
Fundamentals of Artificial Intelligence
Chapter 09: Inference in First-Order Logic

Roberto Sebastiani
DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it

https://disi.unitn.it/rseba/DIDATTICA/fai_2024/

Teaching assistants:
Mauro Dragoni, dragoni@fbk.eu, https://www.maurodragoni.com/teaching/fai/
Paolo Morettin, paolo.morettin@unitn.it, https://paolomorettin.github.io/

M.S. Course “Artificial Intelligence Systems”, academic year 2024-2025
Last update: Thursday 5th September, 2024, 18:59

Copyright notice: Most examples and images displayed in the slides of this course are taken from [Russell & Norwig, “Artificial Intelligence, a Modern Approach”, 3rd ed., Pearson],
including explicitly figures from the above-mentioned book, so that their copyright is detained by the authors. A few other material (text, figures, examples) is authored by (in alphabetical

order): Pieter Abbeel, Bonnie J. Dorr, Anca Dragan, Dan Klein, Nikita Kitaev, Tom Lenaerts, Michela Milano, Dana Nau, Maria Simi, who detain its copyright.
These slides cannot be displayed in public without the permission of the author. 1 / 56

roberto.sebastiani@unitn.it
https://disi.unitn.it/rseba/DIDATTICA/fai_2024/
dragoni@fbk.eu
https://www.maurodragoni.com/teaching/fai/
paolo.morettin@unitn.it
https://paolomorettin.github.io/

Outline

1 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

2 Handling Definite FOL KBs & Datalog
Forward Chaining (hints)
Backward Chaining (hints)

3 Resolution for General FOL KBs
CNF-Ization
Resolution
A Complete Example

2 / 56

Outline

1 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

2 Handling Definite FOL KBs & Datalog
Forward Chaining (hints)
Backward Chaining (hints)

3 Resolution for General FOL KBs
CNF-Ization
Resolution
A Complete Example

3 / 56

Outline

1 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

2 Handling Definite FOL KBs & Datalog
Forward Chaining (hints)
Backward Chaining (hints)

3 Resolution for General FOL KBs
CNF-Ization
Resolution
A Complete Example

4 / 56

Term/Subformula Substitutions

Notation

Substitution: “Subst({e1/e2},e)” or “e{e1/e2}”:
the expression obtained by simultaneously substituting every occurrence of e1 with e2 in e

e1, e2 either both terms (term substitution)
or both subformulas (subformula substitution)
e is either a term or a formula (only term for term substitution)

Examples:
(t. sub.): (y + 1 = 1 + y){y/S(x)} =⇒ (S(x) + 1 = 1 + S(x))
(s.f. sub.): (Even(x) ∨ Odd(x)){Even(x)/Odd(S(x))} =⇒ ((Odd(S(x)) ∨ Odd(x))

Multiple substitution: apply simulteneously all substitutions in a list: e{e1/e2,e3/e4}
ex: (P(x , y) → Q(x , y)){x/1, y/2} =⇒ (P(1, 2) → Q(1, 2))
multiple substitutions are simultaneous:
ex: P(x) ∨ Q(y){x/y , y/f (b)} = P(y) ∨ Q(f (b) (not P(f (b)) ∨ Q(f (b)))

If θ is a substitution list and e an expression (formula/term),
then we denote the result of a substitution as eθ

5 / 56

Term/Subformula Substitutions

Notation

Substitution: “Subst({e1/e2},e)” or “e{e1/e2}”:
the expression obtained by simultaneously substituting every occurrence of e1 with e2 in e

e1, e2 either both terms (term substitution)
or both subformulas (subformula substitution)
e is either a term or a formula (only term for term substitution)

Examples:
(t. sub.): (y + 1 = 1 + y){y/S(x)} =⇒ (S(x) + 1 = 1 + S(x))
(s.f. sub.): (Even(x) ∨ Odd(x)){Even(x)/Odd(S(x))} =⇒ ((Odd(S(x)) ∨ Odd(x))

Multiple substitution: apply simulteneously all substitutions in a list: e{e1/e2,e3/e4}
ex: (P(x , y) → Q(x , y)){x/1, y/2} =⇒ (P(1, 2) → Q(1, 2))
multiple substitutions are simultaneous:
ex: P(x) ∨ Q(y){x/y , y/f (b)} = P(y) ∨ Q(f (b) (not P(f (b)) ∨ Q(f (b)))

If θ is a substitution list and e an expression (formula/term),
then we denote the result of a substitution as eθ

5 / 56

Term/Subformula Substitutions

Notation

Substitution: “Subst({e1/e2},e)” or “e{e1/e2}”:
the expression obtained by simultaneously substituting every occurrence of e1 with e2 in e

e1, e2 either both terms (term substitution)
or both subformulas (subformula substitution)
e is either a term or a formula (only term for term substitution)

Examples:
(t. sub.): (y + 1 = 1 + y){y/S(x)} =⇒ (S(x) + 1 = 1 + S(x))
(s.f. sub.): (Even(x) ∨ Odd(x)){Even(x)/Odd(S(x))} =⇒ ((Odd(S(x)) ∨ Odd(x))

Multiple substitution: apply simulteneously all substitutions in a list: e{e1/e2,e3/e4}
ex: (P(x , y) → Q(x , y)){x/1, y/2} =⇒ (P(1, 2) → Q(1, 2))
multiple substitutions are simultaneous:
ex: P(x) ∨ Q(y){x/y , y/f (b)} = P(y) ∨ Q(f (b) (not P(f (b)) ∨ Q(f (b)))

If θ is a substitution list and e an expression (formula/term),
then we denote the result of a substitution as eθ

5 / 56

Term/Subformula Substitutions

Notation

Substitution: “Subst({e1/e2},e)” or “e{e1/e2}”:
the expression obtained by simultaneously substituting every occurrence of e1 with e2 in e

e1, e2 either both terms (term substitution)
or both subformulas (subformula substitution)
e is either a term or a formula (only term for term substitution)

Examples:
(t. sub.): (y + 1 = 1 + y){y/S(x)} =⇒ (S(x) + 1 = 1 + S(x))
(s.f. sub.): (Even(x) ∨ Odd(x)){Even(x)/Odd(S(x))} =⇒ ((Odd(S(x)) ∨ Odd(x))

Multiple substitution: apply simulteneously all substitutions in a list: e{e1/e2,e3/e4}
ex: (P(x , y) → Q(x , y)){x/1, y/2} =⇒ (P(1, 2) → Q(1, 2))
multiple substitutions are simultaneous:
ex: P(x) ∨ Q(y){x/y , y/f (b)} = P(y) ∨ Q(f (b) (not P(f (b)) ∨ Q(f (b)))

If θ is a substitution list and e an expression (formula/term),
then we denote the result of a substitution as eθ

5 / 56

Substitution with equivalent terms

Equal-term substitution rule

Γ ∧ (t1 = t2) ∧ α

Γ ∧ (t1 = t2) ∧ α ∧ α{t1/t2}

Ex: (S(x) = x + 1) ∧ (0 ̸= S(x)) =⇒ (S(x) = x + 1) ∧ (0 ̸= S(x)) ∧ (0 ̸= x + 1)
Preserves validity: M(Γ ∧ (t1 = t2) ∧ α ∧ α{t1/t2}) = M(Γ ∧ (t1 = t2) ∧ α)

α can be safely dropped from the result

6 / 56

Substitution with equivalent terms

Equal-term substitution rule

Γ ∧ (t1 = t2) ∧ α

Γ ∧ (t1 = t2) ∧ α ∧ α{t1/t2}

Ex: (S(x) = x + 1) ∧ (0 ̸= S(x)) =⇒ (S(x) = x + 1) ∧ (0 ̸= S(x)) ∧ (0 ̸= x + 1)
Preserves validity: M(Γ ∧ (t1 = t2) ∧ α ∧ α{t1/t2}) = M(Γ ∧ (t1 = t2) ∧ α)

α can be safely dropped from the result

6 / 56

Substitution with equivalent terms

Equal-term substitution rule

Γ ∧ (t1 = t2) ∧ α

Γ ∧ (t1 = t2) ∧ α ∧ α{t1/t2}

Ex: (S(x) = x + 1) ∧ (0 ̸= S(x)) =⇒ (S(x) = x + 1) ∧ (0 ̸= S(x)) ∧ (0 ̸= x + 1)
Preserves validity: M(Γ ∧ (t1 = t2) ∧ α ∧ α{t1/t2}) = M(Γ ∧ (t1 = t2) ∧ α)

