
Introduction to Formal Methods
Chapter 04: CTL Model Checking

Roberto Sebastiani

DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/fm2020/

Teaching assistant: Enrico Magnago – enrico.magnago@unitn.it

CDLM in Informatica, academic year 2019-2020

last update: Monday 18th May, 2020, 14:48

Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti, M.
Di Natale, P. Pandya, M. Pistore, M. Roveri, and S.Tonetta, who detain its copyright. Some exampes displayed in these
slides are taken from [Clarke, Grunberg & Peled, “Model Checking”, MIT Press], and their copyright is detained by the
authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly

forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public
without containing this copyright notice.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 1 / 72

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fm2020/
enrico.magnago@unitn.it

Outline

1 CTL Model Checking: general ideas

2 CTL Model Checking: a simple example

3 Some theoretical issues

4 CTL Model Checking: algorithms

5 CTL Model Checking: some examples

6 A relevant subcase: invariants

7 Exercises

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 2 / 72

CTL Model Checking: general ideas

Outline

1 CTL Model Checking: general ideas

2 CTL Model Checking: a simple example

3 Some theoretical issues

4 CTL Model Checking: algorithms

5 CTL Model Checking: some examples

6 A relevant subcase: invariants

7 Exercises

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 3 / 72

CTL Model Checking: general ideas

CTL Model Checking

CTL Model Checking is a formal verification technique where...
...the system is represented as a Finite State Machine M:

...the property is expressed a CTL formula ϕ:

AG(p → AFq)

...the model checking algorithm checks whether in all initial states
of M all the executions of the model satisfy the formula (M |= ϕ).

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 4 / 72

CTL Model Checking: general ideas

CTL Model Checking

CTL Model Checking is a formal verification technique where...
...the system is represented as a Finite State Machine M:

p

q

1

2

3

4

p

...the property is expressed a CTL formula ϕ:

AG(p → AFq)

...the model checking algorithm checks whether in all initial states
of M all the executions of the model satisfy the formula (M |= ϕ).

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 4 / 72

CTL Model Checking: general ideas

CTL Model Checking

CTL Model Checking is a formal verification technique where...
...the system is represented as a Finite State Machine M:

p

q

1

2

3

4

p

...the property is expressed a CTL formula ϕ:

AG(p → AFq)

...the model checking algorithm checks whether in all initial states
of M all the executions of the model satisfy the formula (M |= ϕ).

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 4 / 72

CTL Model Checking: general ideas

CTL Model Checking

CTL Model Checking is a formal verification technique where...
...the system is represented as a Finite State Machine M:

p

q

1

2

3

4

p

...the property is expressed a CTL formula ϕ:

AG(p → AFq)

...the model checking algorithm checks whether in all initial states
of M all the executions of the model satisfy the formula (M |= ϕ).

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 4 / 72

CTL Model Checking: general ideas

CTL Model Checking: General Idea

Two macro-steps:
1 construct the set of states where the formula holds:

[ϕ] := {s ∈ S : M, s |= ϕ}
([ϕ] is called the denotation of ϕ)

2 then compare with the set of initial states:
I ⊆ [ϕ] ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 5 / 72

CTL Model Checking: general ideas

CTL Model Checking: General Idea

Two macro-steps:
1 construct the set of states where the formula holds:

[ϕ] := {s ∈ S : M, s |= ϕ}
([ϕ] is called the denotation of ϕ)

2 then compare with the set of initial states:
I ⊆ [ϕ] ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 5 / 72

CTL Model Checking: general ideas

CTL Model Checking: General Idea

Two macro-steps:
1 construct the set of states where the formula holds:

[ϕ] := {s ∈ S : M, s |= ϕ}
([ϕ] is called the denotation of ϕ)

2 then compare with the set of initial states:
I ⊆ [ϕ] ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 5 / 72

CTL Model Checking: general ideas

CTL Model Checking: General Idea [cont.]

In order to compute [ϕ]:

proceed “bottom-up” on the structure of the formula, computing
[ϕi] for each subformula ϕi of AG(p → AFq):

[q],
[AFq],
[p],
[p → AFq],
[AG(p → AFq)]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 6 / 72

CTL Model Checking: general ideas

CTL Model Checking: General Idea [cont.]

In order to compute [ϕ]:

proceed “bottom-up” on the structure of the formula, computing
[ϕi] for each subformula ϕi of AG(p → AFq):

[q],
[AFq],
[p],
[p → AFq],
[AG(p → AFq)]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 6 / 72

CTL Model Checking: general ideas

CTL Model Checking: General Idea [cont.]

In order to compute [ϕ]:

proceed “bottom-up” on the structure of the formula, computing
[ϕi] for each subformula ϕi of AG(p → AFq):

[q],
[AFq],
[p],
[p → AFq],
[AG(p → AFq)]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 6 / 72

CTL Model Checking: general ideas

CTL Model Checking: General Idea [cont.]

In order to compute [ϕ]:

proceed “bottom-up” on the structure of the formula, computing
[ϕi] for each subformula ϕi of AG(p → AFq):

[q],
[AFq],
[p],
[p → AFq],
[AG(p → AFq)]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 6 / 72

CTL Model Checking: general ideas

CTL Model Checking: General Idea [cont.]

In order to compute [ϕ]:

proceed “bottom-up” on the structure of the formula, computing
[ϕi] for each subformula ϕi of AG(p → AFq):

[q],
[AFq],
[p],
[p → AFq],
[AG(p → AFq)]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 6 / 72

CTL Model Checking: general ideas

CTL Model Checking: General Idea [cont.]

In order to compute [ϕ]:

proceed “bottom-up” on the structure of the formula, computing
[ϕi] for each subformula ϕi of AG(p → AFq):

[q],
[AFq],
[p],
[p → AFq],
[AG(p → AFq)]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 6 / 72

CTL Model Checking: general ideas

CTL Model Checking: General Idea [cont.]

In order to compute [ϕ]:

proceed “bottom-up” on the structure of the formula, computing
[ϕi] for each subformula ϕi of AG(p → AFq):

[q],
[AFq],
[p],
[p → AFq],
[AG(p → AFq)]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 6 / 72

CTL Model Checking: general ideas

CTL Model Checking: General Idea [cont.]

In order to compute each [ϕi]:
assign Propositional atoms by labeling function
handle Boolean operators by standard set operations
handle temporal operators AX, EX by computing pre-images
handle temporal operators AG, EG, AF, EF, AU, EU, by (implicitly)
applying tableaux rules, until a fixpoint is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 7 / 72

CTL Model Checking: general ideas

CTL Model Checking: General Idea [cont.]

In order to compute each [ϕi]:
assign Propositional atoms by labeling function
handle Boolean operators by standard set operations
handle temporal operators AX, EX by computing pre-images
handle temporal operators AG, EG, AF, EF, AU, EU, by (implicitly)
applying tableaux rules, until a fixpoint is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 7 / 72

CTL Model Checking: general ideas

CTL Model Checking: General Idea [cont.]

In order to compute each [ϕi]:
assign Propositional atoms by labeling function
handle Boolean operators by standard set operations
handle temporal operators AX, EX by computing pre-images
handle temporal operators AG, EG, AF, EF, AU, EU, by (implicitly)
applying tableaux rules, until a fixpoint is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 7 / 72

CTL Model Checking: general ideas

CTL Model Checking: General Idea [cont.]

In order to compute each [ϕi]:
assign Propositional atoms by labeling function
handle Boolean operators by standard set operations
handle temporal operators AX, EX by computing pre-images
handle temporal operators AG, EG, AF, EF, AU, EU, by (implicitly)
applying tableaux rules, until a fixpoint is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 7 / 72

CTL Model Checking: general ideas

CTL Model Checking: General Idea [cont.]

In order to compute each [ϕi]:
assign Propositional atoms by labeling function
handle Boolean operators by standard set operations
handle temporal operators AX, EX by computing pre-images
handle temporal operators AG, EG, AF, EF, AU, EU, by (implicitly)
applying tableaux rules, until a fixpoint is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 7 / 72

CTL Model Checking: general ideas

Tableaux rules: a quote

“After all... tomorrow is another day."
[Scarlett O’Hara, “Gone with the Wind”]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 8 / 72

CTL Model Checking: a simple example

Outline

1 CTL Model Checking: general ideas

2 CTL Model Checking: a simple example

3 Some theoretical issues

4 CTL Model Checking: algorithms

5 CTL Model Checking: some examples

6 A relevant subcase: invariants

7 Exercises

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 9 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq)

p

q

1

2

3

4

p

p

q

1

2

3

4

p

"q" "AF q"

Recall the AF tableau rule: AFq ↔ (q ∨ AXAFq)
Iteration: [AFq](1) = [q]; [AFq](i+1) = [q] ∪ AX[AFq](i)

[AFq](1) = [q] = {2}
[AFq](2) = [q ∨ AXq] = {2} ∪ {1} = {1,2}
[AFq](3) = [q ∨ AX(q ∨ AXq)] = {2} ∪ {1} = {1,2}
=⇒ (fix point reached)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 10 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq)

p

q

1

2

3

4

p

p

q

1

2

3

4

p

"q" "AF q"

Recall the AF tableau rule: AFq ↔ (q ∨ AXAFq)
Iteration: [AFq](1) = [q]; [AFq](i+1) = [q] ∪ AX[AFq](i)

