
Fundamentals of Artificial Intelligence
Chapter 03: Problem Solving as Search

Roberto Sebastiani
DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it

https://disi.unitn.it/rseba/DIDATTICA/fai_2023/

Teaching assistants:
Mauro Dragoni, dragoni@fbk.eu, https://www.maurodragoni.com/teaching/fai/
Paolo Morettin, paolo.morettin@unitn.it, https://paolomorettin.github.io/

M.S. Course “Artificial Intelligence Systems”, academic year 2024-2025
Last update: Thursday 5th September, 2024, 18:56

Copyright notice: Most examples and images displayed in the slides of this course are taken from [Russell & Norwig, “Artificial Intelligence, a Modern Approach”, 3rd ed., Pearson],
including explicitly figures from the above-mentioned book, so that their copyright is detained by the authors. A few other material (text, figures, examples) is authored by (in alphabetical

order): Pieter Abbeel, Bonnie J. Dorr, Anca Dragan, Dan Klein, Nikita Kitaev, Tom Lenaerts, Michela Milano, Dana Nau, Maria Simi, who detain its copyright.
These slides cannot be displayed in public without the permission of the author. 1 / 107

roberto.sebastiani@unitn.it
https://disi.unitn.it/rseba/DIDATTICA/fai_2023/
dragoni@fbk.eu
https://www.maurodragoni.com/teaching/fai/
paolo.morettin@unitn.it
https://paolomorettin.github.io/


Outline
1 Problem-Solving Agents
2 Example Problems
3 Search Generalities

Tree Search
Graph Search
Implementation Issues & Strategies

4 Uninformed Search Strategies
Breadth-First Search
Uniform-cost Search
Depth-First Search
Depth-Limited Search & Iterative Deepening

5 Informed Search Strategies
Greedy Best-First Search
A∗ Search
Memory-bounded Heuristic Search (hints)
Heuristic Functions

2 / 107



Outline
1 Problem-Solving Agents
2 Example Problems
3 Search Generalities

Tree Search
Graph Search
Implementation Issues & Strategies

4 Uninformed Search Strategies
Breadth-First Search
Uniform-cost Search
Depth-First Search
Depth-Limited Search & Iterative Deepening

5 Informed Search Strategies
Greedy Best-First Search
A∗ Search
Memory-bounded Heuristic Search (hints)
Heuristic Functions

3 / 107



Problem Solving as Search

One of the dominant approaches to AI problem solving:
formulate a problem/task as search in a state space.

Main Paradigm
1 Goal formulation: define the successful states

Ex: a set of states, a Boolean test function ...
2 Problem formulation:

define a representation for states
define legal actions and transition functions

3 Search: find a solution by means of a search process
solutions are sequences of actions

4 Execution: given the solution, perform the actions

=⇒ Problem-solving agents are (a kind of) goal-based agents

4 / 107



Problem Solving as Search: Example

Example: Traveling in Romania

Informal description: On holiday in Romania; currently in Arad. Flight leaves tomorrow from
Bucharest
Formulate goal: (Be in) Bucharest
Formulate problem:

States: various cities
Actions: drive between cities
Initial state: Arad

Search for a solution: sequence of cities from Arad to Bucharest
e.g. Arad, Sibiu, Fagaras, Bucharest
explore a search tree/graph

Note
The agent is assumed to have no heuristic knowledge about traveling in Romania to exploit.

5 / 107



Problem Solving as Search: Example [cont.]

A simplified road map of part of Romania.

(© S. Russell & P. Norwig, AIMA)
6 / 107



Problem Solving as Search [cont.]

Assumptions for Problem-solving Agents (this chapter only)

state representations are atomic
=⇒ world states are considered as wholes, with no internal structure

Ex: Arad, Sibiu, Zerind, Bucharest,... (shortcut for In(Arad), In(Sibiu), ...)

the environment is fully observable
=⇒ the agent always knows the current state

Ex: Romanian cities & roads have signs

the environment is discrete
=⇒ at any state there are only finitely many actions to choose from

Ex: from Arad, (go to) Sibiu, or Zerind, or Timisoara (see map)

the environment is known
=⇒ the agent knows which states are reached by each action

ex: the agent has the map

the environment is deterministic
=⇒ each action has exactly one outcome

Ex: from Arad choose go to Sibiu =⇒ next step in Sibiu

7 / 107



Problem Solving as Search [cont.]

Remarks about search
Search happens inside the agent

a planning stage before acting
different from searching in the world

An agent is given a description of what to achieve, not an algorithm to solve it
=⇒ the only possibility is to search for a solution

Searching can be computationally very demanding (NP-hard)
Can be driven with benefits by knowledge of the problem (heuristic knowledge)
=⇒ informed/heuristic search

8 / 107



Problem-solving Agent: Schema

(© S. Russell & P. Norwig, AIMA)

While executing the solution sequence the agent ignores its percepts when choosing an action
since it knows in advance what they will be (“open loop system”)

9 / 107



Well-defined problems and solutions

Problem Formulation: Components

the initial state the agent starts in
Ex: In(Arad)

the set of applicable actions available in a state (ACTIONS(S))
Ex: if s is In(Arad), then the applicable actions are {Go(Sibiu),Go(Timisoara),Go(Zerind)}

a description of what each action does (aka transition model)
RESULT(S,A): state resulting from applying action A in state S
Ex: RESULT(IN(ARAD), GO(ZERIND)) is IN(ZERIND)

the goal test determining if a given state is a goal state
Explicit (e.g.: {In(Bucharest)})
Implicit (e.g. (Ex: CHECKMATE(X))

the path cost function assigns a numeric cost to each path
in this chapter: the sum of the costs of the actions along the path

10 / 107



Well-defined problems and solutions [cont.]
State Space, Graphs, Paths, Solutions and Optimal Solutions

Initial state, actions, and transition model implicitly define the state space of the problem
the state space forms a directed graph (e.g. the Romania map)

typically too big to be created explicitly and be stored in full
in a state space graph, each state occurs only once

a path is a sequence of states connected by actions
a solution is a path from the initial state to a goal state
an optimal solution is a solution with the lowest path cost

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

11 / 107



Example: Path finding for a Delivery Robot

Task: move from o103 to r123

States
Initial state
Goal state
State graph
Optimal solution

(Courtesy of Maria Simi, UniPI)

12 / 107



Example: Path finding for a Delivery Robot

Task: move from o103 to r123

States
Initial state
Goal state
State graph
Optimal solution

(Courtesy of Maria Simi, UniPI)

12 / 107



Example: Path finding for a Delivery Robot

Task: move from o103 to r123

States
Initial state
Goal state
State graph
Optimal solution

(Courtesy of Maria Simi, UniPI)

12 / 107



Example: Path finding for a Delivery Robot

Task: move from o103 to r123

States
Initial state
Goal state
State graph
Optimal solution

(Courtesy of Maria Simi, UniPI)

12 / 107



Example: Path finding for a Delivery Robot

Task: move from o103 to r123

States
Initial state
Goal state
State graph
Optimal solution

(Courtesy of Maria Simi, UniPI)

12 / 107



Well-defined problems and solutions [cont.]

