Outline

1 Automata-Theory Overview
 - Language Containment
 - Automata on Finite Words
 - Automata on Infinite Words
 - Emptiness Checking

2 The Automata-Theoretic Approach to Model Checking
 - Automata-Theoretic LTL Model Checking
 - From Kripke Structures to Büchi Automata
 - From LTL Formulas to Büchi Automata: generalities
 - On-the-fly construction of Büchi Automata from LTL
 - Complexity

3 Exercises
System’s computations

The behaviors (computations) of a system can be seen as sequences of assignments to propositions.

MODULE main
VAR done: Boolean;
ASSIGN
 init(done):=0;
 next(done):= case
 !done: {0,1};
 done: done;
 esac;

Since the state space is finite, the set of computations can be represented by a finite automaton.
Correct computations

- Some computations are correct and others are not acceptable.
- We can build an automaton for the set of all acceptable computations.
- Example: eventually, done will be true forever.
Language Containment Problem

Solution to the verification problem

⇒ Check if language of the system automaton is contained in the language accepted by the property automaton.

The language containment problem is the problem of deciding if a language is a subset of another language.

\[\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2) \iff \mathcal{L}(A_1) \cap \overline{\mathcal{L}(A_2)} = \emptyset \]

In order to solve the language containment problem, we need to know:

(i) how to complement an automaton,
(ii) how to intersect two automata,
(iii) how to check the language emptiness of an automaton.
Finite Word Languages

- An **Alphabet** Σ is a collection of symbols (letters).
 E.g. $\Sigma = \{a, b\}$.

- A **finite word** is a finite sequence of letters. (E.g. $aabb$.)
 The set of all finite words is denoted by Σ^*.

- A **language** U is a set of words, i.e. $U \subseteq \Sigma^*$.
 Example: Words over $\Sigma = \{a, b\}$ with equal number of a’s and b’s.
 (E.g. $aabb$ or $abba$.)

- **Language recognition problem**: determine whether a word belongs to a language.

- **Automata** are computational devices able to solve language recognition problems.
Finite State Automata

- Basic model of computational systems with finite memory.
- Widely applicable
 - Embedded System Controllers.
 - Languages: Ester-el, Lustre, Verilog.
 - Synchronous Circuits.
 - Regular Expression Pattern Matching
 - Grep, Lex, Emacs.
 - Protocols
 - Network Protocols
 - Architecture: Bus, Cache Coherence, Telephony,...
Notation

\(a, b \in \Sigma \) finite alphabet.
\(u, v, w \in \Sigma^* \) finite words.
\(\epsilon \) empty word.
\(u.v \) concatenation.
\(u^i = u.u \ldots u \) repeated \(i \)-times.
\(U, V \subseteq \Sigma^* \) Finite word languages.
FSA Definition

Definition

A Nondeterministic Finite State Automaton (NFA) is $(Q, \Sigma, \delta, I, F)$ s.t.
- Q Finite set of states.
- Σ is a finite alphabet
- $I \subseteq Q$ set of initial states.
- $F \subseteq Q$ set of final states.
- $\delta \subseteq Q \times \Sigma \times Q$ transition relation (edges).

We use $q \xrightarrow{a} q'$ to denote $(q, a, q') \in \delta$.

Definition

A Deterministic Finite State Automaton (DFA) is a NFA s.t.:
- $\delta : Q \times \Sigma \rightarrow Q$ is a total function
- Single initial state $I = \{q_0\}$.
Regular Languages

- A run of NFA A on $u = a_0, a_1, \ldots, a_{n-1}$ is a finite sequence of states q_0, q_1, \ldots, q_n s.t. $q_0 \in I$ and $q_i \xrightarrow{a_i} q_{i+1}$ for $0 \leq i < n$.
- An accepting run is one where $q_n \in F$.
- The language accepted by A is $L(A) = \{ u \in \Sigma^* \mid A \text{ has an accepting run on } u \}$.
- The languages accepted by a NFA are called regular languages.
Finite State Automata: examples

- The DFA A_1 over $\Sigma = \{a, b\}$:

 \[a \xrightarrow{} s_1 \xrightarrow{} b \xrightarrow{} s_2 \]

 Recognizes words which do not end in b.

- The NFA A_2 over $\Sigma = \{a, b\}$:

 \[a, b \xrightarrow{} s_1 \xrightarrow{} b \xrightarrow{} s_2 \]

 Recognizes words which end in b.
Determinisation

Theorem (determinisation)

Given a NFA A we can construct a DFA A' s.t. $\mathcal{L}(A) = \mathcal{L}(A')$.

Size: $|A'| = 2^{O(|A|)}$.

- Each state of A' corresponds to a set $\{s_1, \ldots, s_j\}$ of states in A ($Q' \subseteq 2^Q$), with the intended meaning that:
 - A' is in the state $\{s_1, \ldots, s_j\}$ if A is in one of the states s_1, \ldots, s_j.
- The deterministic transition relation $\delta' : 2^Q \times \Sigma \rightarrow 2^Q$ is:
 - $\{s\} \xrightarrow{a} \{s_i | s \xrightarrow{a} s_i\}$
 - $\{s_1, \ldots, s_j, \ldots, s_n\} \xrightarrow{a} \bigcup_{j=1}^{n} \{s_i | s_j \xrightarrow{a} s_i\}$
- The (unique) initial state is $I' = \text{def} \{s_i | s_i \in I\}$
- The set of final states F' is such that $\{s_1, \ldots, s_n\} \in F'$ iff $s_i \in F$ for some $i \in \{1, \ldots, n\}$.
Determinisation [cont.]

- NFA A_2: Words which end in b.

\[
\begin{array}{c}
\text{a,b} \\
\downarrow \\
\text{s}_1 \\
\downarrow \text{b} \\
\text{s}_2 \\
\end{array}
\]

- A_2 can be determinised into the automaton DA_2 below.
 (#States = 2^Q.)
Closure Properties

Theorem (Boolean closure)

Given NFA A_1, A_2 over Σ we can construct NFA A over Σ s.t.

