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Acting Under Uncertainty

@ Agents often make decisions based on incomplete information
e partial observability
@ nondeterministic actions

@ Partial solution (see previous chapters): maintain belief states

e represent the set of all possible world states the agent might be in
@ generating a contingency plan handling every possible eventuality
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@ generating a contingency plan handling every possible eventuality

@ Several drawbacks:

e must consider every possible explanation for the observation (even very-unlikely ones)
= impossibly complex belief-states

e contingent plans handling every eventuality grow arbitrarily large

e sometimes there is no plan that is guaranteed to achieve the goal

@ Agent’s knowledge cannot guarantee a successful outcome ...
... but can provide some degree of belief (likelihood) on it

@ A rational decision depends on both the relative importance of (sub)goals and the likelihood
that they will be achieved

@ Probability theory offers a clean way to quantify likelihood
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@ Goal: deliver a passenger to the airport on time
@ Action A;: leave for airport t minutes before flight
@ How can we be sure that Agy will succeed?
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Automated taxi to Airport

@ Goal: deliver a passenger to the airport on time
@ Action A;: leave for airport t minutes before flight
@ How can we be sure that Agp will succeed?

@ Too many sources of uncertainty:

e partial observability (ex: road state, other drivers’ plans, etc.)
@ uncertainty in action outcome (ex: flat tire, etc.)

@ noisy sensors (ex: unreliable traffic reports)

e complexity of modelling and predicting traffic

—> With purely-logical approach it is difficult to anticipate everything that can go wrong

o risks falsehood: “Ays will get me there on time” or
@ leads to conclusions that are too weak for decision making:

“Azs will get me there on time if there’s no accident on the bridge , and it doesn’t rain and my tires

remain intact , and...”
@ Over-cautious choices are not rational solutions either
@ ex: Aqsq0 Causes staying overnight at the airport




Acting Under Uncertainty: Example (2)

A medical diagnosis

@ Given the symptoms (toothache) infer the cause (cavity)
@ How to encode this relation in logic?
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Acting Under Uncertainty: Example (2)

A medical diagnosis

@ Given the symptoms (toothache) infer the cause (cavity)
@ How to encode this relation in logic?
e diagnostic rules:
Toothache — Cavity (wrong)
Toothache — (Cavity V GumProblem v Abscess V ...)
(too many possible causes, some very unlikely)
e causal rules:
Cavity — Toothache (wrong)
(Cavity A ...) — Toothache (many possible (con)causes)

@ Problems in specifying the correct logical rules:

o Complexity: too many possible antecedents or consequents
e Theoretical ignorance: no complete theory for the domain
e Practical ignorance: no complete knowledge of the patient
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Summarizing Uncertainty

@ Probability allows to summarize the uncertainty on effects of

e laziness: failure to enumerate exceptions, qualifications, etc.
@ ignorance: lack of relevant facts, initial conditions, etc.
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Summarizing Uncertainty

@ Probability allows to summarize the uncertainty on effects of
e laziness: failure to enumerate exceptions, qualifications, etc.
@ ignorance: lack of relevant facts, initial conditions, etc.

@ Probability can be derived from

o statistical data (ex: 80% of toothache patients so far had cavities)
e some knowledge (ex: 80% of toothache patients has cavities)
e their combination thereof

@ Probability statements are made with respect to a state of knowledge (aka evidence), not
with respect to the real world
e e.g., “The probability that the patient has a cavity, given that she has a toothache, is 0.8”:
P(HasCavity(patient) | hasToothAche(patient)) = 0.8
@ Probabilities of propositions change with new evidence:
e “The probability that the patient has a cavity, given that she has a toothache and a history of gum
disease, is 0.4”:
P(HasCavity (patient) | hasToothAche(patient) N HistoryOfGum(patient)) = 0.4
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Making Decisions Under Uncertainty

@ Ex: Suppose | believe:
P(Azs gets me there on time |...)
P(Ago gets me there on time |...)
P(Ai20 gets me there on time |...) = 0.95
P(A1440 gets me there on time |...) = 0.9999
Which action to choose?

= 0.04
=0.70
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@ Ex: Suppose | believe:
P(Azs gets me there on time |...) = 0.04
P(Ago gets me there on time |...) = 0.70
P(Ai20 gets me there on time |...) = 0.95
P(A1440 gets me there on time |...) = 0.9999
Which action to choose?

— Depends on tradeoffs among preferences:
e missing flight vs. costs (airport cuisine, sleep overnight in airport)

@ When there are conflicting goals the agent may express preferences among them by means
of a utility function.

@ Utilities are combined with probabilities in the general theory of rational decisions, aka
decision theory:
Decision theory = Probability theory + Utility theory

@ Maximum Expected Utility (MEU): an agent is rational if and only if it chooses the action that
yields the maximum expected utility, averaged over all the possible outcomes of the action.
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e ex: the dice roll (1,4)

e the possible worlds are mutually exclusive and exhaustive

e ex: the 36 possible outcomes of rolling two dice: (1,1), (1,2), ...

@ A probability model (aka probability space) is a sample space with an assignment P(w) for
every w € Q s.t.
@ 0 < P(w) <1, foreverywe Q
("] ZMEQP(M) =1
@ Ex: 1-dieroll: P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6
@ An Event A is any subset of Q, s.t. P(A) = X,caP(w)
e events can be described by propositions in some formal language
e ex: P(Total = 11) = P(5,6) + P(6,5) = 1/36 +1/36 = 1/18
e ex: P(doubles) = P(1,1) + P(2,2) + ... + P(6,6) = 6/36 = 1/6
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Random Variables

@ Factored representation of possible worlds: sets of (variable, value) pairs
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@ Factored representation of possible worlds: sets of (variable, value) pairs
@ Variables in probability theory: Random variables
e domain: the set of possible values a variable can take on
ex: Die: {1,2,3,4,5,6}, Weather: {sunny, rain, cloudy, snow}, Odd: {true, false}
@ ar.v. can be seen as a function from sample points to the domain:
ex: Die(w), Weather(w),... (“(w)” typically omitted)
@ Probability Distribution gives the probabilities of all the possible values of a random variable
X: P(X = X)) & T ex(w)P(W)
e ex: P(Odd = true) = P(1) + P(3) + P(5) = 1/6+1/6 +1/6 = 1/2
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Propositions and Probabilities

@ We think a proposition a as the event A (set of sample points) where the proposition is true

@ o0dd is a propositional random variable of range {true, false}
@ notation: a < “A = true” (e.g., odd <= “Odd = true")
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@ We think a proposition a as the event A (set of sample points) where the proposition is true
@ o0dd is a propositional random variable of range {true, false}
@ notation: a < “A = true” (e.g., odd <= “Odd = true")
@ Given Boolean random variables A and B:
e a: set of sample points where A(w) = true
e —a: set of sample points where A(w) = false
@ a b: set of sample points where A(w) = true, B(w) = true
— with Boolean random variables, sample points are PL models
@ Proposition: disjunction of the sample points in which it is true
e ex:(avb)=(-aAnb)V(an-b)V(aAb)
— P(avb)=P(-aAnb)+ P(an-b)+ P(aAb)
@ Some derived facts:
o P(-a)=1- P(a)
e P(avb)=P(a)+ P(b) — P(aA b)
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Probability Distributions

@ Probability Distribution gives the probabilities of all the possible values of a random variable
o ex: Weather: {sunny, rain, cloudy, snow}

P(Weather = sunny) = 0.6

- P(Weather = rain) =0.1
— P(Weather) = (0.6,0.1,0.29,0.01) <= P(Weather = cloudy) = 0.29
P(Weather = snow) = 0.01

@ normalized: their sum is 1
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— P(Weather) = (0.6,0.1,0.29,0.01) <= P(Weather — cloudy) — 029
P(Weather = snow) = 0.01

e normalized: their sum is 1
@ Joint Probability Distribution for multiple variables

@ gives the probability of every sample point
Weather = \ sunny rain cloudy snow

o ex: P(Weather, Cavity) = Cavity = true | 0.144 0.02 0.016 0.02
Cavity = false | 0.576 0.08 0.064 0.08