Abstraction
Problem formulations are models of reality (i.e. abstract descriptions)

real world is absurdly complex
=⇒ state space must be abstracted for problem solving
lots of details removed because irrelevant to the problem

Ex: exact position, “turn steering wheel to the left by 20 degree”, ...

abstraction: the process of removing detail from representations
abstract state represents many real states
abstract action represents complex combination of real actions

valid abstraction: can expand any abstract solution into a solution in the detailed world
useful abstraction: if carrying out each of the actions in the solution is easier than in the
original problem

The choice of a good abstraction involves removing as much detail as possible, while retaining
validity and ensuring that the abstract actions are easy to carry out.

13 / 107



Outline
1 Problem-Solving Agents
2 Example Problems
3 Search Generalities

Tree Search
Graph Search
Implementation Issues & Strategies

4 Uninformed Search Strategies
Breadth-First Search
Uniform-cost Search
Depth-First Search
Depth-Limited Search & Iterative Deepening

5 Informed Search Strategies
Greedy Best-First Search
A∗ Search
Memory-bounded Heuristic Search (hints)
Heuristic Functions

14 / 107



Toy Example: Simple Vacuum Cleaner

States: 2 locations, each {clean,dirty}: 2 · 22 = 8 states
Initial State: any
Actions: {Left ,Right ,Suck}
Transition Model: (...), Left [Right] if A [B], Suck if clean =⇒ no effect
Goal Test: check if squares are clean
Path Cost: each step costs 1 =⇒ path cost is # of steps in path

(© S. Russell & P. Norwig, AIMA)

15 / 107



Toy Example: The 8-Puzzle

States: Integer location of each tile =⇒ 9!/2 reachable states
Initial State: any
Actions: moving {Left ,Right ,Up,Down} the empty space
Transition Model: empty space switched with the tile in target location
Goal Test: checks state corresponds with goal configuration
Path Cost: each step costs 1 =⇒ path cost is # of steps in path

(© S. Russell & P. Norwig, AIMA)

16 / 107



Toy Example: The 8-Puzzle [cont.]

(Courtesy of Michela Milano, UniBO)

NP-complete: N-Puzzle (N = k2 − 1): N!/2 reachable states
17 / 107



Toy Example: 8-Queens Problem

States: any arrangement of 0 to 8 queens on the board
=⇒ 64 · 63 · ... · 57 ≈ 1.8 · 1014 possible sequences

Initial State: no queens on the board
Actions: add a queen to any empty square
Transition Model: returns the board with a queen added
Goal Test: 8 queens on the board, none attacked by other queen
Path Cost: none

(© S. Russell & P. Norwig, AIMA)

18 / 107



Toy Example: 8-Queens Problem

States: any arrangement of 0 to 8 queens on the board
=⇒ 64 · 63 · ... · 57 ≈ 1.8 · 1014 possible sequences

Initial State: no queens on the board
Actions: add a queen to any empty square
Transition Model: returns the board with a queen added
Goal Test: 8 queens on the board, none attacked by other queen
Path Cost: none

(© S. Russell & P. Norwig, AIMA)

19 / 107



Toy Example: 8-Queens Problem (incremental)

States: n ≤ 8 queens on board, one per column in the n leftmost columns, no queen
attacking another
=⇒ 2057 possible sequences

Actions: Add a queen to any square in the leftmost empty column such that it is not attacked
by any other queen.
...

(© S. Russell & P. Norwig, AIMA)

20 / 107



Real-World Example: Robotic Assembly

States: real-valued coordinates of robot joint angles, and of parts of the object to be
assembled
Initial State: any arm position and object configuration
Actions: continuous motions of robot joints
Transition Model: position resulting from motion
Goal Test: complete assembly (without robot)
Path Cost: time to execute

(© S. Russell & P. Norwig, AIMA)

21 / 107



Other Real-World Examples

Airline travel planning problems
Touring problems
VLSI layout problem
Robot navigation
Automatic assembly sequencing
Protein design
...

22 / 107



Outline
1 Problem-Solving Agents
2 Example Problems
3 Search Generalities

Tree Search
Graph Search
Implementation Issues & Strategies

4 Uninformed Search Strategies
Breadth-First Search
Uniform-cost Search
Depth-First Search
Depth-Limited Search & Iterative Deepening

5 Informed Search Strategies
Greedy Best-First Search
A∗ Search
Memory-bounded Heuristic Search (hints)
Heuristic Functions

23 / 107



Searching for Solutions

Search: Generate sequences of actions.

Expansion: one starts from a state, and applying the operators (or successor function) will
generate new states
Search strategy: at each step, choose which state to expand.
Search Tree/DAG: represents the expansion of all states starting from the initial state
(the root of the tree/DAG)
The leaves of the tree/DAG represent either:

states to expand
solutions
dead-ends

24 / 107



Outline
1 Problem-Solving Agents
2 Example Problems
3 Search Generalities

Tree Search
Graph Search
Implementation Issues & Strategies

4 Uninformed Search Strategies
Breadth-First Search
Uniform-cost Search
Depth-First Search
Depth-Limited Search & Iterative Deepening

5 Informed Search Strategies
Greedy Best-First Search
A∗ Search
Memory-bounded Heuristic Search (hints)
Heuristic Functions

25 / 107



Tree Search Algorithms

Tree Search: Basic idea
Off-line, simulated exploration of state space

start from initial state
pick one leaf node, and generate its successors (a.k.a. expanding a node)

set of current leaves called frontier (a.k.a. fringe, open list)
strategy for picking leaves critical (search strategy)

ends when either a goal state is reached, or no more candidates to expand are available
(or time-out/memory-out occur)

(© S. Russell & P. Norwig, AIMA)

26 / 107



Tree Search Algorithms

Tree Search: Basic idea
Off-line, simulated exploration of state space

start from initial state
pick one leaf node, and generate its successors (a.k.a. expanding a node)

set of current leaves called frontier (a.k.a. fringe, open list)
strategy for picking leaves critical (search strategy)

ends when either a goal state is reached, or no more candidates to expand are available
(or time-out/memory-out occur)