[AFq](1) = [q] = {2}
[AFq](2) = [q ∨ AXq] = {2} ∪ {1} = {1,2}
[AFq](3) = [q ∨ AX(q ∨ AXq)] = {2} ∪ {1} = {1,2}
=⇒ (fix point reached)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 10 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq)

p

q

1

2

3

4

p

p

q

1

2

3

4

p

"q" "AF q"

Recall the AF tableau rule: AFq ↔ (q ∨ AXAFq)
Iteration: [AFq](1) = [q]; [AFq](i+1) = [q] ∪ AX[AFq](i)

[AFq](1) = [q] = {2}
[AFq](2) = [q ∨ AXq] = {2} ∪ {1} = {1,2}
[AFq](3) = [q ∨ AX(q ∨ AXq)] = {2} ∪ {1} = {1,2}
=⇒ (fix point reached)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 10 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq)

p

q

1

2

3

4

p

p

q

1

2

3

4

p

"q" "AF q"

Recall the AF tableau rule: AFq ↔ (q ∨ AXAFq)
Iteration: [AFq](1) = [q]; [AFq](i+1) = [q] ∪ AX[AFq](i)

[AFq](1) = [q] = {2}
[AFq](2) = [q ∨ AXq] = {2} ∪ {1} = {1,2}
[AFq](3) = [q ∨ AX(q ∨ AXq)] = {2} ∪ {1} = {1,2}
=⇒ (fix point reached)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 10 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq)

p

q

1

2

3

4

p

p

q

1

2

3

4

p

"q" "AF q"

Recall the AF tableau rule: AFq ↔ (q ∨ AXAFq)
Iteration: [AFq](1) = [q]; [AFq](i+1) = [q] ∪ AX[AFq](i)

[AFq](1) = [q] = {2}
[AFq](2) = [q ∨ AXq] = {2} ∪ {1} = {1,2}
[AFq](3) = [q ∨ AX(q ∨ AXq)] = {2} ∪ {1} = {1,2}
=⇒ (fix point reached)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 10 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq)

p

q

1

2

3

4

p

p

q

1

2

3

4

p

"q" "AF q"

Recall the AF tableau rule: AFq ↔ (q ∨ AXAFq)
Iteration: [AFq](1) = [q]; [AFq](i+1) = [q] ∪ AX[AFq](i)

[AFq](1) = [q] = {2}
[AFq](2) = [q ∨ AXq] = {2} ∪ {1} = {1,2}
[AFq](3) = [q ∨ AX(q ∨ AXq)] = {2} ∪ {1} = {1,2}
=⇒ (fix point reached)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 10 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq)

p

q

1

2

3

4

p

p

q

1

2

3

4

p

"q" "AF q"

Recall the AF tableau rule: AFq ↔ (q ∨ AXAFq)
Iteration: [AFq](1) = [q]; [AFq](i+1) = [q] ∪ AX[AFq](i)

[AFq](1) = [q] = {2}
[AFq](2) = [q ∨ AXq] = {2} ∪ {1} = {1,2}
[AFq](3) = [q ∨ AX(q ∨ AXq)] = {2} ∪ {1} = {1,2}
=⇒ (fix point reached)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 10 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq) [cont.]

p

q

1

2

3

4

p

p

q

1

2

3

4

p
p

q

1

2

3

4

p

"p"

"AF q"

"p −> AF q"

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 11 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq) [cont.]

p

q

1

2

3

4

p

p

q

1

2

3

4

p

"p −> AF q" "AG(p −> AF q)"

Recall the AG tableau rule: AGϕ↔ (ϕ ∧ AXAGϕ)
Iteration: [AGϕ(1)] = [ϕ]; [AGϕ](i+1) = [ϕ] ∩ AX[AGϕ](i)

1 [AGϕ](1) = [ϕ] = {1,2,4}
2 [AGϕ](2) = [ϕ] ∩ AX[AGϕ](1) = {1,2,4} ∩ {1,3} = {1}
3 [AGϕ](3) = [ϕ] ∩ AX[AGϕ](2) = {1,2,4} ∩ {} = {}

=⇒ (fix point reached)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 12 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq) [cont.]

p

q

1

2

3

4

p

p

q

1

2

3

4

p

"p −> AF q" "AG(p −> AF q)"

Recall the AG tableau rule: AGϕ↔ (ϕ ∧ AXAGϕ)
Iteration: [AGϕ(1)] = [ϕ]; [AGϕ](i+1) = [ϕ] ∩ AX[AGϕ](i)

1 [AGϕ](1) = [ϕ] = {1,2,4}
2 [AGϕ](2) = [ϕ] ∩ AX[AGϕ](1) = {1,2,4} ∩ {1,3} = {1}
3 [AGϕ](3) = [ϕ] ∩ AX[AGϕ](2) = {1,2,4} ∩ {} = {}

=⇒ (fix point reached)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 12 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq) [cont.]

p

q

1

2

3

4

p

p

q

1

2

3

4

p

"p −> AF q" "AG(p −> AF q)"

Recall the AG tableau rule: AGϕ↔ (ϕ ∧ AXAGϕ)
Iteration: [AGϕ(1)] = [ϕ]; [AGϕ](i+1) = [ϕ] ∩ AX[AGϕ](i)

1 [AGϕ](1) = [ϕ] = {1,2,4}
2 [AGϕ](2) = [ϕ] ∩ AX[AGϕ](1) = {1,2,4} ∩ {1,3} = {1}
3 [AGϕ](3) = [ϕ] ∩ AX[AGϕ](2) = {1,2,4} ∩ {} = {}

=⇒ (fix point reached)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 12 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq) [cont.]

p

q

1

2

3

4

p

p

q

1

2

3

4

p

"p −> AF q" "AG(p −> AF q)"

Recall the AG tableau rule: AGϕ↔ (ϕ ∧ AXAGϕ)
Iteration: [AGϕ(1)] = [ϕ]; [AGϕ](i+1) = [ϕ] ∩ AX[AGϕ](i)

1 [AGϕ](1) = [ϕ] = {1,2,4}
2 [AGϕ](2) = [ϕ] ∩ AX[AGϕ](1) = {1,2,4} ∩ {1,3} = {1}
3 [AGϕ](3) = [ϕ] ∩ AX[AGϕ](2) = {1,2,4} ∩ {} = {}

=⇒ (fix point reached)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 12 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq) [cont.]

p

q

1

2

3

4

p

p

q

1

2

3

4

p

"p −> AF q" "AG(p −> AF q)"

Recall the AG tableau rule: AGϕ↔ (ϕ ∧ AXAGϕ)
Iteration: [AGϕ(1)] = [ϕ]; [AGϕ](i+1) = [ϕ] ∩ AX[AGϕ](i)

1 [AGϕ](1) = [ϕ] = {1,2,4}
2 [AGϕ](2) = [ϕ] ∩ AX[AGϕ](1) = {1,2,4} ∩ {1,3} = {1}
3 [AGϕ](3) = [ϕ] ∩ AX[AGϕ](2) = {1,2,4} ∩ {} = {}

=⇒ (fix point reached)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 12 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq) [cont.]

p

q

1

2

3

4

p

p

q

1

2

3

4

p

"p −> AF q" "AG(p −> AF q)"

Recall the AG tableau rule: AGϕ↔ (ϕ ∧ AXAGϕ)
Iteration: [AGϕ(1)] = [ϕ]; [AGϕ](i+1) = [ϕ] ∩ AX[AGϕ](i)

1 [AGϕ](1) = [ϕ] = {1,2,4}
2 [AGϕ](2) = [ϕ] ∩ AX[AGϕ](1) = {1,2,4} ∩ {1,3} = {1}
3 [AGϕ](3) = [ϕ] ∩ AX[AGϕ](2) = {1,2,4} ∩ {} = {}

=⇒ (fix point reached)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 12 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq) [cont.]

p

q

1

2

3

4

p

p

q

1

2

3

4

p

"p −> AF q" "AG(p −> AF q)"

Recall the AG tableau rule: AGϕ↔ (ϕ ∧ AXAGϕ)
Iteration: [AGϕ(1)] = [ϕ]; [AGϕ](i+1) = [ϕ] ∩ AX[AGϕ](i)

1 [AGϕ](1) = [ϕ] = {1,2,4}
2 [AGϕ](2) = [ϕ] ∩ AX[AGϕ](1) = {1,2,4} ∩ {1,3} = {1}
3 [AGϕ](3) = [ϕ] ∩ AX[AGϕ](2) = {1,2,4} ∩ {} = {}

=⇒ (fix point reached)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 12 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq) [cont.]

The set of states where the formula holds is empty
=⇒ the initial state does not satisfy the property
=⇒ M 6|= AG(p → AFq)
Counterexample: a lazo-shaped path: 1,2, {3,4}ω (satisfying
EF(p ∧ EG¬q))

Note
Counter-example reconstruction in general is not trivial, based on
intermediate sets.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 13 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq) [cont.]

The set of states where the formula holds is empty
=⇒ the initial state does not satisfy the property
=⇒ M 6|= AG(p → AFq)
Counterexample: a lazo-shaped path: 1,2, {3,4}ω (satisfying
EF(p ∧ EG¬q))

Note
Counter-example reconstruction in general is not trivial, based on
intermediate sets.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 13 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq) [cont.]

