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Some background on Boolean Logic

Boolean logic
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Some background on Boolean Logic

Basic notation & definitions

Boolean formula
>,⊥ are formulas
A propositional atom A1,A2,A3, ... is a formula;
if ϕ1 and ϕ2 are formulas, then
¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2, ϕ1 ← ϕ2, ϕ1 ↔ ϕ2
are formulas.

Atoms(ϕ): the set {A1, ...,AN} of atoms occurring in ϕ.
Literal: a propositional atom Ai (positive literal) or its negation ¬Ai
(negative literal)

Notation: if l := ¬Ai , then ¬l := Ai

Clause: a disjunction of literals
∨

j lj (e.g., (A1 ∨ ¬A2 ∨ A3 ∨ ...))
Cube: a conjunction of literals

∧
j lj (e.g., (A1 ∧ ¬A2 ∧ A3 ∧ ...))
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Some background on Boolean Logic

Semantics of Boolean operators

Truth table:

ϕ1 ϕ2 ¬ϕ1 ϕ1 ∧ ϕ2 ϕ1 ∨ ϕ2 ϕ1 → ϕ2 ϕ1 ← ϕ2 ϕ1 ↔ ϕ2
⊥ ⊥ > ⊥ ⊥ > > >
⊥ > > ⊥ > > ⊥ ⊥
> ⊥ ⊥ ⊥ > ⊥ > ⊥
> > ⊥ > > > > >

Note
∧, ∨ and↔ are commutative:
(ϕ1 ∧ ϕ2) ⇐⇒ (ϕ2 ∧ ϕ1)
(ϕ1 ∨ ϕ2) ⇐⇒ (ϕ2 ∨ ϕ1)
(ϕ1 ↔ ϕ2) ⇐⇒ (ϕ2 ↔ ϕ1)

∧ and ∨ are associative:
((ϕ1 ∧ ϕ2) ∧ ϕ3)⇐⇒ (ϕ1 ∧ (ϕ2 ∧ ϕ3))⇐⇒ (ϕ1 ∧ ϕ2 ∧ ϕ3)
((ϕ1 ∨ ϕ2) ∨ ϕ3)⇐⇒ (ϕ1 ∨ (ϕ2 ∨ ϕ3))⇐⇒ (ϕ1 ∨ ϕ2 ∨ ϕ3)
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Some background on Boolean Logic

Syntactic Properties of Boolean Operators
¬¬ϕ1 ⇐⇒ ϕ1
(ϕ1 ∨ ϕ2) ⇐⇒ ¬(¬ϕ1 ∧ ¬ϕ2)
¬(ϕ1 ∨ ϕ2) ⇐⇒ (¬ϕ1 ∧ ¬ϕ2)
(ϕ1 ∧ ϕ2) ⇐⇒ ¬(¬ϕ1 ∨ ¬ϕ2)
¬(ϕ1 ∧ ϕ2) ⇐⇒ (¬ϕ1 ∨ ¬ϕ2)
(ϕ1 → ϕ2) ⇐⇒ (¬ϕ1 ∨ ϕ2)
¬(ϕ1 → ϕ2) ⇐⇒ (ϕ1 ∧ ¬ϕ2)
(ϕ1 ← ϕ2) ⇐⇒ (ϕ1 ∨ ¬ϕ2)
¬(ϕ1 ← ϕ2) ⇐⇒ (¬ϕ1 ∧ ϕ2)
(ϕ1 ↔ ϕ2) ⇐⇒ ((ϕ1 → ϕ2) ∧ (ϕ1 ← ϕ2))

⇐⇒ ((¬ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ¬ϕ2))
¬(ϕ1 ↔ ϕ2) ⇐⇒ (¬ϕ1 ↔ ϕ2)

⇐⇒ (ϕ1 ↔ ¬ϕ2)
⇐⇒ ((ϕ1 ∨ ϕ2) ∧ (¬ϕ1 ∨ ¬ϕ2))

Boolean logic can be expressed in terms of {¬,∧} (or {¬,∨}) only
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Some background on Boolean Logic

TREE and DAG representation of formulas: example

Formulas can be represented either as trees or as DAGS:

DAG representation can be up to exponentially smaller

(A1 ↔ A2)↔ (A3 ↔ A4)
⇓

(((A1 ↔ A2)→ (A3 ↔ A4))∧
((A3 ↔ A4)→ (A1 ↔ A2)))

⇓
(((A1 → A2) ∧ (A2 → A1))→ ((A3 → A4) ∧ (A4 → A3)))∧
(((A3 → A4) ∧ (A4 → A3))→ (((A1 → A2) ∧ (A2 → A1))))
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Some background on Boolean Logic

TREE and DAG representation of formulas: example
(cont)

Tree Representation

DAG Representation

A1 A1A2 A2 A3 A3A4 A4 A3 A3A4 A4 A1 A1A2 A2

A2A1 A3 A4
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Some background on Boolean Logic

Basic notation & definitions (cont)

Total truth assignment µ for ϕ:
µ : Atoms(ϕ) 7−→ {>,⊥}.
Partial Truth assignment µ for ϕ:
µ : A 7−→ {>,⊥}, A ⊂ Atoms(ϕ).
Set and formula representation of an assignment:

µ can be represented as a set of literals:
EX: {µ(A1) := >, µ(A2) := ⊥} =⇒ {A1,¬A2}
µ can be represented as a formula (cube):
EX: {µ(A1) := >, µ(A2) := ⊥} =⇒ (A1 ∧ ¬A2)
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Some background on Boolean Logic

Basic notation & definitions (cont)
a total truth assignment µ satisfies ϕ (µ |= ϕ):

µ |= Ai ⇐⇒ µ(Ai) = >
µ |= ¬ϕ⇐⇒ not µ |= ϕ
µ |= ϕ1 ∧ ϕ2 ⇐⇒ µ |= ϕ1 and µ |= ϕ2
µ |= ϕ1 ∨ ϕ2 ⇐⇒ µ |= ϕ1 or µ |= ϕ2
µ |= ϕ1 → ϕ2 ⇐⇒ if µ |= ϕ1, then µ |= ϕ2
µ |= ϕ1 ↔ ϕ2 ⇐⇒ µ |= ϕ1 iff µ |= ϕ2

a partial truth assignment µ satisfies ϕ iff it makes ϕ evaluate to
true (Ex: {A1} |= (A1 ∨ A2))
=⇒ if µ satisfies ϕ, then all its total extensions satisfy ϕ

(Ex: {A1,A2} |= (A1 ∨ A2) and {A1,¬A2} |= (A1 ∨ A2))
ϕ is satisfiable iff µ |= ϕ for some µ
ϕ1 entails ϕ2 (ϕ1 |= ϕ2): ϕ1 |= ϕ2 iff µ |= ϕ1 =⇒ µ |= ϕ2 for every µ
ϕ is valid (|= ϕ): |= ϕ iff µ |= ϕ for every µ

Property
ϕ is valid⇐⇒ ¬ϕ is not satisfiable
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Some background on Boolean Logic

