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CTL Model Checking: general ideas

CTL Model Checking

CTL Model Checking is a formal verification technique where...
...the system is represented as a Finite State Machine M:

...the property is expressed a CTL formula ϕ:

AG(p → AFq)

...the model checking algorithm checks whether in all initial states
of M all the executions of the model satisfy the formula (M |= ϕ).

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 4 / 72



CTL Model Checking: general ideas

CTL Model Checking

CTL Model Checking is a formal verification technique where...
...the system is represented as a Finite State Machine M:

p

q

1

2

3

4

p

...the property is expressed a CTL formula ϕ:

AG(p → AFq)

...the model checking algorithm checks whether in all initial states
of M all the executions of the model satisfy the formula (M |= ϕ).

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 4 / 72



CTL Model Checking: general ideas

CTL Model Checking

CTL Model Checking is a formal verification technique where...
...the system is represented as a Finite State Machine M:

p

q

1

2

3

4

p

...the property is expressed a CTL formula ϕ:

AG(p → AFq)

...the model checking algorithm checks whether in all initial states
of M all the executions of the model satisfy the formula (M |= ϕ).

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 4 / 72



CTL Model Checking: general ideas

CTL Model Checking

CTL Model Checking is a formal verification technique where...
...the system is represented as a Finite State Machine M:

p

q

1

2

3

4

p

...the property is expressed a CTL formula ϕ:

AG(p → AFq)

...the model checking algorithm checks whether in all initial states
of M all the executions of the model satisfy the formula (M |= ϕ).

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 4 / 72



CTL Model Checking: general ideas

CTL Model Checking: General Idea

Two macro-steps:
1 construct the set of states where the formula holds:

[ϕ] := {s ∈ S : M, s |= ϕ}
([ϕ] is called the denotation of ϕ)

2 then compare with the set of initial states:
I ⊆ [ϕ] ?
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CTL Model Checking: general ideas

CTL Model Checking: General Idea [cont.]

In order to compute [ϕ]:

proceed “bottom-up” on the structure of the formula, computing
[ϕi ] for each subformula ϕi of AG(p → AFq):

[q],
[AFq],
[p],
[p → AFq],
[AG(p → AFq)]
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CTL Model Checking: general ideas

CTL Model Checking: General Idea [cont.]

In order to compute each [ϕi ]:
assign Propositional atoms by labeling function
handle Boolean operators by standard set operations
handle temporal operators AX, EX by computing pre-images
handle temporal operators AG, EG, AF, EF, AU, EU, by (implicitly)
applying tableaux rules, until a fixpoint is reached
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CTL Model Checking: general ideas

Tableaux rules: a quote

“After all... tomorrow is another day."
[Scarlett O’Hara, “Gone with the Wind”]
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CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq)
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"q" "AF q"

Recall the AF tableau rule: AFq ↔ (q ∨ AXAFq)
Iteration: [AFq](1) = [q]; [AFq](i+1) = [q] ∪ AX[AFq](i)

[AFq](1) = [q] = {2}
[AFq](2) = [q ∨ AXq] = {2} ∪ {1} = {1,2}
[AFq](3) = [q ∨ AX(q ∨ AXq)] = {2} ∪ {1} = {1,2}
=⇒ (fix point reached)
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CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq) [cont.]
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CTL Model Checking: Example: AG(p → AFq) [cont.]
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1 [AGϕ](1) = [ϕ] = {1,2,4}
2 [AGϕ](2) = [ϕ] ∩ AX[AGϕ](1) = {1,2,4} ∩ {1,3} = {1}
3 [AGϕ](3) = [ϕ] ∩ AX[AGϕ](2) = {1,2,4} ∩ {} = {}

=⇒ (fix point reached)
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CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq) [cont.]

