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only possibility is that President(USA) denotes a single object that consists of different
people at different times. It is the object that is George Washington from 1789 to 1797, John
Adams from 1797 to 1801, and so on, as in Figure 12.3. To say that George Washington was
president throughout 1790, we can write

T (Equals(President(USA),GeorgeWashington ),AD1790) .

We use the function symbol Equals rather than the standard logical predicate =, because
we cannot have a predicate as an argument to T , and because the interpretation is not that
GeorgeWashington and President(USA) are logically identical in 1790; logical identity is
not something that can change over time. The identity is between the subevents of each object
that are defined by the period 1790.

12.4 MENTAL EVENTS AND MENTAL OBJECTS

The agents we have constructed so far have beliefs and can deduce new beliefs. Yet none
of them has any knowledge about beliefs or about deduction. Knowledge about one’s own
knowledge and reasoning processes is useful for controlling inference. For example, suppose
Alice asks “what is the square root of 1764” and Bob replies “I don’t know.” If Alice insists
“think harder,” Bob should realize that with some more thought, this question can in fact
be answered. On the other hand, if the question were “Is your mother sitting down right
now?” then Bob should realize that thinking harder is unlikely to help. Knowledge about
the knowledge of other agents is also important; Bob should realize that his mother knows
whether she is sitting or not, and that asking her would be a way to find out.

What we need is a model of the mental objects that are in someone’s head (or some-
thing’s knowledge base) and of the mental processes that manipulate those mental objects.
The model does not have to be detailed. We do not have to be able to predict how many
milliseconds it will take for a particular agent to make a deduction. We will be happy just to
be able to conclude that mother knows whether or not she is sitting.

We begin with the propositional attitudes that an agent can have toward mental ob-PROPOSITIONAL

ATTITUDE

jects: attitudes such as Believes, Knows , Wants , Intends , and Informs . The difficulty is
that these attitudes do not behave like “normal” predicates. For example, suppose we try to
assert that Lois knows that Superman can fly:

Knows(Lois ,CanFly(Superman)) .

One minor issue with this is that we normally think of CanFly(Superman) as a sentence, but
here it appears as a term. That issue can be patched up just be reifying CanFly(Superman);
making it a fluent. A more serious problem is that, if it is true that Superman is Clark Kent,
then we must conclude that Lois knows that Clark can fly:

(Superman = Clark) ∧ Knows(Lois ,CanFly(Superman))

|= Knows(Lois ,CanFly(Clark )) .

This is a consequence of the fact that equality reasoning is built into logic. Normally that is
a good thing; if our agent knows that 2 + 2 = 4 and 4 < 5, then we want our agent to know
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that 2 + 2 < 5. This property is called referential transparency—it doesn’t matter whatREFERENTIAL

TRANSPARENCY

term a logic uses to refer to an object, what matters is the object that the term names. But for
propositional attitudes like believes and knows, we would like to have referential opacity—the
terms used do matter, because not all agents know which terms are co-referential.

Modal logic is designed to address this problem. Regular logic is concerned with a sin-MODAL LOGIC

gle modality, the modality of truth, allowing us to express “P is true.” Modal logic includes
special modal operators that take sentences (rather than terms) as arguments. For example,
“A knows P” is represented with the notation KAP , where K is the modal operator for knowl-
edge. It takes two arguments, an agent (written as the subscript) and a sentence. The syntax
of modal logic is the same as first-order logic, except that sentences can also be formed with
modal operators.

The semantics of modal logic is more complicated. In first-order logic a model con-
tains a set of objects and an interpretation that maps each name to the appropriate object,
relation, or function. In modal logic we want to be able to consider both the possibility that
Superman’s secret identity is Clark and that it isn’t. Therefore, we will need a more com-
plicated model, one that consists of a collection of possible worlds rather than just one truePOSSIBLE WORLD

world. The worlds are connected in a graph by accessibility relations, one relation for eachACCESSIBILITY

RELATIONS

modal operator. We say that world w1 is accessible from world w0 with respect to the modal
operator KA if everything in w1 is consistent with what A knows in w0, and we write this
as Acc(KA, w0, w1). In diagrams such as Figure 12.4 we show accessibility as an arrow be-
tween possible worlds. As an example, in the real world, Bucharest is the capital of Romania,
but for an agent that did not know that, other possible worlds are accessible, including ones
where the capital of Romania is Sibiu or Sofia. Presumably a world where 2 + 2 = 5 would
not be accessible to any agent.

In general, a knowledge atom KAP is true in world w if and only if P is true in every
world accessible from w. The truth of more complex sentences is derived by recursive appli-
cation of this rule and the normal rules of first-order logic. That means that modal logic can
be used to reason about nested knowledge sentences: what one agent knows about another
agent’s knowledge. For example, we can say that, even though Lois doesn’t know whether
Superman’s secret identity is Clark Kent, she does know that Clark knows:

KLois [KClark Identity(Superman ,Clark ) ∨ KClark¬Identity(Superman ,Clark )]

Figure 12.4 shows some possible worlds for this domain, with accessibility relations for Lois
and Superman.