Equivalence and equi-satisfiability
ϕ1 and ϕ2 are equivalent iff, for every µ, µ |= ϕ1 iff µ |= ϕ2
ϕ1 and ϕ2 are equi-satisfiable iff
exists µ1 s.t. µ1 |= ϕ1 iff exists µ2 s.t. µ2 |= ϕ2
ϕ1, ϕ2 equivalent
⇓ 6⇑

ϕ1, ϕ2 equi-satisfiable
EX: ϕ1

def
= ψ1 ∨ ψ2 and ϕ2

def
= (ψ1 ∨ ¬A3) ∧ (A3 ∨ ψ2) s.t. A3 not in

ψ1 ∨ ψ2, are equi-satisfiable but not equivalent:
µ |= (ψ1 ∨ ¬A3) ∧ (A3 ∨ ψ2) =⇒ µ |= ψ1 ∨ ψ2
µ′ |= ψ1 ∨ ψ2 =⇒ µ′ ∧ A3 |= (ψ1 ∨ ¬A3) ∧ (A3 ∨ ψ2) or
µ′ ∧ ¬A3 |= (ψ1 ∨ ¬A3) ∧ (A3 ∨ ψ2) [ϕ1, ϕ2 equi-satisfiable]
µ′ 6|= ψ1 and µ′ |= ψ2 =⇒ µ′ ∧ A3 |= ψ1 ∨ ψ2 and
µ′ ∧ A3 6|= (ψ1 ∨ ¬A3) ∧ (A3 ∨ ψ2) [ϕ1, ϕ2 not equivalent]

Typically used when ϕ2 is the result of applying some
transformation T to ϕ1: ϕ2

def
= T (ϕ1):

we say that T is validity-preserving [satisfiability-preserving] iff
T (ϕ1) and ϕ1 are equivalent [equi-satisfiable]
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Some background on Boolean Logic

Complexity

For N variables, there are up to 2N truth assignments to be
checked.
The problem of deciding the satisfiability of a propositional formula
is NP-complete
The most important logical problems (validity, inference,
entailment, equivalence, ...) can be straightforwardly reduced to
satisfiability, and are thus (co)NP-complete.

⇓

No existing worst-case-polynomial algorithm.
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Some background on Boolean Logic

POLARITY of subformulas
Positive/negative occurrences

ϕ occurs positively in ϕ;
if ¬ϕ1 occurs positively [negatively] in ϕ,
then ϕ1 occurs negatively [positively] in ϕ
if ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2 occur positively [negatively] in ϕ,
then ϕ1 and ϕ2 occur positively [negatively] in ϕ;
if ϕ1 → ϕ2 occurs positively [negatively] in ϕ,
then ϕ1 occurs negatively [positively] in ϕ and ϕ2 occurs positively
[negatively] in ϕ;
if ϕ1 ↔ ϕ2 occurs in ϕ,
then ϕ1 and ϕ2 occur positively and negatively in ϕ;

EX:
ϕ1 occurs positively in ¬(ϕ1 → ϕ2)
ϕ2 occurs negatively in ¬(ϕ1 → ϕ2)

intuition: ϕ1 occurs positively [negatively] in ϕ iff it occurs under
the scope of an (implicit) even [odd] number of negations.

=⇒ Polarity: the number of nested negations modulo 2.
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Some background on Boolean Logic

Substitution

Properties

If ϕ1 is equivalent to ϕ2, then ϕ[ϕ1|ϕ2] is equivalent to ϕ:

|= (ϕ1 ↔ ϕ2)
⇓

|= ϕ[ϕ1|ϕ2]↔ ϕ

If ϕ2 entails ϕ1 and ϕ1 occurs only positively in ϕ, then ϕ[ϕ1|ϕ2]
entails ϕ:

ϕ2 |= ϕ1
⇓

ϕ[ϕ1|ϕ2] |= ϕ

dual case for negative occurrence
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Some background on Boolean Logic

Negative normal form (NNF)

ϕ is in Negative normal form iff it is given only by the recursive
applications of ∧,∨ to literals.
every ϕ can be reduced into NNF:
(i) substituting all→’s and↔’s:

ϕ1 → ϕ2 =⇒ ¬ϕ1 ∨ ϕ2
ϕ1 ↔ ϕ2 =⇒ (¬ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ¬ϕ2)

(ii) pushing down negations recursively:

¬(ϕ1 ∧ ϕ2) =⇒ ¬ϕ1 ∨ ¬ϕ2
¬(ϕ1 ∨ ϕ2) =⇒ ¬ϕ1 ∧ ¬ϕ2
¬¬ϕ1 =⇒ ϕ1

The reduction is linear if a DAG representation is used.
Preserves the equivalence of formulas.

Roberto Sebastiani Ch. 03: Temporal Logics Monday 18th May, 2020 16 / 108



Some background on Boolean Logic

NNF: example

(A1 ↔ A2)↔ (A3 ↔ A4)
⇓

((((A1 → A2) ∧ (A1 ← A2))→ ((A3 → A4) ∧ (A3 ← A4)))∧
(((A1 → A2) ∧ (A1 ← A2))← ((A3 → A4) ∧ (A3 ← A4))))

⇓
((¬((¬A1 ∨ A2) ∧ (A1 ∨ ¬A2)) ∨ ((¬A3 ∨ A4) ∧ (A3 ∨ ¬A4)))∧
(((¬A1 ∨ A2) ∧ (A1 ∨ ¬A2)) ∨ ¬((¬A3 ∨ A4) ∧ (A3 ∨ ¬A4))))

⇓
((((A1 ∧ ¬A2) ∨ (¬A1 ∧ A2)) ∨ ((¬A3 ∨ A4) ∧ (A3 ∨ ¬A4)))∧
(((¬A1 ∨ A2) ∧ (A1 ∨ ¬A2)) ∨ ((A3 ∧ ¬A4) ∨ (¬A3 ∧ A4))))
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Some background on Boolean Logic

NNF: example (cont)

A1 −A2 −A1 A2 −A3 A4 A3 −A4 −A1 A2 A1 −A2 −A3−A4A3 A4

−B1 B2 B1 −B2

A1 −A2 −A1 A2 −A3 A4 A3 −A4

−B1 B2 B1 −B2

Tree Representation

DAG Representation

Note
For each non-literal subformula ϕ, ϕ and ¬ϕ have different
representations =⇒ they are not shared.
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Some background on Boolean Logic

Optimized polynomial representations

And-Inverter Graphs, Reduced Boolean Circuits, Boolean Expression
Diagrams

Maximize the sharing in DAG representations:
{∧,↔,¬}-only, negations on arcs, sorting of subformulae, lifting of
¬’s over↔’s,...
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Some background on Boolean Logic

Conjunctive Normal Form (CNF)

ϕ is in Conjunctive normal form iff it is a conjunction of
disjunctions of literals:

L∧
i=1

Ki∨
ji=1

lji

the disjunctions of literals
∨Ki

ji=1 lji are called clauses
Easier to handle: list of lists of literals.
=⇒ no reasoning on the recursive structure of the formula
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Some background on Boolean Logic