The set of states where the formula holds is empty
=⇒ the initial state does not satisfy the property
=⇒ M 6|= AG(p → AFq)
Counterexample: a lazo-shaped path: 1,2, {3,4}ω (satisfying
EF(p ∧ EG¬q))

Note
Counter-example reconstruction in general is not trivial, based on
intermediate sets.
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Some theoretical issues

The fixed-point theory of lattice of sets

Definition

For any finite set S, the structure (2S,⊆) forms a complete lattice
with ∪ as join and ∩ as meet operations.
A function F : 2S 7−→ 2S is monotonic provided
S1 ⊆ S2 ⇒ F (S1) ⊆ F (S2).
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Some theoretical issues

Fixed Points

Definition

Let 〈2S,⊆〉 be a complete lattice, S finite.
Given a function F : 2S 7−→ 2S, a ⊆ S is a fixed point of F iff

F (a) = a

a is a least fixed point (LFP) of F , written µx .F (x), iff, for every
other fixed point a′ of F , a ⊆ a′

a is a greatest fixed point (GFP) of F , written νx .F (x), iff, for every
other fixed point a′ of F , a′ ⊆ a
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Some theoretical issues

Iteratively computing fixed points

Tarski’s Theorem
A monotonic function over a complete finite lattice has a least and a
greatest fixed point.

(A corollary of) Kleene’s Theorem
A monotonic function F over a complete finite lattice has a least and a
greatest fixed point, which can be computed as follows:

the least fixed point of F is the limit of the chain
∅ ⊆ F (∅) ⊆ F (F (∅)) . . . ,
the greatest fixed point of F is the limit of chain
S ⊇ F (S) ⊇ F (F (S)) . . .

Since 2S is finite, convergence is obtained in a finite number of steps.
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Some theoretical issues

CTL Model Checking and Lattices

If M = 〈S, I,R,L,AP〉 is a Kripke structure, then 〈2S,⊆〉 is a
complete lattice
We identify ϕ with its denotation [ϕ]

=⇒ we can see logical operators as functions F : 2S 7−→ 2S on the
complete lattice 〈2S,⊆〉
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Some theoretical issues

Denotation of a CTL formula ϕ: [ϕ]

Definition of [ϕ]

[ϕ] := {s ∈ S : M, s |= ϕ}

Recursive definition of [ϕ]

[true] = S
[false] = {}
[p] = {s|p ∈ L(s)}
[¬ϕ1] = S/[ϕ1]
[ϕ1 ∧ ϕ2] = [ϕ1] ∩ [ϕ2]
[EXϕ] = {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R}
[EGβ] = νZ .( [β] ∩ [EXZ ] )
[E(β1Uβ2)] = µZ .( [β2] ∪ ([β1] ∩ [EXZ ]) )
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Some theoretical issues

Case EX
PPreImage(P)

[EXϕ] = {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R}
[EXϕ] is said to be the Pre-image of [ϕ] (Preimage([ϕ]))
Key step of every CTL M.C. operation

Note
Preimage() is monotonic: X ⊆ X ′ =⇒ Preimage(X ) ⊆ Preimage(X ′)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 20 / 72



Some theoretical issues

Case EX
PPreImage(P)

[EXϕ] = {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R}
[EXϕ] is said to be the Pre-image of [ϕ] (Preimage([ϕ]))
Key step of every CTL M.C. operation

Note
Preimage() is monotonic: X ⊆ X ′ =⇒ Preimage(X ) ⊆ Preimage(X ′)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 20 / 72



Some theoretical issues

Case EX
PPreImage(P)

[EXϕ] = {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R}
[EXϕ] is said to be the Pre-image of [ϕ] (Preimage([ϕ]))
Key step of every CTL M.C. operation

Note
Preimage() is monotonic: X ⊆ X ′ =⇒ Preimage(X ) ⊆ Preimage(X ′)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 20 / 72



Some theoretical issues

Case EX
PPreImage(P)

[EXϕ] = {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R}
[EXϕ] is said to be the Pre-image of [ϕ] (Preimage([ϕ]))
Key step of every CTL M.C. operation

Note
Preimage() is monotonic: X ⊆ X ′ =⇒ Preimage(X ) ⊆ Preimage(X ′)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 20 / 72



Some theoretical issues

Case EG

νZ .( [β] ∩ [EXZ ] ): greatest fixed point of the function
Fβ : 2S 7−→ 2S, s.t.
Fβ([ϕ]) = ([β] ∩ Preimage([ϕ])

= ([β] ∩ {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R})
Fβ Monotonic: a ⊆ a′ =⇒ Fβ(a) ⊆ Fβ(a′)

(Tarski’s theorem): νx .Fβ(x) always exists
(Kleene’s theorem): νx .Fβ(x) can be computed as the limit
S ⊇ Fβ(S) ⊇ Fβ(Fβ(S)) ⊇ . . ., in a finite number of steps.