@ Every event is a sum of sample points,
— its probability is determined by the joint distribution
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Probability for Continuous Variables

@ Express continuous probability distributions:
e density functions f(x) € [0,1] s.t [ f(x)dx = 1

Uniform density between 18 and 26 Gaussian density o
f(z) = U[18,26)(x) P(x) = e’/
0.12:
0 0
18 26

(©S. Russell & P. Norwig, AIMA)
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Probability for Continuous Variables

@ Express continuous probability distributions:
e density functions f(x) € [0,1] s.t [ f(x)dx = 1
® P(x € [a,b]) = [2f(x) dx
— P(x € |val,val]) =0, P(x € [-00,+0]) = 1
o ex: P(x € [20,22]) = [220.125 dx = 0.25

Uniform density between 18 and 26
flz) =U[18,26](z)

18 26

(©S. Russell & P. Norwig, AIMA)
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@ Express continuous probability distributions:
e density functions f(x) € [0,1] s.t [ f(x)dx = 1
® P(x € [a,b]) = [2f(x) dx
— P(x € |val,val]) =0, P(x € [-00,+0]) = 1
o ex: P(x € [20,22]) = [220.125 dx = 0.25
@ Density: P(x) = P(X = x) £ limge0 P(X € [, x + dx])/dx
o ex: P(20.1) = limgy 0 P(X € [20.1,20.1 4 dx])/dx = 0.125
e note: P(v) # P(x €[v,v]) =0

Uniform density between 18 and 26
flz) =U[18,26](z)

18 26

(©S. Russell & P. Norwig, AIMA)
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Conditional Probabilities

@ Unconditional or prior probabilities refer to degrees of belief in propositions in the absence of
any other information (evidence)

@ ex: P(cavity) = 0.2, P(Total = 11) = 1/18, P(double) = 1/6
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e ex: P(cavity) = 0.2, P(Total =11) = 1/18, P(double) = 1/6
@ Conditional or posterior probabilities refer to degrees of belief in proposition a given some
evidence b: P(a|b)
e evidence: information already revealed
@ ex: P(cavity|toothache) = 0.6: p. of a cavity given a toothache (assuming no other information is

provided!)
e ex: P(Total=11|die;=5)=1/6: p. of total 11 given first die is 5
— restricts the set of possible worlds to those where the first die is 5
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any other information (evidence)
e ex: P(cavity) = 0.2, P(Total =11) = 1/18, P(double) = 1/6
@ Conditional or posterior probabilities refer to degrees of belief in proposition a given some
evidence b: P(a|b)
e evidence: information already revealed
@ ex: P(cavity|toothache) = 0.6: p. of a cavity given a toothache (assuming no other information is
provided!)
e ex: P(Total=11|die;=5)=1/6: p. of total 11 given first die is 5
— restricts the set of possible worlds to those where the first die is 5
@ Note: P(a...Na) =1, P(al...A—-a) =0
@ ex: P(cavity|toothache A cavity) = 1, P(cavity|toothache A\ —cavity) = 0
@ Less specific belief still valid after more evidence arrives
@ ex: P(cavity) = 0.2 holds even if P(cavity|toothache) = 0.6
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any other information (evidence)

e ex: P(cavity) = 0.2, P(Total = 11) = 1/18, P(double) = 1/6
@ Conditional or posterior probabilities refer to degrees of belief in proposition a given some
evidence b: P(a|b)
e evidence: information already revealed
@ ex: P(cavity|toothache) = 0.6: p. of a cavity given a toothache (assuming no other information is
provided!)
e ex: P(Total=11|die;=5)=1/6: p. of total 11 given first die is 5
— restricts the set of possible worlds to those where the first die is 5
@ Note: P(a...Na) =1, P(al...A—-a) =0
@ ex: P(cavity|toothache A cavity) = 1, P(cavity|toothache A —cavity) = 0
@ Less specific belief still valid after more evidence arrives
@ ex: P(cavity) = 0.2 holds even if P(cavity|toothache) = 0.6
@ New evidence may be irrelevant, allowing for simplification
e ex: P(cavity|toothache, 49ersWin) = P(cavity|toothache) = 0.8
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Conditional Probabilities [cont.]

@ Conditional probability: P(a|b) £ aAb)b ,s.t. P(b)>0

o ex: P(Total = 11|die, = 5) = 22 Agei=5) — 1/83/8 — 1/
@ observing b restricts the possible worlds to those w ere b is true
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Conditional Probabilities [cont.]

@ Conditional probability: P(a|b) £ PaAb)b ,s.t. P(b)>0

o ex: P(Total = 11|die, = 5) = 22 Agei=5) — 1/83/8 — 1/
@ observing b restricts the possible worlds to those w ere b is true

@ Production rule: P(a A b) = P(alb) - P(b) = P(bla) - P(a)
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Conditional Probabilities [cont.]

@ Conditional probability: P(a|b) £ aAb)b ,s.t. P(b)>0

o ex: P(Total = 11|die, = 5) = 22 Agei=5) — 1/83/8 — 1/
@ observing b restricts the possible worlds to those w ere b is true

@ Production rule: P(aA b) = P(a|b) - P(b) = P(bla) - P(a)
@ Production rule for whole distributions: P(X, Y) = P(X|Y) - P(Y)
o ex: P(Weather, Cavity) = P(Weather|Cavity )P(Cavity), that is:
P(sunny, cavity) = P(sunny|cavity)P(cavity)

E(snow, —cavity) = P(snow|—cavity ) P(—cavity)
@ a4 x 2 set of equations, not matrix multiplication!
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Conditional Probabilities [cont.]

@ Conditional probability: P(a|b) £ aAb)b ,s.t. P(b)>0

o ex: P(Total = 11|die, = 5) = 22 Agei=5) — 1/83/8 — 1/
@ observing b restricts the possible worlds to those where b is true
@ Production rule: P(aA b) = P(a|b) - P(b) = P(bla) - P(a)
@ Production rule for whole distributions: P(X, Y) = P(X|Y) - P(Y)
o ex: P(Weather, Cavity) = P(Weather|Cavity )P(Cavity), that is:
P(sunny, cavity) = P(sunny|cavity)P(cavity)

E(snow, —cavity) = P(snow|—cavity ) P(—cavity)
@ a4 x 2 set of equations, not matrix multiplication!

@ Chain rule is derived by successive application of product rule:
P(Xi, ..., Xn)
= P(X1,.. X,, DP(Xal X1, ...y Xn_1)
=P(X1, .., Xo_2)P(Xn_1|X1, ..., Xo_2)P(Xn| X1, ..., Xn_1)

H P(Xi|Xi, ..., Xi—1)
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Logic vs. Probability

(Courtesy of Maria Simi, UniP1)

Logic Probability
a P(a) =1
-a P(a)=0
a—b P(bla) =1
(a,a— b) P(a) =1, P(bla) =1
b P(b) =1
(~b,a—b) | P(b)=0,P(bla) =1
- -a P(a)=0

(a— b,b—c)

a—=c

P(bla) =1, P(c|b) =1

P(cla) = 1
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Outline

e Probabilistic Inference via Enumeration
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Probabilistic Inference via Enumeration

Basic ldeas
@ Start with the joint distribution
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Probabilistic Inference via Enumeration

Basic ldeas
@ Start with the joint distribution

@ For any proposition ¢, sum the atomic events where ¢ is true: P(yp) = & P(w)

w: wkEe
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Probabilistic Inference via Enumeration: Example

Example: Generic Inference

@ Start with the joint distribution P(Toothache, Catch, Cavity)
@ For any proposition ¢, sum the atomic events where ¢ is true: P(p) = ¥, . -, P(w):

toothache =1 toothache
catch | —1catch) catch| —catch
cavity | .108| .012 .072| .008
Scavity | .016 | .064 .144 | .576

(©S. Russell & P. Norwig, AIMA)
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Probabilistic Inference via Enumeration: Example

