
Introduction to Formal Methods
Chapter 02: Modeling Transition Systems

Roberto Sebastiani

DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/fm2020/

Teaching assistant: Enrico Magnago – enrico.magnago@unitn.it

CDLM in Informatica, academic year 2019-2020

last update: Monday 18th May, 2020, 14:48

Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti, M.
Di Natale, P. Pandya, M. Pistore, M. Roveri, and S.Tonetta, who detain its copyright. Some exampes displayed in these
slides are taken from [Clarke, Grunberg & Peled, “Model Checking”, MIT Press], and their copyright is detained by the
authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly

forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public
without containing this copyright notice.

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 1 / 32

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fm2020/
enrico.magnago@unitn.it

Outline

1 Transition Systems as Kripke Models

2 Languages for Transition Systems

3 Properties of Transition Systems

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 2 / 32

Transition Systems as Kripke Models

Modeling the system: Kripke models

Kripke models are used to describe reactive systems:
nonterminating systems with infinite behaviors
(e.g. communication protocols, hardware circuits);
represent the dynamic evolution of modeled systems;
a state includes values to state variables, program counters,
content of communication channels.
can be animated and validated before their actual implementation

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 4 / 32

Transition Systems as Kripke Models

Kripke model: formal definition
A Kripke model 〈S, I,R,AP,L〉 consists of

a finite set of states S;
a set of initial states I ⊆ S;
a set of transitions R ⊆ S × S;
a set of atomic propositions (Boolean
variables) AP;
a labeling function L : S 7−→ 2AP .

We assume R Total: for every state s, there
exists (at least) one state s′ s.t. (s, s′) ∈ R
Sometimes we use variables with discrete
bounded values vi ∈ {d1, ...,dk} (can be
encoded with dlog(k)e Boolean variables)

p

q

1

2

3

4

p

Remark
Unlike with other types of Automata (e.g., Buechi), in Kripke structures
the value of every variable is always assigned in each state.

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 5 / 32

Transition Systems as Kripke Models

Kripke Structures: two alternative representations:

each state identifies univocally the values of the atomic
propositions which hold there
each state is labeled by a bit vector

{ } {q}

{p} {p, q}

0 0 0 1

1 11 0

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 6 / 32

Transition Systems as Kripke Models

Other representations of finite state machines

Moore machines
Mealy machines
Finite automata
Büchi automata
...

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 7 / 32

Transition Systems as Kripke Models

Example: a Kripke model for mutual exclusion

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 8 / 32

Transition Systems as Kripke Models

Path in a Kripke Model

A path in a Kripke model M is an infinite sequence of states

π = s0, s1, s2, . . . ∈ Sω

such that s0 ∈ I and (si , si+1) ∈ R.

N1, N2

turn=0

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

turn=1

turn=1 turn=1

turn=1

T1, T2

C1, T2

C1, N2

T1, N2

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

A state s is reachable in M if there is a path from the initial states to s.

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 9 / 32

Transition Systems as Kripke Models

Composing Kripke Models

Complex Kripke Models are tipically obtained by composition of
smaller ones
Components can be combined via

asynchronous composition.
synchronous composition,

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 10 / 32

Transition Systems as Kripke Models

Asynchronous Composition

Interleaving of evolution of components.
At each time instant, one component is selected to perform a
transition.

x = 1x = 0
y = b y = b

x = 0
y = a

x = 1
y = a

y = by = a

x = 1x = 0
asynchronous

composition

Typical example: communication protocols.

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 11 / 32

Transition Systems as Kripke Models

Asynchronous Composition/Product: formal definition
Asynchronous product of Kripke models

Let M1
def
= 〈S1, I1,R1,AP1,L1〉, M2

def
= 〈S2, I2,R2,AP2,L2〉. Then the

asynchronous product M def
= M1||M2 is M def

= 〈S, I,R,AP,L〉, where
S ⊆ S1 × S2 s.t.,
∀〈s1, s2〉 ∈ S, ∀l ∈ AP1 ∩ AP2, l ∈ L1(s1) iff l ∈ L2(s2)

I ⊆ I1 × I2 s.t. I ⊆ S
R(〈s1, s2〉, 〈t1, t2〉) iff (R1(s1, t1) and s2 = t2) or

(s1 = t1 and R2(s2, t2))
AP = AP1 ∪ AP2

L : S 7−→ 2AP s.t. L(〈s1, s2〉)
def
= L1(s1) ∪ L2(s2).