- $L(A) = \overline{L(A_1)}$ (Complement). $|A| = 2^O(|A_1|)$.
- $L(A) = L(A_1) \cup L(A_2)$ (union). $|A| = |A_1| + |A_2|$.
- $L(A) = L(A_1) \cap L(A_2)$ (intersection). $|A| = |A_1| \cdot |A_2|$.
Complementation of a NFA

A NFA $A = (Q, \Sigma, \delta, I, F)$ is complemented by:

- determinising it into a DFA $A' = (Q', \Sigma', \delta', I', F')$
- complementing it: $\overline{A'} = (Q', \Sigma', \delta', I', \overline{F'})$
- $|\overline{A'}| = |A'| = 2^{O(|A|)}$
Union of two NFAs

Definition: union of NFAs

Let $A_1 = (Q_1, \Sigma_1, \delta_1, I_1, F_1)$, $A_2 = (Q_2, \Sigma_2, \delta_2, I_2, F_2)$. Then $A = A_1 \cup A_2 = (Q, \Sigma, \delta, I, F)$ is defined as follows

- $Q := Q_1 \cup Q_2$, $I := I_1 \cup I_2$, $F := F_1 \cup F_2$
- $R(s, s') := \begin{cases} R_1(s, s') & \text{if } s \in Q_1 \\ R_2(s, s') & \text{if } s \in Q_2 \end{cases}$

Theorem

- $L(A) = L(A_1) \cup L(A_2)$
- $|A| = |A_1| + |A_2|$

Note

A is an automaton which just runs nondeterministically either A_1 or A_2
Synchronous Product Construction

Definition: product of NFAs

Let $A_1 = (Q_1, \Sigma, \delta_1, I_1, F_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$. Then, $A_1 \times A_2 = (Q, \Sigma, \delta, I, F)$ where

- $Q = Q_1 \times Q_2$,
- $I = I_1 \times I_2$,
- $F = F_1 \times F_2$,
- $<p, q> \xrightarrow{a} <p', q'>$ iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$.

Theorem

$L(A_1 \times A_2) = L(A_1) \cap L(A_2)$.

$|(A_1 \times A_2)| \leq |A_1| \cdot |A_2|$.
Example

- A_1 recognizes words with an even number of b's.
- A_2 recognizes words with a number of a's multiple of 3.
- The Product Automaton $A_1 \times A_2$ with $F = \{s_0, t_0\}$.

Sebastiani and Tonetta
Regular Expressions

- Syntax: $\emptyset \mid \epsilon \mid a \mid reg_1.reg_2 \mid reg_1|reg_2 \mid reg^*$.
- Every regular expression reg denotes a language $L(reg)$.
- Example: $a^*(b|bb).a^*$. The words with either 1 b or 2 consecutive b's.

Theorem

For every regular expression reg we can construct a language equivalent NFA of size $O(|reg|)$.

Theorem

For every DFA A we can construct a language equivalent regular expression $reg(A)$.
Infinite Word Languages

Modeling infinite computations of reactive systems.

- An \(\omega \)-word \(\alpha \) over \(\Sigma \) is an infinite sequence
 \[a_0, a_1, a_2, \ldots \]
 Formally, \(\alpha : \mathbb{N} \rightarrow \Sigma \).
 The set of all infinite words is denoted by \(\Sigma^\omega \).

- A \(\omega \)-language \(L \) is collection of \(\omega \)-words, i.e. \(L \subseteq \Sigma^\omega \).
 Example All words over \(\{a, b\} \) with infinitely many \(a \)’s.

Notation:
- **omega words** \(\alpha, \beta, \gamma \in \Sigma^\omega \).
- **omega-languages** \(L, L_1 \subseteq \Sigma^\omega \)

For \(u \in \Sigma^+ \), let \(u^\omega = u . u . u . \ldots \)
Omega-Automata

- We consider automaton running over infinite words.

Let $\alpha = aabbbb \ldots$
There are several possible runs.
Run $\rho_1 = s_1, s_1, s_1, s_1, s_2, s_2 \ldots$
Run $\rho_2 = s_1, s_1, s_1, s_1, s_1, s_1 \ldots$

- Acceptance Conditions: Büchi (Muller, Rabin, Street):
 Acceptance is based on states occurring infinitely often

- Notation Let $\rho \in Q^\omega$. Then,
 \[\text{Inf}(\rho) = \{ s \in Q \mid \exists \infty i \in \mathbb{N}. \ \rho(i) = s \} \]
 (The set of states occurring infinitely many times in ρ.)
Büchi Automata

Nondeterministic Büchi Automaton

\[A = (Q, \Sigma, \delta, I, F) \], where \(F \subseteq Q \) is the set of accepting states.

- A run \(\rho \) of \(A \) on omega word \(\alpha \) is an infinite sequence
 \[\rho = q_0, q_1, q_2, \ldots \] s.t. \(q_0 \in I \) and \(q_i \xrightarrow{a_i} q_{i+1} \) for \(0 \leq i \).

- The run \(\rho \) is accepting if
 \[\text{Inf}(\rho) \cap F \neq \emptyset. \]

- The language accepted by \(A \)
 \[\mathcal{L}(A) = \{ \alpha \in \Sigma^\omega \mid A \text{ has an accepting run on } \alpha \} \]
Büchi Automaton: Example

Let $\Sigma = \{a, b\}$.
Let a Deterministic Büchi Automaton (DBA) A_1 be

- With $F = \{s_1\}$ the automaton recognizes words with infinitely many a’s.
- With $F = \{s_2\}$ the automaton recognizes words with infinitely many b’s.
Let a Nondeterministic Büchi Automaton (NBA) A_2 be

![Diagram](image)

With $F = \{s_2\}$, the automaton A_2 recognizes words with finitely many a. Thus, $\mathcal{L}(A_2) = \overline{\mathcal{L}(A_1)}$.
Deterministic vs. Nondeterministic Büchi Automata

Theorem

DBAs are strictly less powerful than NBAs.