(© S. Russell & P. Norwig, AIMA)

26 / 107



Tree Search Algorithms

Tree Search: Basic idea
Off-line, simulated exploration of state space

start from initial state
pick one leaf node, and generate its successors (a.k.a. expanding a node)

set of current leaves called frontier (a.k.a. fringe, open list)
strategy for picking leaves critical (search strategy)

ends when either a goal state is reached, or no more candidates to expand are available
(or time-out/memory-out occur)

(© S. Russell & P. Norwig, AIMA)

26 / 107



Tree Search Algorithms

Tree Search: Basic idea
Off-line, simulated exploration of state space

start from initial state
pick one leaf node, and generate its successors (a.k.a. expanding a node)

set of current leaves called frontier (a.k.a. fringe, open list)
strategy for picking leaves critical (search strategy)

ends when either a goal state is reached, or no more candidates to expand are available
(or time-out/memory-out occur)

(© S. Russell & P. Norwig, AIMA)

26 / 107



Tree Search Algorithms

Tree Search: Basic idea
Off-line, simulated exploration of state space

start from initial state
pick one leaf node, and generate its successors (a.k.a. expanding a node)

set of current leaves called frontier (a.k.a. fringe, open list)
strategy for picking leaves critical (search strategy)

ends when either a goal state is reached, or no more candidates to expand are available
(or time-out/memory-out occur)

(© S. Russell & P. Norwig, AIMA)

26 / 107



Tree Search Algorithms [cont.]

(Courtesy of Maria Simi, UniPI)

27 / 107



Tree-Search Example: Trip from Arad to Bucharest

A simplified road map of part of Romania.

(© S. Russell & P. Norwig, AIMA)
28 / 107



Tree-Search Example: Trip from Arad to Bucharest

Expanding the search tree

Initial state: {Arad}
Expand initial state =⇒ {Sibiu,Timisoara,Zerind}
Pick&expand Sibiu =⇒ {Arad ,Fagaras,Oradea,Rimnicu Vicea}
...

(© S. Russell & P. Norwig, AIMA)

Beware: Arad 7→ Sibiu 7→ Arad (repeated state =⇒ loopy path!)
29 / 107



Tree-Search Example: Trip from Arad to Bucharest

Expanding the search tree

Initial state: {Arad}
Expand initial state =⇒ {Sibiu,Timisoara,Zerind}
Pick&expand Sibiu =⇒ {Arad ,Fagaras,Oradea,Rimnicu Vicea}
...

(© S. Russell & P. Norwig, AIMA)

Beware: Arad 7→ Sibiu 7→ Arad (repeated state =⇒ loopy path!)
29 / 107



Tree-Search Example: Trip from Arad to Bucharest

Expanding the search tree

Initial state: {Arad}
Expand initial state =⇒ {Sibiu,Timisoara,Zerind}
Pick&expand Sibiu =⇒ {Arad ,Fagaras,Oradea,Rimnicu Vicea}
...

(© S. Russell & P. Norwig, AIMA)

Beware: Arad 7→ Sibiu 7→ Arad (repeated state =⇒ loopy path!)
29 / 107



Repeated states & Redundant Paths

Redundant paths occur when there is more than one way to get from one state to another
=⇒ same state & subtree explored more than once

ex: Arad, Sibiu ⟨subtree⟩ vs. Arad, Zerind, Oradea, Sibiu ⟨same subtree⟩
Failure to detect repeated states can:

cause infinite loops
turn linear problem into exponential

(© S. Russell & P. Norwig, AIMA)

Moral: Algorithms that forget their history are doomed to repeat it!
30 / 107



Repeated states & Redundant Paths

Redundant paths occur when there is more than one way to get from one state to another
=⇒ same state & subtree explored more than once

ex: Arad, Sibiu ⟨subtree⟩ vs. Arad, Zerind, Oradea, Sibiu ⟨same subtree⟩
Failure to detect repeated states can:

cause infinite loops
turn linear problem into exponential

(© S. Russell & P. Norwig, AIMA)

Moral: Algorithms that forget their history are doomed to repeat it!
30 / 107



Repeated states & Redundant Paths

Redundant paths occur when there is more than one way to get from one state to another
=⇒ same state & subtree explored more than once

ex: Arad, Sibiu ⟨subtree⟩ vs. Arad, Zerind, Oradea, Sibiu ⟨same subtree⟩
Failure to detect repeated states can:

cause infinite loops
turn linear problem into exponential

(© S. Russell & P. Norwig, AIMA)

Moral: Algorithms that forget their history are doomed to repeat it!
30 / 107



Outline
1 Problem-Solving Agents
2 Example Problems
3 Search Generalities

Tree Search
Graph Search
Implementation Issues & Strategies

4 Uninformed Search Strategies
Breadth-First Search
Uniform-cost Search
Depth-First Search
Depth-Limited Search & Iterative Deepening

5 Informed Search Strategies
Greedy Best-First Search
A∗ Search
Memory-bounded Heuristic Search (hints)
Heuristic Functions

31 / 107



Graph Search Algorithms

Graph Search: Basic idea

Add a data structure which remembers every expanded node
a.k.a. explored set or closed list
typically a hash table (access O(1))

Do not expand a node if it already occurs in explored set

(© S. Russell & P. Norwig, AIMA)

32 / 107



Graph Search Algorithms: Example

Graph search on the Romania trip problem

(at each stage each path extended by one step)
two states become dead-end

(© S. Russell & P. Norwig, AIMA)

33 / 107



Graph Search Algorithms: Example

Separation Property of graph search:

The frontier separates the state-space graph into the explored region and the unexplored region

Ex: Graph search on a rectangular-grid problem

(© S. Russell & P. Norwig, AIMA)

34 / 107



Outline
1 Problem-Solving Agents
2 Example Problems
3 Search Generalities

Tree Search
Graph Search
Implementation Issues & Strategies

4 Uninformed Search Strategies
Breadth-First Search
Uniform-cost Search
Depth-First Search
Depth-Limited Search & Iterative Deepening

5 Informed Search Strategies
Greedy Best-First Search
A∗ Search
Memory-bounded Heuristic Search (hints)
Heuristic Functions

35 / 107



Implementation: States vs. Nodes

A state is a representation of a physical configuration
A node is a data structure constituting part of a search tree

includes fields: state, parent, action, path cost g(x)

=⇒ node ̸= state
Within a given problem, it should be easy to compute a child node from its parent and the
action performed