Example: Generic Inference
@ Start with the joint distribution P(Toothache, Catch, Cavity)
@ For any proposition ¢, sum the atomic events where ¢ is true: P(y) = X, . L,
@ Ex: P(cavity v toothache) = 0.108 + 0.012 4 0.072 + 0.008 + 0.016 + 0.064 = 0.28

toothache =1 toothache

catch| T catch catch| — catch
cavity | .108| .012 .072| .008
“icavity | 016 | .064 .144 | .576

(©S. Russell & P. Norwig, AIMA)

P(w):
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Marginalization

@ Start with the joint distribution P( Toothache, Catch, Cavity)

@ Marginalization (aka summing out):
sum up the probabilities for each possible value of the other variables:
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Marginalization

@ Start with the joint distribution P( Toothache, Catch, Cavity)

@ Marginalization (aka summing out):
sum up the probabilities for each possible value of the other variables:

P(Y) =2..cz P(Y.2)
Ex: P(Toothache) = »_,c catch,cavityy P(ToOthache, z)
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Marginalization

@ Start with the joint distribution P( Toothache, Catch, Cavity)

@ Marginalization (aka summing out):
sum up the probabilities for each possible value of the other variables:

P(Y) =2_;czP(Y,2)
Ex: P(Toothache) = »_,c catch,cavityy P(ToOthache, z)

@ Conditioning: variant of marginalization, involving conditional probabilities instead of joint
probabilities (using the product rule)

P(Y) =2 2z P(Y|2)P(2)
Ex: P(Toothache) = »_,c (catch,cavityy P(Toothache|z) P(z)

21/44



Marginalization: Example

@ Start with the joint distribution P(Toothache, Catch, Cavity)

@ Marginalization (aka summing out):
sum up the probabilities for each possible value of the other variables:

P(Y) - ZzeZ P(Y Z)

toothache = toothache

catch| T catch) catch| 1 catch
cavity | .108 | .012 .072| .008
“cavity | .016| .064 .144 | .576

(©S. Russell & P. Norwig, AIMA)
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Marginalization: Example

@ Start with the joint distribution P(Toothache, Catch, Cavity)

@ Marginalization (aka summing out):

sum up the probabilities for each possible value of the other variables:

P(Y) - ZzeZ P(Y Z)

Ex: P(Toothache) = 3, catch,cavity; P(ToOthache, z)
P(toothache) — 0.108 + 0.012 + 0.016 + 0.064 — 0.2

(©S. Russell & P. Norwig, AIMA)

toothache =1 toothache
catch| T catch| catch| 1 catch
cavity | .108| .012 .072| .008
—1cavity | .016 | .064 144 .576
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Marginalization: Example

@ Start with the joint distribution P(Toothache, Catch, Cavity)

@ Marginalization (aka summing out):

sum up the probabilities for each possible value of the other variables:

P(Y) = 22z P(Y,2)

Ex: P(Toothache) = 3, catch,cavity; P(ToOthache, z)

P(toothache) = 0.108 4+ 0.012 4+ 0.016 + 0.064 = 0.2
P(—toothache) = 1 — P(toothache) =1 — 0.2 =0.8

— P(Toothache) = (0.2,0.8)

(©S. Russell & P. Norwig, AIMA)

toothache =1 toothache
catch| T catch| catch| 1 catch
cavity | .108| .012 .072( .008
“cavity | .016 | .064 144 576
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Conditional Probability via Enumeration: Example

@ Start with the joint distribution P( Toothache, Catch, Cavity)

toothache =1 toothache
catch | —1catch) catch| —catch
cavity | .108| .012 .072| .008
—cavity | .016| .064 144 | .576

(©S. Russell & P. Norwig, AIMA)
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Conditional Probability via Enumeration: Example

@ Start with the joint distribution P( Toothache, Catch, Cavity)
@ Conditional Probability:

Ex: P(~cavity|toothache) = FCSalostacte)

_ 0.016+0.064 =04
~ 0.108+0.012+0.016+-0.064 — **

toothache = toothache

catch| T catch) catch| 1 catch

cavity | .108| .012 .072| .008

Scavity || .016 | .064 144 | .576

(©S. Russell & P. Norwig, AIMA)
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Conditional Probability via Enumeration: Example

@ Start with the joint distribution P( Toothache, Catch, Cavity)

@ Conditional Probability:

Ex: P(—cavity|toothache) =

— 0.016+0.064 —04
~ 0.108+0.012+0.016+-0.064 — **

Ex: P(cavity|toothache) = £

cavity Atoothache)
P(toothache)

__ P(—cavity Atoothache)

P(toothache)

=..=06

toothache =1 toothache
catch | —1catch) catch| —catch
cavity | .108| .012 .072| .008
“1cavity | .016 | .064 .144 | .576

(©S. Russell & P. Norwig, AIMA)
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Normalization

@ Let X be all the variables. Typically, we want P(Y|E = e):

e the conditional joint distribution of the query variables Y
@ given specific values e for the evidence variables E

o let the hidden variables be H £ X \ (Y UE)

y
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Normalization

@ Let X be all the variables. Typically, we want P(Y|E = e):

e the conditional joint distribution of the query variables Y
@ given specific values e for the evidence variables E

o let the hidden variables be H £ X\ (Y UE)

@ The summation of joint entries is done by summing out the hidden variables:

P(Y[E=¢e) =aoP(Y,E=¢e) =axhHP(Y,E=¢e,H=h)
where o £ 1/P(E = e) (Notice: different «o’s for different values of el)
— itis easy to compute « by normalization
e note: the terms in the summation are joint entries,
because Y, E, H together exhaust the set of random variables X
@ Idea: compute whole distribution on query variable by:

e fixing evidence variables and summing over hidden variables
e normalize the final distribution, so that > ... = 1
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Normalization

@ Let X be all the variables. Typically, we want P(Y|E = e):

e the conditional joint distribution of the query variables Y
@ given specific values e for the evidence variables E

o let the hidden variables be H £ X\ (Y UE)

@ The summation of joint entries is done by summing out the hidden variables:

P(YIE =e) = aP(Y,E = e) = aXhenP(Y,E = e,H = h)

where o £ 1/P(E = e) (Notice: different «o’s for different values of el)
— itis easy to compute « by normalization
e note: the terms in the summation are joint entries,
because Y, E, H together exhaust the set of random variables X
@ Idea: compute whole distribution on query variable by:
e fixing evidence variables and summing over hidden variables
e normalize the final distribution, so that > ... = 1

@ Complexity: O(2™), n number of propositions = impractical for large n’s
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Normalization

@ Let X be all the variables. Typically, we want P(Y|E = e):

e the conditional joint distribution of the query variables Y
@ given specific values e for the evidence variables E

o let the hidden variables be H £ X\ (Y UE)

@ The summation of joint entries is done by summing out the hidden variables:

P(YIE =e) = aP(Y,E =€) = aXhenP(Y,E = e,H = h)

where a £ 1/P(E = e) (Notice: different a’s for different values of e!)
— itis easy to compute « by normalization
e note: the terms in the summation are joint entries,
because Y, E, H together exhaust the set of random variables X
@ Idea: compute whole distribution on query variable by:
e fixing evidence variables and summing over hidden variables
e normalize the final distribution, so that > ... = 1

@ Complexity: O(2™), n number of propositions = impractical for large n’s

Common practice: deal with non-normalized distributions, normalize at the end of the process

(see e.g. “Wumpus world” example at the end of this chapter)
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Normalization: Example

0 ¥ 1/P(toothache) (previous example) can be viewed as a normalization constant
@ |dea: compute whole distribution on query variable by:

e fixing evidence variables and summing over hidden variables
e normalize the final distribution, so that ... =1

toothache

=1 toothache

catch | 1 catch|c

atch| T catch

cavity

.108 | .012

.072( .008

= cavity

.016 | .064

144 .576

(© S. Russell & P. Norwig, AIMA)
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Normalization: Example

