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Propositional Logic (aka Boolean Logic)
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Basic Definitions and Notation

Propositional formula (aka Boolean formula or sentence)
⊤,⊥ are formulas
a propositional atom A1,A2,A3, ... is a formula;
if φ1 and φ2 are formulas, then
¬φ1, φ1 ∧ φ2, φ1 ∨ φ2, φ1 → φ2, φ1 ← φ2, φ1 ↔ φ2, φ1 ⊕ φ2

are formulas.

Ex: φ def
= (¬(A1 → A2)) ∧ (A3 ↔ (¬A1 ⊕ (A2 ∨ ¬A4))))

Atoms(φ): the set {A1, ...,AN} of atoms occurring in φ.
Literal: a propositional atom Ai (positive literal) or its negation ¬Ai (negative literal)

Notation: if l := ¬Ai , then ¬l := Ai

Clause: a disjunction of literals
∨

j lj (e.g., (A1 ∨ ¬A2 ∨ A3 ∨ ...))
Cube: a conjunction of literals

∧
j lj (e.g., (A1 ∧ ¬A2 ∧ A3 ∧ ...))

5 / 70



Semantics of Boolean operators

Truth Table

α β ¬α α∧β α∨β α→β α←β α↔β α⊕β
⊥ ⊥ ⊤ ⊥ ⊥ ⊤ ⊤ ⊤ ⊥
⊥ ⊤ ⊤ ⊥ ⊤ ⊤ ⊥ ⊥ ⊤
⊤ ⊥ ⊥ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤
⊤ ⊤ ⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊥

English Meaning of Boolean Operators

English Logic
A and B A ∧ B
A if B | A when B | A whenever B A← B
if A, then B | A implies B | A forces B | A requires B A→ B
A precisely when B | A if and only if B A↔ B
A or B (or both) | A unless B A ∨ B (logical or)
either A or B (but not both) A⊕ B (exclusive or)
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Remark: Semantics of Implication “→” (aka “⇒”, “⊃”)

The semantics of Implication “α→ β” may be counter-intuitive

α→ β: “the antecedent (aka premise) α implies the consequent (aka conclusion) β”
(aka “if α holds, then β holds”), but not vice versa

does not require causation or relevance between α and β

ex: “5 is odd implies Tokyo is the capital of Japan” is true in p.l.
(under the standard interpretation of “5”, “odd”, “Tokyo”, “Japan”)
relation between antecedent & consequent: they are both true

is true whenever its antecedent is false
ex: “5 is even implies Sam is smart” is true
(regardless the smartness of Sam)
ex: “5 is even implies Tokyo is in Italy” is true (!)
relation between antecedent & consequent: the former is false

does not require temporal precedence of α wrt. β
ex: “the grass is wet implies it must have rained” is true
(the consequent precedes temporally the antecedent)
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Properties Boolean Operators

∧, ∨,↔ and ⊕ are commutative:
(α ∧ β) ⇐⇒ (β ∧ α)
(α ∨ β) ⇐⇒ (β ∨ α)
(α↔ β) ⇐⇒ (β ↔ α)
(α⊕ β) ⇐⇒ (β ⊕ α)

∧, ∨,↔ and ⊕ are associative:
((α ∧ β) ∧ γ) ⇐⇒ (α ∧ (β ∧ γ)) ⇐⇒ (α ∧ β ∧ γ)
((α ∨ β) ∨ γ) ⇐⇒ (α ∨ (β ∨ γ)) ⇐⇒ (α ∨ β ∨ γ)
((α↔ β)↔ γ) ⇐⇒ (α↔ (β ↔ γ)) ⇐⇒ (α↔ β ↔ γ)
((α⊕ β)⊕ γ) ⇐⇒ (α⊕ (β ⊕ γ)) ⇐⇒ (α⊕ β ⊕ γ)

→,← are neither commutative nor associative:
(α→ β) ⇍⇒ (β → α)
((α→ β)→ γ) ⇍⇒ (α→ (β → γ))
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Equivalences with Boolean Operators
¬¬α ⇐⇒ α
(α ∨ β) ⇐⇒ ¬(¬α ∧ ¬β)
¬(α ∨ β) ⇐⇒ (¬α ∧ ¬β)
(α ∧ β) ⇐⇒ ¬(¬α ∨ ¬β)
¬(α ∧ β) ⇐⇒ (¬α ∨ ¬β)
(α→ β) ⇐⇒ (¬α ∨ β)
¬(α→ β) ⇐⇒ (α ∧ ¬β)
(α← β) ⇐⇒ (α ∨ ¬β)
¬(α← β) ⇐⇒ (¬α ∧ β)
(α↔ β) ⇐⇒ ((α→ β) ∧ (α← β))

⇐⇒ ((¬α ∨ β) ∧ (α ∨ ¬β))
¬(α↔ β) ⇐⇒ (¬α↔ β)

⇐⇒ (α↔ ¬β)
⇐⇒ ((α ∨ β) ∧ (¬α ∨ ¬β))