(© S. Russell & P. Norwig, AIMA)
36 / 107



Implementation: Frontier and Explored

Frontier/Fringe

Implemented as a Queue:
First-in-First-Out, FIFO (aka “queue”): O(1) access
Last-in-First-Out, LIFO (aka “stack”): O(1) access
Best-First-out (aka “priority queue”): O(log(n)) access

Three primitives:
ISEMPTY(QUEUE): returns true iff there are no more elements
POP(QUEUE): removes and returns the first element of the queue
INSERT(ELEMENT,QUEUE): inserts an element into queue

Explored

Implemented as a Hash Table: O(1) access
Two primitives:

ISTHERE(ELEMENT,HASH): returns true iff element is in the hash
INSERT(ELEMENT,HASH): inserts element into hash

Choice of hash function critical for efficiency

37 / 107



Implementation: general tree search

(© S. Russell & P. Norwig, AIMA)
38 / 107



Implementation: general graph search

(© S. Russell & P. Norwig, AIMA)

39 / 107



Uninformed vs. Informed Search Strategies

Strategies: Two possibilities

Uninformed strategies (a.k.a. blind strategies)
do not use any domain knowledge
apply rules arbitrarily and do an exhaustive search strategy

=⇒ impractical for some complex problems.

Informed strategies
use domain knowledge
apply rules following heuristics (driven by domain knowledge)

=⇒ practical for many complex problems.

40 / 107



Outline
1 Problem-Solving Agents
2 Example Problems
3 Search Generalities

Tree Search
Graph Search
Implementation Issues & Strategies

4 Uninformed Search Strategies
Breadth-First Search
Uniform-cost Search
Depth-First Search
Depth-Limited Search & Iterative Deepening

5 Informed Search Strategies
Greedy Best-First Search
A∗ Search
Memory-bounded Heuristic Search (hints)
Heuristic Functions

41 / 107



Evaluating Search Strategies

Strategies are evaluated along the following dimensions:
completeness: does it always find a solution if one exists?
time complexity: how many steps to find a solution?
space complexity: how much memory is needed?
optimality: does it always find a least-cost solution?

Time and space complexity are measured in terms of
b: maximum branching factor of the search tree
d: depth of the least-cost solution
m: maximum depth of the state space (may be +∞)

=⇒ # nodes: 1 + b + b2 + ...+ bm = O(bm)

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)
42 / 107



Uninformed Search Strategies

Uninformed strategies

Use only the information available in the problem definition
Different uninformed search stategies

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search & Iterative-deepening search

Defined by the access strategy of the frontier/fringe (i.e. the order of node expansion)
goal test strategy may vary as well

43 / 107



Outline
1 Problem-Solving Agents
2 Example Problems
3 Search Generalities

Tree Search
Graph Search
Implementation Issues & Strategies

4 Uninformed Search Strategies
Breadth-First Search
Uniform-cost Search
Depth-First Search
Depth-Limited Search & Iterative Deepening

5 Informed Search Strategies
Greedy Best-First Search
A∗ Search
Memory-bounded Heuristic Search (hints)
Heuristic Functions

44 / 107



Breadth-First Search Strategy (BFS)

Breadth-First Search
Idea: Expand first the shallowest unexpanded nodes
Implementation: frontier/fringe implemented as a FIFO queue
=⇒ novel successors pushed to the end of the queue

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

45 / 107



Breadth-First Search Strategy (BFS)

Breadth-First Search
Idea: Expand first the shallowest unexpanded nodes
Implementation: frontier/fringe implemented as a FIFO queue
=⇒ novel successors pushed to the end of the queue

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

45 / 107



Breadth-First Search Strategy (BFS)

Breadth-First Search
Idea: Expand first the shallowest unexpanded nodes
Implementation: frontier/fringe implemented as a FIFO queue
=⇒ novel successors pushed to the end of the queue

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

45 / 107



Breadth-First Search Strategy (BFS)

Breadth-First Search
Idea: Expand first the shallowest unexpanded nodes
Implementation: frontier/fringe implemented as a FIFO queue
=⇒ novel successors pushed to the end of the queue

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

45 / 107



Breadth-First Search Strategy (BFS)

Breadth-First Search
Idea: Expand first the shallowest unexpanded nodes
Implementation: frontier/fringe implemented as a FIFO queue
=⇒ novel successors pushed to the end of the queue

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

45 / 107



Breadth-First Search Strategy (BFS) [cont.]

BFS, Graph version (Tree version without “explored”)

(© S. Russell & P. Norwig, AIMA)

Note: the goal test is applied to each node when it is generated,
rather than when it is selected for expansion
=⇒ solution detected 1 layer earlier

46 / 107



Breadth-First Search: Tiers

State space is explored by tiers (tree version, children expanded in alphabetical order)

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

47 / 107



Exercises

1 Run previous example, with BFS graph search.
2 Consider the following graph, initial state 0, goal state 17:

1 explore it using BFS, tree version
2 explore it using BFS, graph version

children should be expanded in numerical order

48 / 107



Breadth-First Search (BFS): Properties

d : depth of shallowest solution
How many steps?

processes all nodes above shallowest
solution
=⇒ takes O(bd ) time

How much memory?
max frontier size: bd nodes
=⇒ O(bd) memory size

Is it complete?
if solution exists, bd finite
=⇒ Yes

Is it optimal?
if and only if all costs are 1
=⇒ shallowest solution

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Memory requirement is a major problem for breadth-first search

49 / 107



Breadth-First Search (BFS): Time and Memory

Assume:
1 million nodes generated per second
1 node requires 1000 bytes of storage
branching factor b = 10

(© S. Russell & P. Norwig, AIMA)

Memory requirements is a bigger problem for BFS than execution time
50 / 107



Outline
1 Problem-Solving Agents
2 Example Problems
3 Search Generalities

Tree Search
Graph Search
Implementation Issues & Strategies

4 Uninformed Search Strategies
Breadth-First Search
Uniform-cost Search
Depth-First Search
Depth-Limited Search & Iterative Deepening

5 Informed Search Strategies
Greedy Best-First Search
A∗ Search
Memory-bounded Heuristic Search (hints)
Heuristic Functions

51 / 107



Uniform-Cost Search Strategy (UCS)

Uniform-Cost Search

Idea: Expand first the node with lowest path cost g(n)
Implementation: frontier/fringe implemented as a priority queue ordered by g()
=⇒ novel nearest successors pushed to the top of the queue

similar to BFS if step costs are all equal
goal test tricky (see next slide)

(Courtesy of Michela Milano, UniBO)

52 / 107



Uniform-Cost Search Strategy (UCS)