The set of states where the formula holds is empty
=⇒ the initial state does not satisfy the property
=⇒ M 6|= AG(p → AFq)
Counterexample: a lazo-shaped path: 1,2, {3,4}ω (satisfying
EF(p ∧ EG¬q))

Note
Counter-example reconstruction in general is not trivial, based on
intermediate sets.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 13 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq) [cont.]

The set of states where the formula holds is empty
=⇒ the initial state does not satisfy the property
=⇒ M 6|= AG(p → AFq)
Counterexample: a lazo-shaped path: 1,2, {3,4}ω (satisfying
EF(p ∧ EG¬q))

Note
Counter-example reconstruction in general is not trivial, based on
intermediate sets.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 13 / 72

CTL Model Checking: a simple example

CTL Model Checking: Example: AG(p → AFq) [cont.]

The set of states where the formula holds is empty
=⇒ the initial state does not satisfy the property
=⇒ M 6|= AG(p → AFq)
Counterexample: a lazo-shaped path: 1,2, {3,4}ω (satisfying
EF(p ∧ EG¬q))

Note
Counter-example reconstruction in general is not trivial, based on
intermediate sets.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 13 / 72

Some theoretical issues

Outline

1 CTL Model Checking: general ideas

2 CTL Model Checking: a simple example

3 Some theoretical issues

4 CTL Model Checking: algorithms

5 CTL Model Checking: some examples

6 A relevant subcase: invariants

7 Exercises

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 14 / 72

Some theoretical issues

The fixed-point theory of lattice of sets

Definition

For any finite set S, the structure (2S,⊆) forms a complete lattice
with ∪ as join and ∩ as meet operations.
A function F : 2S 7−→ 2S is monotonic provided
S1 ⊆ S2 ⇒ F (S1) ⊆ F (S2).

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 15 / 72

Some theoretical issues

The fixed-point theory of lattice of sets

Definition

For any finite set S, the structure (2S,⊆) forms a complete lattice
with ∪ as join and ∩ as meet operations.
A function F : 2S 7−→ 2S is monotonic provided
S1 ⊆ S2 ⇒ F (S1) ⊆ F (S2).

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 15 / 72

Some theoretical issues

Fixed Points

Definition

Let 〈2S,⊆〉 be a complete lattice, S finite.
Given a function F : 2S 7−→ 2S, a ⊆ S is a fixed point of F iff

F (a) = a

a is a least fixed point (LFP) of F , written µx .F (x), iff, for every
other fixed point a′ of F , a ⊆ a′

a is a greatest fixed point (GFP) of F , written νx .F (x), iff, for every
other fixed point a′ of F , a′ ⊆ a

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 16 / 72

Some theoretical issues

Fixed Points

Definition

Let 〈2S,⊆〉 be a complete lattice, S finite.
Given a function F : 2S 7−→ 2S, a ⊆ S is a fixed point of F iff

F (a) = a

a is a least fixed point (LFP) of F , written µx .F (x), iff, for every
other fixed point a′ of F , a ⊆ a′

a is a greatest fixed point (GFP) of F , written νx .F (x), iff, for every
other fixed point a′ of F , a′ ⊆ a

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 16 / 72

Some theoretical issues

Fixed Points

Definition

Let 〈2S,⊆〉 be a complete lattice, S finite.
Given a function F : 2S 7−→ 2S, a ⊆ S is a fixed point of F iff

F (a) = a

a is a least fixed point (LFP) of F , written µx .F (x), iff, for every
other fixed point a′ of F , a ⊆ a′

a is a greatest fixed point (GFP) of F , written νx .F (x), iff, for every
other fixed point a′ of F , a′ ⊆ a

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 16 / 72

Some theoretical issues

Fixed Points

Definition

Let 〈2S,⊆〉 be a complete lattice, S finite.
Given a function F : 2S 7−→ 2S, a ⊆ S is a fixed point of F iff

F (a) = a

a is a least fixed point (LFP) of F , written µx .F (x), iff, for every
other fixed point a′ of F , a ⊆ a′

a is a greatest fixed point (GFP) of F , written νx .F (x), iff, for every
other fixed point a′ of F , a′ ⊆ a

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 16 / 72

Some theoretical issues

Iteratively computing fixed points

Tarski’s Theorem
A monotonic function over a complete finite lattice has a least and a
greatest fixed point.

(A corollary of) Kleene’s Theorem
A monotonic function F over a complete finite lattice has a least and a
greatest fixed point, which can be computed as follows:

the least fixed point of F is the limit of the chain
∅ ⊆ F (∅) ⊆ F (F (∅)) . . . ,
the greatest fixed point of F is the limit of chain
S ⊇ F (S) ⊇ F (F (S)) . . .

Since 2S is finite, convergence is obtained in a finite number of steps.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 17 / 72

Some theoretical issues

Iteratively computing fixed points

Tarski’s Theorem
A monotonic function over a complete finite lattice has a least and a
greatest fixed point.

(A corollary of) Kleene’s Theorem
A monotonic function F over a complete finite lattice has a least and a
greatest fixed point, which can be computed as follows:

the least fixed point of F is the limit of the chain
∅ ⊆ F (∅) ⊆ F (F (∅)) . . . ,
the greatest fixed point of F is the limit of chain
S ⊇ F (S) ⊇ F (F (S)) . . .

Since 2S is finite, convergence is obtained in a finite number of steps.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 17 / 72

Some theoretical issues

Iteratively computing fixed points

Tarski’s Theorem
A monotonic function over a complete finite lattice has a least and a
greatest fixed point.

(A corollary of) Kleene’s Theorem
A monotonic function F over a complete finite lattice has a least and a
greatest fixed point, which can be computed as follows:

the least fixed point of F is the limit of the chain
∅ ⊆ F (∅) ⊆ F (F (∅)) . . . ,
the greatest fixed point of F is the limit of chain
S ⊇ F (S) ⊇ F (F (S)) . . .

Since 2S is finite, convergence is obtained in a finite number of steps.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 17 / 72

Some theoretical issues

Iteratively computing fixed points

Tarski’s Theorem
A monotonic function over a complete finite lattice has a least and a
greatest fixed point.

(A corollary of) Kleene’s Theorem
A monotonic function F over a complete finite lattice has a least and a
greatest fixed point, which can be computed as follows:

the least fixed point of F is the limit of the chain
∅ ⊆ F (∅) ⊆ F (F (∅)) . . . ,
the greatest fixed point of F is the limit of chain
S ⊇ F (S) ⊇ F (F (S)) . . .

Since 2S is finite, convergence is obtained in a finite number of steps.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 17 / 72

Some theoretical issues

Iteratively computing fixed points

Tarski’s Theorem
A monotonic function over a complete finite lattice has a least and a
greatest fixed point.

(A corollary of) Kleene’s Theorem
A monotonic function F over a complete finite lattice has a least and a
greatest fixed point, which can be computed as follows:

the least fixed point of F is the limit of the chain
∅ ⊆ F (∅) ⊆ F (F (∅)) . . . ,
the greatest fixed point of F is the limit of chain
S ⊇ F (S) ⊇ F (F (S)) . . .

Since 2S is finite, convergence is obtained in a finite number of steps.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 17 / 72

Some theoretical issues

CTL Model Checking and Lattices

If M = 〈S, I,R,L,AP〉 is a Kripke structure, then 〈2S,⊆〉 is a
complete lattice
We identify ϕ with its denotation [ϕ]

=⇒ we can see logical operators as functions F : 2S 7−→ 2S on the
complete lattice 〈2S,⊆〉

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 18 / 72

Some theoretical issues

CTL Model Checking and Lattices

If M = 〈S, I,R,L,AP〉 is a Kripke structure, then 〈2S,⊆〉 is a
complete lattice
We identify ϕ with its denotation [ϕ]

=⇒ we can see logical operators as functions F : 2S 7−→ 2S on the
complete lattice 〈2S,⊆〉

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 18 / 72

Some theoretical issues

CTL Model Checking and Lattices

If M = 〈S, I,R,L,AP〉 is a Kripke structure, then 〈2S,⊆〉 is a
complete lattice
We identify ϕ with its denotation [ϕ]

=⇒ we can see logical operators as functions F : 2S 7−→ 2S on the
complete lattice 〈2S,⊆〉

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 18 / 72

Some theoretical issues

Denotation of a CTL formula ϕ: [ϕ]

Definition of [ϕ]

[ϕ] := {s ∈ S : M, s |= ϕ}

Recursive definition of [ϕ]

[true] = S
[false] = {}
[p] = {s|p ∈ L(s)}
[¬ϕ1] = S/[ϕ1]
[ϕ1 ∧ ϕ2] = [ϕ1] ∩ [ϕ2]
[EXϕ] = {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R}
[EGβ] = νZ .([β] ∩ [EXZ])
[E(β1Uβ2)] = µZ .([β2] ∪ ([β1] ∩ [EXZ]))

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 19 / 72

Some theoretical issues

Denotation of a CTL formula ϕ: [ϕ]

Definition of [ϕ]

[ϕ] := {s ∈ S : M, s |= ϕ}

Recursive definition of [ϕ]

[true] = S
[false] = {}
[p] = {s|p ∈ L(s)}
[¬ϕ1] = S/[ϕ1]
[ϕ1 ∧ ϕ2] = [ϕ1] ∩ [ϕ2]
[EXϕ] = {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R}
[EGβ] = νZ .([β] ∩ [EXZ])
[E(β1Uβ2)] = µZ .([β2] ∪ ([β1] ∩ [EXZ]))