Theorem (Clarke & Emerson)

[EGβ] = νZ .( [β] ∩ [EXZ ] )
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Some theoretical issues

Case EG [cont.]

We can compute X := [EGβ] inductively as
follows:
X0 := S
X1 := Fβ(S) = [β]
X2 := Fβ(Fβ(S)) = [β] ∩ Preimage(X1)
. . .

Xj+1 := F j+1
β (S) = [β] ∩ Preimage(Xj)

Noticing that X1 = [β] and Xj+1 ⊆ Xj for every
j ≥ 0, and that
([β] ∩ Y ) ⊆ Xj ⊆ [β] =⇒ ([β] ∩ Y ) = (Xj ∩ Y ),
we can use instead the following inductive
schema:

X1 := [β]
Xj+1 := Xj ∩ Preimage(Xj)

Xj

Y

[β]
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Some theoretical issues

Case EU

µZ .( [β2] ∪ ([β1] ∩ [EXZ ]) ): least fixed point of the function
Fβ1,β2 : 2S 7−→ 2S, s.t.
Fβ1,β2([ϕ]) = [β2] ∪ ([β1] ∩ Preimage([ϕ]))

= [β2] ∪ ([β1] ∩ {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R})
Fβ1,β2 Monotonic: a ⊆ a′ =⇒ Fβ1,β2(a) ⊆ Fβ1,β2(a

′)

(Tarski’s theorem): µx .Fβ1,β2(x) always exists
(Kleene’s theorem): µx .Fβ1,β2(x) can be computed as the limit
∅ ⊆ Fβ1,β2(∅) ⊆ Fβ1,β2(Fβ1,β2(∅)) ⊆ . . ., in a finite number of steps.

Theorem (Clarke & Emerson)

[E(β1Uβ2)] = µZ .( [β2] ∪ ([β1] ∩ [EXZ ]) )
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Some theoretical issues

Case EU [cont.]

We can compute X := [E(β1Uβ2)] inductively as
follows:
X0 := ∅
X1 := Fβ1,β2(∅) = [β2]
X2 := Fβ1,β2(Fβ1,β2(∅)) = [β2] ∪ ([β1] ∩ Preimage(X1))
. . .

Xj+1 := F j+1
β1,β2

(∅)) = [β2] ∪ ([β1] ∩ Preimage(Xj))

Noticing that X1 = [β2] and Xj+1 ⊇ Xj for every
j ≥ 0, and that
([β2] ∪ Y ) ⊇ Xj ⊇ [β2] =⇒ ([β2] ∪ Y ) = (Xj ∪ Y ),
we can use instead the following inductive schema:

X1 := [β2]
Xj+1 := Xj ∪ ([β1] ∩ Preimage(Xj))

Y

Xj
[β2]
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Some theoretical issues

A relevant subcase: EF

EFβ = E(>Uβ)
[>] = S =⇒ [>] ∩ Preimage(Xj) = Preimage(Xj)

We can compute X := [EFβ] inductively as follows:
X1 := [β]
Xj+1 := Xj ∪ Preimage(Xj)
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CTL Model Checking: algorithms

General Schema

Assume ϕ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every ϕi ∈ Sub(ϕ), find [ϕi ]
2. Check if I ⊆ [ϕ]

Subformulas Sub(ϕ) of ϕ are checked bottom-up
To compute each [ϕi ]: if the main operator of ϕi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a
fixpoint is reached
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Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a
fixpoint is reached
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CTL Model Checking: algorithms

General M.C. Procedure

state_set Check(CTL_formula β) {
case β of
true: return S;
false: return {};
p: return {s | p ∈ L(s)};
¬β1: return S / Check(β1);
β1 ∧ β2: return Check(β1) ∩ Check(β2);
EXβ1: return PreImage(Check(β1));
EGβ1: return Check_EG(Check(β1));
E(β1Uβ2): return Check_EU(Check(β1),Check(β2));