Uniform-Cost Search

Idea: Expand first the node with lowest path cost g(n)
Implementation: frontier/fringe implemented as a priority queue ordered by g()
=⇒ novel nearest successors pushed to the top of the queue

similar to BFS if step costs are all equal
goal test tricky (see next slide)

(Courtesy of Michela Milano, UniBO)

52 / 107



Uniform-Cost Search Strategy (UCS)

Uniform-Cost Search

Idea: Expand first the node with lowest path cost g(n)
Implementation: frontier/fringe implemented as a priority queue ordered by g()
=⇒ novel nearest successors pushed to the top of the queue

similar to BFS if step costs are all equal
goal test tricky (see next slide)

(Courtesy of Michela Milano, UniBO)

52 / 107



Uniform-Cost Search Strategy (UCS)

Uniform-Cost Search

Idea: Expand first the node with lowest path cost g(n)
Implementation: frontier/fringe implemented as a priority queue ordered by g()
=⇒ novel nearest successors pushed to the top of the queue

similar to BFS if step costs are all equal
goal test tricky (see next slide)

(Courtesy of Michela Milano, UniBO)

52 / 107



Uniform-Cost Search Strategy (UCS) [cont.]
UCS, Graph version (Tree version: without “explored”)

(© S. Russell & P. Norwig, AIMA)

apply the goal test to a node when it is selected for expansion rather than when it is first
generated
replace in the frontier a node with same state but worse path cost

=⇒ avoid generating suboptimal paths (see previous example)
53 / 107



Uniform-Cost Search

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)
54 / 107



Exercises

1 Apply UCS to the Romania-map Example
2 Consider the following graph, initial state 0, goal state 17

1 explore it using UCS (tree version)
2 explore it using UCS (graph version)

55 / 107



Uniform-Cost Search (UCS): Properties

C∗: cost of cheapest solution; ϵ: minimum arc cost
=⇒ 1 + ⌊C∗/ϵ⌋ “effective depth”

How many steps?
processes all nodes costing less than
cheapest solution
=⇒ takes O(b1+⌊C∗/ϵ⌋) time

How much memory?
max frontier size: b1+⌊C∗/ϵ⌋

=⇒ O(b1+⌊C∗/ϵ⌋) memory size

Is it complete?
if solution exists, finite cost
=⇒ Yes

Is it optimal?
Yes (© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Memory requirement is a major problem also for uniform-cost search

56 / 107



Outline
1 Problem-Solving Agents
2 Example Problems
3 Search Generalities

Tree Search
Graph Search
Implementation Issues & Strategies

4 Uninformed Search Strategies
Breadth-First Search
Uniform-cost Search
Depth-First Search
Depth-Limited Search & Iterative Deepening

5 Informed Search Strategies
Greedy Best-First Search
A∗ Search
Memory-bounded Heuristic Search (hints)
Heuristic Functions

57 / 107



Depth-First Search Strategy (DFS)

Depth-First Search

Idea: Expand first the deepest unexpanded nodes
Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
=⇒ novel successors pushed to the top of the stack

.

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

58 / 107



Depth-First Search Strategy (DFS)

Depth-First Search

Idea: Expand first the deepest unexpanded nodes
Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
=⇒ novel successors pushed to the top of the stack

.

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

58 / 107



Depth-First Search Strategy (DFS)

Depth-First Search

Idea: Expand first the deepest unexpanded nodes
Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
=⇒ novel successors pushed to the top of the stack

.

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

58 / 107



Depth-First Search Strategy (DFS)

Depth-First Search

Idea: Expand first the deepest unexpanded nodes
Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
=⇒ novel successors pushed to the top of the stack

.

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

58 / 107



Depth-First Search Strategy (DFS)

Depth-First Search

Idea: Expand first the deepest unexpanded nodes
Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
=⇒ novel successors pushed to the top of the stack

.

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

58 / 107



Depth-First Search Strategy (DFS)

Depth-First Search

Idea: Expand first the deepest unexpanded nodes
Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
=⇒ novel successors pushed to the top of the stack

.

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

58 / 107



Depth-First Search Strategy (DFS)

Depth-First Search

Idea: Expand first the deepest unexpanded nodes
Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
=⇒ novel successors pushed to the top of the stack

.

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

58 / 107



Depth-First Search Strategy (DFS)

Depth-First Search

Idea: Expand first the deepest unexpanded nodes
Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
=⇒ novel successors pushed to the top of the stack

.

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

58 / 107



Depth-First Search Strategy (DFS)

Depth-First Search

Idea: Expand first the deepest unexpanded nodes
Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
=⇒ novel successors pushed to the top of the stack

.

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

58 / 107



Depth-First Search Strategy (DFS)

Depth-First Search

Idea: Expand first the deepest unexpanded nodes
Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
=⇒ novel successors pushed to the top of the stack

.

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

58 / 107



Depth-First Search Strategy (DFS)

Depth-First Search

Idea: Expand first the deepest unexpanded nodes
Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
=⇒ novel successors pushed to the top of the stack

.

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

58 / 107



Depth-First Search

DFS, Graph version (Tree version without “explored”)

Similar to BFS, using a LIFO access for frontier/fringe rather than FIFO.

(© S. Russell & P. Norwig, AIMA)

59 / 107



Depth-First Search

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

60 / 107



Exercises

1 As with previous example, with DFS graph search.
2 Consider the following graph, initial state 0, goal state 17:

1 explore it using DFS, tree version
2 explore it using DFS, graph version

children should be expanded in numerical order

61 / 107



Depth-First Search (DFS): Properties
How many steps?

could process the whole tree!
=⇒ if m finite, takes O(bm) time

How much memory?
only siblings on path to root
=⇒ O(bm) memory size

Is it complete?
if infinite state space: no
if finite state space:

graph version: yes
tree version: only if we prevent loops
(cheap loop test)

Is it optimal?
No, regardless of depth/cost
=⇒ “leftmost” solution

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Memory requirement much better than BFS: O(bm) vs. O(bd )!
=⇒ typically preferred to BFS

62 / 107



A Variant of DFS: Backtracking Search

Backtracking Search

Idea: only one successor is generated at the time
each partially-expanded node remembers which successor to generate next
generate a successor by modifying the current state description, rather than copying it firs
Applied in CSP, SAT/SMT and Logic Programming

=⇒ only O(m) memory is needed rather than O(bm)

63 / 107



Outline
1 Problem-Solving Agents
2 Example Problems
3 Search Generalities

Tree Search
Graph Search
Implementation Issues & Strategies

4 Uninformed Search Strategies
Breadth-First Search
Uniform-cost Search
Depth-First Search
Depth-Limited Search & Iterative Deepening

5 Informed Search Strategies
Greedy Best-First Search
A∗ Search
Memory-bounded Heuristic Search (hints)
Heuristic Functions

64 / 107



Depth-Limited Search (DLS) Strategy

Depth-Limited Search (DLS)

Idea: depth-first search with depth limit l
i.e., nodes at depth l treated as having no successors
DFS is DLS with l = +∞

solves the infinite-path problem of DFS
=⇒ allows DFS deal with infinite-state spaces
useful also if maximum-depth is known by domain knowledge

e.g., if maximum node distance in a graph (diameter) is known
Ex: Romania trip: 9 steps

Drawbacks (d : depth of the shallowest goal):
if d > l =⇒ incomplete
if d < l =⇒ takes O(bl) instead of O(bd) steps

65 / 107



Depth-Limited Search (DLS) Strategy [cont.]