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 19 / 72

Some theoretical issues

Case EX
PPreImage(P)

[EXϕ] = {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R}
[EXϕ] is said to be the Pre-image of [ϕ] (Preimage([ϕ]))
Key step of every CTL M.C. operation

Note
Preimage() is monotonic: X ⊆ X ′ =⇒ Preimage(X) ⊆ Preimage(X ′)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 20 / 72

Some theoretical issues

Case EX
PPreImage(P)

[EXϕ] = {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R}
[EXϕ] is said to be the Pre-image of [ϕ] (Preimage([ϕ]))
Key step of every CTL M.C. operation

Note
Preimage() is monotonic: X ⊆ X ′ =⇒ Preimage(X) ⊆ Preimage(X ′)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 20 / 72

Some theoretical issues

Case EX
PPreImage(P)

[EXϕ] = {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R}
[EXϕ] is said to be the Pre-image of [ϕ] (Preimage([ϕ]))
Key step of every CTL M.C. operation

Note
Preimage() is monotonic: X ⊆ X ′ =⇒ Preimage(X) ⊆ Preimage(X ′)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 20 / 72

Some theoretical issues

Case EX
PPreImage(P)

[EXϕ] = {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R}
[EXϕ] is said to be the Pre-image of [ϕ] (Preimage([ϕ]))
Key step of every CTL M.C. operation

Note
Preimage() is monotonic: X ⊆ X ′ =⇒ Preimage(X) ⊆ Preimage(X ′)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 20 / 72

Some theoretical issues

Case EG

νZ .([β] ∩ [EXZ]): greatest fixed point of the function
Fβ : 2S 7−→ 2S, s.t.
Fβ([ϕ]) = ([β] ∩ Preimage([ϕ])

= ([β] ∩ {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R})
Fβ Monotonic: a ⊆ a′ =⇒ Fβ(a) ⊆ Fβ(a′)

(Tarski’s theorem): νx .Fβ(x) always exists
(Kleene’s theorem): νx .Fβ(x) can be computed as the limit
S ⊇ Fβ(S) ⊇ Fβ(Fβ(S)) ⊇ . . ., in a finite number of steps.

Theorem (Clarke & Emerson)

[EGβ] = νZ .([β] ∩ [EXZ])

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 21 / 72

Some theoretical issues

Case EG

νZ .([β] ∩ [EXZ]): greatest fixed point of the function
Fβ : 2S 7−→ 2S, s.t.
Fβ([ϕ]) = ([β] ∩ Preimage([ϕ])

= ([β] ∩ {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R})
Fβ Monotonic: a ⊆ a′ =⇒ Fβ(a) ⊆ Fβ(a′)

(Tarski’s theorem): νx .Fβ(x) always exists
(Kleene’s theorem): νx .Fβ(x) can be computed as the limit
S ⊇ Fβ(S) ⊇ Fβ(Fβ(S)) ⊇ . . ., in a finite number of steps.

Theorem (Clarke & Emerson)

[EGβ] = νZ .([β] ∩ [EXZ])

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 21 / 72

Some theoretical issues

Case EG

νZ .([β] ∩ [EXZ]): greatest fixed point of the function
Fβ : 2S 7−→ 2S, s.t.
Fβ([ϕ]) = ([β] ∩ Preimage([ϕ])

= ([β] ∩ {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R})
Fβ Monotonic: a ⊆ a′ =⇒ Fβ(a) ⊆ Fβ(a′)

(Tarski’s theorem): νx .Fβ(x) always exists
(Kleene’s theorem): νx .Fβ(x) can be computed as the limit
S ⊇ Fβ(S) ⊇ Fβ(Fβ(S)) ⊇ . . ., in a finite number of steps.

Theorem (Clarke & Emerson)

[EGβ] = νZ .([β] ∩ [EXZ])

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 21 / 72

Some theoretical issues

Case EG

νZ .([β] ∩ [EXZ]): greatest fixed point of the function
Fβ : 2S 7−→ 2S, s.t.
Fβ([ϕ]) = ([β] ∩ Preimage([ϕ])

= ([β] ∩ {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R})
Fβ Monotonic: a ⊆ a′ =⇒ Fβ(a) ⊆ Fβ(a′)

(Tarski’s theorem): νx .Fβ(x) always exists
(Kleene’s theorem): νx .Fβ(x) can be computed as the limit
S ⊇ Fβ(S) ⊇ Fβ(Fβ(S)) ⊇ . . ., in a finite number of steps.

Theorem (Clarke & Emerson)

[EGβ] = νZ .([β] ∩ [EXZ])

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 21 / 72

Some theoretical issues

Case EG

νZ .([β] ∩ [EXZ]): greatest fixed point of the function
Fβ : 2S 7−→ 2S, s.t.
Fβ([ϕ]) = ([β] ∩ Preimage([ϕ])

= ([β] ∩ {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R})
Fβ Monotonic: a ⊆ a′ =⇒ Fβ(a) ⊆ Fβ(a′)

(Tarski’s theorem): νx .Fβ(x) always exists
(Kleene’s theorem): νx .Fβ(x) can be computed as the limit
S ⊇ Fβ(S) ⊇ Fβ(Fβ(S)) ⊇ . . ., in a finite number of steps.

Theorem (Clarke & Emerson)

[EGβ] = νZ .([β] ∩ [EXZ])

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 21 / 72

Some theoretical issues

Case EG [cont.]

We can compute X := [EGβ] inductively as
follows:
X0 := S
X1 := Fβ(S) = [β]
X2 := Fβ(Fβ(S)) = [β] ∩ Preimage(X1)
. . .

Xj+1 := F j+1
β (S) = [β] ∩ Preimage(Xj)

Noticing that X1 = [β] and Xj+1 ⊆ Xj for every
j ≥ 0, and that
([β] ∩ Y) ⊆ Xj ⊆ [β] =⇒ ([β] ∩ Y) = (Xj ∩ Y),
we can use instead the following inductive
schema:

X1 := [β]
Xj+1 := Xj ∩ Preimage(Xj)

Xj

Y

[β]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 22 / 72

Some theoretical issues

Case EG [cont.]

We can compute X := [EGβ] inductively as
follows:
X0 := S
X1 := Fβ(S) = [β]
X2 := Fβ(Fβ(S)) = [β] ∩ Preimage(X1)
. . .

Xj+1 := F j+1
β (S) = [β] ∩ Preimage(Xj)

Noticing that X1 = [β] and Xj+1 ⊆ Xj for every
j ≥ 0, and that
([β] ∩ Y) ⊆ Xj ⊆ [β] =⇒ ([β] ∩ Y) = (Xj ∩ Y),
we can use instead the following inductive
schema:

X1 := [β]
Xj+1 := Xj ∩ Preimage(Xj)

Xj

Y

[β]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 22 / 72

Some theoretical issues

Case EU

µZ .([β2] ∪ ([β1] ∩ [EXZ])): least fixed point of the function
Fβ1,β2 : 2S 7−→ 2S, s.t.
Fβ1,β2([ϕ]) = [β2] ∪ ([β1] ∩ Preimage([ϕ]))

= [β2] ∪ ([β1] ∩ {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R})
Fβ1,β2 Monotonic: a ⊆ a′ =⇒ Fβ1,β2(a) ⊆ Fβ1,β2(a

′)

(Tarski’s theorem): µx .Fβ1,β2(x) always exists
(Kleene’s theorem): µx .Fβ1,β2(x) can be computed as the limit
∅ ⊆ Fβ1,β2(∅) ⊆ Fβ1,β2(Fβ1,β2(∅)) ⊆ . . ., in a finite number of steps.

Theorem (Clarke & Emerson)

[E(β1Uβ2)] = µZ .([β2] ∪ ([β1] ∩ [EXZ]))

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 23 / 72

Some theoretical issues

Case EU

µZ .([β2] ∪ ([β1] ∩ [EXZ])): least fixed point of the function
Fβ1,β2 : 2S 7−→ 2S, s.t.
Fβ1,β2([ϕ]) = [β2] ∪ ([β1] ∩ Preimage([ϕ]))

= [β2] ∪ ([β1] ∩ {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R})
Fβ1,β2 Monotonic: a ⊆ a′ =⇒ Fβ1,β2(a) ⊆ Fβ1,β2(a

′)

(Tarski’s theorem): µx .Fβ1,β2(x) always exists
(Kleene’s theorem): µx .Fβ1,β2(x) can be computed as the limit
∅ ⊆ Fβ1,β2(∅) ⊆ Fβ1,β2(Fβ1,β2(∅)) ⊆ . . ., in a finite number of steps.

Theorem (Clarke & Emerson)

[E(β1Uβ2)] = µZ .([β2] ∪ ([β1] ∩ [EXZ]))

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 23 / 72

Some theoretical issues

Case EU

µZ .([β2] ∪ ([β1] ∩ [EXZ])): least fixed point of the function
Fβ1,β2 : 2S 7−→ 2S, s.t.
Fβ1,β2([ϕ]) = [β2] ∪ ([β1] ∩ Preimage([ϕ]))

= [β2] ∪ ([β1] ∩ {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R})
Fβ1,β2 Monotonic: a ⊆ a′ =⇒ Fβ1,β2(a) ⊆ Fβ1,β2(a

′)

(Tarski’s theorem): µx .Fβ1,β2(x) always exists
(Kleene’s theorem): µx .Fβ1,β2(x) can be computed as the limit
∅ ⊆ Fβ1,β2(∅) ⊆ Fβ1,β2(Fβ1,β2(∅)) ⊆ . . ., in a finite number of steps.