0 1/P(toothache) (previous example) can be viewed as a normalization constant
@ Idea: compute whole distribution on query variable by:
e fixing evidence variables and summing over hidden variables
e normalize the final distribution, so that ... =1
@ Ex:? P(Cavity|toothache) = aP(Cavity A toothache)
a[P(Cavity, toothache, catch) + P(Cavity, toothache, ~catch)|
= «[(0.108,0.016) + (0.012,0.064)]
= «(0.12,0.08) = (normalization) = (0.6,0.4) [a=5]

toothache =1 toothache

catch| —catch| catch| —catch

cavity |/.108}||.012 .072( .008

—cavity |/.016/||.064 144 ( .576

(©S. Russell & P. Norwig, AIMA)

an.b.: here “Cavity” is a variable, “toothache” is a proposition (i.e. Toothache=true)




Normalization: Example

0 1/P(toothache) (previous example) can be viewed as a normalization constant
@ Idea: compute whole distribution on query variable by:

e fixing evidence variables and summing over hidden variables

e normalize the final distribution, so that ... =1
@ Ex:? P(Cavity|toothache) = aP(Cavity A toothache)
a[P(Cavity, toothache, catch) + P(Cavity, toothache, ~catch)|
= «[(0.108,0.016) + (0.012,0.064)]

= «(0.12,0.08) = (normalization) = (0.6,0.4) [a=5]

P(Cavity|-toothache) = ... = «(0.08,0.72) = (0.1,0.9)[a=1.25]

toothache =1 toothache

catch | T catch| catch| —catch
cavity | .108 | .012 .0721/.008
“cavity | 016 | .064 .144|.576

(©S. Russell & P. Norwig, AIMA)

an.b.: here “Cavity” is a variable, “toothache” is a proposition (i.e. Toothache=true)




Outline

e Independence and Conditional Independence
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Independence

@ Variables X and Y are independent iff P(X, Y) = P(X)P(Y)
(equivalently, iff P(X|Y) = P(X) and iff P(Y|X) = P(Y))
e ex: P(Toothache, Catch, Cavity, Weather) = P(Toothache, Catch, Cavity )P(Weather)
— e.g. P(toothache, catch, cavity, cloudy) = P(toothache, catch, cavity)P(cloudy)

e typically based on domain knowledge

Cavity
Toothache Catch

Weather

(©S. Russell & P. Norwig, AIMA)
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Independence

@ Variables X and Y are independent iff P(X, Y) = P(X)P(Y)
(equivalently, iff P(X|Y) = P(X) and iff P(Y|X) = P(Y))
e ex: P(Toothache, Catch, Cavity, Weather) = P(Toothache, Catch, Cavity )P(Weather)
— e.g. P(toothache, catch, cavity, cloudy) = P(toothache, catch, cavity)P(cloudy)
e typically based on domain knowledge
@ May drastically reduce the number of entries and computation
= ex: 32-element table decomposed into one 8-element and one 4-element table

Cavity
Toothache Catch

Weather

(©S. Russell & P. Norwig, AIMA)




Independence

@ Variables X and Y are independent iff P(X, Y) = P(X)P(Y)
(equivalently, iff P(X|Y) = P(X) and iff P(Y|X) = P(Y))
e ex: P(Toothache, Catch, Cavity, Weather) = P(Toothache, Catch, Cavity )P(Weather)
— e.g. P(toothache, catch, cavity, cloudy) = P(toothache, catch, cavity)P(cloudy)
e typically based on domain knowledge
@ May drastically reduce the number of entries and computation
= ex: 32-element table decomposed into one 8-element and one 4-element table

@ Unfortunately, absolute independence is quite rare

Cavity
Toothache Catch

Weather

(©S. Russell & P. Norwig, AIMA)
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Conditional Independence

@ Variables X and Y are conditionally independent given Z iff P(X, Y|Z) = P(X|Z)P(Y|Z)
(equivalently, iff P(X|Y,Z) = P(X|Z) and iff P(Y|X,Z) = P(Y|Z))
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Conditional Independence

@ Variables X and Y are conditionally independent given Z iff P(X, Y|Z) = P(X|Z)P(Y|Z)
(equivalently, iff P(X|Y,Z) = P(X|Z) and iff P(Y|X,Z) = P(Y|Z))
@ Consider P(Toothache, Cavity, Catch)

e if | have a cavity, the probability that the probe catches in it doesn’t depend on whether | have a
toothache: P(catch|toothache, cavity) = P(catch|cavity)

e the same independence holds if | haven’t got a cavity:
P(catch|toothache, —cavity) = P(catch|—cavity)

= Catch is conditionally independent of Toothache given Cavity:

P(Catch| Toothache, Cavity) = P(Catch|Cavity)
or, equivalently: P(Toothache|Catch, Cavity) = P(Toothache|Cavity), or
P(Toothache, Catch|Cavity) = P(Toothache|Cavity) P(Catch|Cavity)
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Conditional Independence

@ Variables X and Y are conditionally independent given Z iff P(X, Y|Z) = P(X|Z)P(Y|Z)
(equivalently, iff P(X|Y,Z) = P(X|Z) and iff P(Y|X,Z) = P(Y|Z))
@ Consider P(Toothache, Cavity, Catch)
e if | have a cavity, the probability that the probe catches in it doesn’t depend on whether | have a
toothache: P(catch|toothache, cavity) = P(catch|cavity)
e the same independence holds if | haven’t got a cavity:
P(catch|toothache, —cavity) = P(catch|—cavity)
= Catch is conditionally independent of Toothache given Cavity:
P(Catch| Toothache, Cavity) = P(Catch|Cavity)
or, equivalently: P(Toothache|Catch, Cavity) = P(Toothache|Cavity), or
P(Toothache, Catch|Cavity) = P(Toothache|Cavity) P(Catch|Cavity)

@ Hint: Toothache and Catch are two (mutually-independent) effects of the same cause Cavity)

28/44



Conditional Independence [cont.]

@ In many cases, the use of conditional independence reduces the size of the representation
of the joint distribution dramatically

e even from exponential to linear!
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Conditional Independence [cont.]

@ In many cases, the use of conditional independence reduces the size of the representation
of the joint distribution dramatically

e even from exponential to linear!

P(Toothache, Catch, Cavity)

= P(Toothache|Catch, Cavity)P(Catch, Cavity)

= P(Toothache|Catch, Cavity)P(Catch|Cavity )P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

o Ex:




Conditional Independence [cont.]

@ In many cases, the use of conditional independence reduces the size of the representation
of the joint distribution dramatically

e even from exponential to linear!

P(Toothache, Catch, Cavity)

= P(Toothache|Catch, Cavity)P(Catch, Cavity)

= P(Toothache|Catch, Cavity )P(Catch|Cavity )P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

— Passes from 7 to 2+2+1=5 independent numbers

e P(Toothache, Catch, Cavity) contains 7 independent entries
(the 8th can be obtainedas 1 -5 ...)

o P(Toothache|Cavity),P(Catch|Cavity) contain 2 independent entries (2 x 2 matrix, each row
sums to 1)

e P(Cavity) contains 1 independent entry

o Ex:




Conditional Independence [cont.]

@ In many cases, the use of conditional independence reduces the size of the representation
of the joint distribution dramatically

e even from exponential to linear!