The subset construction does not work:
let DA_2 be

DA_2 is not equivalent to A_2
(e.g., it recognizes $(b.a)^\omega$)
Closure Properties

Theorem (union, intersection)

For the NBAs A_1, A_2 we can construct

- the NBA A s.t. $L(A) = L(A_1) \cup L(A_2)$. $|A| = |A_1| + |A_2|$

- the NBA A s.t. $L(A) = L(A_1) \cap L(A_2)$. $|A| = |A_1| \cdot |A_2| \cdot 2$.
Union of two NBAs

Definition: union of NBAs

Let $A_1 = (Q_1, \Sigma_1, \delta_1, I_1, F_1)$, $A_2 = (Q_2, \Sigma_2, \delta_2, I_2, F_2)$. Then $A = A_1 \cup A_2 = (Q, \Sigma, \delta, I, F)$ is defined as follows

- $Q := Q_1 \cup Q_2$, $I := I_1 \cup I_2$, $F := F_1 \cup F_2$
- $R(s, s') := \begin{cases} R_1(s, s') & \text{if } s \in Q_1 \\ R_2(s, s') & \text{if } s \in Q_2 \end{cases}$

Theorem

- $\mathcal{L}(A) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$
- $|A| = |A_1| + |A_2|$

Note

A is an automaton which just runs nondeterministically either A_1 or A_2 (same construction as with ordinary automata)
Synchronous Product of NBAs

Definition: synchronous product of NBAs

Let $A_1 = (Q_1, \Sigma, \delta_1, l_1, F_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, l_2, F_2)$.
Then, $A_1 \times A_2 = (Q, \Sigma, \delta, l, F)$, where

$Q = Q_1 \times Q_2 \times \{1, 2\}$.

$l = l_1 \times l_2 \times \{1\}$.

$F = F_1 \times Q_2 \times \{1\}$.

$<p, q, 1> \xrightarrow{a} <p', q', 1>$ iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$ and $p \not\in F_1$.

$<p, q, 1> \xrightarrow{a} <p', q', 2>$ iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$ and $p \in F_1$.

$<p, q, 2> \xrightarrow{a} <p', q', 2>$ iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$ and $q \not\in F_2$.

$<p, q, 2> \xrightarrow{a} <p', q', 1>$ iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$ and $q \in F_2$.

Theorem

- $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$.

- $|A_1 \times A_2| \leq 2 \cdot |A_1| \cdot |A_2|$.
Product of NBAs: Intuition

- The automaton remembers two tracks, one for each source NBA, and it points to one of the two tracks.
- As soon as it goes through an accepting state of the current track, it switches to the other track.
- \(\Rightarrow \) in order to visit infinitely often a state in \(F \) (i.e., \(F_1 \)), it must visit infinitely often some state also in \(F_2 \).
- **Important subcase:** If \(F_2 = Q_2 \), then

 \[
 Q = Q_1 \times Q_2. \\
 I = I_1 \times I_2. \\
 F = F_1 \times Q_2.
 \]
Product of NBAs: Example

Automata on Infinite Words
Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]

For the NBA A_1 we can construct an NBA A_2 such that
\[
\mathcal{L}(A_2) = \overline{\mathcal{L}(A_1)}.
\]

$|A_2| = O(2^{|A_1| \cdot \log(|A_1|)}).

Method: (hint)

(i) convert a Büchi automaton into a Non-Deterministic Rabin automaton

(ii) determinize and Complement the Rabin automaton

(iii) convert the Rabin automaton into a Büchi automaton.
Generalized Büchi Automaton

Definition

- A Generalized Büchi Automaton is a tuple $A := (Q, \Sigma, \delta, I, FT)$ where $FT = \langle F_1, F_2, \ldots, F_k \rangle$ with $F_i \subseteq Q$.
- A run ρ of A is accepting if $\text{Inf}(\rho) \cap F_i \neq \emptyset$ for each $1 \leq i \leq k$.

Theorem

For every Generalized Büchi Automaton (A, FT) we can construct a language equivalent Büchi Automaton (A', G').

Size: $|A'| \leq |A| \cdot k$.

Construction (Hint)

Let $Q' = Q \times \{1, \ldots, k\}$.

The automaton remains in phase i till it visits a state in F_i. Then, it moves to $i + 1$ mode. After phase k it moves to phase 1.
Degeneralizing a Büchi automaton: Example
Omega-regular Expressions

Definition
A language is called ω-regular if it has the form $\bigcup_{i=1}^{n} U_i (V_i)^\omega$ where U_i, V_i are regular languages.

Theorem
A language L is ω-regular iff it is NBA-recognizable.
NFA emptiness checking

- Equivalent of finding a final state reachable from an initial state.
- It can be solved with a DFS or a BFS.
- A DFS finds a counterexample on the fly (it is stored in the stack of the procedure).
- A BFS finds a final state reachable with a shortest counterexample, but it requires a further backward search to reproduce the path.
- Complexity: $O(n)$.
- Hereafter, assume w.l.o.g. that there is only one initial state.
NFA Emptiness Checking (cont.)