Theorem (Clarke & Emerson)

[E(β1Uβ2)] = µZ .([β2] ∪ ([β1] ∩ [EXZ]))

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 23 / 72

Some theoretical issues

Case EU

µZ .([β2] ∪ ([β1] ∩ [EXZ])): least fixed point of the function
Fβ1,β2 : 2S 7−→ 2S, s.t.
Fβ1,β2([ϕ]) = [β2] ∪ ([β1] ∩ Preimage([ϕ]))

= [β2] ∪ ([β1] ∩ {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R})
Fβ1,β2 Monotonic: a ⊆ a′ =⇒ Fβ1,β2(a) ⊆ Fβ1,β2(a

′)

(Tarski’s theorem): µx .Fβ1,β2(x) always exists
(Kleene’s theorem): µx .Fβ1,β2(x) can be computed as the limit
∅ ⊆ Fβ1,β2(∅) ⊆ Fβ1,β2(Fβ1,β2(∅)) ⊆ . . ., in a finite number of steps.

Theorem (Clarke & Emerson)

[E(β1Uβ2)] = µZ .([β2] ∪ ([β1] ∩ [EXZ]))

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 23 / 72

Some theoretical issues

Case EU

µZ .([β2] ∪ ([β1] ∩ [EXZ])): least fixed point of the function
Fβ1,β2 : 2S 7−→ 2S, s.t.
Fβ1,β2([ϕ]) = [β2] ∪ ([β1] ∩ Preimage([ϕ]))

= [β2] ∪ ([β1] ∩ {s | ∃s′ ∈ [ϕ] s.t . 〈s, s′〉 ∈ R})
Fβ1,β2 Monotonic: a ⊆ a′ =⇒ Fβ1,β2(a) ⊆ Fβ1,β2(a

′)

(Tarski’s theorem): µx .Fβ1,β2(x) always exists
(Kleene’s theorem): µx .Fβ1,β2(x) can be computed as the limit
∅ ⊆ Fβ1,β2(∅) ⊆ Fβ1,β2(Fβ1,β2(∅)) ⊆ . . ., in a finite number of steps.

Theorem (Clarke & Emerson)

[E(β1Uβ2)] = µZ .([β2] ∪ ([β1] ∩ [EXZ]))

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 23 / 72

Some theoretical issues

Case EU [cont.]

We can compute X := [E(β1Uβ2)] inductively as
follows:
X0 := ∅
X1 := Fβ1,β2(∅) = [β2]
X2 := Fβ1,β2(Fβ1,β2(∅)) = [β2] ∪ ([β1] ∩ Preimage(X1))
. . .

Xj+1 := F j+1
β1,β2

(∅)) = [β2] ∪ ([β1] ∩ Preimage(Xj))

Noticing that X1 = [β2] and Xj+1 ⊇ Xj for every
j ≥ 0, and that
([β2] ∪ Y) ⊇ Xj ⊇ [β2] =⇒ ([β2] ∪ Y) = (Xj ∪ Y),
we can use instead the following inductive schema:

X1 := [β2]
Xj+1 := Xj ∪ ([β1] ∩ Preimage(Xj))

Y

Xj
[β2]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 24 / 72

Some theoretical issues

Case EU [cont.]

We can compute X := [E(β1Uβ2)] inductively as
follows:
X0 := ∅
X1 := Fβ1,β2(∅) = [β2]
X2 := Fβ1,β2(Fβ1,β2(∅)) = [β2] ∪ ([β1] ∩ Preimage(X1))
. . .

Xj+1 := F j+1
β1,β2

(∅)) = [β2] ∪ ([β1] ∩ Preimage(Xj))

Noticing that X1 = [β2] and Xj+1 ⊇ Xj for every
j ≥ 0, and that
([β2] ∪ Y) ⊇ Xj ⊇ [β2] =⇒ ([β2] ∪ Y) = (Xj ∪ Y),
we can use instead the following inductive schema:

X1 := [β2]
Xj+1 := Xj ∪ ([β1] ∩ Preimage(Xj))

Y

Xj
[β2]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 24 / 72

Some theoretical issues

A relevant subcase: EF

EFβ = E(>Uβ)
[>] = S =⇒ [>] ∩ Preimage(Xj) = Preimage(Xj)

We can compute X := [EFβ] inductively as follows:
X1 := [β]
Xj+1 := Xj ∪ Preimage(Xj)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 25 / 72

Some theoretical issues

A relevant subcase: EF

EFβ = E(>Uβ)
[>] = S =⇒ [>] ∩ Preimage(Xj) = Preimage(Xj)

We can compute X := [EFβ] inductively as follows:
X1 := [β]
Xj+1 := Xj ∪ Preimage(Xj)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 25 / 72

Some theoretical issues

A relevant subcase: EF

EFβ = E(>Uβ)
[>] = S =⇒ [>] ∩ Preimage(Xj) = Preimage(Xj)

We can compute X := [EFβ] inductively as follows:
X1 := [β]
Xj+1 := Xj ∪ Preimage(Xj)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 25 / 72

CTL Model Checking: algorithms

Outline

1 CTL Model Checking: general ideas

2 CTL Model Checking: a simple example

3 Some theoretical issues

4 CTL Model Checking: algorithms

5 CTL Model Checking: some examples

6 A relevant subcase: invariants

7 Exercises

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 26 / 72

CTL Model Checking: algorithms

General Schema

Assume ϕ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every ϕi ∈ Sub(ϕ), find [ϕi]
2. Check if I ⊆ [ϕ]

Subformulas Sub(ϕ) of ϕ are checked bottom-up
To compute each [ϕi]: if the main operator of ϕi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a
fixpoint is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 27 / 72

CTL Model Checking: algorithms

General Schema

Assume ϕ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every ϕi ∈ Sub(ϕ), find [ϕi]
2. Check if I ⊆ [ϕ]

Subformulas Sub(ϕ) of ϕ are checked bottom-up
To compute each [ϕi]: if the main operator of ϕi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a
fixpoint is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 27 / 72

CTL Model Checking: algorithms

General Schema

Assume ϕ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every ϕi ∈ Sub(ϕ), find [ϕi]
2. Check if I ⊆ [ϕ]

Subformulas Sub(ϕ) of ϕ are checked bottom-up
To compute each [ϕi]: if the main operator of ϕi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a
fixpoint is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 27 / 72

CTL Model Checking: algorithms

General Schema

Assume ϕ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every ϕi ∈ Sub(ϕ), find [ϕi]
2. Check if I ⊆ [ϕ]

Subformulas Sub(ϕ) of ϕ are checked bottom-up
To compute each [ϕi]: if the main operator of ϕi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a
fixpoint is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 27 / 72

CTL Model Checking: algorithms

General Schema

Assume ϕ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every ϕi ∈ Sub(ϕ), find [ϕi]
2. Check if I ⊆ [ϕ]

Subformulas Sub(ϕ) of ϕ are checked bottom-up
To compute each [ϕi]: if the main operator of ϕi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a
fixpoint is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 27 / 72

CTL Model Checking: algorithms

General Schema

Assume ϕ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every ϕi ∈ Sub(ϕ), find [ϕi]
2. Check if I ⊆ [ϕ]

Subformulas Sub(ϕ) of ϕ are checked bottom-up
To compute each [ϕi]: if the main operator of ϕi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a
fixpoint is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 27 / 72

CTL Model Checking: algorithms

General Schema

Assume ϕ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every ϕi ∈ Sub(ϕ), find [ϕi]
2. Check if I ⊆ [ϕ]

Subformulas Sub(ϕ) of ϕ are checked bottom-up
To compute each [ϕi]: if the main operator of ϕi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a
fixpoint is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 27 / 72

CTL Model Checking: algorithms

General Schema

Assume ϕ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every ϕi ∈ Sub(ϕ), find [ϕi]
2. Check if I ⊆ [ϕ]

Subformulas Sub(ϕ) of ϕ are checked bottom-up
To compute each [ϕi]: if the main operator of ϕi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a
fixpoint is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 27 / 72

CTL Model Checking: algorithms

General Schema

Assume ϕ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every ϕi ∈ Sub(ϕ), find [ϕi]
2. Check if I ⊆ [ϕ]

Subformulas Sub(ϕ) of ϕ are checked bottom-up
To compute each [ϕi]: if the main operator of ϕi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a
fixpoint is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 27 / 72

CTL Model Checking: algorithms

General M.C. Procedure

state_set Check(CTL_formula β) {
case β of
true: return S;
false: return {};
p: return {s | p ∈ L(s)};
¬β1: return S / Check(β1);
β1 ∧ β2: return Check(β1) ∩ Check(β2);
EXβ1: return PreImage(Check(β1));
EGβ1: return Check_EG(Check(β1));
E(β1Uβ2): return Check_EU(Check(β1),Check(β2));