α can be safely dropped from the result

6 / 56

Substitution with equivalent terms

Equal-term substitution rule

Γ ∧ (t1 = t2) ∧ α

Γ ∧ (t1 = t2) ∧ α ∧ α{t1/t2}

Ex: (S(x) = x + 1) ∧ (0 ̸= S(x)) =⇒ (S(x) = x + 1) ∧ (0 ̸= S(x)) ∧ (0 ̸= x + 1)
Preserves validity: M(Γ ∧ (t1 = t2) ∧ α ∧ α{t1/t2}) = M(Γ ∧ (t1 = t2) ∧ α)

α can be safely dropped from the result

6 / 56

Substitution with equivalent formulas

Equivalent-subformula substitution rule

Γ ∧ (β1 ↔ β2) ∧ α

Γ ∧ (β1 ↔ β2) ∧ α ∧ α{β1/β2}
Ex: (Even(x) ↔ Odd(S(x)))∧(Even(x)∨Odd(x)) =⇒
(Even(x) ↔ Odd(S(x)))∧(Even(x)∨Odd(x))∧(Odd(S(x))∨Odd(x))

Preserves validity: M(Γ ∧ (β1 = β2) ∧ α ∧ α{β1/β2}) = M(Γ ∧ (β1 ↔ β2) ∧ α)

α can be safely dropped from the result

7 / 56

Substitution with equivalent formulas

Equivalent-subformula substitution rule

Γ ∧ (β1 ↔ β2) ∧ α

Γ ∧ (β1 ↔ β2) ∧ α ∧ α{β1/β2}
Ex: (Even(x) ↔ Odd(S(x)))∧(Even(x)∨Odd(x)) =⇒
(Even(x) ↔ Odd(S(x)))∧(Even(x)∨Odd(x))∧(Odd(S(x))∨Odd(x))

Preserves validity: M(Γ ∧ (β1 = β2) ∧ α ∧ α{β1/β2}) = M(Γ ∧ (β1 ↔ β2) ∧ α)

α can be safely dropped from the result

7 / 56

Substitution with equivalent formulas

Equivalent-subformula substitution rule

Γ ∧ (β1 ↔ β2) ∧ α

Γ ∧ (β1 ↔ β2) ∧ α ∧ α{β1/β2}
Ex: (Even(x) ↔ Odd(S(x)))∧(Even(x)∨Odd(x)) =⇒
(Even(x) ↔ Odd(S(x)))∧(Even(x)∨Odd(x))∧(Odd(S(x))∨Odd(x))

Preserves validity: M(Γ ∧ (β1 = β2) ∧ α ∧ α{β1/β2}) = M(Γ ∧ (β1 ↔ β2) ∧ α)

α can be safely dropped from the result

7 / 56

Substitution with equivalent formulas

Equivalent-subformula substitution rule

Γ ∧ (β1 ↔ β2) ∧ α

Γ ∧ (β1 ↔ β2) ∧ α ∧ α{β1/β2}
Ex: (Even(x) ↔ Odd(S(x)))∧(Even(x)∨Odd(x)) =⇒
(Even(x) ↔ Odd(S(x)))∧(Even(x)∨Odd(x))∧(Odd(S(x))∨Odd(x))

Preserves validity: M(Γ ∧ (β1 = β2) ∧ α ∧ α{β1/β2}) = M(Γ ∧ (β1 ↔ β2) ∧ α)

α can be safely dropped from the result

7 / 56

Universal Instantiation (UI)

Every instantiation of a universally quantified-sentence is entailed by it:

Γ ∧ ∀x .α
Γ ∧ ∀x .α ∧ α{x/t}

for every variable x and term t
Ex: ∀x .((King(x) ∧ Greedy(x)) → Evil(x))

(King(John) ∧ Greedy(John)) → Evil(John)
(King(Richard) ∧ Greedy(Richard)) → Evil(Richard)
(King(Father(John)) ∧ Greedy(Father(John))) → Evil(Father(John))
(King(Father(Father(John))) ∧ Greedy(Father(Father(John)))) → Evil(Father(Father(John)))
...

Preserves validity:
M(Γ ∧ ∀x .α ∧ α{x/t}) = M(Γ ∧ ∀x .α)

8 / 56

Universal Instantiation (UI)

Every instantiation of a universally quantified-sentence is entailed by it:

Γ ∧ ∀x .α
Γ ∧ ∀x .α ∧ α{x/t}

for every variable x and term t
Ex: ∀x .((King(x) ∧ Greedy(x)) → Evil(x))

(King(John) ∧ Greedy(John)) → Evil(John)
(King(Richard) ∧ Greedy(Richard)) → Evil(Richard)
(King(Father(John)) ∧ Greedy(Father(John))) → Evil(Father(John))
(King(Father(Father(John))) ∧ Greedy(Father(Father(John)))) → Evil(Father(Father(John)))
...

Preserves validity:
M(Γ ∧ ∀x .α ∧ α{x/t}) = M(Γ ∧ ∀x .α)

8 / 56

Universal Instantiation (UI)

Every instantiation of a universally quantified-sentence is entailed by it:

Γ ∧ ∀x .α
Γ ∧ ∀x .α ∧ α{x/t}

for every variable x and term t
Ex: ∀x .((King(x) ∧ Greedy(x)) → Evil(x))

(King(John) ∧ Greedy(John)) → Evil(John)
(King(Richard) ∧ Greedy(Richard)) → Evil(Richard)
(King(Father(John)) ∧ Greedy(Father(John))) → Evil(Father(John))
(King(Father(Father(John))) ∧ Greedy(Father(Father(John)))) → Evil(Father(Father(John)))
...

Preserves validity:
M(Γ ∧ ∀x .α ∧ α{x/t}) = M(Γ ∧ ∀x .α)

8 / 56

Existential Instantiation (EI)

An existentially quantified-sentence can be substituted by one of its instantation with a fresh
constant: Γ ∧ ∃x .α

Γ ∧ α{x/C}

for every variable x and for a “fresh” constant C, i.e. a constant which does not appear in
Γ ∧ ∃x .α
C is a Skolem constant, EI subcase of Skolemization (see later)
Intuition: if there is an object satisfying some condition, then we give a (new) name to it
Ex: ∃x .(Crown(x) ∧ OnHead(x , John))

(Crown(C) ∧ OnHead(C, John))
given “There is a crown on John’s head”, I call “C” such crown

Preserves satisfiability (aka preserves inferential equivalence)
M(Γ ∧ α{x/C}) ̸=∅ iff M(Γ ∧ ∃x .α) ̸=∅
(i.e.. (Γ ∧ α{x/C}) |= β iff (Γ ∧ ∃x .α) |= β, for every β)

Example from math: ∃x .(d(xy)
dy = xy), we call it “e” =⇒ (d(ey)

dy = ey)

9 / 56

Existential Instantiation (EI)

An existentially quantified-sentence can be substituted by one of its instantation with a fresh
constant: Γ ∧ ∃x .α

Γ ∧ α{x/C}

for every variable x and for a “fresh” constant C, i.e. a constant which does not appear in
Γ ∧ ∃x .α
C is a Skolem constant, EI subcase of Skolemization (see later)
Intuition: if there is an object satisfying some condition, then we give a (new) name to it
Ex: ∃x .(Crown(x) ∧ OnHead(x , John))

(Crown(C) ∧ OnHead(C, John))
given “There is a crown on John’s head”, I call “C” such crown

Preserves satisfiability (aka preserves inferential equivalence)
M(Γ ∧ α{x/C}) ̸=∅ iff M(Γ ∧ ∃x .α) ̸=∅
(i.e.. (Γ ∧ α{x/C}) |= β iff (Γ ∧ ∃x .α) |= β, for every β)

Example from math: ∃x .(d(xy)
dy = xy), we call it “e” =⇒ (d(ey)

dy = ey)

9 / 56

Existential Instantiation (EI)

An existentially quantified-sentence can be substituted by one of its instantation with a fresh
constant: Γ ∧ ∃x .α

Γ ∧ α{x/C}

for every variable x and for a “fresh” constant C, i.e. a constant which does not appear in
Γ ∧ ∃x .α
C is a Skolem constant, EI subcase of Skolemization (see later)
Intuition: if there is an object satisfying some condition, then we give a (new) name to it
Ex: ∃x .(Crown(x) ∧ OnHead(x , John))

(Crown(C) ∧ OnHead(C, John))
given “There is a crown on John’s head”, I call “C” such crown

Preserves satisfiability (aka preserves inferential equivalence)
M(Γ ∧ α{x/C}) ̸=∅ iff M(Γ ∧ ∃x .α) ̸=∅
(i.e.. (Γ ∧ α{x/C}) |= β iff (Γ ∧ ∃x .α) |= β, for every β)