DFS(NFA A) {
 stack S=I;
 Hashtable T=I;
 while S!=∅ {
 v=top(S);
 if v∈F return NOT_EMPTY;
 if ∃w s.t. w∈δ(v) && T(w)==0 {
 hash(w,T);
 push(w,S);
 } else
 pop(S);
 }
 return EMPTY;
}
NBA emptiness checking

- Equivalent of finding an accepting cycle reachable from an initial state.
- A naive algorithm:
 1. a DFS finds the final states f reachable from an initial state;
 2. for each f, a DFS finds if there exists a loop.
 - Complexity: $O(n^2)$.
- SCC-based algorithm:
 1. Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
 2. another DFS finds if a non-trivial final SCC is reachable from an initial state.
 - Complexity: $O(n)$.
 - Drawbacks: it stores too much information and does not find directly a counterexample.
Double Nested DFS algorithm

- Double Nested DFS [Courcoubetis, Vardi, Wolper, Yannakakis, CAV’90]
 - two Hash tables:
 - T_1: reachable states
 - T_2: states reachable from a reachable final state
 - two stacks:
 - S_1: current branch of states reachable
 - S_2: current branch of states reachable from final state f
 - two nested DFS’s:
 - DFS_1: looks for a path from an initial state to a cycle starting from an accepting state
 - DFS_2: looks for a cycle starting from an accepting state
 - It stops as soon as it finds a counterexample.
 - The counterexample is given by the stack of DFS_2 (an accepting cycle) preceded by the stack of DFS_1 (a path from an initial state to the cycle).
Double Nested DFS - First DFS

DFS1(NBA A) {
 stack $S_1=I$; stack $S_2=\emptyset$;
 Hashtable $T_1=I$; Hashtable $T_2=\emptyset$;
 while $S_1\neq\emptyset$ {
 $v=$top(S_1);
 if $\exists w$ s.t. $w \in \delta(v)$ && $T_1(w)==0$ {
 hash(w,T1);
 push(w,S1);
 } else {
 pop(S1);
 if $v \in F$ DFS2(v,S2,T2,A);
 }
 }
 return EMPTY;
}

Remark: T_2 is not reset at each call of DFS2!
Double Nested DFS - Second DFS

DFS2(state f, stack S, Hashtable T, NBA A) {
 hash(f,T);
 push(f,S);
 while S!=∅ {
 v=top(S);
 if f∈δ(v) return NOT_EMPTY;
 if ∃w s.t. w∈δ(v) && T(w)==0 {
 hash(w);
 push(w);
 } else pop(S);
 }
}
Double nested DFS: intuition

DFS1 invokes DFS2 on each $f_1, ..., f_n$ only after popping it (postorder):

- DFS2 invoked on f_j before than on f_i
 \Rightarrow f_i not reachable from (any state s which is reachable from) f_j
- If during $DFS2(f_i, ...)$ it is encountered a state s which has already been explored by $DFS2(f_j, ...)$ for some f_j, then we conclude that we cannot reach f_i from s.
 \Rightarrow it is safe to backtrack.
Double Nested DFS: example
Let M be a Kripke model and ψ be an LTL formula

$M \models A\psi$ (CTL*)

$\iff M \models \psi$ (LTL)

$\iff \mathcal{L}(M) \subseteq \mathcal{L}(\psi)$

$\iff \mathcal{L}(M) \cap \mathcal{L}(\psi) = \{\}$

$\iff \mathcal{L}(A_M) \cap \mathcal{L}(A_{\neg \psi}) = \{\}$

$\iff \mathcal{L}(A_M \times A_{\neg \psi}) = \{\}$

A_M is a Büchi Automaton equivalent to M (which represents all and only the executions of M).

$A_{\neg \psi}$ is a Büchi Automaton which represents all and only the paths that satisfy $\neg \psi$ (do not satisfy ψ).

$A_M \times A_{\neg \psi}$ represents all and only the paths appearing in M and not in ψ.
Automata-Theoretic LTL M.C. (dual version)

Let M be a Kripke model and $\varphi \overset{\text{def}}{=} \neg \psi$ be an LTL formula

$$M \models E\varphi$$
$$\iff M \not\models A\neg \varphi$$
$$\iff \ldots$$
$$\iff \mathcal{L}(A_M \times A_{\varphi}) \neq \{\}$$

- A_M is a Büchi Automaton equivalent to M (which represents all and only the executions of M)
- A_{φ} is a Büchi Automaton which represents all and only the paths that satisfy φ

$A_M \times A_{\varphi}$ represents all and only the paths appearing in both A_M and A_{φ}.
Automata-Theoretic LTL Model Checking

Four steps:

(i) Compute A_M

(ii) Compute A_φ

(iii) Compute the product $A_M \times A_\varphi$

(iv) Check the emptiness of $\mathcal{L}(A_M \times A_\varphi)$
Computing an NBA A_M from a Kripke Structure M

- Transform a Kripke structure $M = \langle S, S_0, R, L, AP \rangle$ into an NBA $A_M = \langle Q, \Sigma, \delta, I, F \rangle$ s.t.:
 - States: $Q := S \cup \{\text{init}\}$, init being a new initial state
 - Alphabet: $\Sigma := 2^{AP}$
 - Initial State: $I := \{\text{init}\}$
 - Accepting States: $F := Q = S \cup \{\text{init}\}$
 - Transitions:
 \[
 \delta : \quad q \xrightarrow{a} q' \quad \text{iff} \quad (q, q') \in R \quad \text{and} \quad L(q') = a
 \]

 $init \xrightarrow{a} q$ \quad \text{iff} \quad q \in S_0 \quad \text{and} \quad L(q) = a

- $\mathcal{L}(A_M) = \mathcal{L}(M)$
- $|A_M| = |M| + 1$
Computing a NBA A_M from a Kripke Structure M: Example

Substantially, add one initial state, move labels from states to incoming edges, set all states as accepting states.
Note that the labels of a Büchi Automaton are different from the labels of a Kripke Structure. Also graphically, they are interpreted differently:

- in a Kripke Structure, it means that p is true and all other propositions are false;
- in a Büchi Automaton, it means that p is true and all other propositions are irrelevant ("don’t care"), i.e. they can be either true or false.
Computing a NBA A_M from a Fair Kripke Structure M

Transforming a fair K.S. $M = \langle S, S_0, R, L, AP, FT \rangle$, $FT = \{F_1, ..., F_n\}$, into a generalized NBA $A_M = \langle Q, \Sigma, \delta, I, FT' \rangle$
s.t.:

- **States:** $Q := S \cup \{init\}$, $init$ being a new initial state
- **Alphabet:** $\Sigma := 2^{AP}$
- **Initial State:** $I := \{init\}$
- **Accepting States:** $FT' := FT$
- **Transitions:**
 \[
 \delta : \quad q \xrightarrow{a} q' \text{ iff } (q, q') \in R \text{ and } L(q') = a
 \]
 \[
 init \xrightarrow{a} q \text{ iff } q \in S_0 \text{ and } L(q) = a
 \]

- $\mathcal{L}(A_M) = \mathcal{L}(M)$
- $|A_M| = |M| + 1$
Computing a (Generalized) BA A_M from a Fair Kripke Structure M: Example

- Substantially, add one initial state, move labels from states to incoming edges, set fair states as accepting states.
Translation problem

Problem
Given an LTL formula ϕ, find a Büchi Automaton that accepts the same language of ϕ.

- It is a fundamental problem in LTL model checking (in other words, every model checking algorithm that verifies the correctness of an LTL formula translates it in some sort of finite-state machine).
- We will translate an LTL formula into a Generalized Büchi Automata (GBA).
Exponential Translation

- From \(\varphi \), create a fair Kripke model, like in chapter 7.
- Convert it into a (Generalized) Büchi Automaton

Remark

Inefficient: up to \(2^{\mathit{EL}(\varphi)} \) states.
- Kripke models require \textit{total} truth assignments to state variables
Example
Example
LTL Negative Normal Form (NNF)

- Every LTL formula φ can be written into an equivalent formula φ' using only the operators \land, \lor, \mathbf{X}, \mathbf{U}, \mathbf{R} on propositional literals.

- Done by pushing negations down to literal level:

 $\neg(\varphi_1 \lor \varphi_2) \implies (\neg\varphi_1 \land \neg\varphi_2)$

 $\neg(\varphi_1 \land \varphi_2) \implies (\neg\varphi_1 \lor \neg\varphi_2)$

 $\neg\mathbf{X}\varphi_1 \implies \mathbf{X}\neg\varphi_1$

 $\neg(\varphi_1 \mathbf{U}\varphi_2) \implies (\neg\varphi_1 \mathbf{R}\neg\varphi_2)$

 $\neg(\varphi_1 \mathbf{R}\varphi_2) \implies (\neg\varphi_1 \mathbf{U}\neg\varphi_2)$

 \implies the resulting formula is expressed in terms of \lor, \land, \mathbf{X}, \mathbf{U}, \mathbf{R} and literals (Negative Normal Form, NNF).

- encoding linear if a DAG representation is used

- In the construction of A_φ we now assume that φ is in NNF.
On-the-fly Construction of A_φ (Schema)

Apply recursively the following steps:

Step 1: Apply the tableau expansion rules to φ

$\psi_1 U \psi_2 \implies \psi_2 \lor (\psi_1 \land X(\psi_1 U \psi_2))$

$\psi_1 R \psi_2 \implies \psi_2 \land (\psi_1 \lor X(\psi_1 R \psi_2))$

until we get a Boolean combination of elementary subformulas of φ

(An elementary formula is a proposition or a X-formula.)
Tableaux rules: a quote

“After all... tomorrow is another day.”
[Scarlett O’Hara, “Gone with the Wind”]
On-the-fly Construction of A_φ (Schema) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form:

$$\bigvee_i \left(\bigwedge_j l_{ij} \land \bigwedge_k \mathbf{X} \psi_{ik} \right)$$

- Each disjunct $\left(\bigwedge_j l_{ij} \land \bigwedge_k \mathbf{X} \psi_{ik} \right)$ represents a state:
 - The conjunction of literals $\bigwedge_j l_{ij}$ represents a set of labels in Σ (e.g., if $\text{Vars}(\varphi) = \{p, q, r\}$, $p \land \neg q$ represents the two labels $\{p, \neg q, r\}$ and $\{p, \neg q, \neg r\}$)
 - $\bigwedge_k \mathbf{X} \psi_{ik}$ represents the next part of the state (obligations for the successors)

- N.B., if no next part occurs, $\mathbf{X} \top$ is implicitly assumed
Step 3: For every state represented by \((\bigwedge_j l_{ij} \land \bigwedge_k X \psi_{ik})\)

- draw an edge to all states which satisfy \(\bigwedge_k \psi_{ik}\)
- label the incoming edges with \(\bigwedge_j l_{ij}\)

N.B., if no next part occurs, \(X \top\) is implicitly assumed, so that an edge to a “true” node is drawn
Step 4: For every $\psi_i U \varphi_i$, for every state q_j, mark q_j with F_i iff $(\psi_i U \varphi_i) \notin q_j$ or $\varphi_i \in q_j$.

(If there is no U-subformulas, then mark all states with F_1—i.e., $FT \overset{\text{def}}{=} \{Q\}$.)
On-the-fly Construction of A_{ϕ} - State

- Henceforth, a state is represented by a tuple $s := \langle \lambda, \chi, \sigma \rangle$ where:
 - λ is the set of labels
 - χ is the next part, i.e. the set of X-formulas satisfied by s
 - σ is the set of the subformulas of ϕ satisfied by s (necessary for the fairness definition)

- Given a set of LTL formulas $\Psi \overset{\text{def}}{=} \{ \psi_1, \ldots, \psi_k \}$, we define \(\text{Cover}(\Psi) \overset{\text{def}}{=} \text{Expand}(\Psi, \langle \emptyset, \emptyset, \emptyset \rangle) \) to be the set of initial states of the Buchi automaton representing $\bigwedge_j \psi_j$.
 - Combines steps 1. and 2. of previous slides
 - Expand() defined recursively as follows
On-the-fly Construction of A_ϕ - Expand

Given a set of formulas Φ to expand and a state s, we define the set of states $\text{Expand}(\Phi, s)$ recursively as follows:

- if $\Phi = \emptyset$, $\text{Expand}(\Phi, s) = \{ s \}$
- if $\bot \in \Phi$, $\text{Expand}(\Phi, s) = \emptyset$
- if $\top \in \Phi$ and $s = \langle \lambda, \chi, \sigma \rangle$,
 \[\text{Expand}(\Phi, s) = \text{Expand}(\Phi \setminus \{ \top \}, \langle \lambda, \chi, \sigma \cup \{ \top \} \rangle) \]
- if $l \in \Phi$ and $s = \langle \lambda, \chi, \sigma \rangle$, l propositional literal
 \[\text{Expand}(\Phi, s) = \text{Expand}(\Phi \setminus \{ l \}, \langle \lambda \cup \{ l \}, \chi, \sigma \cup \{ l \} \rangle) \]
 (add l to the labels of s and to set of satisfied formulas)
- if $X \psi \in \Phi$ and $s = \langle \lambda, \chi, \sigma \rangle$,
 \[\text{Expand}(\Phi, s) = \text{Expand}(\Phi \setminus \{ X \psi \}, \langle \lambda, \chi \cup \{ \psi \}, \sigma \cup \{X \psi\} \rangle) \]
 (add ψ to the next part of s and $X \psi$ to set of satisfied formulas)
- if $\psi_1 \land \psi_2 \in \Phi$ and $s = \langle \lambda, \chi, \sigma \rangle$,
 \[\text{Expand}(\Phi, s) = \text{Expand}(\Phi \cup \{ \psi_1, \psi_2 \} \setminus \{ \psi_1 \land \psi_2 \}, \langle \lambda, \chi, \sigma \cup \{ \psi_1 \land \psi_2 \} \rangle) \]
 (process both ψ_1 and ψ_2 and add $\psi_1 \land \psi_2$ to σ)
On-the-fly Construction of A_ϕ - Expand

- if $\psi_1 \lor \psi_2 \in \Phi$ and $s = \langle \lambda, \chi, \sigma \rangle$,
 \[\text{Expand}(\Phi, s) = \text{Expand}(\Phi \cup \{ \psi_1 \}\{ \psi_1 \lor \psi_2 \}, \langle \lambda, \chi, \sigma \cup \{ \psi_1 \lor \psi_2 \} \rangle) \]
 union
 \[\text{Expand}(\Phi \cup \{ \psi_2 \}\{ \psi_1 \lor \psi_2 \}, \langle \lambda, \chi, \sigma \cup \{ \psi_1 \lor \psi_2 \} \rangle) \]
 (split s in two copies, process ψ_2 on the first, ψ_1 on the second, add $\psi_1 \lor \psi_2$ to σ)

- if $\psi_1 \mathcal{U} \psi_2 \in \Phi$ and $s = \langle \lambda, \chi, \sigma \rangle$,
 \[\text{Expand}(\Phi, s) = \text{Expand}(\Phi \cup \{ \psi_1 \}\{ \psi_1 \mathcal{U} \psi_2 \}, \langle \lambda, \chi \cup \{ \psi_1 \mathcal{U} \psi_2 \}, \sigma \cup \{ \psi_1 \mathcal{U} \psi_2 \} \rangle) \]
 union
 \[\text{Expand}(\Phi \cup \{ \psi_2 \}\{ \psi_1 \mathcal{U} \psi_2 \}, \langle \lambda, \chi, \sigma \cup \{ \psi_1 \mathcal{U} \psi_2 \} \rangle) \]
 (split s in two copies and process ψ_1 on the first, ψ_2 on the second, add $\psi_1 \mathcal{U} \psi_2$ to σ)

- if $\psi_1 \mathcal{R} \psi_2 \in \Phi$ and $s = \langle \lambda, \chi, \sigma \rangle$,
 \[\text{Expand}(\Phi, s) = \text{Expand}(\Phi \cup \{ \psi_2 \}\{ \psi_1 \mathcal{R} \psi_2 \}, \langle \lambda, \chi \cup \{ \psi_1 \mathcal{R} \psi_2 \}, \sigma \cup \{ \psi_1 \mathcal{R} \psi_2 \} \rangle) \]
 union
 \[\text{Expand}(\Phi \cup \{ \psi_1, \psi_2 \}\{ \psi_1 \mathcal{R} \psi_2 \}, \langle \lambda, \chi, \sigma \cup \{ \psi_1 \mathcal{R} \psi_2 \} \rangle) \]
 (split s in two copies and process ψ_1 on the first, ψ_2 on the second, add $\psi_1 \mathcal{R} \psi_2$ to σ)
On-the-fly Construction of A_ϕ - Expand

Two relevant subcases: $F\psi \overset{\text{def}}{=} \top U \psi$ and $G\psi \overset{\text{def}}{=} \bot R \psi$

- if $F\psi \in \Phi$ and $s = \langle \lambda, \chi, \sigma \rangle$,
 \[
 \text{Expand}(\Phi, s) = \text{Expand}(\Phi \setminus \{F\psi\}, \langle \lambda, \chi \cup \{F\psi\}, \sigma \cup \{F\psi\} \rangle) \
 \cup \text{Expand}(\Phi \cup \{\psi\} \setminus \{F\psi\}, \langle \lambda, \chi, \sigma \cup \{F\psi\} \rangle)
 \]

- if $G\psi \in \Phi$ and $s = \langle \lambda, \chi, \sigma \rangle$,
 \[
 \text{Expand}(\Phi, s) = \text{Expand}(\Phi \cup \{\psi\} \setminus \{G\psi\}, \langle \lambda, \chi \cup \{G\psi\}, \sigma \cup \{G\psi\} \rangle)
 \]
 Note: $\text{Expand}(\Phi \cup \{\bot, \psi\} \setminus \{G\psi\}, ...) = \emptyset$
Definition of A_ϕ