(α⊕ β) ⇐⇒ ¬(α↔ β)

Boolean logic can be expressed in terms of {¬,∧} (or {¬,∨}) only!
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Exercises

1 For every pair of formulas α⇐⇒ β below, show that α and β can be rewritten into each
other by applying the syntactic properties of the previous slide

(A1 ∧ A2) ∨ A3 ⇐⇒ (A1 ∨ A3) ∧ (A2 ∨ A3)
(A1 ∨ A2) ∧ A3 ⇐⇒ (A1 ∧ A3) ∨ (A2 ∧ A3)
A1 → (A2 → (A3 → A4)) ⇐⇒ (A1 ∧ A2 ∧ A3)→ A4

A1 → (A2 ∧ A3) ⇐⇒ (A1 → A2) ∧ (A1 → A3)
(A1 ∨ A2)→ A3 ⇐⇒ (A1 → A3) ∧ (A2 → A3)
A1 ⊕ A2 ⇐⇒ (A1 ∨ A2) ∧ (¬A1 ∨ ¬A2)
¬A1 ↔ ¬A2 ⇐⇒ A1 ↔ A2

A1 ↔ A2 ↔ A3 ⇐⇒ A1 ⊕ A2 ⊕ A3

10 / 70



Tree & DAG Representations of Formulas

Formulas can be represented either as trees or as DAGS
(Directed Acyclic Graphs)
DAG representation can be up to exponentially smaller

in particular, when↔’s are involved

(A1 ↔ A2)↔ (A3 ↔ A4)
⇓

(((A1 ↔ A2)→ (A3 ↔ A4))∧
((A3 ↔ A4)→ (A1 ↔ A2)))

⇓
(((A1 → A2) ∧ (A2 → A1))→ ((A3 → A4) ∧ (A4 → A3))) ∧
(((A3 → A4) ∧ (A4 → A3))→ (((A1 → A2) ∧ (A2 → A1))))
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Tree & DAG Representations of Formulas: Example

(((A1 → A2) ∧ (A2 → A1))→ ((A3 → A4) ∧ (A4 → A3))) ∧
(((A3 → A4) ∧ (A4 → A3))→ (((A1 → A2) ∧ (A2 → A1))))

A1 A2 A1A2 A3 A3A4 A4 A3 A3A4 A4 A1 A2 A1A2

A1 A2 A3 A4

Tree Representation

DAG Representation
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Basic Definitions and Notation [cont.]

Total truth assignment µ for φ:
µ : Atoms(φ) 7−→ {⊤,⊥}.

represents a possible world or a possible state of the world

Partial Truth assignment µ for φ:
µ : A 7−→ {⊤,⊥}, A ⊂ Atoms(φ).

represents 2k total assignments, k is # unassigned variables

Notation: set and formula representations of an assignment
µ can be represented as a set of literals:
EX: {µ(A1) := ⊤, µ(A2) := ⊥} =⇒ {A1,¬A2}
µ can be represented as a formula (cube):
EX: {µ(A1) := ⊤, µ(A2) := ⊥} =⇒ (A1 ∧ ¬A2)
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Basic Definitions and Notation [cont.]

A total truth assignment µ satisfies φ (µ is a model of φ, µ |= φ):
µ |= Ai ⇐⇒ µ(Ai) = ⊤
µ |= ¬φ⇐⇒ not µ |= φ
µ |= α ∧ β ⇐⇒ µ |= α and µ |= β
µ |= α ∨ β ⇐⇒ µ |= α or µ |= β
µ |= α→ β ⇐⇒ if µ |= α, then µ |= β
µ |= α↔ β ⇐⇒ µ |= α iff µ |= β
µ |= α⊕ β ⇐⇒ µ |= α iff not µ |= β

M(φ)
def
= {µ | µ |= φ} (the set of models of φ)

A partial truth assignment µ satisfies φ iff all its total extensions satisfy φ

(Ex: {A1} |= (A1 ∨ A2)) because {A1,A2} |= (A1 ∨ A2) and {A1,¬A2} |= (A1 ∨ A2))

φ is satisfiable iff µ |= φ for some µ (i.e. M(φ) ̸= ∅)
α entails β (α |= β) iff, for all µs, µ |= α =⇒ µ |= β
(i.e., M(α) ⊆ M(β))
φ is valid (|= φ) iff µ |= φ forall µs (i.e., µ ∈ M(φ) forall µs)
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Properties & Results

Property

φ is valid iff ¬φ is unsatisfiable

Deduction Theorem

α |= β iff α→ β is valid (|= α→ β)

Corollary

α |= β iff α ∧ ¬β is unsatisfiable

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!
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Equivalence and Equi-Satisfiability

α and β are equivalent iff, for every µ, µ |= α iff µ |= β
(i.e., if M(α) = M(β))
α and β are equi-satisfiable iff exists µ1 s.t. µ1 |= α iff exists µ2 s.t. µ2 |= β
(i.e., if M(α) ̸= ∅ iff M(β) ̸= ∅)
α, β equivalent
⇓ ̸⇑