}

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 28 / 72

CTL Model Checking: algorithms

PreImage

state_set PreImage(state_set [β]) {
X := {};
for each s ∈ S do

for each s′ s.t . s′ ∈ [β] and 〈s, s′〉 ∈ R do
X := X ∪ {s};

return X ;
}

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 29 / 72

CTL Model Checking: algorithms

Check_EG

state_set Check_EG(state_set [β]) {
X ′ := [β]; j := 1;
repeat

X := X ′; j := j + 1;
X ′ := X ∩ PreImage(X);

until (X ′ = X);
return X ;
}

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 30 / 72

CTL Model Checking: algorithms

Check_EU

state_set Check_EU(state_set [β1],[β2]) {
X ′ := [β2]; j := 1;
repeat

X := X ′; j := j + 1;
X ′ := X ∪ ([β1] ∩ PreImage(X));

until (X ′ = X);
return X ;
}

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 31 / 72

CTL Model Checking: algorithms

A relevant subcase: Check_EF

state_set Check_EF(state_set [β]) {
X ′ := [β]; j := 1;
repeat

X := X ′; j := j + 1;
X ′ := X ∪ PreImage(X);

until (X ′ = X);
return X ;
}

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 32 / 72

CTL Model Checking: some examples

Outline

1 CTL Model Checking: general ideas

2 CTL Model Checking: a simple example

3 Some theoretical issues

4 CTL Model Checking: algorithms

5 CTL Model Checking: some examples

6 A relevant subcase: invariants

7 Exercises

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 33 / 72

CTL Model Checking: some examples

Example 1: fairness

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 34 / 72

CTL Model Checking: some examples

Example 1: fairness

[¬C1]

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 35 / 72

CTL Model Checking: some examples

Example 1: fairness

[EG¬C1], step 0:
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 36 / 72

CTL Model Checking: some examples

Example 1: fairness

[EG¬C1], step 1:
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 37 / 72

CTL Model Checking: some examples

Example 1: fairness

[EG¬C1], step 2:
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 38 / 72

CTL Model Checking: some examples

Example 1: fairness

[EG¬C1], step 3:
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 39 / 72

CTL Model Checking: some examples

Example 1: fairness

[EG¬C1], step 4:
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 40 / 72

CTL Model Checking: some examples

Example 1: fairness

[EG¬C1], FIXPOINT!
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 41 / 72

CTL Model Checking: some examples

Example 1: fairness

[EFEG¬C1], STEP 0
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 42 / 72

CTL Model Checking: some examples

Example 1: fairness

[EFEG¬C1], STEP 1
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 43 / 72

CTL Model Checking: some examples

Example 1: fairness

[EFEG¬C1], STEP 2
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 44 / 72

CTL Model Checking: some examples

Example 1: fairness

[EFEG¬C1], STEP 3
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 45 / 72

CTL Model Checking: some examples

Example 1: fairness

[EFEG¬C1], STEP 4
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 46 / 72

CTL Model Checking: some examples

Example 1: fairness

[EFEG¬C1], FIXPOINT!
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 47 / 72

CTL Model Checking: some examples

Example 1: fairness

[¬EFEG¬C1]

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ? =⇒ NO!

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 48 / 72

CTL Model Checking: some examples

Example 2: liveness

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AG(T1 → AFC1) ? =⇒ M |= ¬EF(T1 ∧ EG¬C1) ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 49 / 72

CTL Model Checking: some examples

Example 2: liveness

[T1]:
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AG(T1 → AFC1) ? =⇒ M |= ¬EF(T1 ∧ EG¬C1) ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 50 / 72

CTL Model Checking: some examples

Example 2: liveness

[EG¬C1], STEPS 0-4: (see previous example)
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AG(T1 → AFC1) ? =⇒ M |= ¬EF(T1 ∧ EG¬C1) ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 51 / 72

CTL Model Checking: some examples

Example 2: liveness

[T1 ∧ EG¬C1] :
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AG(T1 → AFC1) ? =⇒ M |= ¬EF(T1 ∧ EG¬C1) ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 52 / 72

CTL Model Checking: some examples

Example 2: liveness

[EF(T1 ∧ EG¬C1)] :
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AG(T1 → AFC1) ? =⇒ M |= ¬EF(T1 ∧ EG¬C1) ?

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 53 / 72

CTL Model Checking: some examples

Example 2: liveness

[¬EF(T1 ∧ EG¬C1)] :
N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

M |= AG(T1 → AFC1) ? =⇒ M |= ¬EF(T1 ∧ EG¬C1) ? YES!

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 54 / 72

CTL Model Checking: some examples

The property verified is...
Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 55 / 72

CTL Model Checking: some examples

Homework

Apply the same process to all the CTL examples of Chapter 3.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 56 / 72

CTL Model Checking: some examples

Complexity of CTL Model Checking: M |= ϕ

Step 1: compute [ϕ]

Compute [ϕ] bottom-up on the O(|ϕ|) sub-formulas of ϕ:
O(|ϕ|) steps...
... each requiring at most exploring O(|M|) states

=⇒ O(|M| · |ϕ|) steps
Step 2: check I ⊆ [ϕ]: O(|M|)

=⇒ O(|M| · |ϕ|)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 57 / 72

CTL Model Checking: some examples

Complexity of CTL Model Checking: M |= ϕ

Step 1: compute [ϕ]

Compute [ϕ] bottom-up on the O(|ϕ|) sub-formulas of ϕ:
O(|ϕ|) steps...
... each requiring at most exploring O(|M|) states

=⇒ O(|M| · |ϕ|) steps
Step 2: check I ⊆ [ϕ]: O(|M|)

=⇒ O(|M| · |ϕ|)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 57 / 72

CTL Model Checking: some examples

Complexity of CTL Model Checking: M |= ϕ

Step 1: compute [ϕ]

Compute [ϕ] bottom-up on the O(|ϕ|) sub-formulas of ϕ:
O(|ϕ|) steps...
... each requiring at most exploring O(|M|) states

=⇒ O(|M| · |ϕ|) steps
Step 2: check I ⊆ [ϕ]: O(|M|)

=⇒ O(|M| · |ϕ|)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 57 / 72

CTL Model Checking: some examples

Complexity of CTL Model Checking: M |= ϕ

Step 1: compute [ϕ]

Compute [ϕ] bottom-up on the O(|ϕ|) sub-formulas of ϕ:
O(|ϕ|) steps...
... each requiring at most exploring O(|M|) states

=⇒ O(|M| · |ϕ|) steps
Step 2: check I ⊆ [ϕ]: O(|M|)

=⇒ O(|M| · |ϕ|)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 57 / 72

A relevant subcase: invariants

Outline

1 CTL Model Checking: general ideas

2 CTL Model Checking: a simple example

3 Some theoretical issues

4 CTL Model Checking: algorithms

5 CTL Model Checking: some examples

6 A relevant subcase: invariants

7 Exercises

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 58 / 72

A relevant subcase: invariants

Model Checking of Invariants

Invariant properties have the form AG p (e.g., AG¬bad)
Checking invariants is the negation of a reachability problem:

is there a reachable state that is also a bad state?
(AG¬bad = ¬EFbad)

Standard M.C. algorithm reasons backward from the bad by
iteratively applying PreImage computations:

Y ′ := Y ∪ PreImage(Y)

until a fixed point is reached. Then the complement is computed
and I is checked for inclusion in the resulting set.
Better algorithm: reasons backward from the bad by iteratively
applying PreImage computations:

Y ′ := Y ∪ PreImage(Y)

until (i) it intersect [I] or (ii) a fixed point is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 59 / 72

A relevant subcase: invariants

Model Checking of Invariants

Invariant properties have the form AG p (e.g., AG¬bad)
Checking invariants is the negation of a reachability problem:

is there a reachable state that is also a bad state?
(AG¬bad = ¬EFbad)

Standard M.C. algorithm reasons backward from the bad by
iteratively applying PreImage computations:

Y ′ := Y ∪ PreImage(Y)

until a fixed point is reached. Then the complement is computed
and I is checked for inclusion in the resulting set.
Better algorithm: reasons backward from the bad by iteratively
applying PreImage computations:

Y ′ := Y ∪ PreImage(Y)

until (i) it intersect [I] or (ii) a fixed point is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 59 / 72

A relevant subcase: invariants

Model Checking of Invariants

Invariant properties have the form AG p (e.g., AG¬bad)
Checking invariants is the negation of a reachability problem:

is there a reachable state that is also a bad state?
(AG¬bad = ¬EFbad)

Standard M.C. algorithm reasons backward from the bad by
iteratively applying PreImage computations:

Y ′ := Y ∪ PreImage(Y)

until a fixed point is reached. Then the complement is computed
and I is checked for inclusion in the resulting set.
Better algorithm: reasons backward from the bad by iteratively
applying PreImage computations:

Y ′ := Y ∪ PreImage(Y)

until (i) it intersect [I] or (ii) a fixed point is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 59 / 72

A relevant subcase: invariants

Model Checking of Invariants

Invariant properties have the form AG p (e.g., AG¬bad)
Checking invariants is the negation of a reachability problem:

is there a reachable state that is also a bad state?
(AG¬bad = ¬EFbad)

Standard M.C. algorithm reasons backward from the bad by
iteratively applying PreImage computations:

Y ′ := Y ∪ PreImage(Y)

until a fixed point is reached. Then the complement is computed
and I is checked for inclusion in the resulting set.
Better algorithm: reasons backward from the bad by iteratively
applying PreImage computations:

Y ′ := Y ∪ PreImage(Y)

until (i) it intersect [I] or (ii) a fixed point is reached

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 59 / 72

A relevant subcase: invariants

Model Checking of Invariants [cont.]

