Checking

Given the following finite state machine expressed in NuSMV input language:

MODULE main
VAR v1 : boolean; v2 : boolean;
INIT (!vl & !v2)

TRANS (next (vl) <-> !vl) & (next (v2) <-> (v1<->v2))

and consider the property P g (vi A o). Write:

@ the Boolean formulas /(vi, v2) and T(vi, v, v{, v3) representing respectively the
initial states and the transition relation of M.
[Solution: I(v1, v2) is (=vi A =V2), T(v1, Vo, V4, V3) is
(vi & i) A (2 & (vi 0 2))]

@ the graph representing the FSM. (Assume the notation “v; v»” for labeling the
states: e.g. “10" means “vi =1,v, =0".)

[Solution:
I o)
1

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 65/68

Ex: Symbolic CTL Model Checking (cont.)

@ the Boolean formula representing symbolically EXP. [The formula must be
computed symbolically, not simply inferred from the graph of the previous

question!]
[Solution:
EX(P) = 3vi,v.(T(v1, vz, vi,v2) A P(v{, v3))
= 3, v((vi & v)A V< (i =) A (VAW)
———
=v{=T, =T
vi=T,v=T
—_—~—
= (—|V1/\—|V2)\/J_\/J_\/J_
= (—|V1 A —|V2)
-]

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 66/68

Ex: Symbolic CTL Model Checking

Given the following finite state machine expressed in NuSMV input language:

VAR vl : boolean; vVv2 : boolean;

INIT init (vl) <-> init (v2)

TRANS (vl <=> next (v2)) & (v2 <-> next (vl));
write:

@ the Boolean formulas /(v4, v2) and T(v1, vz, vy, V3) representing the initial states
and the transition relation of M respectively.

[Solution: I(v1, v2) is (vi <> Vo), T(v1, Vo, Vi, Va) is (V1 <> V3) A (Vo > vy)]

@ the graph representing the FSM. (Assume the notation “v; v»” for labeling the
states. E.g., “10” means “v; =1, =0"))

[Solution: ' @

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020 67/68

Ex: Symbolic CTL Model Checking (cont.)

@ the Boolean formula R' (v}, v4) representing the set of states which can be
reached after exactly 1 step.

NOTE: this must be computed symbolically, not simply deduced from the graph

of question b).
[Solution:

R'(v{, v)

vy, vo.(I(vi, v2) A T(v1, Vo, V{, V3))
vy, Vo.((vi <> 2) A (V1 <> W) A (Va 5 vy))

(
(i o)A VA (Vs v))vi=Lvw=T]V
(i =)A= BA(o) vu=T,vo=1]V
(i o)A Ao V) vi=T,v=T]
(= A=V) VLV LV (VA V)

gﬂv{ A=Vz) V (V1 A V)

Roberto Sebastiani Ch. 05: Symbolic CTL Model Checking Monday 18th May, 2020

68/68

	Motivations
	Ordered Binary Decision Diagrams
	Symbolic representation of systems
	Symbolic CTL Model Checking
	A simple example
	Symbolic CTL M.C: efficiency issues
	Exercises