In the TOP-LEFT diagram, it is common knowledge that Superman knows his own iden-
tity, and neither he nor Lois has seen the weather report. So in w0 the worlds w0 and w2 are
accessible to Superman; maybe rain is predicted, maybe not. For Lois all four worlds are ac-
cessible from each other; she doesn’t know anything about the report or if Clark is Superman.
But she does know that Superman knows whether he is Clark, because in every world that is
accessible to Lois, either Superman knows I , or he knows ¬I . Lois does not know which is
the case, but either way she knows Superman knows.

In the TOP-RIGHT diagram it is common knowledge that Lois has seen the weather
report. So in w4 she knows rain is predicted and in w6 she knows rain is not predicted.
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Figure 12.4 Possible worlds with accessibility relations KSuperman (solid arrows) and
KLois (dotted arrows). The proposition R means “the weather report for tomorrow is rain”
and I means “Superman’s secret identity is Clark Kent.” All worlds are accessible to them-
selves; the arrows from a world to itself are not shown.

Superman does not know the report, but he knows that Lois knows, because in every world
that is accessible to him, either she knows R or she knows ¬R.

In the BOTTOM diagram we represent the scenario where it is common knowledge that
Superman knows his identity, and Lois might or might not have seen the weather report. We
represent this by combining the two top scenarios, and adding arrows to show that Superman
does not know which scenario actually holds. Lois does know, so we don’t need to add any
arrows for her. In w0 Superman still knows I but not R, and now he does not know whether
Lois knows R. From what Superman knows, he might be in w0 or w2, in which case Lois
does not know whether R is true, or he could be in w4, in which case she knows R, or w6, in
which case she knows ¬R.

There are an infinite number of possible worlds, so the trick is to introduce just the ones
you need to represent what you are trying to model. A new possible world is needed to talk
about different possible facts (e.g., rain is predicted or not), or to talk about different states
of knowledge (e.g., does Lois know that rain is predicted). That means two possible worlds,
such as w4 and w0 in Figure 12.4, might have the same base facts about the world, but differ
in their accessibility relations, and therefore in facts about knowledge.

Modal logic solves some tricky issues with the interplay of quantifiers and knowledge.
The English sentence “Bond knows that someone is a spy” is ambiguous. The first reading is
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that there is a particular someone who Bond knows is a spy; we can write this as

∃x KBondSpy(x) ,

which in modal logic means that there is an x that, in all accessible worlds, Bond knows to
be a spy. The second reading is that Bond just knows that there is at least one spy:

KBond∃x Spy(x) .

The modal logic interpretation is that in each accessible world there is an x that is a spy, but
it need not be the same x in each world.

Now that we have a modal operator for knowledge, we can write axioms for it. First,
we can say that agents are able to draw deductions; if an agent knows P and knows that P

implies Q, then the agent knows Q:

(KaP ∧ Ka(P ⇒ Q)) ⇒ KaQ .

From this (and a few other rules about logical identities) we can establish that KA(P ∨ ¬P )

is a tautology; every agent knows every proposition P is either true or false. On the other
hand, (KAP ) ∨ (KA¬P ) is not a tautology; in general, there will be lots of propositions that
an agent does not know to be true and does not know to be false.

It is said (going back to Plato) that knowledge is justified true belief. That is, if it is
true, if you believe it, and if you have an unassailably good reason, then you know it. That
means that if you know something, it must be true, and we have the axiom:

KaP ⇒ P .

Furthermore, logical agents should be able to introspect on their own knowledge. If they
know something, then they know that they know it:

KaP ⇒ Ka(KaP ) .

We can define similar axioms for belief (often denoted by B) and other modalities. However,
one problem with the modal logic approach is that it assumes logical omniscience on theLOGICAL

OMNISCIENCE

part of agents. That is, if an agent knows a set of axioms, then it knows all consequences of
those axioms. This is on shaky ground even for the somewhat abstract notion of knowledge,
but it seems even worse for belief, because belief has more connotation of referring to things
that are physically represented in the agent, not just potentially derivable. There have been
attempts to define a form of limited rationality for agents; to say that agents believe those
assertions that can be derived with the application of no more than k reasoning steps, or no
more than s seconds of computation. These attempts have been generally unsatisfactory.

12.5 REASONING SYSTEMS FOR CATEGORIES

Categories are the primary building blocks of large-scale knowledge representation schemes.
This section describes systems specially designed for organizing and reasoning with cate-
gories. There are two closely related families of systems: semantic networks provide graph-
ical aids for visualizing a knowledge base and efficient algorithms for inferring properties