Example from math: ∃x .(d(xy)
dy = xy), we call it “e” =⇒ (d(ey)

dy = ey)

9 / 56

Existential Instantiation (EI)

An existentially quantified-sentence can be substituted by one of its instantation with a fresh
constant: Γ ∧ ∃x .α

Γ ∧ α{x/C}

for every variable x and for a “fresh” constant C, i.e. a constant which does not appear in
Γ ∧ ∃x .α
C is a Skolem constant, EI subcase of Skolemization (see later)
Intuition: if there is an object satisfying some condition, then we give a (new) name to it
Ex: ∃x .(Crown(x) ∧ OnHead(x , John))

(Crown(C) ∧ OnHead(C, John))
given “There is a crown on John’s head”, I call “C” such crown

Preserves satisfiability (aka preserves inferential equivalence)
M(Γ ∧ α{x/C}) ̸=∅ iff M(Γ ∧ ∃x .α) ̸=∅
(i.e.. (Γ ∧ α{x/C}) |= β iff (Γ ∧ ∃x .α) |= β, for every β)

Example from math: ∃x .(d(xy)
dy = xy), we call it “e” =⇒ (d(ey)

dy = ey)

9 / 56

Existential Instantiation (EI)

An existentially quantified-sentence can be substituted by one of its instantation with a fresh
constant: Γ ∧ ∃x .α

Γ ∧ α{x/C}

for every variable x and for a “fresh” constant C, i.e. a constant which does not appear in
Γ ∧ ∃x .α
C is a Skolem constant, EI subcase of Skolemization (see later)
Intuition: if there is an object satisfying some condition, then we give a (new) name to it
Ex: ∃x .(Crown(x) ∧ OnHead(x , John))

(Crown(C) ∧ OnHead(C, John))
given “There is a crown on John’s head”, I call “C” such crown

Preserves satisfiability (aka preserves inferential equivalence)
M(Γ ∧ α{x/C}) ̸=∅ iff M(Γ ∧ ∃x .α) ̸=∅
(i.e.. (Γ ∧ α{x/C}) |= β iff (Γ ∧ ∃x .α) |= β, for every β)

Example from math: ∃x .(d(xy)
dy = xy), we call it “e” =⇒ (d(ey)

dy = ey)

9 / 56

Remarks

About Universal Instantiation:
UI can be applied several times to add new sentences;
the new Γ is logically equivalent to the old Γ

About Existential Instantiation:
EI can be applied once to replace the existential sentence;
the new Γ is not equivalent to the old,
but is (un)satisfiable iff the old Γ is (un)satisfiable

=⇒ the new Γ can infer β iff the old Γ can infer β

Before applying UI or EI, sentences must be rewritten s.t. negations (even when implicit) must be
pushed inside the quantifications:

¬∀x .α =⇒ ∃x .¬α
¬∃x .α =⇒ ∀x .¬α
ex: ∀x .P(x) → ¬∃y .Q(y)
=⇒ ¬∀x .P(x) ∨ ¬∃y .Q(y)
=⇒ ∃x .¬P(x) ∨ ∀y .¬Q(y)

10 / 56

Remarks

About Universal Instantiation:
UI can be applied several times to add new sentences;
the new Γ is logically equivalent to the old Γ

About Existential Instantiation:
EI can be applied once to replace the existential sentence;
the new Γ is not equivalent to the old,
but is (un)satisfiable iff the old Γ is (un)satisfiable

=⇒ the new Γ can infer β iff the old Γ can infer β

Before applying UI or EI, sentences must be rewritten s.t. negations (even when implicit) must be
pushed inside the quantifications:

¬∀x .α =⇒ ∃x .¬α
¬∃x .α =⇒ ∀x .¬α
ex: ∀x .P(x) → ¬∃y .Q(y)
=⇒ ¬∀x .P(x) ∨ ¬∃y .Q(y)
=⇒ ∃x .¬P(x) ∨ ∀y .¬Q(y)

10 / 56

Remarks

About Universal Instantiation:
UI can be applied several times to add new sentences;
the new Γ is logically equivalent to the old Γ

About Existential Instantiation:
EI can be applied once to replace the existential sentence;
the new Γ is not equivalent to the old,
but is (un)satisfiable iff the old Γ is (un)satisfiable

=⇒ the new Γ can infer β iff the old Γ can infer β

Before applying UI or EI, sentences must be rewritten s.t. negations (even when implicit) must be
pushed inside the quantifications:

¬∀x .α =⇒ ∃x .¬α
¬∃x .α =⇒ ∀x .¬α
ex: ∀x .P(x) → ¬∃y .Q(y)
=⇒ ¬∀x .P(x) ∨ ¬∃y .Q(y)
=⇒ ∃x .¬P(x) ∨ ∀y .¬Q(y)

10 / 56

Remarks

About Universal Instantiation:
UI can be applied several times to add new sentences;
the new Γ is logically equivalent to the old Γ

About Existential Instantiation:
EI can be applied once to replace the existential sentence;
the new Γ is not equivalent to the old,
but is (un)satisfiable iff the old Γ is (un)satisfiable

=⇒ the new Γ can infer β iff the old Γ can infer β

Before applying UI or EI, sentences must be rewritten s.t. negations (even when implicit) must be
pushed inside the quantifications:

¬∀x .α =⇒ ∃x .¬α
¬∃x .α =⇒ ∀x .¬α
ex: ∀x .P(x) → ¬∃y .Q(y)
=⇒ ¬∀x .P(x) ∨ ¬∃y .Q(y)
=⇒ ∃x .¬P(x) ∨ ∀y .¬Q(y)

10 / 56

Outline

1 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

2 Handling Definite FOL KBs & Datalog
Forward Chaining (hints)
Backward Chaining (hints)

3 Resolution for General FOL KBs
CNF-Ization
Resolution
A Complete Example

11 / 56

Reduction to Propositional Inference (aka propositionalization))

Idea: Given a FOL closed KB Γ and query α, Convert (Γ ∧ ¬α) to PL
=⇒ use a PL SAT solver to check PL (un)satisfiability
Trick:

replace variables with ground terms, creating all possible instantiations of quantified sentences
convert atomic sentences into propositional symbols

e.g. “King(John)” =⇒ “King_John”,
e.g. “Brother(John,Richard)” =⇒ “Brother_John-Richard”,

Theorem: (Herbrand, 1930)
If a ground sentence α is entailed by an FOL KB Γ,
then it is entailed by a finite subset of the propositionalized KB Γ

=⇒ Every FOL KB Γ can be propositionalized s.t. to preserve entailment

The vice-versa does not hold
=⇒ works if α is entailed, loops if α is not entailed

12 / 56

Reduction to Propositional Inference (aka propositionalization))

Idea: Given a FOL closed KB Γ and query α, Convert (Γ ∧ ¬α) to PL
=⇒ use a PL SAT solver to check PL (un)satisfiability
Trick:

replace variables with ground terms, creating all possible instantiations of quantified sentences
convert atomic sentences into propositional symbols

e.g. “King(John)” =⇒ “King_John”,
e.g. “Brother(John,Richard)” =⇒ “Brother_John-Richard”,

Theorem: (Herbrand, 1930)
If a ground sentence α is entailed by an FOL KB Γ,
then it is entailed by a finite subset of the propositionalized KB Γ

=⇒ Every FOL KB Γ can be propositionalized s.t. to preserve entailment

The vice-versa does not hold
=⇒ works if α is entailed, loops if α is not entailed

12 / 56

Reduction to Propositional Inference (aka propositionalization))

Idea: Given a FOL closed KB Γ and query α, Convert (Γ ∧ ¬α) to PL
=⇒ use a PL SAT solver to check PL (un)satisfiability
Trick:

replace variables with ground terms, creating all possible instantiations of quantified sentences
convert atomic sentences into propositional symbols

e.g. “King(John)” =⇒ “King_John”,
e.g. “Brother(John,Richard)” =⇒ “Brother_John-Richard”,

Theorem: (Herbrand, 1930)
If a ground sentence α is entailed by an FOL KB Γ,
then it is entailed by a finite subset of the propositionalized KB Γ

=⇒ Every FOL KB Γ can be propositionalized s.t. to preserve entailment

The vice-versa does not hold
=⇒ works if α is entailed, loops if α is not entailed

12 / 56

Reduction to Propositional Inference (aka propositionalization))