}
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CTL Model Checking: algorithms

PreImage

state_set PreImage(state_set [β]) {
X := {};
for each s ∈ S do

for each s′ s.t . s′ ∈ [β] and 〈s, s′〉 ∈ R do
X := X ∪ {s};

return X ;
}

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 29 / 72



CTL Model Checking: algorithms

Check_EG

state_set Check_EG(state_set [β]) {
X ′ := [β]; j := 1;
repeat

X := X ′; j := j + 1;
X ′ := X ∩ PreImage(X );

until (X ′ = X );
return X ;
}
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CTL Model Checking: algorithms

Check_EU

state_set Check_EU(state_set [β1],[β2]) {
X ′ := [β2]; j := 1;
repeat

X := X ′; j := j + 1;
X ′ := X ∪ ([β1] ∩ PreImage(X ));

until (X ′ = X );
return X ;
}
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CTL Model Checking: algorithms

A relevant subcase: Check_EF

state_set Check_EF(state_set [β]) {
X ′ := [β]; j := 1;
repeat

X := X ′; j := j + 1;
X ′ := X ∪ PreImage(X );

until (X ′ = X );
return X ;
}
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CTL Model Checking: some examples
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CTL Model Checking: some examples

Example 1: fairness

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical,  T = trying,  C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ?
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CTL Model Checking: some examples
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CTL Model Checking: some examples
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CTL Model Checking: some examples
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CTL Model Checking: some examples

Example 1: fairness
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CTL Model Checking: some examples

Example 1: fairness

[¬EFEG¬C1]

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical,  T = trying,  C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ? =⇒ NO!
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CTL Model Checking: some examples

Example 2: liveness

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical,  T = trying,  C = critical User 1 User 2

M |= AG(T1 → AFC1) ? =⇒ M |= ¬EF(T1 ∧ EG¬C1) ?
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CTL Model Checking: some examples

Example 2: liveness

[T1]:
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CTL Model Checking: some examples

Example 2: liveness

[EG¬C1], STEPS 0-4: (see previous example)
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T1, N2

N = noncritical,  T = trying,  C = critical User 1 User 2
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CTL Model Checking: some examples

Example 2: liveness
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CTL Model Checking: some examples

Example 2: liveness

[EF(T1 ∧ EG¬C1)] :
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turn=2
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turn=2turn=1 turn=1
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turn=2
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N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical,  T = trying,  C = critical User 1 User 2

M |= AG(T1 → AFC1) ? =⇒ M |= ¬EF(T1 ∧ EG¬C1) ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 53 / 72



CTL Model Checking: some examples

Example 2: liveness

[¬EF(T1 ∧ EG¬C1)] :
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical,  T = trying,  C = critical User 1 User 2

M |= AG(T1 → AFC1) ? =⇒ M |= ¬EF(T1 ∧ EG¬C1) ? YES!

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 54 / 72



CTL Model Checking: some examples

The property verified is...
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CTL Model Checking: some examples

Homework

Apply the same process to all the CTL examples of Chapter 3.
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CTL Model Checking: some examples

Complexity of CTL Model Checking: M |= ϕ

Step 1: compute [ϕ]

Compute [ϕ] bottom-up on the O(|ϕ|) sub-formulas of ϕ:
O(|ϕ|) steps...
... each requiring at most exploring O(|M|) states

=⇒ O(|M| · |ϕ|) steps
Step 2: check I ⊆ [ϕ]: O(|M|)

=⇒ O(|M| · |ϕ|)
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A relevant subcase: invariants
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A relevant subcase: invariants

Model Checking of Invariants

Invariant properties have the form AG p (e.g., AG¬bad)
Checking invariants is the negation of a reachability problem:

is there a reachable state that is also a bad state?
(AG¬bad = ¬EFbad)

Standard M.C. algorithm reasons backward from the bad by
iteratively applying PreImage computations:

Y ′ := Y ∪ PreImage(Y )

until a fixed point is reached. Then the complement is computed
and I is checked for inclusion in the resulting set.
Better algorithm: reasons backward from the bad by iteratively
applying PreImage computations:

Y ′ := Y ∪ PreImage(Y )

until (i) it intersect [I] or (ii) a fixed point is reached
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A relevant subcase: invariants

Model Checking of Invariants [cont.]