Classic CNF Conversion CNF (ϕ)

Every ϕ can be reduced into CNF by, e.g.,
(i) converting it into NNF (not indispensible);

(ii) applying recursively the DeMorgan’s Rule:
(ϕ1 ∧ ϕ2) ∨ ϕ3 =⇒ (ϕ1 ∨ ϕ3) ∧ (ϕ2 ∨ ϕ3)

Worst-case exponential.
Atoms(CNF (ϕ)) = Atoms(ϕ).
CNF (ϕ) is equivalent to ϕ.
Rarely used in practice.
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Some background on Boolean Logic

Labeling CNF conversion CNFlabel(ϕ)

Every ϕ can be reduced into CNF by, e.g., applying recursively
bottom-up the rules:
ϕ =⇒ ϕ[(li ∨ lj)|B] ∧ CNF (B ↔ (li ∨ lj))
ϕ =⇒ ϕ[(li ∧ lj)|B] ∧ CNF (B ↔ (li ∧ lj))
ϕ =⇒ ϕ[(li ↔ lj)|B] ∧ CNF (B ↔ (li ↔ lj))

li , lj being literals and B being a “new” variable.
Worst-case linear.
Atoms(CNFlabel(ϕ)) ⊇ Atoms(ϕ).
CNFlabel(ϕ) is equi-satisfiable w.r.t. ϕ.
More used in practice.
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Some background on Boolean Logic

Labeling CNF conversion CNFlabel(ϕ) (cont.)

CNF (B ↔ (li ∨ lj)) ⇐⇒ (¬B ∨ li ∨ lj)∧
(B ∨ ¬li)∧
(B ∨ ¬lj)

CNF (B ↔ (li ∧ lj)) ⇐⇒ (¬B ∨ li)∧
(¬B ∨ lj)∧
(B ∨ ¬li¬lj)

CNF (B ↔ (li ↔ lj)) ⇐⇒ (¬B ∨ ¬li ∨ lj)∧
(¬B ∨ li ∨ ¬lj)∧
(B ∨ li ∨ lj)∧
(B ∨ ¬li ∨ ¬lj)
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Some background on Boolean Logic

Labeling CNF conversion CNFlabel – example

−A3 −A4 A4 A3−A3 A4 −A4A1 A5 A2 −A6 A1 −A5 −A2 A6 A1

B1 B2 B3 B4 B5 B6 B7 B8

B9 B10 B11 B12

B13 B14

B15

CNF (B1 ↔ (¬A3 ∨ A1)) ∧
... ∧
CNF (B8 ↔ (A1 ∨ ¬A4)) ∧
CNF (B9 ↔ (B1 ↔ B2)) ∧
... ∧
CNF (B12 ↔ (B7 ∧ B8)) ∧
CNF (B13 ↔ (B9 ∨ B10)) ∧
CNF (B14 ↔ (B11 ∨ B12)) ∧
CNF (B15 ↔ (B13 ∧ B14)) ∧
B15
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Some background on Boolean Logic

Labeling CNF conversion CNFlabel (variant)

As in the previous case, applying instead the rules:

ϕ =⇒ ϕ[(li ∨ lj)|B] ∧ CNF (B → (li ∨ lj)) if (li ∨ lj) pos.
ϕ =⇒ ϕ[(li ∨ lj)|B] ∧ CNF ((li ∨ lj)→ B) if (li ∨ lj) neg.
ϕ =⇒ ϕ[(li ∧ lj)|B] ∧ CNF (B → (li ∧ lj)) if (li ∧ lj) pos.
ϕ =⇒ ϕ[(li ∧ lj)|B] ∧ CNF ((li ∧ lj)→ B) if (li ∧ lj) neg.
ϕ =⇒ ϕ[(li ↔ lj)|B] ∧ CNF (B → (li ↔ lj)) if (li ↔ lj) pos.
ϕ =⇒ ϕ[(li ↔ lj)|B] ∧ CNF ((li ↔ lj)→ B) if (li ↔ lj) neg.

Pro: smaller in size:

CNF (B → (li ∨ lj)) = (¬B ∨ li ∨ lj)
CNF (((li ∨ lj)→ B)) = (¬li ∨ B) ∧ (¬lj ∨ B)

Con: looses backward propagation:
unlike with CNF (B ↔ (li ∨ lj)), with CNF (B → (li ∨ lj)) we can no
more infer that B is true from the fact that li is true or lj is true.
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Some background on Boolean Logic

Labeling CNF conversion CNFlabel(ϕ) (cont.)

CNF (B → (li ∨ lj)) ⇐⇒ (¬B ∨ li ∨ lj)
CNF (B ← (li ∨ lj)) ⇐⇒ (B ∨ ¬li)∧

(B ∨ ¬lj)
CNF (B → (li ∧ lj)) ⇐⇒ (¬B ∨ li)∧

(¬B ∨ lj)
CNF (B ← (li ∧ lj)) ⇐⇒ (B ∨ ¬li¬lj)
CNF (B → (li ↔ lj)) ⇐⇒ (¬B ∨ ¬li ∨ lj)∧

(¬B ∨ li ∨ ¬lj)
CNF (B ← (li ↔ lj)) ⇐⇒ (B ∨ li ∨ lj)∧

(B ∨ ¬li ∨ ¬lj)
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Some background on Boolean Logic

Labeling CNF conversion CNFlabel – example

−A3 −A4 A4 A3−A3 A4 −A4A1 A5 A2 −A6 A1 −A5 −A2 A6 A1

B1 B2 B3 B4 B5 B6 B7 B8

B9 B10 B11 B12

B13 B14

B15

Basic Improved
CNF (B1 ↔ (¬A3 ∨ A1)) ∧
... ∧
CNF (B8 ↔ (A1 ∨ ¬A4)) ∧
CNF (B9 ↔ (B1 ↔ B2)) ∧
... ∧
CNF (B12 ↔ (B7 ∧ B8)) ∧
CNF (B13 ↔ (B9 ∨ B10)) ∧
CNF (B14 ↔ (B11 ∨ B12)) ∧
CNF (B15 ↔ (B13 ∧ B14)) ∧
B15

CNF (B1 ↔ (¬A3 ∨ A1)) ∧
... ∧
CNF (B8 → (A1 ∨ ¬A4)) ∧
CNF (B9 → (B1 ↔ B2)) ∧
... ∧
CNF (B12 → (B7 ∧ B8)) ∧
CNF (B13 → (B9 ∨ B10)) ∧
CNF (B14 → (B11 ∨ B12)) ∧
CNF (B15 → (B13 ∧ B14)) ∧
B15
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Some background on Boolean Logic

Labeling CNF conversion CNFlabel – further
optimizations

Do not apply CNFlabel when not necessary:
(e.g., CNFlabel(ϕ1 ∧ ϕ2) =⇒ CNFlabel(ϕ1) ∧ ϕ2,
if ϕ2 already in CNF)
Apply Demorgan’s rules where it is more effective: (e.g.,
CNFlabel(ϕ1∧(A→ (B∧C))) =⇒ CNFlabel(ϕ1)∧(¬A∨B)∧(¬A∨C)

exploit the associativity of ∧’s and ∨’s:
... (A1 ∨ (A2 ∨ A3))︸ ︷︷ ︸

B

... =⇒ ...CNF (B ↔ (A1 ∨ A2 ∨ A3))...

before applying CNFlabel , rewrite the initial formula so that to
maximize the sharing of subformulas (RBC, BED)
...
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Generalities on temporal logics

Computation tree vs. computation paths

Consider the following Kripke structure:

done!done

Its execution can be seen as:

an infinite set of
computation paths

done done done!done

!done

!done

!done

donedone

done!done !done

!done !done !done

!done

.....

an infinite
computation tree

done

done

done done done

done

!done

!done

!done

!done
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Generalities on temporal logics

Temporal Logics

Express properties of “Reactive Systems”
nonterminating behaviours,
without explicit reference to time.