Idea: Given a FOL closed KB Γ and query α, Convert (Γ ∧ ¬α) to PL
=⇒ use a PL SAT solver to check PL (un)satisfiability
Trick:

replace variables with ground terms, creating all possible instantiations of quantified sentences
convert atomic sentences into propositional symbols

e.g. “King(John)” =⇒ “King_John”,
e.g. “Brother(John,Richard)” =⇒ “Brother_John-Richard”,

Theorem: (Herbrand, 1930)
If a ground sentence α is entailed by an FOL KB Γ,
then it is entailed by a finite subset of the propositionalized KB Γ

=⇒ Every FOL KB Γ can be propositionalized s.t. to preserve entailment

The vice-versa does not hold
=⇒ works if α is entailed, loops if α is not entailed

12 / 56

Reduction to Propositional Inference: Example

Suppose Γ contains only:
∀x .((King(x) ∧ Greedy(x)) → Evil(x))
King(John)
Greedy(John)
Brother(Richard , John)

Instantiating the universal sentence in all possible ways:
(King(John) ∧ Greedy(John)) → Evil(John)
(King(Richard) ∧ Greedy(Richard)) → Evil(Richard)
King(John)
Greedy(John)
Brother(Richard , John)

The new Γ is propositionalized:
(King_John ∧ Greedy_John) → Evil_John
(King_Richard ∧ Greedy_Richard) → Evil_Richard
King_John
Greedy_John
Brother_Richard-John

Evil_John entailed by new Γ (Evil(John) entailed by old Γ)
13 / 56

Reduction to Propositional Inference: Example

Suppose Γ contains only:
∀x .((King(x) ∧ Greedy(x)) → Evil(x))
King(John)
Greedy(John)
Brother(Richard , John)

Instantiating the universal sentence in all possible ways:
(King(John) ∧ Greedy(John)) → Evil(John)
(King(Richard) ∧ Greedy(Richard)) → Evil(Richard)
King(John)
Greedy(John)
Brother(Richard , John)

The new Γ is propositionalized:
(King_John ∧ Greedy_John) → Evil_John
(King_Richard ∧ Greedy_Richard) → Evil_Richard
King_John
Greedy_John
Brother_Richard-John

Evil_John entailed by new Γ (Evil(John) entailed by old Γ)
13 / 56

Reduction to Propositional Inference: Example

Suppose Γ contains only:
∀x .((King(x) ∧ Greedy(x)) → Evil(x))
King(John)
Greedy(John)
Brother(Richard , John)

Instantiating the universal sentence in all possible ways:
(King(John) ∧ Greedy(John)) → Evil(John)
(King(Richard) ∧ Greedy(Richard)) → Evil(Richard)
King(John)
Greedy(John)
Brother(Richard , John)

The new Γ is propositionalized:
(King_John ∧ Greedy_John) → Evil_John
(King_Richard ∧ Greedy_Richard) → Evil_Richard
King_John
Greedy_John
Brother_Richard-John

Evil_John entailed by new Γ (Evil(John) entailed by old Γ)
13 / 56

Reduction to Propositional Inference: Example

Suppose Γ contains only:
∀x .((King(x) ∧ Greedy(x)) → Evil(x))
King(John)
Greedy(John)
Brother(Richard , John)

Instantiating the universal sentence in all possible ways:
(King(John) ∧ Greedy(John)) → Evil(John)
(King(Richard) ∧ Greedy(Richard)) → Evil(Richard)
King(John)
Greedy(John)
Brother(Richard , John)

The new Γ is propositionalized:
(King_John ∧ Greedy_John) → Evil_John
(King_Richard ∧ Greedy_Richard) → Evil_Richard
King_John
Greedy_John
Brother_Richard-John

Evil_John entailed by new Γ (Evil(John) entailed by old Γ)
13 / 56

Problems with Propositionalization

Propositionalization generates lots of irrelevant sentences
Ex:

∀x .((King(x) ∧ Greedy(x)) → Evil(x))
King(John)
∀y .Greedy(y)
Brother(Richard , John)

=⇒ produces irrelevant atoms like Greedy(Richard)
With p k-ary predicates and n constants, p · nk instantiations

14 / 56

Problems with Propositionalization

Propositionalization generates lots of irrelevant sentences
Ex:

∀x .((King(x) ∧ Greedy(x)) → Evil(x))
King(John)
∀y .Greedy(y)
Brother(Richard , John)

=⇒ produces irrelevant atoms like Greedy(Richard)
With p k-ary predicates and n constants, p · nk instantiations

14 / 56

Problems with Propositionalization [cont.]

Problem: nested function applications
e.g. Father(John), Father(Father(John)), Father(Father(Father(John))), ...

=⇒ infinite instantiations

Actual Trick: for k = 0 to ∞, use terms of function nesting depth k
create propositionalized Γ by instantiating depth-k terms
if Γ |= α, then will find a contradiction for some finite k
if Γ ̸|= α, may find a loop forever

Theorem: (Turing, 1936), (Church, 1936):
Entailment in FOL is semidecidable
Propositionalization not very efficient in general, and used only in very particular cases

15 / 56

Problems with Propositionalization [cont.]

Problem: nested function applications
e.g. Father(John), Father(Father(John)), Father(Father(Father(John))), ...

=⇒ infinite instantiations

Actual Trick: for k = 0 to ∞, use terms of function nesting depth k
create propositionalized Γ by instantiating depth-k terms
if Γ |= α, then will find a contradiction for some finite k
if Γ ̸|= α, may find a loop forever

Theorem: (Turing, 1936), (Church, 1936):
Entailment in FOL is semidecidable
Propositionalization not very efficient in general, and used only in very particular cases

15 / 56

Problems with Propositionalization [cont.]

Problem: nested function applications
e.g. Father(John), Father(Father(John)), Father(Father(Father(John))), ...

=⇒ infinite instantiations

Actual Trick: for k = 0 to ∞, use terms of function nesting depth k
create propositionalized Γ by instantiating depth-k terms
if Γ |= α, then will find a contradiction for some finite k
if Γ ̸|= α, may find a loop forever

Theorem: (Turing, 1936), (Church, 1936):
Entailment in FOL is semidecidable
Propositionalization not very efficient in general, and used only in very particular cases

15 / 56

Problems with Propositionalization [cont.]

Problem: nested function applications
e.g. Father(John), Father(Father(John)), Father(Father(Father(John))), ...

=⇒ infinite instantiations

Actual Trick: for k = 0 to ∞, use terms of function nesting depth k
create propositionalized Γ by instantiating depth-k terms
if Γ |= α, then will find a contradiction for some finite k
if Γ ̸|= α, may find a loop forever

Theorem: (Turing, 1936), (Church, 1936):
Entailment in FOL is semidecidable
Propositionalization not very efficient in general, and used only in very particular cases

15 / 56

Outline

1 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

2 Handling Definite FOL KBs & Datalog
Forward Chaining (hints)
Backward Chaining (hints)

3 Resolution for General FOL KBs
CNF-Ization
Resolution
A Complete Example

16 / 56

Generalized Modus Ponens (GMP)

“Lifted inference”: Combine PL inference with UI/EI
Aristotle’s “Modus Ponens” syllogism:
“All men are mortal; Socrates is a man; thus Socrates is mortal.”

Man(Socrates) ∀x .(Man(x) → Mortal(x))
Mortal(Socrates)

Generalized Modus Ponens:
if exists a variable-to-term substitution θ s.t., for all i ∈ 1..k , α′

iθ = αiθ, then

α′
1, α

′
2, ..., α

′
k , (α1 ∧ α2 ∧ ... ∧ αk) → β

βθ

all (free) variables implicitly assumed as universally quantified
θ substitutes (universally quantified) variables with terms

Ex: using θ
def
= {x/John, y/John} we can infer Evil(John) from:

∀x .((King(x) ∧ Greedy(x)) → Evil(x)), King(John), ∀y .Greedy(y)

GMP used w. KB of definite clauses (exactly one positive literal)
Used in Prolog, Datalog, Production-rule systems,...

17 / 56

Generalized Modus Ponens (GMP)

“Lifted inference”: Combine PL inference with UI/EI
Aristotle’s “Modus Ponens” syllogism:
“All men are mortal; Socrates is a man; thus Socrates is mortal.”

Man(Socrates) ∀x .(Man(x) → Mortal(x))
Mortal(Socrates)

Generalized Modus Ponens:
if exists a variable-to-term substitution θ s.t., for all i ∈ 1..k , α′

iθ = αiθ, then

α′
1, α

′
2, ..., α

′
k , (α1 ∧ α2 ∧ ... ∧ αk) → β

βθ

all (free) variables implicitly assumed as universally quantified
θ substitutes (universally quantified) variables with terms

Ex: using θ
def
= {x/John, y/John} we can infer Evil(John) from:

∀x .((King(x) ∧ Greedy(x)) → Evil(x)), King(John), ∀y .Greedy(y)

GMP used w. KB of definite clauses (exactly one positive literal)
Used in Prolog, Datalog, Production-rule systems,...