Note: combined states must agree on the values of Boolean variables.

Asynchronous composition is associative:
(...(M1||M2)||...)||Mn) = (M1||(M2||(...||Mn)...) = M1||M2||...||Mn

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 12 / 32

Transition Systems as Kripke Models

Asynchronous Composition: Example 1

1

3 4

2 1

3 4

2A A

AA

B B

BB

C C

CC

A B

C

1

3 4

2

1

3 4

2

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 13 / 32

Transition Systems as Kripke Models

Asynchronous Composition: Example 2

1

3 4

2 A A

A B

C C

C

A B

C

4

1

3

2

x=0 x=0

x=0

x=0

x=0

x=1

x=1

1

3

2

non−reachable state

x=0 x=0

x=0

x=0

x=0x=0

x=1

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 14 / 32

Transition Systems as Kripke Models

Asynchronous Composition: Example 2

1

3 4

2 A A

A

C C

C

A B

C

1

3

2

x=0 x=0

x=0

x=0

x=0

x=1

x=1

1

3

2

x=0 x=0

x=0

x=0

x=0x=0

.

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 15 / 32

Transition Systems as Kripke Models

Synchronous Composition

Components evolve in parallel.
At each time instant, every component performs a transition.

y = by = a

x = 1x = 0
synchronous

composition

x = 0
y = a

x = 1x = 0

x = 1
y = a

y = b y = b

Typical example: sequential hardware circuits.

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 16 / 32

Transition Systems as Kripke Models

Synchronous Composition/Product: formal definition

Synchronous product of Kripke models

Let M1
def
= 〈S1, I1,R1,AP1,L1〉, M2

def
= 〈S2, I2,R2,AP2,L2〉. Then the

synchronous product M def
= M1 ×M2 is M def

= 〈S, I,R,AP,L〉, where
S ⊆ S1 × S2 s.t.,
∀〈s1, s2〉 ∈ S, ∀l ∈ AP1 ∩ AP2, l ∈ L1(s1) iff l ∈ L2(s2)

I ⊆ I1 × I2 s.t. I ⊆ S
R(〈s1, s2〉, 〈t1, t2〉) iff (R1(s1, t1) and R2(s2, t2))

AP = AP1 ∪ AP2

L : S 7−→ 2AP s.t. L(〈s1, s2〉)
def
= L1(s1) ∪ L2(s2).

Note: combined states must agree on the values of Boolean variables.

Synchronous composition is associative:
(...(M1×M2)× ...)×Mn) = (M1×(M2×(...×Mn)...) = M1×M2× ...×Mn

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 17 / 32

Transition Systems as Kripke Models

Synchronous Composition: Example 1

1

3 4

2

A B

C

A A

AA

BB

BB

C C

CC

1

3 4

2 1

3 4

2

1

3 4

2

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 18 / 32

Transition Systems as Kripke Models

Synchronous Composition: Example 2

1

3 4

2

A B

C

A A

A B

C C

C

1

3

2

4

1

3

2

x=0 x=0

x=0

x=0

x=0

x=1

x=1

x=1

x=0 x=0

x=0

x=0 x=0

x=0

NON−reachable state

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 19 / 32

Transition Systems as Kripke Models

Synchronous Composition: Example 2 (cont.)

1

3 4

2

A B

C

A

A B

C C

C

1

3 4

1

3

2

x=0 x=0

x=0

x=0

x=0

x=1

x=1

x=1

x=0

x=0

x=0 x=0

x=0

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 20 / 32

Languages for Transition Systems

Description languages for Kripke Model

Tipically a Kripke model is not given explicitly, rather it is usually
presented in a structured language
(e.g., SMV, SDL, PROMELA, StateCharts, VHDL, ...)
Each component is presented by specifying

state variables: determine the set of atomic propositions AP, the
state space S and the labeling L.
initial values for state variables: determine the set of initial states I.
instructions: determine the transition relation R.

Remark
tipically these description are much more compact (and intuitive) than
the explicit representation of the Kripke model.

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 22 / 32

Languages for Transition Systems

The SMV language

The input language of the SMV M.C. (and NUSMV)
Booleans, enumerative and bounded integers as data types
now enriched with other constructs, e.g. in NuXMV language
An SMV program consists of:

Declarations of the state variables (e.g., b0);
Assignments that define the valid initial states
(e.g., init(b0) := 0).
Assignments that define the transition relation
(e.g., next(b0) := !b0).