α, β equi-satisfiable
EX: A1 ∨ A2 and (A1 ∨ ¬A3) ∧ (A3 ∨ A2) are equi-satisfiable, not equivalent.
{¬A1,A2,A3} |= (A1 ∨ A2), but {¬A1,A2,A3} ̸|= (A1 ∨ ¬A3) ∧ (A3 ∨ A2)

Typically used when β is the result of applying some transformation T to α: β def
= T (α):

T is validity-preserving [resp. satisfiability-preserving] iff
T (α) and α are equivalent [resp. equi-satisfiable]
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Complexity

For N variables, there are up to 2N truth assignments to be checked.
The problem of deciding the satisfiability of a propositional formula is NP-complete

=⇒ The most important logical problems (validity, inference, entailment, equivalence, ...) can be
straightforwardly reduced to (un)satisfiability, and are thus (co)NP-complete.

⇓

No existing worst-case-polynomial algorithm.
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Conjunctive Normal Form (CNF)

φ is in Conjunctive normal form iff it is a conjunction of disjunctions of literals:

L∧
i=1

Ki∨
ji=1

lji

the disjunctions of literals
∨Ki

ji=1 lji are called clauses
Easier to handle: list of lists of literals.
=⇒ no reasoning on the recursive structure of the formula
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Classic CNF Conversion CNF (φ)

Every φ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:

α→ β =⇒ ¬α ∨ β
α↔ β =⇒ (¬α ∨ β) ∧ (α ∨ ¬β)

(ii) pushing down negations recursively:
¬(α ∧ β) =⇒ ¬α ∨ ¬β
¬(α ∨ β) =⇒ ¬α ∧ ¬β
¬¬α =⇒ α

(iii) applying recursively the DeMorgan’s Rule: (α ∧ β) ∨ γ =⇒ (α ∨ γ) ∧ (β ∨ γ)

Resulting formula worst-case exponential:
ex: ||CNF(

∨N
i=1(li1 ∧ li2)|| = ||(l11 ∨ l21 ∨ ...∨ lN1)∧ (l12 ∨ l21 ∨ ...∨ lN1)∧ ...∧ (l12 ∨ l22 ∨ ...∨ lN2)|| = 2N

Atoms(CNF (φ)) = Atoms(φ)
CNF (φ) is equivalent to φ: M(CNF (φ)) = M(φ)

Rarely used in practice.
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Labeling CNF conversion CNFlabel(φ)

Labeling CNF conversion CNFlabel(φ) (aka Tseitin’s conversion)

Every φ can be reduced into CNF by, e.g., applying recursively bottom-up the rules:
φ =⇒ φ[(li ∨ lj)|B] ∧ CNF (B ↔ (li ∨ lj))
φ =⇒ φ[(li ∧ lj)|B] ∧ CNF (B ↔ (li ∧ lj))
φ =⇒ φ[(li ↔ lj)|B] ∧ CNF (B ↔ (li ↔ lj))

li , lj being literals and B being a “new” variable.
Worst-case linear!
Atoms(CNFlabel(φ)) ⊇ Atoms(φ)
CNFlabel(φ) is equi-satisfiable w.r.t. φ:
M(CNF (φ)) ̸= ∅ iff M(φ) ̸= ∅
Much more used than classic conversion in practice.
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Labeling CNF conversion CNFlabel(φ) (cont.)

CNF (B ↔ (li ∨ lj)) ⇐⇒ (¬B ∨ li ∨ lj)∧
(B ∨ ¬li)∧
(B ∨ ¬lj)

CNF (B ↔ (li ∧ lj)) ⇐⇒ (¬B ∨ li)∧
(¬B ∨ lj)∧
(B ∨ ¬li¬lj)

CNF (B ↔ (li ↔ lj)) ⇐⇒ (¬B ∨ ¬li ∨ lj)∧
(¬B ∨ li ∨ ¬lj)∧
(B ∨ li ∨ lj)∧
(B ∨ ¬li ∨ ¬lj)