17 / 56

Generalized Modus Ponens (GMP)

“Lifted inference”: Combine PL inference with UI/EI
Aristotle’s “Modus Ponens” syllogism:
“All men are mortal; Socrates is a man; thus Socrates is mortal.”

Man(Socrates) ∀x .(Man(x) → Mortal(x))
Mortal(Socrates)

Generalized Modus Ponens:
if exists a variable-to-term substitution θ s.t., for all i ∈ 1..k , α′

iθ = αiθ, then

α′
1, α

′
2, ..., α

′
k , (α1 ∧ α2 ∧ ... ∧ αk) → β

βθ

all (free) variables implicitly assumed as universally quantified
θ substitutes (universally quantified) variables with terms

Ex: using θ
def
= {x/John, y/John} we can infer Evil(John) from:

∀x .((King(x) ∧ Greedy(x)) → Evil(x)), King(John), ∀y .Greedy(y)

GMP used w. KB of definite clauses (exactly one positive literal)
Used in Prolog, Datalog, Production-rule systems,...

17 / 56

Generalized Modus Ponens (GMP)

“Lifted inference”: Combine PL inference with UI/EI
Aristotle’s “Modus Ponens” syllogism:
“All men are mortal; Socrates is a man; thus Socrates is mortal.”

Man(Socrates) ∀x .(Man(x) → Mortal(x))
Mortal(Socrates)

Generalized Modus Ponens:
if exists a variable-to-term substitution θ s.t., for all i ∈ 1..k , α′

iθ = αiθ, then

α′
1, α

′
2, ..., α

′
k , (α1 ∧ α2 ∧ ... ∧ αk) → β

βθ

all (free) variables implicitly assumed as universally quantified
θ substitutes (universally quantified) variables with terms

Ex: using θ
def
= {x/John, y/John} we can infer Evil(John) from:

∀x .((King(x) ∧ Greedy(x)) → Evil(x)), King(John), ∀y .Greedy(y)

GMP used w. KB of definite clauses (exactly one positive literal)
Used in Prolog, Datalog, Production-rule systems,...

17 / 56

Generalized Modus Ponens (GMP)

“Lifted inference”: Combine PL inference with UI/EI
Aristotle’s “Modus Ponens” syllogism:
“All men are mortal; Socrates is a man; thus Socrates is mortal.”

Man(Socrates) ∀x .(Man(x) → Mortal(x))
Mortal(Socrates)

Generalized Modus Ponens:
if exists a variable-to-term substitution θ s.t., for all i ∈ 1..k , α′

iθ = αiθ, then

α′
1, α

′
2, ..., α

′
k , (α1 ∧ α2 ∧ ... ∧ αk) → β

βθ

all (free) variables implicitly assumed as universally quantified
θ substitutes (universally quantified) variables with terms

Ex: using θ
def
= {x/John, y/John} we can infer Evil(John) from:

∀x .((King(x) ∧ Greedy(x)) → Evil(x)), King(John), ∀y .Greedy(y)

GMP used w. KB of definite clauses (exactly one positive literal)
Used in Prolog, Datalog, Production-rule systems,...

17 / 56

Generalized Modus Ponens (GMP)

“Lifted inference”: Combine PL inference with UI/EI
Aristotle’s “Modus Ponens” syllogism:
“All men are mortal; Socrates is a man; thus Socrates is mortal.”

Man(Socrates) ∀x .(Man(x) → Mortal(x))
Mortal(Socrates)

Generalized Modus Ponens:
if exists a variable-to-term substitution θ s.t., for all i ∈ 1..k , α′

iθ = αiθ, then

α′
1, α

′
2, ..., α

′
k , (α1 ∧ α2 ∧ ... ∧ αk) → β

βθ

all (free) variables implicitly assumed as universally quantified
θ substitutes (universally quantified) variables with terms

Ex: using θ
def
= {x/John, y/John} we can infer Evil(John) from:

∀x .((King(x) ∧ Greedy(x)) → Evil(x)), King(John), ∀y .Greedy(y)

GMP used w. KB of definite clauses (exactly one positive literal)
Used in Prolog, Datalog, Production-rule systems,...

17 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

18 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

18 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

18 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

18 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

18 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

18 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

18 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

18 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

18 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

18 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

18 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

18 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

18 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

18 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

18 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

19 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

19 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

19 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

19 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

19 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

19 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

19 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

19 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

19 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

19 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

19 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

19 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

19 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

19 / 56

Unification

Unification: Given ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for ⟨α′
1, α

′
2, ..., α

′
k ⟩ and ⟨α1, α2, ..., αk ⟩

Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) = {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use different variables!
=⇒ (Standardizing apart): rename variables to avoid name clashes

Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OJ, x2/John}
{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1}, ∀x2.β{x/x2}}, s.t. x1, x2 new

19 / 56

Most-General Unifier (MGU)

Unifiers are not unique
ex: Unify(Knows(John, x),Knows(y , z))
could return {y/John, x/z} or {y/John, x/John, z/John}

Given α, β, the unifier θ1 is more general than the unifier θ2 for α, β if exists θ3 s.t. θ2 = θ1θ3

ex: {y/John, x/z} more general than {y/John, x/John, z/John}:
{y/John, x/John, z/John} = {y/John, x/z}{z/John}

Theorem: If exists an unifier for α, β, then exists a most general unifier (MGU) θ for α, β
Ex: {y/John, x/z} MGU for Knows(John, x),Knows(y , z)
Ex: an MGU is unique modulo variable renaming

UNIFY() returns the MGU between two (lists of) formulas
efficiency optimizations based on predicate/term indexing techniques (see AIMA if interested)

20 / 56

Most-General Unifier (MGU)

Unifiers are not unique
ex: Unify(Knows(John, x),Knows(y , z))
could return {y/John, x/z} or {y/John, x/John, z/John}

Given α, β, the unifier θ1 is more general than the unifier θ2 for α, β if exists θ3 s.t. θ2 = θ1θ3

ex: {y/John, x/z} more general than {y/John, x/John, z/John}:
{y/John, x/John, z/John} = {y/John, x/z}{z/John}

Theorem: If exists an unifier for α, β, then exists a most general unifier (MGU) θ for α, β
Ex: {y/John, x/z} MGU for Knows(John, x),Knows(y , z)
Ex: an MGU is unique modulo variable renaming

UNIFY() returns the MGU between two (lists of) formulas
efficiency optimizations based on predicate/term indexing techniques (see AIMA if interested)

20 / 56

Most-General Unifier (MGU)

Unifiers are not unique
ex: Unify(Knows(John, x),Knows(y , z))
could return {y/John, x/z} or {y/John, x/John, z/John}

Given α, β, the unifier θ1 is more general than the unifier θ2 for α, β if exists θ3 s.t. θ2 = θ1θ3

ex: {y/John, x/z} more general than {y/John, x/John, z/John}:
{y/John, x/John, z/John} = {y/John, x/z}{z/John}

Theorem: If exists an unifier for α, β, then exists a most general unifier (MGU) θ for α, β
Ex: {y/John, x/z} MGU for Knows(John, x),Knows(y , z)
Ex: an MGU is unique modulo variable renaming

UNIFY() returns the MGU between two (lists of) formulas
efficiency optimizations based on predicate/term indexing techniques (see AIMA if interested)

20 / 56

Most-General Unifier (MGU)

Unifiers are not unique
ex: Unify(Knows(John, x),Knows(y , z))
could return {y/John, x/z} or {y/John, x/John, z/John}

Given α, β, the unifier θ1 is more general than the unifier θ2 for α, β if exists θ3 s.t. θ2 = θ1θ3

ex: {y/John, x/z} more general than {y/John, x/John, z/John}:
{y/John, x/John, z/John} = {y/John, x/z}{z/John}

Theorem: If exists an unifier for α, β, then exists a most general unifier (MGU) θ for α, β
Ex: {y/John, x/z} MGU for Knows(John, x),Knows(y , z)
Ex: an MGU is unique modulo variable renaming

UNIFY() returns the MGU between two (lists of) formulas
efficiency optimizations based on predicate/term indexing techniques (see AIMA if interested)

20 / 56

The Procedure Unify

(© S. Russell & P. Norwig, AIMA) 21 / 56

Exercises

Find the MGU of the following formulas by the Unify() procedure, or say there is none.
(If needed, standardize apart them beforehand.)