Linear Temporal Logic (LTL)
interpreted over each path of the Kripke structure
linear model of time
temporal operators
“Medieval”: “since birth, one’s destiny is set”.

Computation Tree Logic (CTL)
interpreted over computation tree of Kripke model
branching model of time
temporal operators plus path quantifiers
“Humanistic”: “one makes his/her own destiny step-by-step”.
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Linear Temporal Logic – LTL

Linear Temporal Logic (LTL): Syntax

An atomic proposition is a LTL formula;
if ϕ1 and ϕ2 are LTL formulae, then ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2,
ϕ1 → ϕ2, ϕ1 ↔ ϕ2 are LTL formulae;
if ϕ1 and ϕ2 are LTL formulae, then Xϕ1, ϕ1Uϕ2, Gϕ1, Fϕ1 are LTL
formulae, where X, G, F, U are the “next”, “globally”,
“eventually”,“until” temporal operators respectively.
Another operator R “releases” (the dual of U) is used sometimes.
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Linear Temporal Logic – LTL

LTL semantics: intuitions

LTL is given by the standard boolean logic enhanced with the following
temporal operators, which operate through paths 〈s0, s1, ..., sk , ...〉:

“Next” X: Xϕ is true in st iff ϕ is true in st+1

“Finally” (or “eventually”) F: Fϕ is true in st iff ϕ is true in some st ′

with t ′ ≥ t
“Globally” (or “henceforth”) G: Gϕ is true in st iff ϕ is true in all st ′

with t ′ ≥ t
“Until” U: ϕUψ is true in st iff, for some state st ′ s.t t ′ ≥ t :

ψ is true in st′ and
ϕ is true in all states st′′ s.t. t ≤ t ′′ < t ′

“Releases” R: ϕRψ is true in st iff, for all states st ′ s.t. t ′ ≥ t :
ψ is true or
ϕ is true in some states st′′ with t ≤ t ′′ < t ′

“ψ can become false only if ϕ becomes true first"
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Linear Temporal Logic – LTL

LTL semantics: intuitions

Pfinally

F P

Pglobally

PG

PX

Pnext P until q

P U q
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Linear Temporal Logic – LTL

LTL: Some Noteworthy Examples

Safety: “it never happens that a train is arriving and the bar is up”

G(¬(train_arriving ∧ bar_up))

Liveness: “if input, then eventually output”

G(input→ Foutput)

Releases: “the device is not working if you don’t first repair it”

(repair_device R ¬working_device)

Fairness: “infinitely often send ”

GFsend

Strong fairness: “infinitely often send implies infinitely often recv.”

GFsend→ GFrecv
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Linear Temporal Logic – LTL

LTL Formal Semantics

π, si |= a iff a ∈ L(si)
π, si |= ¬ϕ iff π, si 6|= ϕ
π, si |= ϕ ∧ ψ iff π, si |= ϕ and

π, si |= ψ
π, si |= Xϕ iff π, si+1 |= ϕ
π, si |= Fϕ iff for some j ≥ i : π, sj |= ϕ
π, si |= Gϕ iff for all j ≥ i : π, sj |= ϕ
π, si |= ϕUψ iff for some j ≥ i : (π, sj |= ψ and

for all k s.t . i ≤ k < j : π, sk |= ϕ)
π, si |= ϕRψ iff for all j ≥ i : (π, sj |= ψ or

for some k s.t . i ≤ k < j : π, sk |= ϕ)
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Linear Temporal Logic – LTL

LTL Formal Semantics (cont.)

LTL properties are evaluated over paths, i.e., over infinite, linear
sequences of states: π = s0 → s1 → · · · → st → st+1 → · · ·
Given an infinite sequence π = s0, s1, s2, . . .

π, si |= φ if φ is true in state si of π.
π |= φ if φ is true in the initial state s0 of π.

The LTL model checking problemM |= φ
check if π |= φ for every path π of the Kripke structureM
(e.g., φ = Fdone)

done!done
done done done!done

!done

!done

!done

donedone

done!done !done

!done !done !done

!done

.....
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Linear Temporal Logic – LTL

The LTL model checking problemM |= φ: remark

The LTL model checking problemM |= φ

π |= φ for every path π of the Kripke structureM

Important Remark

M 6|= φ 6=⇒M |= ¬φ (!!)

E.g. if φ is a LTL formula and two paths π1 and π2 are s.t. π1 |= φ
and π2 |= ¬φ.
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Linear Temporal Logic – LTL

Example: M 6|= φ 6=⇒M |= ¬φ

Let π1
def
= {s1}ω, π2

def
= {s2}ω.

M 6|= Gp, in fact:

π1 6|= Gp
π2 |= Gp

M 6|= ¬Gp, in fact:

π1 |= ¬Gp
π2 6|= ¬Gp

pq
s0

¬p¬q
s1

p¬q
s2
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Linear Temporal Logic – LTL

Syntactic properties of LTL operators

ϕ1 ∨ ϕ2 ⇐⇒ ¬(¬ϕ1 ∧ ¬ϕ2)
...
F ϕ1 ⇐⇒ >Uϕ1
G ϕ1 ⇐⇒ ⊥Rϕ1
Fϕ1 ⇐⇒ ¬G¬ϕ1
Gϕ1 ⇐⇒ ¬F¬ϕ1
¬Xϕ1 ⇐⇒ X¬ϕ1
ϕ1Rϕ2 ⇐⇒ ¬(¬ϕ1U¬ϕ2)
ϕ1Uϕ2 ⇐⇒ ¬(¬ϕ1R¬ϕ2)

Note
LTL can be defined in terms of ∧, ¬, X, U only

Exercise
Prove that ϕ1Rϕ2 ⇐⇒ Gϕ2 ∨ ϕ2U(ϕ1 ∧ ϕ2)
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Linear Temporal Logic – LTL

Proof of ϕRψ ⇔ (Gψ ∨ ψU(ϕ ∧ ψ))
[Solution proposed by the student Samuel Valentini, 2016]

(All state indexes below are implicitly assumed to be ≥ 0.)
⇒: Let π be s.t. π, s0 |= ϕRψ