21 / 70



Labeling CNF Conversion CNFlabel – Example

−A3 −A4 A4 A3−A3 A4 −A4A1 A5 A2 −A6 A1 −A5 −A2 A6 A1

B1 B2 B3 B4 B5 B6 B7 B8

B9 B10 B11 B12

B13 B14

B15

CNF (B1 ↔ (¬A3 ∨ A1))∧
...∧
CNF (B8 ↔ (A1 ∨ ¬A4))∧
CNF (B9 ↔ (B1 ↔ B2))∧

...∧
CNF (B12 ↔ (B7 ∧ B8))∧
CNF (B13 ↔ (B9 ∨ B10))∧
CNF (B14 ↔ (B11 ∨ B12))∧
CNF (B15 ↔ (B13 ∧ B14))∧
B15

=

(¬B1 ∨ ¬A3 ∨ A1) ∧ (B1 ∨ A3) ∧ (B1 ∨ ¬A1)∧
...∧
(¬B8 ∨ A1 ∨ ¬A4) ∧ (B8 ∨ ¬A1) ∧ (B8 ∨ A4)∧
(¬B9 ∨ ¬B1 ∨ B2) ∧ (¬B9 ∨ B1 ∨ ¬B2)∧
(B9 ∨ B1 ∨ B2) ∧ (B9 ∨ ¬B1 ∨ ¬B2)∧
...∧
(B12 ∨ ¬B7 ∨ ¬B8) ∧ (¬B12 ∨ B7) ∧ (¬B12 ∨ B8)∧
(¬B13 ∨ B9 ∨ B10) ∧ (B13 ∨ ¬B9) ∧ (B13 ∨ ¬B10)∧
(¬B14 ∨ B11 ∨ B12) ∧ (B14 ∨ ¬B11) ∧ (B14 ∨ ¬B12)∧
(B15 ∨ ¬B13 ∨ ¬B14) ∧ (¬B15 ∨ B13) ∧ (¬B15 ∨ B14)∧
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Propositional Reasoning: Generalities

Automated Reasoning in Propositional Logic fundamental task
AI, formal verification, circuit synthesis, operational research,....

Important in AI: KB |= α: entail fact α from some knowledge base KB
(aka Model Checking: M(KB) ⊆ M(α))

typically ||KB|| >> ||α||
sometimes KB set of variable implications (A1 ∧ ... ∧ Ak )→ B

All propositional reasoning tasks reduced to satisfiability (SAT)
KB |= α =⇒ SAT(KB ∧ ¬α) = false
input formula CNF-ized and fed to a SAT solver

Current SAT solvers dramatically efficient:
handle industrial problems with 106 − 107 variables & clauses!
used as backend engines in a variety of systems (not only AI)
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The Resolution Rule

Resolution: deduction of a new clause from a pair of clauses with exactly one incompatible
variable (resolvent):

(

common︷ ︸︸ ︷
l1 ∨ ... ∨ lk ∨

resolvent︷︸︸︷
l ∨

C′︷ ︸︸ ︷
l ′k+1 ∨ ... ∨ l ′m ) (

common︷ ︸︸ ︷
l1 ∨ ... ∨ lk ∨

resolvent︷︸︸︷
¬l ∨

C′′︷ ︸︸ ︷
l ′′k+1 ∨ ... ∨ l ′′n )

( l1 ∨ ... ∨ lk︸ ︷︷ ︸
common

∨ l ′k+1 ∨ ... ∨ l ′m︸ ︷︷ ︸
C′

∨ l ′′k+1 ∨ ... ∨ l ′′n︸ ︷︷ ︸
C′′

)

Ex:
( A ∨ B ∨ C ∨ D ∨ E ) ( A ∨ B ∨ ¬C ∨ F )

( A ∨ B ∨ D ∨ E ∨ F )

Note: many standard inference rules subcases of resolution:
(recall that α→ β ⇐⇒ ¬α ∨ β)

A→ B B → C
A→ C

(trans.) A A→ B
B

(m. ponens) ¬B A→ B
¬A

(m. tollens)
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Basic Propositional Inference: Resolution

Assume input formula in CNF
if not, apply Tseitin CNF-ization first

=⇒ φ is represented as a set of clauses
Search for a refutation of φ (is φ unsatisfiable?)

recall: α |= β iff α ∧ ¬β unsatisfiable

Basic idea: apply iteratively the resolution rule to pairs of clauses with a conflicting literal,
producing novel clauses, until either

a false clause is generated, or
the resolution rule is no more applicable

Correct: if returns an empty clause, then φ unsat (α |= β)
Complete: if φ unsat (α |= β), then it returns an empty clause
Time-inefficient
Very Memory-inefficient (exponential in memory)
Many different strategies
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Very-Basic PL-Resolution Procedure

(© S. Russell & P. Norwig, AIMA)
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Improvements: Subsumption & Unit Propagation
General “set” notation (Γ clause set):

Γ, ϕ1, ..ϕn

Γ, ϕ′
1, ..ϕ

′
n′

(
e.g.,

Γ,C1 ∨ p,C2 ∨ ¬p
Γ,C1 ∨ p,C2 ∨ ¬p,C1 ∨ C2,

)
Removal of valid clauses: Γ ∧ (p ∨ ¬p ∨ C)

Γ

Clause Subsumption (C clause): Γ ∧ C ∧ (C ∨
∨

i li)
Γ ∧ (C)

Unit Resolution: Γ ∧ (l) ∧ (¬l ∨
∨

i li)
Γ ∧ (l) ∧ (

∨
i li)

Unit Subsumption: Γ ∧ (l) ∧ (l ∨
∨

i li)
Γ ∧ (l)

Unit Propagation = Unit Resolution + Unit Subsumption

“Deterministic” rule: applied before other “non-deterministic” rules!
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Remark

What happens with more than 1 resolvent?