Knows(John, x), Knows(y ,Mother(y))
Knows(John, x), Knows(x ,OJ)
R(f (x), z), R(f (g(B)), y)
P(f (x)), P(g(f (y)))
P(h(x),B), P(A, y)

Invent arbitrary pairs of (lists of) atomic FOL formulas and apply Unify() to them

22 / 56

Exercises

Find the MGU of the following formulas by the Unify() procedure, or say there is none.
(If needed, standardize apart them beforehand.)

Knows(John, x), Knows(y ,Mother(y))
Knows(John, x), Knows(x ,OJ)
R(f (x), z), R(f (g(B)), y)
P(f (x)), P(g(f (y)))
P(h(x),B), P(A, y)

Invent arbitrary pairs of (lists of) atomic FOL formulas and apply Unify() to them

22 / 56

Outline

1 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

2 Handling Definite FOL KBs & Datalog
Forward Chaining (hints)
Backward Chaining (hints)

3 Resolution for General FOL KBs
CNF-Ization
Resolution
A Complete Example

23 / 56

Outline

1 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

2 Handling Definite FOL KBs & Datalog
Forward Chaining (hints)
Backward Chaining (hints)

3 Resolution for General FOL KBs
CNF-Ization
Resolution
A Complete Example

24 / 56

First-Order Definite Clauses & Datalog

We assume no function symbol and no ∃ under the scope of ∀ (see later for general case)
FOL Definite Clauses: clauses with exactly one positive literal

we omit universal quantifiers
=⇒ variables are (implicitly) universally quantified

we remove existential quantifiers by EI
=⇒ existentially-quantified variables are substituted by fresh constants

Represent implications of atomic formulas
Ex: ∀x .((King(x) ∧ Greedy(x)) → Evil(x))

=⇒ (¬King(x) ∨ ¬Greedy(x) ∨ Evil(x)

Important application: Datalog KBs: sets of FOL definite clauses without function symbols
can represent statements typically made in relational databases
makes inference much easier

25 / 56

First-Order Definite Clauses & Datalog

We assume no function symbol and no ∃ under the scope of ∀ (see later for general case)
FOL Definite Clauses: clauses with exactly one positive literal

we omit universal quantifiers
=⇒ variables are (implicitly) universally quantified

we remove existential quantifiers by EI
=⇒ existentially-quantified variables are substituted by fresh constants

Represent implications of atomic formulas
Ex: ∀x .((King(x) ∧ Greedy(x)) → Evil(x))

=⇒ (¬King(x) ∨ ¬Greedy(x) ∨ Evil(x)

Important application: Datalog KBs: sets of FOL definite clauses without function symbols
can represent statements typically made in relational databases
makes inference much easier

25 / 56

First-Order Definite Clauses & Datalog

We assume no function symbol and no ∃ under the scope of ∀ (see later for general case)
FOL Definite Clauses: clauses with exactly one positive literal

we omit universal quantifiers
=⇒ variables are (implicitly) universally quantified

we remove existential quantifiers by EI
=⇒ existentially-quantified variables are substituted by fresh constants

Represent implications of atomic formulas
Ex: ∀x .((King(x) ∧ Greedy(x)) → Evil(x))

=⇒ (¬King(x) ∨ ¬Greedy(x) ∨ Evil(x)

Important application: Datalog KBs: sets of FOL definite clauses without function symbols
can represent statements typically made in relational databases
makes inference much easier

25 / 56

First-Order Definite Clauses & Datalog

We assume no function symbol and no ∃ under the scope of ∀ (see later for general case)
FOL Definite Clauses: clauses with exactly one positive literal

we omit universal quantifiers
=⇒ variables are (implicitly) universally quantified

we remove existential quantifiers by EI
=⇒ existentially-quantified variables are substituted by fresh constants

Represent implications of atomic formulas
Ex: ∀x .((King(x) ∧ Greedy(x)) → Evil(x))

=⇒ (¬King(x) ∨ ¬Greedy(x) ∨ Evil(x)

Important application: Datalog KBs: sets of FOL definite clauses without function symbols
can represent statements typically made in relational databases
makes inference much easier

25 / 56

Example (Datalog)

KB:
The law says that it is a crime for an American to sell weapons to hostile nations.
The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it
by Colonel West, who is American.
Goal:
Prove that Colonel West is a criminal.

26 / 56

Example (Datalog) [cont.]

it is a crime for an American to sell weapons to hostile nations:
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))

=⇒ ¬American(x) ∨ ¬Weapon(y) ∨ ¬Hostile(z) ∨ ¬Sells(x , y , z) ∨ Criminal(x)

Nono ... has some missiles
∃x .(Owns(Nono, x) ∧ Missile(x)) =⇒ Owns(Nono,M1) ∧ Missile(M1)

All of its missiles were sold to it by Colonel West
∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono))

=⇒ ¬Missile(x) ∨ ¬Owns(Nono, x) ∨ Sells(West , x ,Nono)

Missiles are weapons:
∀x .(Missile(x) → Weapon(x)) =⇒ ¬Missile(x) ∨ Weapon(x)

An enemy of America counts as “hostile”: ∀x .(Enemy(x ,America) → Hostile(x))

=⇒ ¬Enemy(x ,America) ∨ Hostile(x)

West, who is American ...: American(West)

The country Nono, an enemy of America ...: Enemy(Nono,America)

27 / 56

Example (Datalog) [cont.]

it is a crime for an American to sell weapons to hostile nations:
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))

=⇒ ¬American(x) ∨ ¬Weapon(y) ∨ ¬Hostile(z) ∨ ¬Sells(x , y , z) ∨ Criminal(x)

Nono ... has some missiles
∃x .(Owns(Nono, x) ∧ Missile(x)) =⇒ Owns(Nono,M1) ∧ Missile(M1)

All of its missiles were sold to it by Colonel West
∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono))

=⇒ ¬Missile(x) ∨ ¬Owns(Nono, x) ∨ Sells(West , x ,Nono)

Missiles are weapons:
∀x .(Missile(x) → Weapon(x)) =⇒ ¬Missile(x) ∨ Weapon(x)

An enemy of America counts as “hostile”: ∀x .(Enemy(x ,America) → Hostile(x))

=⇒ ¬Enemy(x ,America) ∨ Hostile(x)

West, who is American ...: American(West)

The country Nono, an enemy of America ...: Enemy(Nono,America)

27 / 56

Example (Datalog) [cont.]

it is a crime for an American to sell weapons to hostile nations:
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))

=⇒ ¬American(x) ∨ ¬Weapon(y) ∨ ¬Hostile(z) ∨ ¬Sells(x , y , z) ∨ Criminal(x)

Nono ... has some missiles
∃x .(Owns(Nono, x) ∧ Missile(x)) =⇒ Owns(Nono,M1) ∧ Missile(M1)

All of its missiles were sold to it by Colonel West
∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono))

=⇒ ¬Missile(x) ∨ ¬Owns(Nono, x) ∨ Sells(West , x ,Nono)

Missiles are weapons:
∀x .(Missile(x) → Weapon(x)) =⇒ ¬Missile(x) ∨ Weapon(x)

An enemy of America counts as “hostile”: ∀x .(Enemy(x ,America) → Hostile(x))

=⇒ ¬Enemy(x ,America) ∨ Hostile(x)

West, who is American ...: American(West)

The country Nono, an enemy of America ...: Enemy(Nono,America)

27 / 56

Example (Datalog) [cont.]

it is a crime for an American to sell weapons to hostile nations:
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))

=⇒ ¬American(x) ∨ ¬Weapon(y) ∨ ¬Hostile(z) ∨ ¬Sells(x , y , z) ∨ Criminal(x)

Nono ... has some missiles
∃x .(Owns(Nono, x) ∧ Missile(x)) =⇒ Owns(Nono,M1) ∧ Missile(M1)

All of its missiles were sold to it by Colonel West
∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono))

=⇒ ¬Missile(x) ∨ ¬Owns(Nono, x) ∨ Sells(West , x ,Nono)

Missiles are weapons:
∀x .(Missile(x) → Weapon(x)) =⇒ ¬Missile(x) ∨ Weapon(x)

An enemy of America counts as “hostile”: ∀x .(Enemy(x ,America) → Hostile(x))

=⇒ ¬Enemy(x ,America) ∨ Hostile(x)

West, who is American ...: American(West)

The country Nono, an enemy of America ...: Enemy(Nono,America)