P(Toothache, Catch, Cavity)

= P(Toothache|Catch, Cavity)P(Catch, Cavity)

= P(Toothache|Catch, Cavity )P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

— Passes from 7 to 2+2+1=5 independent numbers

e P(Toothache, Catch, Cavity) contains 7 independent entries
(the 8th can be obtainedas 1 -5 ...)

e P(Toothache|Cavity),P(Catch|Cavity) contain 2 independent entries (2 x 2 matrix, each row
sums to 1)

e P(Cavity) contains 1 independent entry

@ General Case: if one cause has n independent effects:
P(Cause, Effecty, ..., Effect,) = P(Cause) [ [; P(Effect;| Cause)

— reduces from 2" — 1 to 2n + 1 independent entries

o Ex:




Exercise

Consider the joint probability distribution described in the table in previous section:
P( Toothache, Catch, Cavity)

@ Consider the example in previous slide:
P( Toothache, Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch|Cavity )P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity )P(Cavity)
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Exercise

Consider the joint probability distribution described in the table in previous section:
P( Toothache, Catch, Cavity)
@ Consider the example in previous slide:
P( Toothache, Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch|Cavity )P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity )P(Cavity)

@ Compute separately the distributions P( Toothache|Catch, Cavity), P(Catch|Cavity),
P(Cavity), P(Toothache|Cavity).
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Exercise

Consider the joint probability distribution described in the table in previous section:
P( Toothache, Catch, Cavity)
@ Consider the example in previous slide:
P( Toothache, Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch|Cavity )P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity )P(Cavity)
@ Compute separately the distributions P(Toothache|Catch, Cavity), P(Catch|Cavity),
P(Cavity), P(Toothache|Cavity).
@ Recompute P(Toothache, Catch, Cavity) in two ways:
o P(Toothache|Catch, Cavity )P(Catch|Cavity)P(Cavity)
o P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)
and compare the result with P(Toothache, Catch, Cavity)
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Outline

e Applying Bayes’ Rule
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Bayes’ Rule

Bayes’ Rule/Theorem/Law
P(an b)

@ Bayes' rule: P(alb) = P(b)
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Bayes’ Rule

Bayes’ Rule/Theorem/Law
P(anb)  P(bla)P(a)

@ Bayes’ rule: P(alb) = P(b) ~  P(b)
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Bayes’ Rule

Bayes’ Rule/Theorem/Law

@ Bayes’ rule: P(alb)

_ P(bla)P(a)

P(b)
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Bayes’ Rule

Bayes’ Rule/Theorem/Law

P(bla)P(a)
P(b)

P(X|Y)P(Y)
P(X)

@ Bayes'’ rule: P(a|b) =

@ In distribution form P(Y|X) =
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Bayes’ Rule

Bayes’ Rule/Theorem/Law
P(bla)P(a)
P(b)
P(X]Y)P(Y)
P(X)
o a £ 1/P(X): normalization constant to make P(Y|X) entries sum to 1
(different o's for different values of X)

@ Bayes’ rule: P(alb) =

@ In distribution form P(Y|X) = = aP(X|Y)P(Y)
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Bayes’ Rule

Bayes’ Rule/Theorem/Law
P(bla)P(a)
P(b)
P(X]Y)P(Y)
P(X)
o a £ 1/P(X): normalization constant to make P(Y|X) entries sum to 1
(different o's for different values of X)
@ A version conditionalized on some background evidence e:

P(X|Y.e)P(Yle)
P(Xle)

@ Bayes’ rule: P(alb) =

@ In distribution form P(Y|X) = = aP(X|Y)P(Y)

P(Y|X,e) =

32/44



Using Bayes’ Rule: The Simple Case

@ Used to assess diagnostic probability from causal probability:

P(effect|cause) P(cause)
P(effect)

P(cause|effect) =




Using Bayes’ Rule: The Simple Case

@ Used to assess diagnostic probability from causal probability:

P(effect|cause) P(cause)
P(effect)
o P(cause|effect) goes from effect to cause (diagnostic direction)

P(cause|effect) =
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Using Bayes’ Rule: The Simple Case

@ Used to assess diagnostic probability from causal probability:

P(effect|cause)P(cause)
P(effect)

o P(cause|effect) goes from effect to cause (diagnostic direction)
e P(effect|cause) goes from cause to effect (causal direction)

P(cause|effect) =

Example

@ An expert doctor is likely to have causal knowledge ... P(symptoms|disease)
(i.e., P(effect|cause))

... and needs producing diagnostic knowledge P(disease|symptoms) (i.e., P(cause|effect))

@ Ex: let m be meningitis, s be stiff neck
e P(m) = 1/50000, P(s) = 0.01 (prior knowledge, from statistics)

@ “meningitis causes to the patient a stiff neck in 70% of cases”: P(s|m) = 0.7 (doctor’s experience)




Using Bayes’ Rule: The Simple Case

@ Used to assess diagnostic probability from causal probability:

P(effect|cause)P(cause)
P(effect)

o P(cause|effect) goes from effect to cause (diagnostic direction)
e P(effect|cause) goes from cause to effect (causal direction)

P(cause|effect) =

Example

@ An expert doctor is likely to have causal knowledge ... P(symptoms|disease)
(i.e., P(effect|cause))

... and needs producing diagnostic knowledge P(disease|symptoms) (i.e., P(cause|effect))

@ Ex: let m be meningitis, s be stiff neck
e P(m) = 1/50000, P(s) = 0.01 (prior knowledge, from statistics)

@ “meningitis causes to the patient a stiff neck in 70% of cases”: P(s|m) = 0.7 (doctor’s experience)

P(s|m)P(m) _ 0.7 -1/50000

—0.0014
P(s) 0.01 0.00

= P(m|s) =




Using Bayes’ Rule: Combining Evidence

@ A naive Bayes model is a probability model that assumes the effects are conditionally
independent, given the cause

= P(Cause, Effecty, ..., Effect,) = P(Cause) [[; P(Effectj| Cause)
e total number of parameters is linear in n
e ex: P(Cavity, Toothache, Catch) = P(Cavity)P( Toothache|Cavity)P(Catch|Cavity)

“ K YN
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Using Bayes’ Rule: Combining Evidence

@ A naive Bayes model is a probability model that assumes the effects are conditionally
independent, given the cause

= P(Cause, Effecty, ..., Effect,) = P(Cause) [[; P(Effectj| Cause)
e total number of parameters is linear in n
e ex: P(Cavity, Toothache, Catch) = P(Cavity)P( Toothache|Cavity)P(Catch|Cavity)

Q: How can we compute P(Cause|Effecty, ..., Effecty)?
e ex P(Cavity|toothache A catch)?

“ K YN
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Using Bayes’ Rule: Combining Evidence [cont.]

Q: How can we compute P(Cause|Effecty, ..., Effecty)?
e ex: P(Cauvity|toothache A catch)?
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Using Bayes’ Rule: Combining Evidence [cont.]

Q: How can we compute P(Cause|Effecty, ..., Effecty)?
e ex: P(Cauvity|toothache A catch)?
P(Cavity|toothache A catch)
= P(toothache A catch|Cavity)P(Cavity)/P(toothache A catch)
= oP(toothache A catch|Cavity )P(Cavity)
= aP(toothache|Cavity)P(catch|Cavity)P(Cavity)

A: Apply Bayes’ Rule

0o ¥ 1/P(toothache A catch) not computed explicitly
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Using Bayes’ Rule: Combining Evidence [cont.]

Q: How can we compute P(Cause|Effecty, ..., Effecty)?
e ex: P(Cauvity|toothache A catch)?
P(Cavity|toothache A catch)
= P(toothache A catch|Cavity)P(Cavity)/P(toothache A catch)
= oP(toothache A catch|Cavity )P(Cavity)
= aP(toothache|Cavity)P(catch|Cavity)P(Cavity)

A: Apply Bayes’ Rule

0o ¥ 1/P(toothache A catch) not computed explicitly

@ General case: P(Cause|Effecty, ..., Effect,) = aP(Cause) [ [; P(Effect;|Cause)
o a £ 1/P(Effect,, ..., Effect,) not computed explicitly

(one « value for every value of Effect, ..., Effecty)
— reduces from 2! — 1 to 2n + 1 independent entries
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Outline

© An Example: The Wumpus World Revisited
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An Example: The Wumpus World

A probability model of the Wumpus World
@ Consider again the Wumpus World (restricted to pit detection)

P
4 S ~Breeze —| ML
ZBreazg |
W5 ss5T B
3 o gsxench PIT ~ Breezg
R4 > Serer 626 =
G\
SSSS, ZBrogse -
2 S Stenen ez =
o P
1 Al riT T
START
1 2 3 4

(© S. Russell & P. Norwig, AIMA)




An Example: The Wumpus World

A probability model of the Wumpus World
@ Consider again the Wumpus World (restricted to pit detection)
@ Evidence: no pitin (1,1), (1,2), (2,1), breezy in (1,2), (2,1)