Common mistake: the following is not a correct application of the resolution rule:

Γ, (C1 ∨ l1 ∨ l2), (C2 ∨ ¬l1 ∨ ¬l2)
Γ, (C1 ∨ l1 ∨ l2), (C2 ∨ ¬l1 ∨ ¬l2), (C1 ∨ C2)

Rather, a correct application would be:

Γ, (C1 ∨ l1 ∨ l2), (C2 ∨ ¬l1 ∨ ¬l2)
Γ, (C1 ∨ l1 ∨ l2), (C2 ∨ ¬l1 ∨ ¬l2), (C1 ∨ l2 ∨ C2 ∨ ¬l2)

... but (C1 ∨ l2 ∨ C2 ∨ ∨¬l2) is valid and should be removed
=⇒ no clause is produced
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Resolution: example

Given the following set of propositional clauses Γ:

( A ∨ D ∨ ¬F )
(¬C ∨ E)
( A)
( B ∨ E ∨ ¬G)
(¬G)
(¬E ∨ F )
(¬A ∨ ¬B ∨ C)
( B)
(¬B ∨ ¬C ∨ D)
(¬B ∨ ¬F ∨ G)

Produce a PL-resolution proof that Γ is unsatisfiable.
Solution:
[( A), (¬A ∨ ¬B ∨ C)] =⇒ (¬B ∨ C);
[( B), (¬B ∨ C)] =⇒ ( C);
[( C), (¬C ∨ E)] =⇒ ( E);
[( E), (¬E ∨ F )] =⇒ ( F );
[( B), (¬B ∨ ¬F ∨ G)] =⇒ (¬F ∨ G);
[( F ), (¬F ∨ G)] =⇒ ( G);
[(¬G), ( G)] =⇒ ();

Hint: resolve always unit clauses first!
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The Davis-Putnam-Longemann-Loveland Procedure

Tries to build an assignment µ satisfying φ

At each step assigns a truth value to (all instances of) one atom
Performs deterministic choices (mostly unit-propagation) first
The grandfather of the most efficient SAT solvers
Correct and complete
Much more efficient than PL-Resolution
Requires polynomial space
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The DPLL Procedure [cont.]

(© S. Russell & P. Norwig, AIMA)

Pure-Symbol Rule out of date, no more used in modern solvers.
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The DPLL Procedure [cont.]

(© S. Russell & P. Norwig, AIMA)

Pure-Symbol Rule out of date, no more used in modern solvers.
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DPLL: Example

DPLL search tree

φ = (A1 ∨ A2) ∧ (A1 ∨ ¬A2) ∧ (¬A1 ∨ A2) ∧ (¬A1 ∨ ¬A2)

A1 −A1

A2 A2
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DPLL – example
DPLL (without pure-literal rule)

Here “choose-literal” selects variable in alphabetic order, selecting true first.
(¬C ) ∧
( B ∨ A ∨ C) ∧
(¬A ∨ D ) ∧
(¬E ∨¬A ∨ F ) ∧
(¬E ∨¬F ∨¬A) ∧
( G ∨¬A ∨ E) ∧
( E ∨¬G ∨¬A) ∧
( A ∨ H ∨ C) ∧
(¬H ∨¬I ∨ A) ∧
( I ∨ L ∨ M) ∧
(¬L ∨ C ∨¬M) ∧
( A ∨¬L ∨ M) ∧
( L ∨ N ∨¬H) ∧
( I ∨ L ∨¬N)

¬A

E ¬E

¬L

¬C

A

D

L

¬M

F G

N
M

¬I

H

B

=⇒ UNSAT

Remark: “choose-literal” selects only variables which still occur in the formula, after simplification. E.g., in the leftmost
branch, after assigning ¬C, A, D, it does not select B because the clause ( B ∨ A ∨ C) has been simplified into
true, and as such is no more part of the formula, so that B does not occur in the formula anymore.

36 / 70



Modern CDCL SAT Solvers
Non-recursive, stack-based implementations
Based on Conflict-Driven Clause-Learning (CDCL) schema

inspired to conflict-driven backjumping and learning in CSPs
learns implied clauses as nogoods

Random restarts
abandon the current search tree and restart on top level
previously-learned clauses maintained

Smart literal selection heuristics (ex: VSIDS)
“static”: scores updated only at the end of a branch
“local”: privileges variable in recently learned clauses

Smart preprocessing/inprocessing technique to simplify formulas
Smart indexing techniques (e.g. 2-watched literals)

efficiently do/undo assignments and reveal unit clauses

Allow Incremental Calls (stack-based interface)
allow for reusing previous search on “similar” problems

Can handle industrial problems with 106 − 107 variables and clauses!
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Horn Formulas
A Horn clause is a clause containing at most one positive literal

a definite clause is a clause containing exactly one positive literal
a goal clause is a clause containing no positive literal

A Horn formula is a conjunction/set of Horn clauses

Ex:

A1 ∨ ¬A2 // definite
A2 ∨ ¬A3 ∨ ¬A4 // definite
¬A5 ∨ ¬A3 ∨ ¬A4 // goal

A3 // definite

Intuition: implications between positive Boolean variables:
A2 → A1

(A3 ∧ A4)→ A2

(A5 ∧ A3 ∧ A4)→ ⊥
A3

Often allow to represent knowledge-base entailment KB |= α:
knowledge base KB written as sets of definite clauses
ex: In11; (¬In11 ∨ ¬MoveFrom11To12 ∨ In12);
goal ¬α as a goal clause
ex: ¬In12
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Tractability of Horn Formulas

Property

Checking the satisfiability of Horn formulas requires polynomial time:
Hint:

1 Eliminate unit clauses by propagating their value;
2 If an empty clause is generated, return unsat
3 Otherwise, every clause contains at least one negative literal

=⇒ Assign all variables to ⊥; return the assignment

Alternatively: run DPLL/CDCL, selecting negative literals first
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A simple polynomial procedure for Horn-SAT

function Horn_SAT(formula φ, assignment & µ) {
Unit_Propagate(φ, µ);
if (φ == ⊥)

then return UNSAT;
else {

µ := µ ∪
⋃

Ai ̸∈µ{¬Ai};
return SAT;

} }

function Unit_Propagate(formula & φ, assignment & µ)
while (φ ̸= ⊤ and φ ̸= ⊥ and {a unit clause (l) occurs in φ}) do {

φ = assign(φ, l);
µ := µ ∪ {l};

} }
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Example

¬A1 ∨ A2 ∨¬A3
A1 ∨¬A3 ∨¬A4
¬A2 ∨¬A4

A3 ∨¬A4
A4
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Example

¬A1 ∨ A2 ∨¬A3
A1 ∨¬A3 ∨¬A4
¬A2 ∨¬A4

A3 ∨¬A4
A4

µ := {A4 := ⊤}
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Example

¬A1 ∨ A2 ∨¬A3
A1 ∨¬A3 ∨¬A4
¬A2 ∨¬A4

A3 ∨¬A4
A4

µ := {A4 := ⊤,A3 := ⊤}
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Example

¬A1 ∨ A2 ∨¬A3
A1 ∨¬A3 ∨¬A4
¬A2 ∨¬A4

A3 ∨¬A4
A4

µ := {A4 := ⊤,A3 := ⊤,A2 := ⊥}
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Example

¬A1 ∨ A2 ∨¬A3 ×
A1 ∨¬A3 ∨¬A4
¬A2 ∨¬A4

A3 ∨¬A4
A4

µ := {A4 := ⊤,A3 := ⊤,A2 := ⊥,A1 := ⊤} =⇒ UNSAT
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Example 2

A1 ∨¬A2
A2 ∨¬A5 ∨¬A4
A4 ∨¬A3
A3
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Example 2

A1 ∨¬A2
A2 ∨¬A5 ∨¬A4
A4 ∨¬A3
A3

µ := {A3 := ⊤}
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Example 2

A1 ∨¬A2
A2 ∨¬A5 ∨¬A4
A4 ∨¬A3
A3

µ := {A3 := ⊤,A4 := ⊤}
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Example 2

A1 ∨¬A2
A2 ∨¬A5 ∨¬A4
A4 ∨¬A3
A3

µ := {A3 := ⊤,A4 := ⊤} =⇒ SAT
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Local Search with SAT

Similar to Local Search for CSPs
Input: set of clauses
Use total truth assignments

allow states with unsatisfied clauses
“neighbour states” differ for one variable truth value
steps: reassign variable truth values

Cost: # of unsatisfied clauses
Stochastic local search [see Ch. 4] applies to SAT as well

random walk, simulated annealing, GAs, taboo search, ...

The WalkSAT stochastic local search
Clause selection: randomly select an unsatisfied clause C
Variable selection:

prob. p: flip variable from C at random
prob. 1-p: flip variable from C causing a minimum number of unsat clauses

Note: can detect only satisfiability, not unsatisfiability
Many variants

52 / 70



The WalkSAT Procedure

(© S. Russell & P. Norwig, AIMA)
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A Quote

You can think about deep learning as equivalent to ... our visual cortex or auditory cortex. But, of
course, true intelligence is a lot more than just that, you have to recombine it into higher-level
thinking and symbolic reasoning, a lot of the things classical AI tried to deal with in the 80s.
...
We would like to build up to this symbolic level of reasoning - maths, language, and logic. So
that’s a big part of our work.