I

ϕ
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A relevant subcase: invariants

Symbolic Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking
Compute the set of bad states [bad ]
Compute the set of initial states I
Compute incrementally the set of reachable states from I until (i) it
intersect [bad ] or (ii) a fixed point is reached
Basic step is the (Forward) Image:

Image(Y )
def
= {s′ | s ∈ Y and R(s, s′) holds}

Simplest form: compute the set of reachable states.
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A relevant subcase: invariants

Computing Reachable states: basic

State_Set Compute_reachable() {
Y ′ := I;Y := ∅; j := 1;
while (Y ′ 6= Y )

j := j + 1;
Y := Y ′;
Y ′ := Y ∪ Image(Y );

}
return Y;
}

Y=reachable
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A relevant subcase: invariants

Computing Reachable states: advanced

State_Set Compute_reachable() {
Y := F := I; j := 1;
while (F 6= ∅)

j := j + 1;
F := Image(F ) \ Y ;
Y := Y ∪ F ;

}
return Y;
}

Y=reachable;F=frontier (new)
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A relevant subcase: invariants

Computing Reachable states [cont.]
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A relevant subcase: invariants

Checking of Invariant Properties: basic

bool Forward_Check_EF(State_Set BAD) {
Y := I; Y ′ := ∅; j := 1;
while (Y ′ 6= Y ) and (Y ′ ∩ BAD) = ∅

j := j + 1;
Y := Y ′;
Y ′ := Y ∪ Image(Y );

}
if (Y ′ ∩ BAD) 6= ∅ // counter-example

return true
else // fixpoint reached

return false
}

Y=reachable;
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A relevant subcase: invariants

Checking of Invariant Properties: advanced
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A relevant subcase: invariants

Checking of Invariant Properties [cont.]
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A relevant subcase: invariants

Checking of Invariants: Counterexamples

if layer n intersects with the bad states, then the property is
violated
a counterexample can be reconstructed proceeding backwards
(i) select any state of BAD ∩ F [n] (we know it is satisfiable), call it

t [n]
(ii) compute Preimage(t [n]), i.e. the states that can result in t [n] in

one step
(iii) compute Preimage(t [n]) ∩ F [n − 1], and select one state

t [n − 1]
iterate (i)-(iii) until the initial states are reached
t [0], t [1], . . . , t [n] is our counterexample
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A relevant subcase: invariants

Checking of Invariants: Counterexamples [cont.]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 69 / 72



Exercises

Outline

1 CTL Model Checking: general ideas

2 CTL Model Checking: a simple example

3 Some theoretical issues

4 CTL Model Checking: algorithms

5 CTL Model Checking: some examples

6 A relevant subcase: invariants

7 Exercises

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 70 / 72



Exercises

Ex: CTL Model Checking
Consider the Kripke Model M below, and the CTL property ϕ

def
= AG((p ∧ q)→ EGq).

¬pq
s0

p¬q
s2

pq
s1

(a) Rewrite ϕ into an equivalent formula ϕ′ expressed in terms of EX,EG,EU/EF only.

[ Solution: ϕ′ = ¬EF¬((¬p ∨ ¬q) ∨ EGq) = ¬EF((p ∧ q) ∧ ¬EGq) ]

(b) Compute bottom-up the denotations of all subformulas of ϕ′. (Ex: [p] = {s1, s2})

[ Solution:
[p] = {s1, s2}
[q] = {s0, s1}
[(p ∧ q)] = {s1}
[EGq] = {s0, s1}

[¬EGq] = {s2}
[((p ∧ q) ∧ ¬EGq)] = {}
[EF((p ∧ q) ∧ ¬EGq)] = {}
[¬EF((p ∧ q) ∧ ¬EGq)] = {s0, s1, s2}

]

(c) As a consequence of point (b), say whether M |= ϕ or not.

[ Solution: Yes, {s1, s2} ⊆ [ϕ′]. ]
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