Recursive DLS

(© S. Russell & P. Norwig, AIMA)

66 / 107



Iterative-Deepening Search Strategy (IDS)

Iterative-Deepening Search

Idea: call iteratively DLS for increasing depths l = 0,1,2,3...
combines the advantages of breadth- and depth-first strategies

complete (like BFS)
takes O(bd ) steps (like BFS and DFS)
requires O(bd) memory (like DFS)
explores a single branch at a time (like DFS)
optimal only if step cost = 1

optimal variants exist: iterative-lengthening search (see AIMA)

The favorite search strategy when the search space is very large and depth is not known

(© S. Russell & P. Norwig, AIMA)

67 / 107



Iterative-Deepening Search (IDS) [cont.]

(© S. Russell & P. Norwig, AIMA)

68 / 107



Iterative-Deepening Search (IDS) [cont.]

(© S. Russell & P. Norwig, AIMA)

68 / 107



Iterative-Deepening Search (IDS) [cont.]

(© S. Russell & P. Norwig, AIMA)

68 / 107



Iterative-Deepening Search (IDS) [cont.]

(© S. Russell & P. Norwig, AIMA)

68 / 107



Exercises

1 Consider the following graph, initial state 0, goal state 17:
1 explore it using IDS, tree version
2 explore it using IDS, graph version

children should be expanded in numerical order

69 / 107



Iterative-Deepening Search Strategy (IDS) [cont.]

Remark: Why “only” O(bd ) steps?

may seem wasteful since states are generated multiple times...
... however, only a small fraction of nodes are multiply generated
number of repeatedly-generated nodes decreases exponentially with number of repetitions

depth 1 (b nodes): repeated d times
depth 2 (b2 nodes): repeated d − 1 times
...
depth d (bd nodes): repeated 1 time

=⇒ The total number of generated nodes is:
N(IDS) = (d)b1 + (d − 1)b2 + ...+ (1)bd = O(bd)

N(BFS) = b1 + b2 + ...+ bd = O(bd )

Ex: with b = 10 and d = 5:
N(IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 000

N(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 = 111, 110
=⇒ not significantly worse than BFS

70 / 107



Bidirectional Search [hints]

Idea: Two simultaneous searches:
forward: from start node
backward: from goal node
checking if the node belongs to the other frontier before expansion

Rationale: bd/2 + bd/2 << bd

=⇒ number of steps and memory consumption are ≈ 2bd/2

backward search can be tricky in some cases (e.g. 8-queens)

(© S. Russell & P. Norwig, AIMA)

71 / 107



Uninformed Search Strategies: Comparison

Evaluation of tree-search strategies

a : complete if b is finite
b : complete if step costs ≥ ϵ for some positive ϵ
c : optimal if step costs are all identical
d : if both directions use breadth-first search

(© S. Russell & P. Norwig, AIMA)

For graph searches, the main differences are:
depth-first search is complete for finite-state spaces
space & time complexities are bounded by the state space size

72 / 107



Outline
1 Problem-Solving Agents
2 Example Problems
3 Search Generalities

Tree Search
Graph Search
Implementation Issues & Strategies

4 Uninformed Search Strategies
Breadth-First Search
Uniform-cost Search
Depth-First Search
Depth-Limited Search & Iterative Deepening

5 Informed Search Strategies
Greedy Best-First Search
A∗ Search
Memory-bounded Heuristic Search (hints)
Heuristic Functions

73 / 107



Informed Search Strategies

Some general principles

The intelligence of a system cannot be measured only in terms of search capacity, but in the
ability to use knowledge about the problem to reduce/mitigate the combinatorial explosion
If the system has some control on the order in which candidate solutions are generated,
then it is useful to use this order so that actual solutions have a high chance to appear earlier
For a system with limited processing capacity:
intelligence is the wise choice of what to do next

74 / 107



Heuristic search and heuristic functions

Heuristic search and heuristic functions
Uninformed UCS strategy ignores the goal when selecting nodes

=⇒ Idea: don’t ignore the goal when selecting nodes
Intuition: often extra knowledge can be used to guide the search towards the goal: heuristics
A heuristic is a function h(n) that estimates how close a state n is to a goal

designed for a particular search problem
Ex Manhattan distance, Euclidean distance for pathing

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

75 / 107



Best-first Search Strategies

General approach of informed search: Best-first search

Best-first search: node selected for expansion based on an evaluation function f (n)
represent a cost estimate =⇒ choose node which appears best
implemented like uniform-cost search, with f instead of g

=⇒ the frontier is a priority queue sorted in decreasing order of f (n)
both tree-based and graph-based versions
most often f includes a heuristic function h(n)

Heuristic function h(n) ∈ R+:
estimated cost of the cheapest path from the state at node n to a goal state

h(n) ≥ 0 ∀n
If G is goal, then h(G) = 0
implements extra domain knowledge
depends only on state, not on node (e.g., independent on paths)

Main strategies:
Greedy best-first search
A∗ search

76 / 107



Example: Straight-Line Distance hSLD(n)

h(n) def
= hSLD(n): straight-line distance heuristic
different from actual minimum-path dinstance
cannot be computed from the problem description itself

77 / 107



Outline
1 Problem-Solving Agents
2 Example Problems
3 Search Generalities

Tree Search
Graph Search
Implementation Issues & Strategies

4 Uninformed Search Strategies
Breadth-First Search
Uniform-cost Search
Depth-First Search
Depth-Limited Search & Iterative Deepening

5 Informed Search Strategies
Greedy Best-First Search
A∗ Search
Memory-bounded Heuristic Search (hints)
Heuristic Functions

78 / 107



Greedy Best-First Search Strategy (GBFS)

Greedy Best-First Search (aka Greedy Search)

Idea: Expand first the node n with lowest estimate cost to the closest goal, h(n)

Implementation: same as uniform-cost search, with g(n) def
= h(n)

=⇒ expands the node that appears to be closest to goal

both tree and graph versions

79 / 107



Greedy Best-First Search Strategy: Example

(© S. Russell & P. Norwig, AIMA)
80 / 107



Greedy Best-First Search Strategy: Example

(© S. Russell & P. Norwig, AIMA)
80 / 107



Greedy Best-First Search Strategy: Example

(© S. Russell & P. Norwig, AIMA)
80 / 107



Greedy Best-First Search Strategy: Example

(© S. Russell & P. Norwig, AIMA)
80 / 107



Greedy Best-First Search Strategy: Example

(© S. Russell & P. Norwig, AIMA)

(Arad, Sibiu, Fagaras, Bucharest)

80 / 107



Greedy Best-First Search Strategy: Example

(© S. Russell & P. Norwig, AIMA)

Not optimal!