27 / 56

Example (Datalog) [cont.]

it is a crime for an American to sell weapons to hostile nations:
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))

=⇒ ¬American(x) ∨ ¬Weapon(y) ∨ ¬Hostile(z) ∨ ¬Sells(x , y , z) ∨ Criminal(x)

Nono ... has some missiles
∃x .(Owns(Nono, x) ∧ Missile(x)) =⇒ Owns(Nono,M1) ∧ Missile(M1)

All of its missiles were sold to it by Colonel West
∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono))

=⇒ ¬Missile(x) ∨ ¬Owns(Nono, x) ∨ Sells(West , x ,Nono)

Missiles are weapons:
∀x .(Missile(x) → Weapon(x)) =⇒ ¬Missile(x) ∨ Weapon(x)

An enemy of America counts as “hostile”: ∀x .(Enemy(x ,America) → Hostile(x))

=⇒ ¬Enemy(x ,America) ∨ Hostile(x)

West, who is American ...: American(West)

The country Nono, an enemy of America ...: Enemy(Nono,America)

27 / 56

Example (Datalog) [cont.]

it is a crime for an American to sell weapons to hostile nations:
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))

=⇒ ¬American(x) ∨ ¬Weapon(y) ∨ ¬Hostile(z) ∨ ¬Sells(x , y , z) ∨ Criminal(x)

Nono ... has some missiles
∃x .(Owns(Nono, x) ∧ Missile(x)) =⇒ Owns(Nono,M1) ∧ Missile(M1)

All of its missiles were sold to it by Colonel West
∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono))

=⇒ ¬Missile(x) ∨ ¬Owns(Nono, x) ∨ Sells(West , x ,Nono)

Missiles are weapons:
∀x .(Missile(x) → Weapon(x)) =⇒ ¬Missile(x) ∨ Weapon(x)

An enemy of America counts as “hostile”: ∀x .(Enemy(x ,America) → Hostile(x))

=⇒ ¬Enemy(x ,America) ∨ Hostile(x)

West, who is American ...: American(West)

The country Nono, an enemy of America ...: Enemy(Nono,America)

27 / 56

Example (Datalog) [cont.]

it is a crime for an American to sell weapons to hostile nations:
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))

=⇒ ¬American(x) ∨ ¬Weapon(y) ∨ ¬Hostile(z) ∨ ¬Sells(x , y , z) ∨ Criminal(x)

Nono ... has some missiles
∃x .(Owns(Nono, x) ∧ Missile(x)) =⇒ Owns(Nono,M1) ∧ Missile(M1)

All of its missiles were sold to it by Colonel West
∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono))

=⇒ ¬Missile(x) ∨ ¬Owns(Nono, x) ∨ Sells(West , x ,Nono)

Missiles are weapons:
∀x .(Missile(x) → Weapon(x)) =⇒ ¬Missile(x) ∨ Weapon(x)

An enemy of America counts as “hostile”: ∀x .(Enemy(x ,America) → Hostile(x))

=⇒ ¬Enemy(x ,America) ∨ Hostile(x)

West, who is American ...: American(West)

The country Nono, an enemy of America ...: Enemy(Nono,America)

27 / 56

Example of Forward Chaining

American(West),Missile(M1),Owns(Nono,M1),Enemy(Nono,America) ∀x .(Missile(x) → Weapon(x))
∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono)) ∀x .(Enemy(x ,America) → Hostile(x))
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))

(© S. Russell & P. Norwig, AIMA) 28 / 56

Example of Forward Chaining

American(West),Missile(M1),Owns(Nono,M1),Enemy(Nono,America) ∀x .(Missile(x) → Weapon(x))
∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono)) ∀x .(Enemy(x ,America) → Hostile(x))
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))

(© S. Russell & P. Norwig, AIMA) 28 / 56

Example of Forward Chaining

American(West),Missile(M1),Owns(Nono,M1),Enemy(Nono,America) ∀x .(Missile(x) → Weapon(x))
∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono)) ∀x .(Enemy(x ,America) → Hostile(x))
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))

(© S. Russell & P. Norwig, AIMA) 28 / 56

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them
against the goal

Sound: every inference is just an application of GMP
Complete (for definite KBs): answers every query entailed by KB
if KB |= α, it always terminates
if KB ̸|= α, may not terminate (Semi-decidable)
Solves always Datalog queries in time: O(p · nk), s.t. p = #predicates,
n = #number constants, k = maximum arity
Improvement: match a rule on iteration k only if a premise was added on iteration k-1
=⇒ match each rule whose premise contains a newly added literal

Matching can be expensive
matching conjunctive premises against known facts is NP-hard
(see AIMA book for reduction of colorability to matching)

Forward chaining is used in deductive databases and expert systems

29 / 56

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them
against the goal

Sound: every inference is just an application of GMP
Complete (for definite KBs): answers every query entailed by KB
if KB |= α, it always terminates
if KB ̸|= α, may not terminate (Semi-decidable)
Solves always Datalog queries in time: O(p · nk), s.t. p = #predicates,
n = #number constants, k = maximum arity
Improvement: match a rule on iteration k only if a premise was added on iteration k-1
=⇒ match each rule whose premise contains a newly added literal

Matching can be expensive
matching conjunctive premises against known facts is NP-hard
(see AIMA book for reduction of colorability to matching)

Forward chaining is used in deductive databases and expert systems

29 / 56

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them
against the goal

Sound: every inference is just an application of GMP
Complete (for definite KBs): answers every query entailed by KB
if KB |= α, it always terminates
if KB ̸|= α, may not terminate (Semi-decidable)
Solves always Datalog queries in time: O(p · nk), s.t. p = #predicates,
n = #number constants, k = maximum arity
Improvement: match a rule on iteration k only if a premise was added on iteration k-1
=⇒ match each rule whose premise contains a newly added literal

Matching can be expensive
matching conjunctive premises against known facts is NP-hard
(see AIMA book for reduction of colorability to matching)

Forward chaining is used in deductive databases and expert systems

29 / 56

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them
against the goal

Sound: every inference is just an application of GMP
Complete (for definite KBs): answers every query entailed by KB
if KB |= α, it always terminates
if KB ̸|= α, may not terminate (Semi-decidable)
Solves always Datalog queries in time: O(p · nk), s.t. p = #predicates,
n = #number constants, k = maximum arity
Improvement: match a rule on iteration k only if a premise was added on iteration k-1
=⇒ match each rule whose premise contains a newly added literal

Matching can be expensive
matching conjunctive premises against known facts is NP-hard
(see AIMA book for reduction of colorability to matching)

Forward chaining is used in deductive databases and expert systems

29 / 56

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them
against the goal

Sound: every inference is just an application of GMP
Complete (for definite KBs): answers every query entailed by KB
if KB |= α, it always terminates
if KB ̸|= α, may not terminate (Semi-decidable)
Solves always Datalog queries in time: O(p · nk), s.t. p = #predicates,
n = #number constants, k = maximum arity
Improvement: match a rule on iteration k only if a premise was added on iteration k-1
=⇒ match each rule whose premise contains a newly added literal

Matching can be expensive
matching conjunctive premises against known facts is NP-hard
(see AIMA book for reduction of colorability to matching)

Forward chaining is used in deductive databases and expert systems

29 / 56

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them
against the goal

Sound: every inference is just an application of GMP
Complete (for definite KBs): answers every query entailed by KB
if KB |= α, it always terminates
if KB ̸|= α, may not terminate (Semi-decidable)
Solves always Datalog queries in time: O(p · nk), s.t. p = #predicates,
n = #number constants, k = maximum arity
Improvement: match a rule on iteration k only if a premise was added on iteration k-1
=⇒ match each rule whose premise contains a newly added literal

Matching can be expensive
matching conjunctive premises against known facts is NP-hard
(see AIMA book for reduction of colorability to matching)

Forward chaining is used in deductive databases and expert systems

29 / 56

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them
against the goal

Sound: every inference is just an application of GMP
Complete (for definite KBs): answers every query entailed by KB
if KB |= α, it always terminates
if KB ̸|= α, may not terminate (Semi-decidable)
Solves always Datalog queries in time: O(p · nk), s.t. p = #predicates,
n = #number constants, k = maximum arity
Improvement: match a rule on iteration k only if a premise was added on iteration k-1
=⇒ match each rule whose premise contains a newly added literal

Matching can be expensive
matching conjunctive premises against known facts is NP-hard
(see AIMA book for reduction of colorability to matching)