Given a set of LTL formulas Ψ, we define

$$Cover(\Psi) \overset{\text{def}}{=} Expand(\Psi, \langle\emptyset, \emptyset, \emptyset\rangle).$$

For an LTL formula ϕ, we construct a Generalized NBA $A_\phi = (Q, Q_0, \Sigma, L, T, FT)$ as follows:

- $\Sigma = 2^{\text{vars}(\phi)}$
- Q is the smallest set such that
 - $Cover(\{\phi\}) \subseteq Q$
 - if $\lambda, \chi, \sigma \in Q$, then $Cover(\chi) \in Q$
- $Q_0 = Cover(\{\phi\})$.
- $L(\lambda, \chi, \sigma) = \{a \in \Sigma | a \models \lambda\}$
- $(s, s') \in T$ iff, $s = \lambda, \chi, \sigma$ and $s' \in Cover(\chi)$
- $FT = \langle F_1, F_2, \ldots, F_k \rangle$ where, for all $(\psi_i \mathbf{U} \phi_i)$ occurring positively in ϕ, $F_i = \{\lambda, \chi, \sigma \in Q | (\psi_i \mathbf{U} \phi_i) \notin \sigma \text{ or } \phi_i \in \sigma\}$. (If there is no U-subformulas, then $FT \overset{\text{def}}{=} \{Q\}$).
Example: $\phi = \text{FG}p$

$$\text{Cover}(\{\text{FG}p\}) = \text{Expand}(\{\text{FG}p\}, \langle\emptyset, \emptyset, \emptyset\rangle)$$

$$= \text{Expand}(\emptyset, \langle\emptyset, \{\text{FG}p\}, \{\text{FG}p\}\rangle) \cup \text{Expand}(\{\text{G}p\}, \langle\emptyset, \emptyset, \{\text{FG}p\}\rangle)$$

$$= \{\langle\emptyset, \{\text{FG}p\}, \{\text{FG}p\}\rangle\} \cup \text{Expand}(\{p\}, \langle\{p\}, \{\text{G}p\}, \{\text{FG}p, \text{G}p\}\rangle)$$

$$= \{\langle\emptyset, \{\text{FG}p\}, \{\text{FG}p\}\rangle\} \cup \text{Expand}(\emptyset, \langle\{p\}, \{\text{G}p\}, \{\text{FG}p, \text{G}p, p\}\rangle)$$

$$= \{\langle\emptyset, \{\text{FG}p\}, \{\text{FG}p\}\rangle, \langle\{p\}, \{\text{G}p\}, \{\text{FG}p, \text{G}p, p\}\rangle\}$$

$$\text{Cover}(\{\text{G}p\}) = \text{Expand}(\{\text{G}p\}, \langle\emptyset, \emptyset, \emptyset\rangle)$$

$$= \text{Expand}(\{p\}, \langle\emptyset, \{\text{G}p\}, \{\text{G}p\}\rangle)$$

$$= \text{Expand}(\emptyset, \langle\{p\}, \{\text{G}p\}, \{\text{G}p, p\}\rangle)$$

$$= \{\langle\{p\}, \{\text{G}p\}, \{\text{G}p, p\}\rangle\}$$

Optimization:

merge $\langle\{p\}, \{\text{G}p\}, \{\text{FG}p, \text{G}p, p\}\rangle$ and $\langle\{p\}, \{\text{G}p\}, \{\text{G}p, p\}\rangle$
Example: $\phi = \text{FG}\ p$

- Call $s_1 = \langle \emptyset, \{\text{FG}\ p\}, \{\text{FG}\ p\} \rangle$, $s_2 = \langle \{p\}, \{\text{G}\ p\}, \{\text{FG}\ p, \text{G}\ p, p\} \rangle$
- $Q = \{s_1, s_2\}$
- $Q_0 = \{s_1, s_2\}$.
- $T: \ s_1 \rightarrow \{s_1, s_2\}$,
 $s_2 \rightarrow \{s_2\}$
- $FT = \langle F_1 \rangle$ where $F_1 = \{s_2\}$.

[XG]
Example: $\phi = pUq$

\[
\text{Cover}([pUq]) = \text{Expand}([pUq], \langle \emptyset, \emptyset, \emptyset \rangle) \cup \text{Expand}([q], \langle \emptyset, \emptyset, \{pUq\} \rangle) \\
= \text{Expand}(\emptyset, \langle \{p\}, \{pUq\}, \{pUq, p\} \rangle) \cup \text{Expand}(\emptyset, \langle \{q\}, \emptyset, \{pUq, q\} \rangle) \\
= \{\langle \{p\}, \{pUq\}, \{pUq, p\} \rangle \cup \{\langle \{q\}, \top, \{pUq, q\} \rangle \}
\]

\[
\text{Cover}([\top]) = \{\langle \emptyset, \{\top\}, \{\top\} \rangle \}
\]
Example: $\phi = pUq$

- Let $s_1 = \langle \{p\}, \{pUq\}, \{pUq, p\} \rangle$, $s_2 = \langle \{q\}, \{\top\}, \{pUq, q\} \rangle$, $s_3 = \langle \emptyset, \{\top\}, \{\top\} \rangle$.
- $Q = \{s_1, s_2, s_3\}$,
- $Q_0 = \{s_1, s_2\}$,
- $T: s_1 \rightarrow \{s_1, s_2\}$,
 $s_2 \rightarrow \{s_3\}$
 $s_3 \rightarrow \{s_3\}$
- $FT = \langle F_1 \rangle$ where $F_1 = \{s_2, s_3\}$.