Demis Hassabis, CEO of Google Deepmind
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Knowledge Representation and Reasoning
Knowledge Representation & Reasoning (KR&R): the field of AI dedicated to representing
knowledge of the world in a form a computer system can utilize to solve complex tasks
The class of systems/agents that derive from this approach are called knowledge based
(KB) systems/agents
A KB agent maintains a knowledge base (KB) of facts

represent the agent’s representation of the world
expressed in a formal language (e.g. propositional logic)
collection of domain-specific facts believed by the agent
initially contains the background knowledge
KB queries and updates via logical entailment, performed by an inference engine

Inference engine allows for inferring actions and new knowledge
domain-independent algorithms, can answer any question

(© S. Russell & P. Norwig, AIMA)
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Reasoning

Reasoning: formal manipulation of the symbols representing a collection of beliefs to
produce representations of new ones
Logical entailment (KB |= α) is the fundamental operation
Ex:

(KB acquired fact): “Patient x is allergic to medication m”
(KB general rule): “Anybody allergic to m is also allergic to m’.”
(KB general rule): “If x is allergic to m’, do not prescribe m’ for x.”
(query): “Prescribe m’ for x?”
(answer) No (because patient x is allergic to medication m’)

Other forms of reasoning (last part of this course)
Probablistic reasoning

Other forms of reasoning (not addressed in this course)
Abductive reasoning (aka diagnosis): given KB and β, conjecture hypotheses α s.t (KB ∧ α) |= β
Abductive reasoning: from a set of observation find a general rule
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Knowledge-Based Agents (aka Logic Agents)

Logic agents: combine domain knowledge with current percepts to infer hidden aspects of
current state prior to selecting actions

Crucial in partially observable environments

KB Agent must be able to:
represent states and actions
incorporate new percepts
update internal representation of the world
deduce hidden properties of the world
deduce appropriate actions
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Example: The Wumpus World

Task Environment: PEAS Description

Performance measure:
gold: +1000, death: -1000
step: -1, using the arrow: -10

Environment:
squares adjacent to Wumpus are stenchy
squares adjacent to pit are breezy
glitter iff gold is in the same square
shooting kills Wumpus if you are facing it
shooting uses up the only arrow
grabbing picks up gold if in same square
releasing drops the gold in same square

Actuators:
Left turn, Right turn, Forward, Grab, Release, Shoot

Sensors:
Stench, Breeze, Glitter, Bump, Scream

One possible configuration:

(© S. Russell & P. Norwig, AIMA)
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Example: Exploring the Wumpus World

The KB initially contains the rules of
the environment.
Agent is initially in 1,1
Percepts:
no stench, no breeze

=⇒ [1,2] and [2,1] OK

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: Pit; BGS: bag of gold
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Example: Exploring the Wumpus World

Agent moves to [2,1]
perceives a breeze

=⇒ Pit in [3,1] or [2,2]
perceives no stench

=⇒ no Wumpus in [3,1], [2,2]

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: Pit; BGS: bag of gold
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Example: Exploring the Wumpus World
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A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: Pit; BGS: bag of gold

62 / 70



Example: Exploring the Wumpus World

Agent moves to [1,1]-[1,2]
perceives no breeze

=⇒ no Pit in [1,3], [2,2]
=⇒ [2,2] OK
=⇒ pit in [3,1]

perceives a stench
=⇒ Wumpus in [2,2] or [1,3]!

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: Pit; BGS: bag of gold
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Example: Exploring the Wumpus World

Agent moves to [2,2]
perceives no breeze

=⇒ no pit in [3,2], [2,3]
perceives no stench

=⇒ no Wumpus in [3,2], [2,3]
=⇒ [3,2] and [2,3] OK

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: Pit; BGS: bag of gold
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Example: Exploring the Wumpus World

Agent moves to [2,2]
perceives no breeze

=⇒ no pit in [3,2], [2,3]
perceives no stench

=⇒ no Wumpus in [3,2], [2,3]
=⇒ [3,2] and [2,3] OK

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: Pit; BGS: bag of gold
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Example: Exploring the Wumpus World

Agent moves to [2,3]
perceives a glitter

=⇒ bag of gold!

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: Pit; BGS: bag of gold
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Example 2: Exploring the Wumpus World [see Ch. 13]

Alternative scenario: probabilistic solution (hints)

Feel breeze in [1,2] and [2,1]
=⇒ pit in [1,3] or [2,2] or [3,1]
=⇒ no 100% safe action

Probability analysis [see Ch 13] (assuming
pits uniformly distributed):
P(pit ∈ [2,2]) = 0.86
P(pit ∈ [1,3]) = 0.31
P(pit ∈ [3,1]) = 0.31

=⇒ better choose [1,3] or [3,1]
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Propositional Logic Agents

Kind of Logic agents
Language: propositional logic, first-order logic, ...

represent KB as set of propositional formulas
percepts and actions are (collections of ) propositional atoms
in practice: sets of clauses

Perform propositional logic inference
model checking, entailment
in practice: incremental calls to a SAT solver
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Representation vs. World

Reasoning process (propositional entailment) sound
=⇒ if KB is true in the real world, then any sentence α derived from KB by a sound inference
procedure is also true in the real world

sentences are configurations of the agent
reasoning constructs new configurations from old ones
=⇒ the new configurations represent aspects of the world that actually follow from the aspects that

the old configurations represent

(© S. Russell & P. Norwig, AIMA)
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Example: Exploring the Wumpus World