Allows for both synchronous and asyncronous composition of
modules (though synchronous interaction more natural)

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 23 / 32

Languages for Transition Systems

The SMV language: example

Example: The modulo 4 counter with reset
MODULE main
VAR
b0 : boolean;
b1 : boolean;
reset : boolean;
out : 0..3;

ASSIGN
init(b0) := 0;
next(b0) := case

reset = 1 : 0;
reset = 0 : !b0;

esac;

init(b1) := 0;
next(b1) := case

reset = 1 : 0;
reset = 0 : (b0 xor b1);

esac;
out := toint(b0) + 2*toint(b1);

2

0 1

3

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 24 / 32

Languages for Transition Systems

The PROMELA language

PROMELA (Process Meta Language) is the modeling language
of the M.C. SPIN
The syntax is C-like
A system in PROMELA consists of a set of processes that
interact by means of:

shared variables
communication channels

rendez-vous communications
buffered communications

Processes can be created dynamically
Allows for both synchronous and asyncronous composition of
processes (though asynchronous interaction more natural)

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 25 / 32

Languages for Transition Systems

The PROMELA language: example
Example: A Mutual Exclusion Algorithm

bool turn;
bool flag[2];

proctype User(bool pid) {
flag[pid] = 1;
turn = 1-pid;
(flag[1-pid] == 0 || turn == pid);
/* Begin of critical section */
...
/* End of critical section */
flag[pid] = 0;

}
init { run User(0); run User(1) }

process 0 process 1

CRITICAL

0

1

1

0

1

1

0

0

0

1

1

1

CRITICAL

1 1

turn = 1 turn = 1

turn = 0

SECTION SECTION

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 26 / 32

Languages for Transition Systems

The SDL language

An ITU standard
Allows for booleans, enumerative and bounded integers as data
types
Allows for representing TIME (time elapse, clocks, ...)
represents states, message I/O, conditions, clock operations,
subroutines
Allows for both synchronous and asyncronous composition of
processes (though asynchronous interaction more natural)

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 27 / 32

Languages for Transition Systems

The SDL Language: example
Example: the Safety Layer protocol

process type SL_type

STANDBY

SOI

Crc#seq_ok

Reset_Timers

Saf_SO.ind
(self)

SL_resetpars

WFSO_RESP

WFSO_RESP

Saf_SO.resp
(address)

set(now
+timDataT,
timer_CMt)

set(now
+timDataR,
timer_CMr)

SOA

SOA_ACK

pb_ack

SL_resetpars

DATA

WFSO_RESP

Saf_SO.req
(address)

set(now
+timConn,
timer_cr)

SOI

SOI_2_ACK

pb_ack

SL_resetpars

WFSO_RESP

WFSO_RESP

SOA

Crc#seq_ok

reset
(timer_cr)

Saf_SO.cnf
(self)

SL_resetpars

-

timer_cr

Error_Handle
(false)

SL_resetpars

IDLE

DATA

SOA

Crc#seq_ok

reset
(timer_cr)

Saf_SO.cnf
(self)

SL_resetpars

-

timer_cr

Error_Handle
(false)

SL_resetpars

IDLE

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 28 / 32

Properties of Transition Systems

Safety properties

bad events never happen
deadlock: two processes waiting for input from each other,
the system is unable to perform a transition.
no reachable state satisfies a “bad” condition,
e.g. never two processes in critical section at the same time

can be refuted by a finite behaviour
Ex.: it is never the case that p.

p

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 30 / 32

Properties of Transition Systems

Liveness properties

Something desirable will eventually happen
sooner or later this will happen

can be refuted by infinite behaviour

−p −p
−p

−p −p
−p

−p

−p

an infinite behaviour can be typically presented as a loop

Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 31 / 32

Properties of Transition Systems

Fairness properties

Something desirable will happen infinitely often
important subcase of liveness
whenever a subroutine takes control, it will always return it (sooner
or later)

can be refuted by infinite behaviour
a subroutine takes control and never returns it

p

p

p

p

p

p

p

p

an infinite behaviour can be typically presented as a loop
Roberto Sebastiani Ch. 02: Modeling Transition Systems Monday 18th May, 2020 32 / 32

	Transition Systems as Kripke Models
	Languages for Transition Systems
	Properties of Transition Systems