80 / 107



Greedy Best-First Search Strategy: Example

(© S. Russell & P. Norwig, AIMA)

Optimal path: (Arad, Sibiu, Rimnicu Vilcea, Pitesti, Bucharest)

80 / 107



Greedy Best-First Search: (Non-)Optimality

Greedy best-first search is not optimal
it is not guaranteed to find the best solution
it is not guaranteed to find the best path toward a solution

picks the node with minimum (estimated) distance to goal, regardless the cost to reach it
Ex: when in Sibiu, it picks Fagaras rather than Rimnicu Vicea

(© S. Russell & P. Norwig, AIMA)

81 / 107



Greedy Best-First Search: (In-)Completeness

Tree-based Greedy best-first search is not complete
may lead to infinite loops

Graph-based version complete (if state space finite)
substantially same completeness issues as DFS

(Courtesy of Maria Simi, UniPI)

82 / 107



Greedy Best-First Search (GBFS): Properties

How many steps?
in worst cases may explore all states
=⇒ takes O(bd ) time
if good heuristics:
=⇒ may give good improvements

How much memory?
max frontier size: bd (as with UCS)
=⇒ O(bd) memory size

Is it complete?
tree: no
graph: yes if space finite

Is it optimal?
No

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Memory requirement is a major problem also for GBFS
83 / 107



Outline
1 Problem-Solving Agents
2 Example Problems
3 Search Generalities

Tree Search
Graph Search
Implementation Issues & Strategies

4 Uninformed Search Strategies
Breadth-First Search
Uniform-cost Search
Depth-First Search
Depth-Limited Search & Iterative Deepening

5 Informed Search Strategies
Greedy Best-First Search
A∗ Search
Memory-bounded Heuristic Search (hints)
Heuristic Functions

84 / 107



A∗ Search Strategy

A∗ Search
Best-known form of best-first search
Idea: avoid expanding paths that are already expensive
Combine Uniform-Cost and Greedy search: f (n) = g(n) + h(n)

g(n): cost so far to reach n
h(n): estimated cost to goal from n
f (n): estimated total cost of path through n to goal

=⇒ Expand first the node n with lowest estimated cost of the cheapest solution through n
Implementation: same as uniform-cost search, with g(n) + h(n) instead of g(n)

85 / 107



A∗ Search Strategy [cont.]

A∗, Graph version (Tree version: without “explored”)

(© S. Russell & P. Norwig, AIMA)

86 / 107



A∗ Search Strategy: Example

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

87 / 107



A∗ Search Strategy: Example

(© S. Russell & P. Norwig, AIMA)
88 / 107



A∗ Search Strategy: Example

(© S. Russell & P. Norwig, AIMA)
88 / 107



A∗ Search Strategy: Example

(© S. Russell & P. Norwig, AIMA)
88 / 107



A∗ Search Strategy: Example

(© S. Russell & P. Norwig, AIMA)
88 / 107



A∗ Search Strategy: Example

(© S. Russell & P. Norwig, AIMA)
88 / 107



A∗ Search Strategy: Example

(© S. Russell & P. Norwig, AIMA)
88 / 107



A∗ Search Strategy: Example

(© S. Russell & P. Norwig, AIMA)

Optimal path!

88 / 107



Exercise

Modify the Romanian Map example as follows:
drop the arcs from Faragas to Bucharest and from Pitesti to Bucharest
add one arc from Oradea to Neamt of length 250.

Execute the A∗ algorithm from Arad to Bucharest with such new map

89 / 107



A∗ Search: Admissible and Consistent Heuristics

Admissible heuristics h(n)

h(n) is admissible (aka optimistic) iff it never overestimates the cost to reach the goal:
h(n) ≤ h∗(n) where h∗(n) is the true cost from n
ex: the straight-line distance hSDL() to Bucharest

Consistent heuristics h(n)

h(n) is consistent (aka monotonic) iff, for every successor n’ of n generated by any action a
with step cost c(n,a,n′),
h(n) ≤ c(n,a,n′) + h(n′)

verifies the triangular inequality
ex: the straight-line distance hSDL() to Bucharest
if h(n) is consistent, then h(n) is admissible (straightforward)

90 / 107



A∗ Tree Search: Optimality
If h(n) is admissible, then A∗ tree search is optimal

Suppose some sub-optimal goal G2 is in the frontier queue.
Consider any unexpanded node n on a shortest path to an optimal goal G.
Then: f (G2) = g(G2) since h(G2) = 0

> g(G) since G2 sub-optimal
≥ f (n) since h is admissible

=⇒ A∗ will not pick G2 from the frontier queue before n

(© S. Russell & P. Norwig, AIMA)

91 / 107



A∗ Graph Search: Properties

Properties
1 if h(n) is consistent, then h(n) is admissible (straightforward)
2 If h(n) is consistent, then f (n) is non-decreasing along any path:

let n′ be a successor of n:

f (n′) = g(n′) + h(n′) =

g(n′)︷ ︸︸ ︷
g(n) + c(n, a, n′)+h(n′) ≥ g(n) + h(n) = f (n)

3 Graph A∗ selects node n from the frontier only if the optimal path to n has been found
if not so, there would be a node n′ in the frontier on the optimal path to n
(because of the graph separation property)
since f is non-decreasing along any path, f (n′) ≤ f (n)
since n′ is on the optimal path to n, f (n′) < f (n)

=⇒ n′ would have been selected before n 2

=⇒ A∗ (graph search) expands nodes in non-decreasing order of f

As soon as we progress along an optimal path, h (and hence f ) becomes progressively less
optimistic and more realistic.