If ∀j , π, sj |= ψ, then π, s0 |= Gψ.
Otherwise, let sk be the first state s.t. π, sk 6|= ψ.
Since π, s0 |= ϕRψ, then k > 0 and exists k ′ < k s.t. π,Sk ′ |= ϕ
By construction, π, sk ′ |= ϕ ∧ ψ and, for every w < k ′, π, sw |= ψ,
so that π, s0 |= ψU(ϕ ∧ ψ).
Thus, π, s0 |= Gψ ∨ ψU(ϕ ∧ ψ)

⇐: Let π be s.t. π, s0 |= Gψ ∨ ψU(ϕ ∧ ψ)
If π, s0 |= Gψ, then ∀j , π, sj |= ψ, so that π, s0 |= ϕRψ.
Otherwise, π, s0 |= ψU(ϕ ∧ ψ).
Let sk be the first state s.t. π, sk 6|= ψ.
by construction, ∃k ′ such that π,Sk ′ |= ϕ ∧ ψ
by the definition of k , we have that k ′ < k and ∀w < k , π,Sw |= ψ.
Thus π, s0 |= ϕRψ
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Linear Temporal Logic – LTL

Strength of LTL operators

Gϕ |= ϕ |= Fϕ
Gϕ |= Xϕ |= Fϕ
Gϕ |= XX...Xϕ |= Fϕ
ϕUψ |= Fψ
Gψ |= ϕRψ
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Linear Temporal Logic – LTL

LTL tableaux rules

Let ϕ1 and ϕ2 be LTL formulae:

Fϕ1 ⇐⇒ (ϕ1 ∨ XFϕ1)
Gϕ1 ⇐⇒ (ϕ1 ∧ XGϕ1)

ϕ1Uϕ2 ⇐⇒ (ϕ2 ∨ (ϕ1 ∧ X(ϕ1Uϕ2)))
ϕ1Rϕ2 ⇐⇒ (ϕ2 ∧ (ϕ1 ∨ X(ϕ1Rϕ2)))

If applied recursively, rewrite an LTL formula in terms of
atomic and X-formulas:

(pUq) ∧ (G¬p) =⇒ (q ∨ (p ∧ X(pUq))) ∧ (¬p ∧ XG¬p)
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Linear Temporal Logic – LTL

Tableaux rules: a quote

“After all... tomorrow is another day."
[Scarlett O’Hara, “Gone with the Wind”]
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Some LTL Model Checking Examples

Example 1: mutual exclusion (safety)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= G¬(C1 ∧ C2) ?

YES: There is no reachable state in which (C1 ∧ C2) holds!
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Some LTL Model Checking Examples

Example 2: liveness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= FC1 ?

NO: there is an infinite cyclic solution in which C1 never holds!
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Some LTL Model Checking Examples

Example 3: liveness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= G(T1 → FC1) ?

YES: every path starting from each state where T1 holds passes
through a state where C1 holds.
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Some LTL Model Checking Examples

Example 4: fairness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= GFC1 ?

NO: e.g., in the initial state, there is an infinite cyclic solution in which
C1 never holds!
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Some LTL Model Checking Examples

Example 5: strong fairness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= GFT1 → GFC1 ?

YES: every path which visits T1 infinitely often also visits C1 infinitely
often (see liveness property of previous example).
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Some LTL Model Checking Examples

Example 6: Releases

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= T1R¬C1 ?

YES: C1 in paths only strictly after T1 has occured.
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Some LTL Model Checking Examples

Example 7: XF

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= XF(turn = 0) ?

NO: a counter-example is the∞-shaped loop:
(N1,N2), {(T 1,N2), (C1,N2), (C1,T2), (N1,T2), (N1,C2), (T 1,C2)}ω
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Some LTL Model Checking Examples

Example: G(T → FC) vs. GFT → GFC

G(T → FC) =⇒ GFT → GFC ?
YES: if M |= G(T → FC), then M |= GFT → GFC !
let M |= G(T → FC).
let π ∈ M s.t. π |= GFT
=⇒ π, si |= FT for each si ∈ π
=⇒ π, sj |= T for each si ∈ π and for some sj ∈ π s.t .j ≥ i
=⇒ π, sj |= FC for each si ∈ π and for some sj ∈ π s.t .j ≥ i
=⇒ π, sk |= C for each si ∈ π, for some sj ∈ π s.t .j ≥ i and for
some k ≥ j
=⇒ π, sk |= C for each si ∈ π and for some k ≥ i
=⇒ π |= GFC
=⇒ M |= GFT → GFC.
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Some LTL Model Checking Examples

Example: G(T → FC) vs. GFT → GFC

G(T → FC) ⇐= GFT → GFC ?
NO!.
Counter example:

  ¬C, ¬T¬C, T

GFT → GFC is satisfied
G(T → FC) is not satisfied

(Counter-example proposed by the student Vaishak Belle, 2008)
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Computation Tree Logic – CTL

Computational Tree Logic (CTL): Syntax

An atomic proposition is a CTL formula;
if ϕ1 and ϕ2 are CTL formulae, then ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2,
ϕ1 → ϕ2, ϕ1 ↔ ϕ2 are CTL formulae;
if ϕ1 and ϕ2 are CTL formulae, then AXϕ1, A(ϕ1Uϕ2), AGϕ1,
AFϕ1, EXϕ1, E(ϕ1Uϕ2), EGϕ1, EFϕ1,, are CTL formulae.
(E(ϕ1Rϕ2) and A(ϕ1Rϕ2) never used in practice.)
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Computation Tree Logic – CTL

CTL semantics: intuitions

CTL is given by the standard boolean logic enhanced with the
operators AX, AG, AF, AU, EX, EG, EF, EU:

“Necessarily Next” AX: AXϕ is true in st iff ϕ is true in every
successor state st+1

“Possibly Next” EX: EXϕ is true in st iff ϕ is true in one successor
state st+1

“Necessarily in the future” (or “Inevitably”) AF: AFϕ is true in st iff
ϕ is inevitably true in some st ′ with t ′ ≥ t
“Possibly in the future” (or “Possibly”) EF: EFϕ is true in st iff ϕ
may be true in some st ′ with t ′ ≥ t
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Computation Tree Logic – CTL

CTL semantics: intuitions [cont.]

“Globally” (or “always”) AG: AGϕ is true in st iff ϕ is true in all st ′

with t ′ ≥ t
“Possibly henceforth” EG: EGϕ is true in st iff ϕ is possibly true
henceforth
“Necessarily Until” AU: A(ϕUψ) is true in st iff necessarily ϕ holds
until ψ holds.
“Possibly Until” EU: E(ϕUψ) is true in st iff possibly ϕ holds until ψ
holds.
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Computation Tree Logic – CTL

CTL semantics: intuitions [cont.]