14 24 3.4 a4
13 23 3.3 43
12 22 3.2 42
B

OK

11 21 3.1 a1
B
OK OK
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An Example: The Wumpus World
A probability model of the Wumpus World

@ Consider again the Wumpus World (restricted to pit detection)

@ Evidence: no pitin (1,1), (1,2), (2,1), breezy in (1,2), (2,1)

Q. Given the evidence, what is the probability of having a pit in (1,3), (2,2) or (3,1)?
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An Example: The Wumpus World
A probability model of the Wumpus World

@ Consider again the Wumpus World (restricted to pit detection)

@ Evidence: no pitin (1,1), (1,2), (2,1), breezy in (1,2), (2,1)

Q. Given the evidence, what is the probability of having a pit in (1,3), (2,2) or (3,1)?

@ Two groups of variables:
e Pj; = trueiff [i, ] contains a pit
(“causes”)
e Bj = trueiff [i,]] is breezy
(“effects”, consider only
B1,17 B1,2: B2,1)
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B

OK

11 21 3.1 a1
B
OK OK

(©$. Russell & P. Norwig, AIMA)

37/,

44



An Example: The Wumpus World
A probability model of the Wumpus World

@ Consider again the Wumpus World (restricted to pit detection)

@ Evidence: no pitin (1,1), (1,2), (2,1), breezy in (1,2), (2,1)

Q. Given the evidence, what is the probability of having a pit in (1,3), (2,2) or (3,1)?

@ Two groups of variables:
e Pj; = trueiff [i, ] contains a pit
(“causes”)
e Bj = trueiff [i,]] is breezy
(“effects”, consider only
B1,17 B1,2: 82,1)
@ Joint Distribution:
P(Pi1,...,P44,B11,B12,B2)

14 24 3.4 a4
13 23 3.3 43
12 22 3.2 42
B

OK

11 21 3.1 a1
B
OK OK
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An Example: The Wumpus World

A probability model of the Wumpus World
@ Consider again the Wumpus World (restricted to pit detection)
@ Evidence: no pitin (1,1), (1,2), (2,1), breezy in (1,2), (2,1)

Q. Given the evidence, what is the probability of having a pit in (1,3), (2,2) or (3,1)?

@ Two groups of variables:
e Pj; = trueiff [i, ] contains a pit
(“causes”)
e Bj = trueiff [i,]] is breezy
(“effects”, consider only
B1,17 B1,2: 82,1)
@ Joint Distribution:
P(Pi1,..., Paa,Bi1,B12,Bz1)
@ Known facts (evidence):
o b*E by A bioA b
e p* e P11 A TP12 A P24
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An Example: The Wumpus World

A probability model of the Wumpus World
@ Consider again the Wumpus World (restricted to pit detection)
@ Evidence: no pitin (1,1), (1,2), (2,1), breezy in (1,2), (2,1)

Q. Given the evidence, what is the probability of having a pit in (1,3), (2,2) or (3,1)?

@ Two groups of variables:
e Pj; = trueiff [i, ] contains a pit
(“causes”)
e Bj = trueiff [i,]] is breezy
(“effects”, consider only
. B1,]7 Bl1,2a .82’1)
@ Joint Distribution:
P(Pi1,..., Paa,Bi1,B12,Bz1)
@ Known facts (evidence):
o b*E by A bioA b
e p* e P11 A TP12 A P24
@ Queries: P(P; 3|b*, p*)? P(Pax2|b*, p*)?
(P(Ps,1|b*, p*) symmetric)

14 24 3.4 a4
13 23 3.3 43
12 22 3.2 42
B

OK

11 21 3.1 a1
B
OK OK

(©$. Russell & P. Norwig, AIMA)
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An Example: The Wumpus World [cont.]

Specifying the probability model

@ Apply the product rule to the joint distribution P(Ps 1, ..., Pa4,B11,B12,B21) =
P(Bi1,B12,B21|P11,..., Pa4) P(Pi 1, ..., Pasa)
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An Example: The Wumpus World [cont.]

Specifying the probability model
@ Apply the product rule to the joint distribution P(Ps 1, ..., Pa4,B11,B12,B21) =
P(Bi1,B12,B51|P11,...; Paa) P(P1 1, ..., Pas)
@ P(Bi1,Bi2,B51|P11, ..., P44): conditional probability distribution of a breeze configuration,
given a pit configuration (deterministic)

e 1 if one pit is adjacent to breeze,
o 0 otherwise
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An Example: The Wumpus World [cont.]

Specifying the probability model
@ Apply the product rule to the joint distribution P(Ps 1, ..., Pa4,B11,B12,B21) =
P(Bi.1,B12,B21|P1.1,...; Paa) P(P11, ..., Ps4)
@ P(Bi1,Bi2,B51|P11, ..., P44): conditional probability distribution of a breeze configuration,
given a pit configuration (deterministic)

e 1 if one pit is adjacent to breeze,
o 0 otherwise

@ P(Pi1,..., Ps4): prior probability of a pit configuration
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An Example: The Wumpus World [cont.]

Specifying the probability model
@ Apply the product rule to the joint distribution P(Ps 1, ..., Pa4,B11,B12,B21) =
P(Bi1,B12,B51|P11,...; Paa) P(P1 1, ..., Pas)
@ P(Bi1,Bi2,B51|P11, ..., P44): conditional probability distribution of a breeze configuration,
given a pit configuration (deterministic)

e 1 if one pit is adjacent to breeze,
o 0 otherwise

@ P(Pi1,..., Ps4): prior probability of a pit configuration
e assume pits are randomly placed with independent probability 0.2 in each square except in (1,1):

0.2 if(i,j)# (1,1
P(P1,1,..., P4’4) = H?:1 H?:1 P(P,‘J), s.t. P(P,'J) = { 0 otlgeiavfsée( )}
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An Example: The Wumpus World [cont.]

Specifying the probability model
@ Apply the product rule to the joint distribution P(Ps 1, ..., Pa4,B11,B12,B21) =
P(Bi1,B12,B51|P11,...; Paa) P(P1 1, ..., Pas)
@ P(Bi1,Bi2,B51|P11, ..., P44): conditional probability distribution of a breeze configuration,
given a pit configuration (deterministic)
e 1 if one pit is adjacent to breeze,
o 0 otherwise
@ P(Pi1,..., Ps4): prior probability of a pit configuration
e assume pits are randomly placed with independent probability 0.2 in each square except in (1,1):
174 4 - v J 02 if(i,j)#(1,1)}
P(P1,1,..., P4’4) = H,.:1 H]-:1 P(P,J), s.t. P(P,J) = { 0 otherwise
e e.g, if exactly three pits, except in (1,1):
P(Pi1, ..., Paa) = 0.2° - (1 — 0.2)"*~% ~ 0.00055
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An Example: The Wumpus World [cont.]

Naive solution: Inference by enumeration
Case P; 3:
@ General form of query: P(Y[E=e) = aP(Y,E=¢e)=a) P(Y,E=e ,H=h)
e Y: query vars; E,e: evidence vars/values; H,h: hidden vars/values
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An Example: The Wumpus World [cont.]

Naive solution: Inference by enumeration
Case P; 3:

@ General form of query: P(Y[E=e) = aP(Y,E=¢e)=a) P(Y,E=e ,H=h)

e Y: query vars; E,e: evidence vars/values; H,h: hidden vars/values
@ Our case: P(P; 3|p*, b*), s.t. the evidence is

°b*d=ef—‘b1,1/\ bia A b

def 1,4 2.4 3.4 44
@ P = P11 APi2 A P2y

3 73 33 i3

Py3

12 2.2 3.2 42
B
OK

T Al 3 T

B

0OK OK

(© S. Russell & P. Norwig, AIMA)
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An Example: The Wumpus World [cont.]