I

ϕ

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 60 / 72

A relevant subcase: invariants

Symbolic Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking
Compute the set of bad states [bad]
Compute the set of initial states I
Compute incrementally the set of reachable states from I until (i) it
intersect [bad] or (ii) a fixed point is reached
Basic step is the (Forward) Image:

Image(Y)
def
= {s′ | s ∈ Y and R(s, s′) holds}

Simplest form: compute the set of reachable states.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 61 / 72

A relevant subcase: invariants

Symbolic Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking
Compute the set of bad states [bad]
Compute the set of initial states I
Compute incrementally the set of reachable states from I until (i) it
intersect [bad] or (ii) a fixed point is reached
Basic step is the (Forward) Image:

Image(Y)
def
= {s′ | s ∈ Y and R(s, s′) holds}

Simplest form: compute the set of reachable states.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 61 / 72

A relevant subcase: invariants

Symbolic Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking
Compute the set of bad states [bad]
Compute the set of initial states I
Compute incrementally the set of reachable states from I until (i) it
intersect [bad] or (ii) a fixed point is reached
Basic step is the (Forward) Image:

Image(Y)
def
= {s′ | s ∈ Y and R(s, s′) holds}

Simplest form: compute the set of reachable states.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 61 / 72

A relevant subcase: invariants

Symbolic Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking
Compute the set of bad states [bad]
Compute the set of initial states I
Compute incrementally the set of reachable states from I until (i) it
intersect [bad] or (ii) a fixed point is reached
Basic step is the (Forward) Image:

Image(Y)
def
= {s′ | s ∈ Y and R(s, s′) holds}

Simplest form: compute the set of reachable states.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 61 / 72

A relevant subcase: invariants

Symbolic Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking
Compute the set of bad states [bad]
Compute the set of initial states I
Compute incrementally the set of reachable states from I until (i) it
intersect [bad] or (ii) a fixed point is reached
Basic step is the (Forward) Image:

Image(Y)
def
= {s′ | s ∈ Y and R(s, s′) holds}

Simplest form: compute the set of reachable states.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 61 / 72

A relevant subcase: invariants

Symbolic Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking
Compute the set of bad states [bad]
Compute the set of initial states I
Compute incrementally the set of reachable states from I until (i) it
intersect [bad] or (ii) a fixed point is reached
Basic step is the (Forward) Image:

Image(Y)
def
= {s′ | s ∈ Y and R(s, s′) holds}

Simplest form: compute the set of reachable states.

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 61 / 72

A relevant subcase: invariants

Computing Reachable states: basic

State_Set Compute_reachable() {
Y ′ := I;Y := ∅; j := 1;
while (Y ′ 6= Y)

j := j + 1;
Y := Y ′;
Y ′ := Y ∪ Image(Y);

}
return Y;
}

Y=reachable

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 62 / 72

A relevant subcase: invariants

Computing Reachable states: advanced

State_Set Compute_reachable() {
Y := F := I; j := 1;
while (F 6= ∅)

j := j + 1;
F := Image(F) \ Y ;
Y := Y ∪ F ;

}
return Y;
}

Y=reachable;F=frontier (new)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 63 / 72

A relevant subcase: invariants

Computing Reachable states [cont.]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 64 / 72

A relevant subcase: invariants

Checking of Invariant Properties: basic

bool Forward_Check_EF(State_Set BAD) {
Y := I; Y ′ := ∅; j := 1;
while (Y ′ 6= Y) and (Y ′ ∩ BAD) = ∅

j := j + 1;
Y := Y ′;
Y ′ := Y ∪ Image(Y);

}
if (Y ′ ∩ BAD) 6= ∅ // counter-example

return true
else // fixpoint reached

return false
}

Y=reachable;

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 65 / 72

A relevant subcase: invariants

Checking of Invariant Properties: advanced

bool Forward_Check_EF(State_Set BAD) {
Y := F := I; j := 1;
while (F 6= ∅) and (F ∩ BAD) = ∅

j := j + 1;
F := Image(F) \ Y ;
Y := Y ∪ F ;

}
if (F ∩ BAD) 6= ∅ // counter-example

return true
else // fixpoint reached

return false
}

Y=reachable;F=frontier (new)

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 66 / 72

A relevant subcase: invariants

Checking of Invariant Properties [cont.]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 67 / 72

A relevant subcase: invariants

Checking of Invariants: Counterexamples

if layer n intersects with the bad states, then the property is
violated
a counterexample can be reconstructed proceeding backwards
(i) select any state of BAD ∩ F [n] (we know it is satisfiable), call it

t [n]
(ii) compute Preimage(t [n]), i.e. the states that can result in t [n] in

one step
(iii) compute Preimage(t [n]) ∩ F [n − 1], and select one state

t [n − 1]
iterate (i)-(iii) until the initial states are reached
t [0], t [1], . . . , t [n] is our counterexample

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 68 / 72

A relevant subcase: invariants

Checking of Invariants: Counterexamples

if layer n intersects with the bad states, then the property is
violated
a counterexample can be reconstructed proceeding backwards
(i) select any state of BAD ∩ F [n] (we know it is satisfiable), call it

t [n]
(ii) compute Preimage(t [n]), i.e. the states that can result in t [n] in

one step
(iii) compute Preimage(t [n]) ∩ F [n − 1], and select one state

t [n − 1]
iterate (i)-(iii) until the initial states are reached
t [0], t [1], . . . , t [n] is our counterexample

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 68 / 72

A relevant subcase: invariants

Checking of Invariants: Counterexamples

if layer n intersects with the bad states, then the property is
violated
a counterexample can be reconstructed proceeding backwards
(i) select any state of BAD ∩ F [n] (we know it is satisfiable), call it

t [n]
(ii) compute Preimage(t [n]), i.e. the states that can result in t [n] in

one step
(iii) compute Preimage(t [n]) ∩ F [n − 1], and select one state

t [n − 1]
iterate (i)-(iii) until the initial states are reached
t [0], t [1], . . . , t [n] is our counterexample

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 68 / 72

A relevant subcase: invariants

Checking of Invariants: Counterexamples

if layer n intersects with the bad states, then the property is
violated
a counterexample can be reconstructed proceeding backwards
(i) select any state of BAD ∩ F [n] (we know it is satisfiable), call it

t [n]
(ii) compute Preimage(t [n]), i.e. the states that can result in t [n] in

one step
(iii) compute Preimage(t [n]) ∩ F [n − 1], and select one state

t [n − 1]
iterate (i)-(iii) until the initial states are reached
t [0], t [1], . . . , t [n] is our counterexample

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 68 / 72

A relevant subcase: invariants

Checking of Invariants: Counterexamples

if layer n intersects with the bad states, then the property is
violated
a counterexample can be reconstructed proceeding backwards
(i) select any state of BAD ∩ F [n] (we know it is satisfiable), call it

t [n]
(ii) compute Preimage(t [n]), i.e. the states that can result in t [n] in

one step
(iii) compute Preimage(t [n]) ∩ F [n − 1], and select one state

t [n − 1]
iterate (i)-(iii) until the initial states are reached
t [0], t [1], . . . , t [n] is our counterexample

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 68 / 72

A relevant subcase: invariants

Checking of Invariants: Counterexamples

if layer n intersects with the bad states, then the property is
violated
a counterexample can be reconstructed proceeding backwards
(i) select any state of BAD ∩ F [n] (we know it is satisfiable), call it

t [n]
(ii) compute Preimage(t [n]), i.e. the states that can result in t [n] in

one step
(iii) compute Preimage(t [n]) ∩ F [n − 1], and select one state

t [n − 1]
iterate (i)-(iii) until the initial states are reached
t [0], t [1], . . . , t [n] is our counterexample

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 68 / 72

A relevant subcase: invariants

Checking of Invariants: Counterexamples

if layer n intersects with the bad states, then the property is
violated
a counterexample can be reconstructed proceeding backwards
(i) select any state of BAD ∩ F [n] (we know it is satisfiable), call it

t [n]
(ii) compute Preimage(t [n]), i.e. the states that can result in t [n] in

one step
(iii) compute Preimage(t [n]) ∩ F [n − 1], and select one state

t [n − 1]
iterate (i)-(iii) until the initial states are reached
t [0], t [1], . . . , t [n] is our counterexample

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 68 / 72

A relevant subcase: invariants

Checking of Invariants: Counterexamples [cont.]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 69 / 72

Exercises

Outline

1 CTL Model Checking: general ideas

2 CTL Model Checking: a simple example

3 Some theoretical issues

4 CTL Model Checking: algorithms

5 CTL Model Checking: some examples

6 A relevant subcase: invariants

7 Exercises

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 70 / 72

Exercises

Ex: CTL Model Checking
Consider the Kripke Model M below, and the CTL property ϕ

def
= AG((p ∧ q)→ EGq).

¬pq
s0

p¬q
s2

pq
s1

(a) Rewrite ϕ into an equivalent formula ϕ′ expressed in terms of EX,EG,EU/EF only.