Pfinally Pglobally Pnext P until q

PEF PEX P U q]E[PEG

AFP AXP P U qA[ ]AGP
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Computation Tree Logic – CTL

CTL Formal Semantics
Let (si , si+1, . . .) be a path outgoing from state si in M

M, si |= a iff a ∈ L(si)
M, si |= ¬ϕ iff M, si 6|= ϕ
M, si |= ϕ ∨ ψ iff M, si |= ϕ or

M, si |= ψ
M, si |= AXϕ iff for all (si , si+1, . . .), M, si+1 |= ϕ
M, si |= EXϕ iff for some (si , si+1, . . .), M, si+1 |= ϕ
M, si |= AGϕ iff for all (si , si+1, . . .), for all j ≥ i .M, sj |= ϕ
M, si |= EGϕ iff for some (si , si+1, . . .), for all j ≥ i .M, sj |= ϕ
M, si |= AFϕ iff for all (si , si+1, . . .), for some j ≥ i .M, sj |= ϕ
M, si |= EFϕ iff for some (si , si+1, . . .), for some j ≥ i .M, sj |= ϕ
M, si |= A(ϕUψ) iff for all (si , si+1, . . .), for some j ≥ i .

(M, sj |= ψ and
forall k s.t . i ≤ k < j .M, sk |= ϕ)

M, si |= E(ϕUψ) iff for some (si , si+1, . . .), for some j ≥ i .
(M, sj |= ψ and
forall k s.t . i ≤ k < j .M, sk |= ϕ)
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Computation Tree Logic – CTL

Formal Semantics (cont.)

CTL properties (e.g. AFdone) are evaluated over trees.

done!done

done

done

done done done

done

!done

!done

!done

!done

Every temporal operator (F,G,X,U) is preceded by a path
quantifier (A or E).
Universal modalities (AF,AG,AX,AU): the temporal formula is
true in all the paths starting in the current state.
Existential modalities (EF,EG,EX,EU): the temporal formula is
true in some path starting in the current state.

Roberto Sebastiani Ch. 03: Temporal Logics Monday 18th May, 2020 62 / 108



Computation Tree Logic – CTL

The CTL model checking problemM |= φ

The CTL model checking problemM |= φ

M, s |= φ for every initial state s ∈ I of the Kripke structure

Important Remark

M 6|= φ 6=⇒M |= ¬φ (!!)

E.g. if φ is a universal formula A... and two initial states s0, s1 are
s.t. M, s0 |= φ andM, s1 6|= φ

M 6|= φ =⇒M |= ¬φ ifM has only one initial state
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Computation Tree Logic – CTL

Example: M 6|= φ 6=⇒M |= ¬φ

M 6|= AGp, in fact:

M, s1 6|= AGp
(e.g., {s1, ...} is a
counter-example)
M, s2 |= AGp

M 6|= ¬AGp, in fact:

M, s1 |= ¬AGp
(i.e.,M, s1 |= EF¬p)
M, s2 6|= ¬AGp
(i.e.,M, s2 6|= EF¬p)

pq
s0

¬p¬q
s1

p¬q
s2
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Computation Tree Logic – CTL

Syntactic properties of CTL operators

ϕ1 ∨ ϕ2 ⇐⇒ ¬(¬ϕ1 ∧ ¬ϕ2)
...

A(ϕ1Uϕ2) ⇐⇒ ¬E(¬ϕ2U(¬ϕ1 ∧ ¬ϕ2)) ∧ ¬EG¬ϕ2
EF ϕ1 ⇐⇒ E(>Uϕ1)
AGϕ1 ⇐⇒ ¬EF¬ϕ1
AF ϕ1 ⇐⇒ ¬EG¬ϕ1
AXϕ1 ⇐⇒ ¬EX¬ϕ1

Note
CTL can be defined in terms of ∧, ¬, EX, EG, EU only

Exercise:
prove that A(ϕ1Uϕ2)⇐⇒ ¬EG¬ϕ2 ∧ ¬E(¬ϕ2U(¬ϕ1 ∧ ¬ϕ2))
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Computation Tree Logic – CTL

Strength of CTL operators

A[OP]ϕ |= E[OP]ϕ, s.t. [OP] ∈ {X,F,G,U}
AGϕ |= ϕ |= AFϕ , EGϕ |= ϕ |= EFϕ
AGϕ |= AXϕ |= AFϕ , EGϕ |= EXϕ |= EFϕ
AGϕ |= AX...AXϕ |= AFϕ , EGϕ |= EX...EXϕ |= EFϕ
A(ϕUψ) |= AFψ, E(ϕUψ) |= EFψ
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Computation Tree Logic – CTL

CTL tableaux rules

Let ϕ1 and ϕ2 be CTL formulae:
AFϕ1 ⇐⇒ (ϕ1 ∨ AXAFϕ1)
AGϕ1 ⇐⇒ (ϕ1 ∧ AXAGϕ1)

A(ϕ1Uϕ2) ⇐⇒ (ϕ2 ∨ (ϕ1 ∧ AXA(ϕ1Uϕ2)))
EFϕ1 ⇐⇒ (ϕ1 ∨ EXEFϕ1)
EGϕ1 ⇐⇒ (ϕ1 ∧ EXEGϕ1)

E(ϕ1Uϕ2) ⇐⇒ (ϕ2 ∨ (ϕ1 ∧ EXE(ϕ1Uϕ2)))

Recursive definitions of AF, AG, AU, EF, EG, EU.
If applied recursively, rewrite a CTL formula in terms of atomic,
AX- and EX-formulas:

A(pUq) ∧ (EG¬p) =⇒ (q ∨ (p ∧ AXA(pUq))) ∧ (¬p ∧ EXEG¬p)
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Computation Tree Logic – CTL

Tableaux rules: a quote

“After all... tomorrow is another day."
[Scarlett O’Hara, “Gone with the Wind”]
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Some CTL Model Checking Examples

Example 1: mutual exclusion (safety)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= AG¬(C1 ∧ C2) ?

YES: There is no reachable state in which (C1 ∧ C2) holds!
(Same as the G¬(C1 ∧ C2) in LTL.)
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Some CTL Model Checking Examples

Example 2: liveness
N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= AG(T1 → AF C1) ?

YES: every path starting from each state where T1 holds passes
through a state where C1 holds
(Same as G(T1 → FC1) in LTL.)
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Some CTL Model Checking Examples

Example 3: fairness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= AGAFC1 ?

NO: e.g., in the initial state, there is an infinite cyclic solution in which
C1 never holds! (Same as GFC1 in LTL.)
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Some CTL Model Checking Examples

Example 3: fairness (2)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= AGAF(turn = 0) ?

NO: there is an infinite 8-shaped cyclic solution in which (turn = 0)
never holds!
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Some CTL Model Checking Examples

Example 4: blocking
N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= AG(N1 → EF T1) ?

YES: from each state where N1 holds there is a path leading to a state
where T1 holds
(No corresponding LTL formula.)
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Some CTL Model Checking Examples

Example 5: blocking (2)
N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= AG(N1 → AF T1) ?

NO: e.g., in the initial state, there is an infinite cyclic solution in which
N1 holds and T1 never holds!
(Same as LTL formula G(N1 → FT1).)
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Some CTL Model Checking Examples

Example 6:

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= EGN1 ?

YES: there is an infinite cyclic solution where N1 always holds
(No corresponding LTL formula.)
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Some CTL Model Checking Examples

Example 7:
N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= AFEGN1 ?