KB initially contains (the CNFized versions of) the following formulas, ∀i , j ∈ [1..4]:
breeze iff pit in neighbours
B[i,j] ↔ (P[i,j−1]∨P[i+1,j] ∨ P[i,j+1] ∨ P[i−1,j])

stench iff Wumpus in neighbours
S[i,j] ↔ (W[i,j−1]∨W[i+1,j] ∨W[i,j+1] ∨W[i−1,j])

safe iff no Wumpus and no pit there OK[i,j] ↔ (¬W[i,j] ∧¬P[i,j])

glitter iff pile of gold there
G[i,j] ↔ BGS[i,j]

in [1,1] no Wumpus and no pit =⇒ safe
¬P[1,1],¬W[1,1],OK[1,1]

(implicit: P[i,j],W[i,j],P[i,j] false if i , j ̸∈ [1..4])

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: bag of gold
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Example: Exploring the Wumpus World
KB initially contains:
¬P[1,1],¬W[1,1],OK[1,1]
B[1,1] ↔ (P[1,2] ∨ P[2,1])
S[1,1] ↔ (W[1,2] ∨W[2,1])
OK[1,2] ↔ (¬W[1,2] ∧ ¬P[1,2])
OK[2,1] ↔ (¬W[2,1] ∧ ¬P[2,1])
...
Agent is initially in 1,1
Percepts (no stench, no breeze): ¬S[1,1], ¬B[1,1]

=⇒ ¬W[1,2], ¬W[2,1], ¬P[1,2], ¬P[2,1]

=⇒ OK[1,2], OK[2,1] ([1,2] & [2,1] OK)
Add all them to KB

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: glitter, bag of gold
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Example: Exploring the Wumpus World
KB initially contains:
¬P[1,1],¬W[1,1],OK[1,1]
B[2,1] ↔ (P[1,1]∨P[2,2] ∨ P[3,1])
S[2,1] ↔ (W[1,1]∨W[2,2] ∨W[3,1])
...
Agent moves to [2,1]
perceives a breeze: B[2,1]

=⇒ (P[3,1] ∨ P[2,2]) (pit in [3,1] or [2,2])
perceives no stench ¬S[2,1]

=⇒ ¬W[3,1],¬W[2,2]
(no Wumpus in [3,1], [2,2])
Add all them to KB

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: glitter, bag of gold
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Example: Exploring the Wumpus World
KB initially contains:
¬P[1,1],¬W[1,1],OK[1,1]
(P[3,1] ∨ P[2,2]),¬W[3,1],¬W[2,2]
B[1,2] ↔ (P[1,1]∨P[2,2] ∨ P[1,3])
S[1,2] ↔ (W[1,1]∨W[2,2] ∨W[1,3])
OK[2,2] ↔ (¬W[2,2] ∧ ¬P[2,2])

Agent moves to [1,1]-[1,2]
perceives no breeze: ¬B[1,2]

=⇒ ¬P[2,2],¬P[1,3] (no pit in [2,2], [1,3])
=⇒ P[3,1] (pit in [3,1])

perceives a stench: S[1,2]

=⇒ W[1,3] (Wumpus in [1,3]!)
=⇒ OK[2,2] ([2,2] OK)

Add all them to KB
A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: glitter, bag of gold
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Example: Exploring the Wumpus World

KB initially contains:
B[2,2] ↔ (P[2,1]∨P[3,2] ∨ P[2,3] ∨ P[1,2])
S[2,2]↔(W[2,1]∨W[3,2]∨W[2,3]∨W[1,2])
OK[3,2] ↔ (¬W[3,2] ∧ ¬P[3,2])
OK[2,3] ↔ (¬W[2,3] ∧ ¬P[2,3])

Agent moves to [2,2]
perceives no breeze: ¬B[2,2]

=⇒ ¬P[3,2],¬P[2,3] (no pit in [3,2], [2,3])
perceives no stench: ¬S[2,2]

=⇒ ¬W[3,2],¬W[3,2] (no Wumpus in [3,2], [2,3])
=⇒ OK[3,2],OK[2,3], ([3,2] and [2,3] OK)

Add all them to KB

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: glitter, bag of gold
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Example: Exploring the Wumpus World

KB initially contains:
B[2,2] ↔ (P[2,1]∨P[3,2] ∨ P[2,3] ∨ P[1,2])
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Agent moves to [2,2]
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=⇒ ¬P[3,2],¬P[2,3] (no pit in [3,2], [2,3])
perceives no stench: ¬S[2,2]
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=⇒ OK[3,2],OK[2,3], ([3,2] and [2,3] OK)
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OK: safe square; W: Wumpus; P: pit; BGS: glitter, bag of gold
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Example: Exploring the Wumpus World

KB initially contains:
G[2,3] ↔ BGS[2,3]

Agent moves to [2,3]
perceives a glitter: G[2,3]

=⇒ BGS[2,3] (bag of gold!)
Add it them to KB

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: glitter, bag of gold
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Exercise

Consider the previous example.
1 Convert all formulas from KB into CNF
2 Execute all steps in the example as resolution calls
3 Execute all steps in the example as DPLL calls
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