[Solution: ϕ′ = ¬EF¬((¬p ∨ ¬q) ∨ EGq) = ¬EF((p ∧ q) ∧ ¬EGq)]

(b) Compute bottom-up the denotations of all subformulas of ϕ′. (Ex: [p] = {s1, s2})

[Solution:
[p] = {s1, s2}
[q] = {s0, s1}
[(p ∧ q)] = {s1}
[EGq] = {s0, s1}

[¬EGq] = {s2}
[((p ∧ q) ∧ ¬EGq)] = {}
[EF((p ∧ q) ∧ ¬EGq)] = {}
[¬EF((p ∧ q) ∧ ¬EGq)] = {s0, s1, s2}

]

(c) As a consequence of point (b), say whether M |= ϕ or not.

[Solution: Yes, {s1, s2} ⊆ [ϕ′].]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 71 / 72

Exercises

Ex: CTL Model Checking
Consider the Kripke Model M below, and the CTL property ϕ

def
= AG((p ∧ q)→ EGq).

¬pq
s0

p¬q
s2

pq
s1

(a) Rewrite ϕ into an equivalent formula ϕ′ expressed in terms of EX,EG,EU/EF only.
[Solution: ϕ′ = ¬EF¬((¬p ∨ ¬q) ∨ EGq) = ¬EF((p ∧ q) ∧ ¬EGq)]

(b) Compute bottom-up the denotations of all subformulas of ϕ′. (Ex: [p] = {s1, s2})

[Solution:
[p] = {s1, s2}
[q] = {s0, s1}
[(p ∧ q)] = {s1}
[EGq] = {s0, s1}

[¬EGq] = {s2}
[((p ∧ q) ∧ ¬EGq)] = {}
[EF((p ∧ q) ∧ ¬EGq)] = {}
[¬EF((p ∧ q) ∧ ¬EGq)] = {s0, s1, s2}

]

(c) As a consequence of point (b), say whether M |= ϕ or not.

[Solution: Yes, {s1, s2} ⊆ [ϕ′].]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 71 / 72

Exercises

Ex: CTL Model Checking
Consider the Kripke Model M below, and the CTL property ϕ

def
= AG((p ∧ q)→ EGq).

¬pq
s0

p¬q
s2

pq
s1

(a) Rewrite ϕ into an equivalent formula ϕ′ expressed in terms of EX,EG,EU/EF only.
[Solution: ϕ′ = ¬EF¬((¬p ∨ ¬q) ∨ EGq) = ¬EF((p ∧ q) ∧ ¬EGq)]

(b) Compute bottom-up the denotations of all subformulas of ϕ′. (Ex: [p] = {s1, s2})
[Solution:

[p] = {s1, s2}
[q] = {s0, s1}
[(p ∧ q)] = {s1}
[EGq] = {s0, s1}

[¬EGq] = {s2}
[((p ∧ q) ∧ ¬EGq)] = {}
[EF((p ∧ q) ∧ ¬EGq)] = {}
[¬EF((p ∧ q) ∧ ¬EGq)] = {s0, s1, s2}

]

(c) As a consequence of point (b), say whether M |= ϕ or not.

[Solution: Yes, {s1, s2} ⊆ [ϕ′].]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 71 / 72

Exercises

Ex: CTL Model Checking
Consider the Kripke Model M below, and the CTL property ϕ

def
= AG((p ∧ q)→ EGq).

¬pq
s0

p¬q
s2

pq
s1

(a) Rewrite ϕ into an equivalent formula ϕ′ expressed in terms of EX,EG,EU/EF only.
[Solution: ϕ′ = ¬EF¬((¬p ∨ ¬q) ∨ EGq) = ¬EF((p ∧ q) ∧ ¬EGq)]

(b) Compute bottom-up the denotations of all subformulas of ϕ′. (Ex: [p] = {s1, s2})
[Solution:

[p] = {s1, s2}
[q] = {s0, s1}
[(p ∧ q)] = {s1}
[EGq] = {s0, s1}

[¬EGq] = {s2}
[((p ∧ q) ∧ ¬EGq)] = {}
[EF((p ∧ q) ∧ ¬EGq)] = {}
[¬EF((p ∧ q) ∧ ¬EGq)] = {s0, s1, s2}

]

(c) As a consequence of point (b), say whether M |= ϕ or not.
[Solution: Yes, {s1, s2} ⊆ [ϕ′].]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 71 / 72

Exercises

Ex: CTL Model Checking
Consider the Kripke Model M below, and the CTL property AG(AFp → AFq).

pq
s0

¬p¬q
s1

¬pq
s2

(a) Rewrite ϕ into an equivalent formula ϕ′ expressed in terms of EX,EG,EU/EF only.

[Solution:
ϕ′ = AG(AFp → AFq) = ¬EF¬(¬EG¬p → ¬EG¬q) = ¬EF(¬EG¬p ∧ EG¬q)]

(b) Compute bottom-up the denotations of all subformulas of ϕ′. (Ex: [p] = {s1, s2})

[Solution:
[p] = {s0}
[¬p] = {s1, s2}
[EG¬p] = {s1, s2}
[¬EG¬p] = {s0}
[q] = {s0, s2}

[¬q] = {s1}
[EG¬q] = {s1}
[¬EG¬p ∧ EG¬q] = {}
[EF(¬EG¬p ∧ EG¬q)] = {}
[¬EF(¬EG¬p ∧ EG¬q)] = {s0, s1, s2}

]

(c) As a consequence of point (b), say whether M |= ϕ or not.

[Solution: Yes, {s0, s1, s2} ⊆ [ϕ′].]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 72 / 72

Exercises

Ex: CTL Model Checking
Consider the Kripke Model M below, and the CTL property AG(AFp → AFq).

pq
s0

¬p¬q
s1

¬pq
s2

(a) Rewrite ϕ into an equivalent formula ϕ′ expressed in terms of EX,EG,EU/EF only.
[Solution:
ϕ′ = AG(AFp → AFq) = ¬EF¬(¬EG¬p → ¬EG¬q) = ¬EF(¬EG¬p ∧ EG¬q)]

(b) Compute bottom-up the denotations of all subformulas of ϕ′. (Ex: [p] = {s1, s2})

[Solution:
[p] = {s0}
[¬p] = {s1, s2}
[EG¬p] = {s1, s2}
[¬EG¬p] = {s0}
[q] = {s0, s2}

[¬q] = {s1}
[EG¬q] = {s1}
[¬EG¬p ∧ EG¬q] = {}
[EF(¬EG¬p ∧ EG¬q)] = {}
[¬EF(¬EG¬p ∧ EG¬q)] = {s0, s1, s2}

]

(c) As a consequence of point (b), say whether M |= ϕ or not.

[Solution: Yes, {s0, s1, s2} ⊆ [ϕ′].]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 72 / 72

Exercises

Ex: CTL Model Checking
Consider the Kripke Model M below, and the CTL property AG(AFp → AFq).

pq
s0

¬p¬q
s1

¬pq
s2

(a) Rewrite ϕ into an equivalent formula ϕ′ expressed in terms of EX,EG,EU/EF only.
[Solution:
ϕ′ = AG(AFp → AFq) = ¬EF¬(¬EG¬p → ¬EG¬q) = ¬EF(¬EG¬p ∧ EG¬q)]

(b) Compute bottom-up the denotations of all subformulas of ϕ′. (Ex: [p] = {s1, s2})
[Solution:

[p] = {s0}
[¬p] = {s1, s2}
[EG¬p] = {s1, s2}
[¬EG¬p] = {s0}
[q] = {s0, s2}

[¬q] = {s1}
[EG¬q] = {s1}
[¬EG¬p ∧ EG¬q] = {}
[EF(¬EG¬p ∧ EG¬q)] = {}
[¬EF(¬EG¬p ∧ EG¬q)] = {s0, s1, s2}

]

(c) As a consequence of point (b), say whether M |= ϕ or not.

[Solution: Yes, {s0, s1, s2} ⊆ [ϕ′].]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 72 / 72

Exercises

Ex: CTL Model Checking
Consider the Kripke Model M below, and the CTL property AG(AFp → AFq).

pq
s0

¬p¬q
s1

¬pq
s2

(a) Rewrite ϕ into an equivalent formula ϕ′ expressed in terms of EX,EG,EU/EF only.
[Solution:
ϕ′ = AG(AFp → AFq) = ¬EF¬(¬EG¬p → ¬EG¬q) = ¬EF(¬EG¬p ∧ EG¬q)]

(b) Compute bottom-up the denotations of all subformulas of ϕ′. (Ex: [p] = {s1, s2})
[Solution:

[p] = {s0}
[¬p] = {s1, s2}
[EG¬p] = {s1, s2}
[¬EG¬p] = {s0}
[q] = {s0, s2}

[¬q] = {s1}
[EG¬q] = {s1}
[¬EG¬p ∧ EG¬q] = {}
[EF(¬EG¬p ∧ EG¬q)] = {}
[¬EF(¬EG¬p ∧ EG¬q)] = {s0, s1, s2}

]

(c) As a consequence of point (b), say whether M |= ϕ or not.
[Solution: Yes, {s0, s1, s2} ⊆ [ϕ′].]

Roberto Sebastiani Ch. 04: CTL Model Checking Monday 18th May, 2020 72 / 72

	CTL Model Checking: general ideas
	CTL Model Checking: a simple example
	Some theoretical issues
	CTL Model Checking: algorithms
	CTL Model Checking: some examples
	A relevant subcase: invariants
	Exercises