92 / 107



A∗ Graph Search: Optimality
If h(n) is consistent, then A∗ graph search is optimal

A∗ expands nodes in order of non-decreasing f value
Gradually adds “f-contours” of nodes (as BFS adds layers)

contour i has all nodes with f = fi , s.t. fi < fi+1

cannot expand contour fi+1 until contour fi is fully expanded

If C∗ is the cost of the optimal solution path
1 A∗ expands all nodes s.t. f (n) < C∗

2 A∗ might expand some of the nodes on “goal contour” s.t. f (n) = C∗ before selecting a goal node.
3 A∗ does not expand nodes s.t. f (n) > C∗ (pruning)

(© S. Russell & P. Norwig, AIMA)

93 / 107



UCS vs A∗ Contours

Intuition

UCS expands equally in all “directions”
A∗ expands mainly toward the goal

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

94 / 107



A∗ Search: Completeness

If all step costs exceed some finite ϵ and b is finite,
then there are only finitely many nodes n s.t. f (n) ≤ C∗

=⇒ A∗is complete.

95 / 107



A∗ Search: Properties

(Under simplified hypotheses) it can be shown the following.
Let ϵ def

= (h∗ − h)/h∗ (relative error)
bϵ: effective branching factor

How many steps?
takes O((bϵ)d ) time
if good heuristics, may give dramatic
improvements

How much memory?
Keeps all nodes in memory
=⇒ O((bϵ)d) memory size
(exponential, like UCS)

Is it complete?
yes

Is it optimal?
yes

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Memory requirement is a major problem also for A∗
96 / 107



Outline
1 Problem-Solving Agents
2 Example Problems
3 Search Generalities

Tree Search
Graph Search
Implementation Issues & Strategies

4 Uninformed Search Strategies
Breadth-First Search
Uniform-cost Search
Depth-First Search
Depth-Limited Search & Iterative Deepening

5 Informed Search Strategies
Greedy Best-First Search
A∗ Search
Memory-bounded Heuristic Search (hints)
Heuristic Functions

97 / 107



Memory-bounded Heuristic Search (hints)

Some solutions to A∗ space problems
(maintain completeness and optimality)

Iterative-deepening A∗ (IDA∗)
here cutoff information is the f-cost (g+h) instead of depth

Recursive best-first search(RBFS)
attempts to mimic standard best-first search with linear space

(simple) Memory-bounded A∗ ((S)MA∗)
drop the worst-leaf node when memory is full

98 / 107



Outline
1 Problem-Solving Agents
2 Example Problems
3 Search Generalities

Tree Search
Graph Search
Implementation Issues & Strategies

4 Uninformed Search Strategies
Breadth-First Search
Uniform-cost Search
Depth-First Search
Depth-Limited Search & Iterative Deepening

5 Informed Search Strategies
Greedy Best-First Search
A∗ Search
Memory-bounded Heuristic Search (hints)
Heuristic Functions

99 / 107



Admissible Heuristics

Main problem

What is the best admissible/consistent heuristic?

100 / 107



Dominance of Admissible Heuristics

Dominance

Let h1(n),h2(n) admissible heuristics.
h2(n) dominates h1(n) iff h2(n) ≥ h1(n) for all n.

=⇒ h2(n) is better for search
is nearer to h∗(n)

Let h1(n),h2(n) admissible heuristics. Let h12
def
= max(h1(n),h2(n)).

h12 is also admissible
h12 dominates both h1(n),h2(n)

101 / 107



Admissible Heuristics: Example
Ex: Heuristics for the 8-puzzle

h1(n): number of misplaced tiles
h2(n): total Manhattan distance over all tiles

(i.e., # of squares from desired location of each tile)

h1(S)? 6
h2(S)? 4+0+3+3+1+0+2+1 = 14
h∗(S)? 26
both h1(n),h2(n) admissible (≤ number of actual steps to solve)
h2(n) dominates h1(n)

(© S. Russell & P. Norwig, AIMA) 102 / 107



Quality of Heuristics

Effective branching factor

Effective branching factor b∗: the branching factor that a uniform tree of depth d would have
in order to contain N+1 nodes

N + 1 = 1 + b∗ + (b∗)2 + ...+ (b∗)d

N being the number of nodes generated by the A∗ search
ex: if d=5 and N = 52, then b∗ = 1.92
experimental measure of b∗ is fairly constant for hard problems
=⇒ can provide a good guide to the heuristic’s overall usefulness

Ideal value of b∗ is 1

103 / 107



Admissible Heuristics: Example [cont.]
Average performances on 100 random samples of 8-puzzle

Iterative-deepening search (IDS) vs. A∗

(© S. Russell & P. Norwig, AIMA)

=⇒ Dramatic performance improvement
104 / 107



Admissible Heuristics from Relaxed Problems

Idea: Admissible heuristics can be derived from the exact solution cost of a relaxed version of
the problem

Relaxed 8-puzzle: a tile can move from any tile to any other tile
=⇒ h1(n) gives the shortest solution

Relaxed 8-puzzle: a tile can move to any adjacent square
=⇒ h2(n) gives the shortest solution

The relaxed problem adds edges to the state space
=⇒ any optimal solution in the original problem is also a solution in the relaxed problem
=⇒ the cost of an optimal solution to a relaxed problem is an admissible heuristic for the original

problem

the derived heuristic is an exact cost for the relaxed problem
=⇒ must obey the triangular inequality
=⇒ consistent

105 / 107



Inferring Automatically Admissible Heuristics

Idea: If a problem definition is written down in a formal language, it is possible to construct
relaxed problems automatically

Example

8-puzzle actions:
a tile can move from square A to square B if

A is horizontally or vertically adjacent to B, and
B is blank

we can generate three relaxed problems by removing one or both of the conditions
(a) a tile can move from square A to square B if A is adjacent to B
(b) a tile can move from square A to square B if B is blank
(c) a tile can move from square A to square B

=⇒ (a) corresponds to h2(n), (c) corresponds to h1(n),

The tool ABSolver can generate such heuristics automatically.

106 / 107



Learning Admissible Heuristics

Another way to find an admissible heuristic is through learning from experience:
Experience = solving lots of 8-puzzles
An inductive learning algorithm can be used to predict costs for other states that arise during
search

107 / 107


	Problem-Solving Agents
	Example Problems
	Search Generalities
	Tree Search 
	Graph Search 
	Implementation Issues & Strategies

	Uninformed Search Strategies
	Breadth-First Search
	Uniform-cost Search
	Depth-First Search
	Depth-Limited Search & Iterative Deepening

	Informed Search Strategies
	Greedy Best-First Search
	A* Search
	Memory-bounded Heuristic Search (hints)
	Heuristic Functions