\[X(pUq) \]
Example: \(\phi = \text{GF}p \)

\[
\text{Cover}\{\text{GF}p\}
= E(\{\text{GF}p\}, \langle\emptyset, \emptyset, \emptyset\rangle)
= E(\{p\}, \langle\{\}, \{\text{GF}p\}, \{\text{GF}p\}\rangle)
= E(\{\}, \langle\emptyset, \{\text{GF}p, Fp\}, \{\text{GF}p, Fp\}\rangle) \cup E(\{p\}, \langle\{\}, \{\text{GF}p\}, \{\text{GF}p, Fp\}\rangle)
= E(\{\}, \langle\emptyset, \{\text{GF}p, Fp\}, \{\text{GF}p, Fp\}\rangle) \cup E(\{\}, \langle\{p\}, \{\text{GF}p\}, \{\text{GF}p, Fp, p\}\rangle)
= \{\langle\emptyset, \{\text{GF}p, Fp\}, \{\text{GF}p, Fp\}\rangle\} \cup \{\langle\{p\}, \{\text{GF}p\}, \{\text{GF}p, Fp, p\}\rangle\}
\]

Note: \(\text{GF}p \land Fp \iff \text{GF}p \), s.t. \(\text{Cover}(\text{GF}p \land Fp) = \text{Cover}(\text{GF}p) \)
Example: $G F \rho$

- Let $s_1 = \{p\}, \forall \{G F \rho\}, \forall \{G F \rho, F \rho, p\}$,
 $s_2 = \emptyset, \forall \{G F \rho, F \rho\}, \forall \{G F \rho, F \rho\}$,
- $Q = \{s_1, s_2\}$,
- $Q_0 = \{s_1, s_2\}$,
- $T: s_1 \rightarrow \{s_1, s_2\}$,
 $s_2 \rightarrow \{s_1, s_2\}$
- $FT = \langle F_1 \rangle$ where $F_1 = \{s_1\}$.

\[XG F \rho \]

\[XG F \rho \]

\[XG F \rho \]

\[XG F \rho \]
Four steps:

(i) Compute A_M: $|A_M| = O(|M|)$

(ii) Compute A_{φ}: $|A_{\varphi}| = O(2^{|\varphi|})$

(iii) Compute the product $A_M \times A_{\varphi}$:

$|A_M \times A_{\varphi}| = |A_M| \cdot |A_{\varphi}| = O(|M| \cdot 2^{|\varphi|})$

(iv) Check the emptiness of $L(A_M \times A_{\varphi})$: $O(|A_M \times A_{\varphi}|) = O(|M| \cdot 2^{|\varphi|})$

\implies the complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially wrt. the size of the property φ
Final Remarks

- Büchi automata are in general more expressive than LTL!
 - Some tools (e.g., Spin, ObjectGEODE) allow specifications to be expressed directly as NBAs
 - Complementation of NBA important!

- For every LTL formula, there are many possible equivalent NBAs
 - Lots of research for finding “the best” conversion algorithm

- Performing the product and checking emptiness very relevant
 - Lots of techniques developed (e.g., partial order reduction)
 - Lots on ongoing research
Given the following two Büchi automata (doubly-circled states represent accepting states, a, b are labels):

Write the product Büchi automaton $BA1 \times BA2$.
Ex: Product of Büchi automata

[Solution: The product is:

track 1

\[
\begin{array}{l}
\text{s1t1} \\
\text{s2t1} \\
\text{s1t2} \\
\text{s2t2} \\
\end{array}
\]

\[
\begin{array}{l}
\text{a} \\
\text{b} \\
\text{a} \\
\text{a} \\
\end{array}
\]

\[
\begin{array}{l}
\text{track 2} \\
\text{s1t1} \\
\text{s2t1} \\
\text{s1t2} \\
\text{s2t2} \\
\end{array}
\]

\[
\begin{array}{l}
\text{a} \\
\text{a} \\
\text{b} \\
\text{b} \\
\end{array}
\]

]
Ex: De-generalization of Büchi Automata

Given the following generalized Büchi automaton $A \overset{\text{def}}{=} \langle Q, \Sigma, \delta, I, FT \rangle$, with two sets of accepting states $FT \overset{\text{def}}{=} \{ F_1, F_2 \}$ s.t. $F_1 \overset{\text{def}}{=} \{ s_2 \}$, $F_2 \overset{\text{def}}{=} \{ s_1 \}$:

convert it into an equivalent plain Büchi automaton.
Ex: De-generalization of Büchi Automata

[Solution: The result is:

\[\begin{array}{ccc}
 s_{11} & \rightarrow & a & \rightarrow & a & \rightarrow & s_{12} \\
 & \downarrow & b & \downarrow & b & \downarrow & b \\
 s_{21} & \rightarrow & a & \rightarrow & a & \rightarrow & s_{22}
\end{array} \]
Ex: From Kripke models to Büchi automata

Given the following fair Kripke model M, convert it into an equivalent Büchi automaton.

[Solution:]
Consider the LTL formula $\varphi \overset{\text{def}}{=} (G\neg p) \rightarrow (p \mathsf{U} q)$.

(a) rewrite φ into Negative Normal Form

[Solution: $(G\neg p) \rightarrow (p \mathsf{U} q) \implies (\neg G\neg p) \lor (p \mathsf{U} q) \implies (Fp) \lor (p \mathsf{U} q)$]

(b) find the initial states of a corresponding Büchi automaton (for each state, define the labels of the incoming arcs and the “next” section.)

[Solution: Applying tableaux rules we obtain: $p \lor \mathsf{XF} p \lor q \lor (p \land \mathsf{X}(p \mathsf{U} q))$, which is already in disjunctive normal form. This correspond to the following four initial states:]

- p with label \top
- q with label \top
- p with label $\mathsf{U} p$
- p with label $\mathsf{U} q$
Given the following Büchi automaton BA (doubly-circled states represent accepting states):

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying $\mathbf{GF}q$. [Solution: false]

(b) BA accepts all and only the paths verifying $\mathbf{FG}q$. [Solution: true]

(c) BA accepts only paths verifying $\mathbf{F}q$, but not all of them. [Solution: true]

(d) BA accepts all the paths verifying $\mathbf{F}q$, but not only them. [Solution: false]