YES: there is an infinite cyclic solution where N1 always holds, and
from every state you necessarily reach one state of such cycle
(No corresponding LTL formula.)
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LTL vs. CTL

LTL vs. CTL: expressiveness

many CTL formulas cannot be expressed in LTL
(e.g., those containing existentially quantified subformulas)
E.g., AG(N1 → EFT1), AFAGϕ
many LTL formulas cannot be expressed in CTL
(e.g. fairness LTL formulas)
E.g., GFT1 → GFC1, FGϕ
some formulas can be expressed both in LTL and in CTL (typically
LTL formulas with operators of nesting depth 1, and/or with
operators occurring positively)
E.g., G¬(C1 ∧ C2), FC1, G(T1 → FC1), GFC1

CTLLTL
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LTL vs. CTL

Example: AFAGp vs. FGp
(Example developed by the students Andrea Mattioli and Mirko Boniatti, 2005.)
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LTL vs. CTL

LTL vs. CTL: M.C. Algorithms

LTL M.C. problems are typically handled with automata- based
M.C. approaches (Wolper & Vardi)
CTL M.C. problems are typically handled with symbolic M.C.
approaches (Clarke & McMillan)
LTL M.C. problems can be reduced to CTL M.C. problems under
fairness constraints (Clarke et al.)
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LTL vs. CTL

CTL*

Syntax: let p’s, ϕ’s, ψ’s being propositions, state formulae and
path formulae respectively:

p, ¬ϕ, ϕ1 ∧ ϕ2, Aψ, Eψ are state formulae
(properties of the set of paths starting from a state)
ϕ, ¬ψ, ψ1 ∧ ψ2, Xψ, Gψ, Fψ, ψ1Uψ2 are path formulae
(properties of a path)

Semantics: A, E, X, G, F, U as in CTL
A, E: quantify on paths (as in CTL)
X, G, F, U: (as in LTL)
as in CTL, but X, G, F, U not necessarily preceded by A,E

Remark
In principle in CTL* one may have sequences of nested path
quantifiers. In such case, the most internal one dominates:

M, s |= AEψ iff M, s |= Eψ, M, s |= EAψ iff M, s |= Aψ.
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LTL vs. CTL

CTL* vs LTL & CTL

CTL* subsumes both CTL and LTL
ϕ in CTL =⇒ ϕ in CTL* (e.g., AG(N1 → EFT1)
ϕ in LTL =⇒ Aϕ in CTL* (e.g., A(GFT1 → GFC1)
LTL ∪ CTL ⊂ CTL* (e.g., E(GFp → GFq) )

CTLLTL

CTL*

Roberto Sebastiani Ch. 03: Temporal Logics Monday 18th May, 2020 83 / 108



LTL vs. CTL

“You have no respect for logic. (...)
I have no respect for those who have no respect for logic.”
https://www.youtube.com/watch?v=uGstM8QMCjQ

(Arnold Schwarzenegger in “Twins”)
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Fairness & Fair Kripke Models

The need for fairness conditions: intuition

Consider a public restroom. A standard access policy is “first come
first served” (e.g., a queue-based protocol).

Does this policy guarantee that everybody entering the queue will
eventually access the restroom?

No: in principle, somebody might remain in the restroom forever,
hindering the access to everybody else
in practice, it is considered reasonable to assume that everybody
exits the restroom after a finite amount of time

=⇒ it is reasonable enough to assume the protocol suitable under the
condition that each user is infinitely often outside the restroom
such a condition is called fairness condition
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Fairness & Fair Kripke Models

The need for fairness conditions: an example

Consider a variant of the mutual exclusion in which one process
can stay permanently in the critical zone
Do M |= AG(T1 → AFC1), M |= AG(T2 → AFC2) still hold?
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Fairness & Fair Kripke Models

The need for fairness conditions: an example [cont.]

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= AG(T1 → AFC1) M |= AG(T2 → AFC2)
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Fairness & Fair Kripke Models

The need for fairness conditions: an example [cont.]

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical,  T = trying,  C = critical User 1 User 2

M |= AG(T1 → AFC1)? M |= AG(T2 → AFC2)?
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Fairness & Fair Kripke Models

The need for fairness conditions: an example [cont.]

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical,  T = trying,  C = critical User 1 User 2

AG(T1 → AFC1)? AG(T2 → AFC2)?
NO: E.g., it can cycle forever in {C1,T2, turn = 1}

=⇒ Unfair protocol: one process might never be served
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Fairness & Fair Kripke Models

Fairness conditions

It is desirable that certain (typically Boolean) conditions ϕ’s hold
infinitely often: AGAFϕ (GFϕ in LTL)
AGAFϕ (GFϕ) is called fairness conditions
Intuitively, fairness conditions are used to eliminate behaviours in
which a certain condition ϕ never holds:

¬EFEG¬ϕ

(“it is never reached a state from which ϕ is forever false”)
Example: it is not desirable that, once a process is in the critical
section, it never exits: AGAF¬C1 (¬EFEGC1)
A fair condition ϕi can be represented also by the set fi of states
where ϕi holds (fi := {s : M, s |= ϕi})
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Fairness & Fair Kripke Models

Fair Kripke models

p

q

1

2

3

4

p

p

q

1

2

3

4

p

A Fair Kripke model MF := 〈S,R, I,AP,L,F 〉
consists of

a set of states S;
a set of initial states I ⊆ S;
a set of transitions R ⊆ S × S;
a set of atomic propositions AP;
a labeling L ⊆ S × AP;
a set of fairness conditions F = {f1, . . . , fn}, with fi ⊆ S.

E.g., {{2}} := {{s : M, s |= q}} = {GFq} is the set of fairness
conditions of the Kripke model above
Fair path π: at least one state for each fi occurs infinitely often in π
(ϕi holds infinitely often in π: π |= GFϕi )
E.g., every path visiting infinitely often state 2 is a fair path.

Roberto Sebastiani Ch. 03: Temporal Logics Monday 18th May, 2020 92 / 108



Fairness & Fair Kripke Models

CTL M.C. with Fair Kripke Models

Fair Kripke Models restrict the M.C. process to fair paths:
Path quantifiers apply only to fair paths:

MF , s |= Aϕ iff π, s |= ϕ for every fair path π s.t. s ∈ π
MF , s |= Eϕ iff π, s |= ϕ for some fair path π s.t. s ∈ π

Fair state: a state from which at least one fair path originates, that
is, a state s is a fair state in MF iff MF , s |= EGtrue.
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Fairness & Fair Kripke Models

Fairness: example
F := {{ not C1},{not C2}}

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N1, N2

turn=0

not C1
not C2

MF |= AG(T1 → AFC1)? MF |= AG(T2 → AFC2)?
YES: every fair path satisfies the conditions
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Fairness & Fair Kripke Models

CTL M.C. vs. LTL M.C. with Fair Kripke Models

Remark: fair CTL M.C.
When model checking a CTL formula ψ, fairness conditions cannot be
encoded into the formula itself:

M{f1,...,fn} |= ψ 6⇐⇒ M |= (
n∧

i=1

AGAFfi)→ ψ.