Naive solution: Inference by enumeration
Case P; 3:

@ General form of query: P(Y[E=e) = aP(Y,E=¢e)=a) P(Y,E=e ,H=h)

e Y: query vars; E,e: evidence vars/values; H,h: hidden vars/values
@ Our case: P(P; 3|p*, b*), s.t. the evidence is
b= —bi1 A biag A by

% def 14 2.4 3.4 44
@ P ="P11 NP2\ P21
@ Sum over hidden variables: . - - .
* * 1, o i 4,
P(PLS‘ID ab ) —
@Y unknown P(P1.3|P*, b*, unknown) Pis
e unknown are all Pj’s s.t. e |22 32 a2
(' J) #4{(1,1),(1,2),(2,1),(1,3)}
— 2'%=% — 4096 terms of the sum! OK
11 21 3.1 41
B
OK 0K

(95 Russoll2 P Nonwig, AMA) |
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An Example: The Wumpus World [cont.]

Naive solution: Inference by enumeration
Case P; 3:

@ General form of query: P(Y[E=e) = aP(Y,E=¢e)=a) P(Y,E=e ,H=h)

e Y: query vars; E,e: evidence vars/values; H,h: hidden vars/values
@ Our case: P(P; 3|p*, b*), s.t. the evidence is
b= —bi1 A bia A b
o p* E —pi1 A—pi2 Ap
@ Sum over hidden variables:
P(Pislp*, b") =
a Y unknown P(P1.3|P%, b*, unknown)
e unknown are all Pj’s s.t.

() #£{(1,1),(1,2),(2,1),(1,3)}

— 2'%=% — 4096 terms of the sum!

@ Grows exponentially in the number of hidden variables H!
— Inefficient

T4 24 3.4 74
1,3 2.3 Bl 4.3
P
1,2 2,2 3.2 4.2
B
0K
3 77 T3 7T
B
0K OK

(95 Russoll2 P Nonwig, AMA) |
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An Example: The Wumpus World [cont.]

Naive solution: Inference by enumeration
Case P; 3:

@ General form of query: P(Y[E=e) = aP(Y,E=¢e)=a) P(Y,E=e ,H=h)

e Y: query vars; E,e: evidence vars/values; H,h: hidden vars/values
@ Our case: P(P; 3|p*, b*), s.t. the evidence is
b= —bi1 A bia A b
o p* E —pi1 A—pi2 Ap
@ Sum over hidden variables:
P(Pislp*, b") =
a Y unknown P(P1.3|P%, b*, unknown)
e unknown are all Pj’s s.t.

() #£{(1,1),(1,2),(2,1),(1,3)}

— 2'%=% — 4096 terms of the sum!

@ Grows exponentially in the number of hidden variables H!
— Inefficient

@ Can we do better?

T4 24 3.4 74
1,3 2.3 Bl 4.3
P
1,2 2,2 3.2 4.2
B
0K
3 77 T3 7T
B
0K OK

(95 Russoll2 P Nonwig, AMA) |
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An Example: The Wumpus World [cont.]

Smarter solution: Exploiting conditional independence

@ Basic insight: Given the fringe squares (see below), b* is conditionally independent of the

other hidden squares
def

e Unknown = Fringe U Other

OTHER

(©S. Russell & P. Norwig, AIMA)
LC
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An Example: The Wumpus World [cont.]

Smarter solution: Exploiting conditional independence

@ Basic insight: Given the fringe squares (see below), b* is conditionally independent of the

other hidden squares
def

e Unknown = Fringe U Other

def

= P(b*|p*, P13, Unknown) = P(b*|p*, P 3, Fringe, Others) = P(b*|p*, P; s, Fringe)

lod——_Jaa [y E—
A\

OTHER

(©$S. Russell & P. Norwig, AIMA)
JC
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An Example: The Wumpus World [cont.]

Smarter solution: Exploiting conditional independence

@ Basic insight: Given the fringe squares (see below), b* is conditionally independent of the

other hidden squares
def

e Unknown = Fringe U Other

= P(b*|p*, P13, Unknown) = P(b*|p*, P13, Fringe)
@ Next: manipulate the query into a form where this equation _
can be used '(

lod——_Jaa [y E—

OTHER

(©$S. Russell & P. Norwig, AIMA)
JC
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An Example: The Wumpus World [cont.]
P(p*, b*) = P(p*, b*) is scalar; use as a normalization constant

P(P1,3|p*., b*) = P(P1,3~,p*~, b*)/P(p*, b*) = QP(P1,3-,p*~, b*)

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]

Sum over the unknowns

P(Ps|p", b") = P(Pis,p", ") /P(p", b") = aP(Prs,p", b7)
=a ¥ P(P3,unknown,p*,b")

unknown

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)

o
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An Example: The Wumpus World [cont.]

Use the product rule

P(Pislp". ") = P(Prs, p", b")/P(p", b) = aP(Py3,p",b")
=a ¥ P(Ps, unknown,p*,b")

unknown

=a Y PP, p" unknown)P (P, 3, p", unknown)

unknown

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]

Separate unknown into fringe and other
P(Pislp™,b") = P(Pis,p", 0")/P(p",0") = aP(Pi3,p",b")
=a X P(P3, unknown,p,b")

unknown
a ¥ PO P, p", unknown)P (P 5, p", unknown)
unknown
a ¥ ¥ P'p", Pis, fringe, other)P(P 3, p", fringe, other)

fringe other

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]

b* is conditionally independent of other given fringe

P(Pilp*,b") = P(Pra, p", ") /P(p", 0") = aP(Py3,p", b%)
=a Y P(Pg, unknown,p*,b")

unknown

a AZ PPy s, p*, unknown)P (P 5, p*, unknown)

a [2 %j P*|p", Py 3, fringe, other )P (P 5, p", fringe, other)
Jfringe other -

a X P(b*|p*, Pl’:g,fT’L.'nge)P(PLg, p*',fringe'/ Othe?”)

fringe other

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]

Move P(b*|p*, P; 3, fringe) outward

P(Plp".b") = P(Pis,p",0")/P(p",b7) = aP(Py3,p",b")
a ¥ P(P 3, unknown,p*,b")

@ 'lmigrum P(b*| Py 3, p*, unknown )P (P 5, p*, unknown)
a;%j::l:%jm‘P(b*|p*., P 3, fringe, other)P(P, 3,p", fringe, other)
a/%;‘ye Ot%ﬁP(bﬂp*, P 3, fringe)P(P 3, p*, fringe, other)

a ¥ P(b*p*, Pis, fringe) O%ETP(PLg.,p*.,frmge., other)

[ringe

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]

All of the pit locations are independent

P(P1,3|p*7 b*) = P(Pl,ii',p*', b*)/P(p*, b*) = O‘P(PLS-,p*-, b*)
=a X P(Pg,unknown,p",b)

unknown
a ¥ PPy, p", unknown)P(Py 3, p*, unknown)
unknown
Q 5 DI P<b*|p*; P1,37 f?”iﬂge., Oth’er)P<P1,37p*7 fringe'/ other)
[fringe other
a ¥ X P(b*|p*, P1,37 fringe)P(Pl,i% p*7 frmge, OtheT’)
[fringe other

a P<b*|P*, Pl,i%vfringe) > P(Pl,Sap*afringea other)
other

fringe
—ax PU"|p", Prs, fringe) = P(Pry)P(p") Plfringe) P(other)
[ringe other

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]
Move P(p*),P(P; 3), and P(fringe) outward

P(P1,3|p*7 b*) = P(P1,37 p*7 b*)/P(p*, b*) = OZP(PL& P*~, b*)
=a ¥ P(P 3, unknown,p*,b")

unknown
= AZ P Py 3, p*, unknown)P (P, 5, p*, unknown)
« 5 > % P(b*|p*, P1,37fringe7 Other)P(Pl,i%7p*7 fringe'/ OtheT)
Jringe other
a Y X P<b*|p*/ Pl,i%'/frin.ge)P(Pl,i%p*7fringev other)

[fringe other

a Y P(b*|p*, Pl,ii',fringe) I%: ‘P(Pl,iitp*',fringe'/ other)

[ringe
= a/Z P(b*|p*, Pi g, fringe) % P(P3)P(p*) P(fringe) P(other)
fringe other

aP<p*)P(P1,3)[Z P|p", Prs, fringe) P(fringe) > P(other)
fringe other

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]

Remove .., P(other) because it equals 1

P(Pialp’, ) = P(Pyy. ', ) /Py 1) = 0P (i, p" ')

=a ¥ P(Pg,unknown,p b")

= Ozlm}{gme(b | Py s, pt, unknown)P(Py 5, p*, unknown)

= a:gjij;zw P(b*|p", Py 3, fringe, other)P (P, 5, p", fringe, other)
ozﬁ%qf = P(b*|p*, Pig, fringe)P(Py 3, p", fringe, other)
ozﬁ%qFP(bﬂp , P13, fringe) %}TP(Pl’g.,p*.,frz’nge., other)
aﬁ%{lfP(bﬂp P, frmge) Z P(P1 3)P(p") P(fringe) P(other)

= aP(p )P(PL;) Z P(b*|p Plgfrmge) (fringe) t% P(other)
= aP(P*)P(PLs) Z P(b*|10 Py, fringe) P(fringe)

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]

P(p*) is scalar, so make it part of the normalization constant

P(Pisp",b") = P(Pi3,p", 0")/P(p*,b") = aP(P3,p",b")

a ¥ P(Py, unknown,p*,b")

a lmkgoum P(b*| Py, p*, unknown)P(P, 5, p*, unknown)

a :%:1:22” P(b*|p", Py, fringe. other)P(P, 3,p", fringe, other)
a 7% o P(b*|p*, Py, fringe)P(Py 3, p", fringe, other)
a/i%:fP(b [p*, P13, fringe) %TP(PLg.,p*,frmge., other)
aﬁ%wP(b [p*, Py 3, fringe) Z P(P13)P(p*)P(frmge)P(other)

aP(p )P(PL;) Z P(b*|p Plgfrmge) (fringe) %V‘P(other)
aP(p*)P(Pl,s) b P(b*lp Py3, fringe) P(fringe)

TI’IL €

o' P(Py3) > P(*|p*, iy, fringe) P(fringe)
Jringe

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]

@ We have obtained: P(P; 3|p*, b*) = o/P(P1,3) >_finge P(0*[P*, P13, fringe) P(fringe)

(©S. Russell & P. Norwig, AIMA)
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An Example: The Wumpus World [cont.]

@ We have obtained: P(P; 3|p*, b*) = o/P(P1,3) >_finge P(0*[P*, P13, fringe) P(fringe)
@ We know that P(P; 3) = (0.2,0.8) (see slide 38)

(©S. Russell & P. Norwig, AIMA)

42/44



An Example: The Wumpus World [cont.]
@ We have obtained: P(P; 3|p*, b*) = o/P(P1,3) >_finge P(0*[P*, P13, fringe) P(fringe)

@ We know that P(P; 3) = (0.2,0.8) (see slide 38)
@ We can compute the normalization coefficient o’ afterwards

(©S. Russell & P. Norwig, AIMA)
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An Example: The Wumpus World [cont.]

@ We have obtained: P(P; 3|p*, b*) = o/P(P1,3) >_finge P(0*[P*, P13, fringe) P(fringe)
@ We know that P(P; 3) = (0.2,0.8) (see slide 38)

@ We can compute the normalization coefficient o’ afterwards

® > iinge P(b" [P, P13, fringe) P(fringe): only 4 possible fringes

12 22 12 22 12 22 1, 22

Four o . o . o N

possible B 2 3“. i I i zr EJ. T 2t [

fringes: ok | oK ok | ok ok | ok ok | ok
0.2x0.2=0.04 0.2x0.8=0.16 0.8x0.2=0.16 0.8x0.8=0.64

(©S. Russell & P. Norwig, AIMA)
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An Example: The Wumpus World [cont.]

@ We have obtained: P(P; 3|p*, b*) = o/P(P1,3) >_finge P(0*[P*, P13, fringe) P(fringe)
@ We know that P(P; 3) = (0.2,0.8) (see slide 38)
@ We can compute the normalization coefficient o’ afterwards
® > iinge P(b" [P, P13, fringe) P(fringe): only 4 possible fringes
@ Start by rewriting as two separate equations:
P( pralp™,b7) = o' P( p1.3) X pinge P(O"|P", P13, fringe) P(fringe)
P(“p1,3‘p*7 b*) - O/P(“p1 ,3) Zfringe P(b* |p*a P13, fringe)P(fringe)

12 R 22 1, N 22 12 R 22 1 5 2,2
Four o o o .
possible " FT, P R A N e, o
fringes: ok | oK ok | ok ok | ok ok | ox
0.2x0.2 =0.04 0.2x0.8=0.16 0.8x0.2=0.16 0.8x 0.8 = 0.64

(©S. Russell & P. Norwig, AIMA)
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An Example: The Wumpus World [cont.]

@ Start by rewriting as two separate equations:
P( p1~,3|p*7 b*) = alP( p113) Zfringe P(b*‘p*7 p1,3a fringe)P(fringe)
P(=p13|p™, b7) = &/ P(=p1,3) X fringe P(D7|P", —p1 3, fringe) P(fringe)

(©S. Russell & P. Norwig, AIMA)
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An Example: The Wumpus World [cont.]

@ Start by rewriting as two separate equations:

P( p1,3|p*7 b*) = alP( p173) Zfringe P(b*|p*7 p1,37 fringe)P(fringe)
P(=p13|p™, b7) = &/ P(=p1,3) X fringe P(07|P", —p1 3, fringe) P(fringe)

@ For each of them, P(b*|...) is 1 if the breezes occur, 0 otherwise:

> tinge P(D7|P", P13, fringe) P(fringe) = 1-0.04 +1-0.16 +1-0.16 + 0-0.64 = 0.36
> _tringe P(O*|P", —p1 3, fringe) P(fringe) = 1-0.04 +1-0.16 +0-0.16 + 0-0.64 = 0.2

T3 T3 3 3 3
T2 72 Tz 72 Tz 72 Tz 72 Tz 75
. | @ . | @ “ . @ . | @

OK 0K OK OK OK

1,1 21 EX] 11 21 X 11 21 31 1 21 31 111 21 31
B B B B B
OK 0K . 0K OK OK 0K . 0K 0K . OK 0K
0.2x0.2=0.04 0.2x08=0.16 0.8x0.2=0.16 0.2x0.2=0.04 0.2x0.8=0.16

(©S. Russell & P. Norwig, AIMA)




An Example: The Wumpus World [cont.]

@ Start by rewriting as two separate equations:
P( p1,3|p*7b*) = alP( p173)2fringe P(b*|p*7 P13, fringe)P(fringe)
P(=p13|p™, b7) = &/ P(=p1,3) X fringe P(07|P", —p1 3, fringe) P(fringe)
@ For each of them, P(b*|...) is 1 if the breezes occur, 0 otherwise:
> tinge P(D7IP", P13, fringe) P(fringe) = 1-0.04+1-0.16 +1-0.16 + 0-0.64 = 0.36
> tinge P(D7|P", =1 3, fringe) P(fringe) = 1-0.04 +1-0.16 +0-0.16 + 0- 0.64 = 0.2
= P(P1,3‘p*7 b*) - O‘,P(P1~3) Zfringe P(b*‘p*~ P1.3-, fringe)P(fringe)
= 0/(0.2,0.8)(0.36,0.2) = /(0.072,0.16) = (normalization, s.t. o/ ~ 4.31) ~ (0.31,0.69)

13 13 13 13 13
1, 22 1, 22 EE 22 1, 22 1, 22

; . . . \ \ . : .
OK 0K OK OK OK

1,1 21 EX] 11 21 EX 11 21 3.1 11 21 EX] 111 21 31

\ . \ \ . \ . .
OK 0K 0K OK OK OK 0K 0K OK 0K

0.2x0.2=0.04 02x0.8=0.16 0.8x0.2=0.16 0.2x0.2=0.04 0.2x08=0.16

(©S. Russell & P. Norwig, AIMA)




Exercise

Compute P(P»|p*, b*) in the same way.
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