Remark: fair LTL M.C.
When model checking an LTL formula ψ, fairness conditions can be
encoded into the formula itself:

M{f1,...,fn} |= ψ ⇐⇒ M |= (
n∧

i=1

GFfi)→ ψ.
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Fairness & Fair Kripke Models

Ex. CTL: M{f1,...,fn} |= ψ 6⇐⇒ M |= (
∧n

i=1 AGAFfi)→ ψ.

[Example provided by the student Davide Kirchner, 2014]

pq
s2

¬pq
s0

p¬q
s1

pq
s2

¬pq
s0

p¬q
s1

M

Mp

Mp 6|= AGq
M |= (AGAFp)→ AGq
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Fairness & Fair Kripke Models

Ex. CTL: M{f1,...,fn} |= ψ 6⇐⇒ M |= (
∧n

i=1 EGEFfi)→ ψ.

[Example provided by the student Daniele Giuliani, 2019]

M

Mp!q

p¬q
s2

p¬q
s2

¬pq
s1

¬pq
s1

Mp!q 6|= EFEGq
M |= (EGEFp)→ EFEGq
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Fairness & Fair Kripke Models

Ex. LTL (1): M{f1,...,fn} |= ψ ⇐⇒ M |= (
∧n

i=1 GFfi)→ ψ.

pq
s2

¬pq
s0

p¬q
s1

pq
s2

¬pq
s0

p¬q
s1

M

Mp

Mp 6|= Gq
M 6|= (GFp)→ Gq
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Fairness & Fair Kripke Models

Ex. LTL (2): M{f1,...,fn} |= ψ ⇐⇒ M |= (
∧n

i=1 GFfi)→ ψ.

¬pq
s2

¬p¬q
s0

pq
s1

¬pq
s2

¬p¬q
s0

pq
s1

M

Mp

Mp |= Gq
M |= (GFp)→ Gq
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Exercises

Ex: Labeled CNF-ization

Consider the following Boolean formula ϕ:

((¬A1 ∧ ¬A2) ∨ ( A7 ∧ A4) ∨ (¬A3 ∧ A2) ∨ ( A5 ∧ ¬A4))

Using the improved CNFlabel conversion, produce the CNF formula CNFlabel(ϕ).

[ Solution: we introduce fresh Boolean variables naming the subformulas of ϕ:

(

B︷ ︸︸ ︷
B1︷ ︸︸ ︷

(¬A1 ∧ ¬A2)∨

B2︷ ︸︸ ︷
( A7 ∧ A4)∨

B3︷ ︸︸ ︷
(¬A3 ∧ A2)∨

B4︷ ︸︸ ︷
( A5 ∧ ¬A4))

from which we obtain:
(B) ∧
(¬B ∨ B1 ∨ B2 ∨ B3 ∨ B4) ∧
(¬B1 ∨ ¬A1) ∧ (¬B1 ∨ ¬A2) ∧
(¬B2 ∨ A7) ∧ (¬B2 ∨ A4) ∧
(¬B3 ∨ ¬A3) ∧ (¬B3 ∨ A2) ∧
(¬B4 ∨ A5) ∧ (¬B4 ∨ ¬A4)

.
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Exercises

Ex: NNF conversion

Consider the following Boolean formula ϕ:

¬(((¬A1 → ¬A2) ∧ (¬A3 → A4)) ∨ (( A5 → A6) ∧ ( A7 → ¬A8)))

Compute the Negative Normal Form of ϕ, called ϕ′.

[ Solution:

ϕ
⇒ ¬(((¬A1 → ¬A2) ∧ (¬A3 → A4)) ∨ (( A5 → A6) ∧ ( A7 → ¬A8)))
⇒ (¬((¬A1 → ¬A2) ∧ (¬A3 → A4)) ∧ ¬(( A5 → A6) ∧ ( A7 → ¬A8)))
⇒ ((¬(¬A1 → ¬A2) ∨ ¬(¬A3 → A4)) ∧ (¬( A5 → A6) ∨ ¬( A7 → ¬A8)))
⇒ (((¬A1 ∧ A2) ∨ (¬A3 ∧ ¬A4)) ∧ (( A5 ∧ ¬A6) ∨ ( A7 ∧ A8)))
= ϕ′

]
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Exercises

Exercise: LTL Model Checking (path)

Consider the following path π:

¬pq
s1

p¬q
s2

p¬q
s3

p¬q
s4

¬p¬q
s0

For each of the following facts, say if it is true of false in LTL.

(a) π, s0 |= GFq
[ Solution: true ]

(b) π, s0 |= FG(q ↔ ¬p)
[ Solution: true ]

(c) π, s2 |= Gp
[ Solution: false ]

(d) π, s2 |= pUq
[ Solution: true ]
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Exercises

Ex: LTL Model Checking

Consider the following Kripke Model M:

¬pq
s2

p¬q
s1

pq
s0

For each of the following facts, say if it is true or false in LTL.

(a) M |= (pUq)
[ Solution: true ]

(b) M |= G(¬p → F¬q)
[ Solution: true ]

(c) M |= Gp → Gq
[ Solution: true ]

(d) M |= FGp
[ Solution: false ]
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Exercises

Ex: CTL Model Checking

Consider the following Kripke Model M:

¬pq
s0

p¬q
s1

pq
s2

For each of the following facts, say if it is true or false in CTL.

(a) M |= AF¬p
[ Solution: false ]

(b) M |= EGp
[ Solution: false ]

(c) M |= A(pUq)
[ Solution: true ]

(d) M |= E(pU¬q)
[ Solution: true ]
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Exercises

Ex: CTL Model Checking

Consider the following Kripke Model M:

pq
s0

¬pq
s2

p¬q
s1

For each of the following facts, say if it is true or false in CTL.

(a) M |= AF¬q
[ Solution: false ]

(b) M |= EGq
[ Solution: false ]

(c) M |= ((AGAFp ∨ AGAFq) ∧ (AGAF¬p ∨ AGAF¬q)) → q
[ Solution: true ]

(d) M |= AFEG(p ∧ q)
[ Solution: false ]
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Exercises

Ex: Fair CTL Model Checking

Consider the following fair Kripke Model M:

F1 F2

¬pq
s2

p¬q
s1

pq
s0

For each of the following facts, say if it is true or false in CTL.

(a) M |= AF¬p
[ Solution: true ]

(b) M |= A(pU¬q)
[ Solution: true ]

(c) M |= AX¬q
[ Solution: false ]

(d) M |= AGAF¬p
[ Solution: true ]
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Exercises

Ex: Fair CTL Model Checking

Consider the following fair Kripke Model M:

F1

pq
s0

¬pq
s2

p¬q
s1

For each of the following facts, say if it is true or false in CTL.

(a) M |= EF(p ∧ q)
[ Solution: true ]

(b) M |= AGAFp
[ Solution: true ]

(c) M |= AF¬q
[ Solution: true ]

(d) M |= AG(¬p ∨ ¬q)
[ Solution: false ]
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