Forward chaining is used in deductive databases and expert systems

29 / 56

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them
against the goal

Sound: every inference is just an application of GMP
Complete (for definite KBs): answers every query entailed by KB
if KB |= α, it always terminates
if KB ̸|= α, may not terminate (Semi-decidable)
Solves always Datalog queries in time: O(p · nk), s.t. p = #predicates,
n = #number constants, k = maximum arity
Improvement: match a rule on iteration k only if a premise was added on iteration k-1
=⇒ match each rule whose premise contains a newly added literal

Matching can be expensive
matching conjunctive premises against known facts is NP-hard
(see AIMA book for reduction of colorability to matching)

Forward chaining is used in deductive databases and expert systems

29 / 56

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them
against the goal

Sound: every inference is just an application of GMP
Complete (for definite KBs): answers every query entailed by KB
if KB |= α, it always terminates
if KB ̸|= α, may not terminate (Semi-decidable)
Solves always Datalog queries in time: O(p · nk), s.t. p = #predicates,
n = #number constants, k = maximum arity
Improvement: match a rule on iteration k only if a premise was added on iteration k-1
=⇒ match each rule whose premise contains a newly added literal

Matching can be expensive
matching conjunctive premises against known facts is NP-hard
(see AIMA book for reduction of colorability to matching)

Forward chaining is used in deductive databases and expert systems

29 / 56

Outline

1 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

2 Handling Definite FOL KBs & Datalog
Forward Chaining (hints)
Backward Chaining (hints)

3 Resolution for General FOL KBs
CNF-Ization
Resolution
A Complete Example

30 / 56

Backward Chaining: Example

American(West), Missile(M1), Owns(Nono,M1), Enemy(Nono,America)
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))
∀x .(Missile(x) → Weapon(x)) ∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono))
∀x .(Enemy(x ,America) → Hostile(x))

(© S. Russell & P. Norwig, AIMA)

31 / 56

Backward Chaining: Example

American(West), Missile(M1), Owns(Nono,M1), Enemy(Nono,America)
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))
∀x .(Missile(x) → Weapon(x)) ∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono))
∀x .(Enemy(x ,America) → Hostile(x))

(© S. Russell & P. Norwig, AIMA)

31 / 56

Backward Chaining: Example

American(West), Missile(M1), Owns(Nono,M1), Enemy(Nono,America)
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))
∀x .(Missile(x) → Weapon(x)) ∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono))
∀x .(Enemy(x ,America) → Hostile(x))

(© S. Russell & P. Norwig, AIMA)

31 / 56

Backward Chaining: Example

American(West), Missile(M1), Owns(Nono,M1), Enemy(Nono,America)
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))
∀x .(Missile(x) → Weapon(x)) ∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono))
∀x .(Enemy(x ,America) → Hostile(x))

(© S. Russell & P. Norwig, AIMA)

31 / 56

Backward Chaining: Example

American(West), Missile(M1), Owns(Nono,M1), Enemy(Nono,America)
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))
∀x .(Missile(x) → Weapon(x)) ∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono))
∀x .(Enemy(x ,America) → Hostile(x))

(© S. Russell & P. Norwig, AIMA)

31 / 56

Backward Chaining: Example

American(West), Missile(M1), Owns(Nono,M1), Enemy(Nono,America)
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))
∀x .(Missile(x) → Weapon(x)) ∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono))
∀x .(Enemy(x ,America) → Hostile(x))

(© S. Russell & P. Norwig, AIMA)

31 / 56

Backward Chaining: Example

American(West), Missile(M1), Owns(Nono,M1), Enemy(Nono,America)
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))
∀x .(Missile(x) → Weapon(x)) ∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono))
∀x .(Enemy(x ,America) → Hostile(x))

(© S. Russell & P. Norwig, AIMA)

31 / 56

Properties of Backward Chaining

Intuition: at every loop, pick a goal and one implication and apply GMP backwards, inferring the
list of (unified) premises as sub-goals

Depth-first recursive proof search: space is linear in size of proof
Incomplete due to infinite loops

e.g., P(x) → P(x) =⇒ P(c),P(c),P(c)... (easy to fix)
e.g., Q(f (x)) → Q(x) =⇒ Q(c),Q(f (c)),Q(f (f (c)))), ...

Inefficient due to repeated subgoals
fix using caching of previous results =⇒ need extra space!

Widely used for logic programming (e.g. prolog)

32 / 56

Properties of Backward Chaining

Intuition: at every loop, pick a goal and one implication and apply GMP backwards, inferring the
list of (unified) premises as sub-goals

Depth-first recursive proof search: space is linear in size of proof
Incomplete due to infinite loops

e.g., P(x) → P(x) =⇒ P(c),P(c),P(c)... (easy to fix)
e.g., Q(f (x)) → Q(x) =⇒ Q(c),Q(f (c)),Q(f (f (c)))), ...

Inefficient due to repeated subgoals
fix using caching of previous results =⇒ need extra space!

Widely used for logic programming (e.g. prolog)

32 / 56

Properties of Backward Chaining

Intuition: at every loop, pick a goal and one implication and apply GMP backwards, inferring the
list of (unified) premises as sub-goals

Depth-first recursive proof search: space is linear in size of proof
Incomplete due to infinite loops

e.g., P(x) → P(x) =⇒ P(c),P(c),P(c)... (easy to fix)
e.g., Q(f (x)) → Q(x) =⇒ Q(c),Q(f (c)),Q(f (f (c)))), ...

Inefficient due to repeated subgoals
fix using caching of previous results =⇒ need extra space!

Widely used for logic programming (e.g. prolog)

32 / 56

Properties of Backward Chaining

Intuition: at every loop, pick a goal and one implication and apply GMP backwards, inferring the
list of (unified) premises as sub-goals

Depth-first recursive proof search: space is linear in size of proof
Incomplete due to infinite loops

e.g., P(x) → P(x) =⇒ P(c),P(c),P(c)... (easy to fix)
e.g., Q(f (x)) → Q(x) =⇒ Q(c),Q(f (c)),Q(f (f (c)))), ...

Inefficient due to repeated subgoals
fix using caching of previous results =⇒ need extra space!

Widely used for logic programming (e.g. prolog)

32 / 56

Properties of Backward Chaining

Intuition: at every loop, pick a goal and one implication and apply GMP backwards, inferring the
list of (unified) premises as sub-goals

Depth-first recursive proof search: space is linear in size of proof
Incomplete due to infinite loops

e.g., P(x) → P(x) =⇒ P(c),P(c),P(c)... (easy to fix)
e.g., Q(f (x)) → Q(x) =⇒ Q(c),Q(f (c)),Q(f (f (c)))), ...

Inefficient due to repeated subgoals
fix using caching of previous results =⇒ need extra space!

Widely used for logic programming (e.g. prolog)

32 / 56

Outline

1 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

2 Handling Definite FOL KBs & Datalog
Forward Chaining (hints)
Backward Chaining (hints)

3 Resolution for General FOL KBs
CNF-Ization
Resolution
A Complete Example

33 / 56

Outline

1 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

2 Handling Definite FOL KBs & Datalog
Forward Chaining (hints)
Backward Chaining (hints)

3 Resolution for General FOL KBs
CNF-Ization
Resolution
A Complete Example

34 / 56

Conjunctive Normal Form (CNF)

A FOL formula φ is in Conjunctive normal form iff it is a conjunction of disjunctions of
quantifier-free literals:

L∧
i=1

Ki∨
ji=1

lji

the disjunctions of literals
∨Ki

ji=1 lji are called clauses
every literal is a quantifier-free atom or its negation
free variables implicitly universally quantified

Easier to handle: list of lists of literals.
=⇒ no reasoning on the recursive structure of the formula
Ex: ¬Missile(x) ∨ ¬Owns(Nono, x) ∨ Sells(West , x ,Nono)

35 / 56

FOL CNF Conversion CNF (φ)

Convert into NNF
Every FOL formula φ can be reduced into CNF:

1 Eliminate implications and biconditionals:
α → β =⇒ ¬α ∨ β
α ↔ β =⇒ (¬α ∨ β) ∧ (α ∨ ¬β)

2 Push inwards negations recursively:
¬(α ∧ β) =⇒ ¬α ∨ ¬β
¬(α ∨ β) =⇒ ¬α ∧ ¬β
¬¬α =⇒ α
¬∀x .α =⇒ ∃x .¬α
¬∃x .α =⇒ ∀x .¬α

=⇒ Negation normal form: negations only in front of atomic formulae
=⇒ quantified subformulas occur only with positive polarity

36 / 56

FOL CNF Conversion CNF (φ)

Convert into NNF
Every FOL formula φ can be reduced into CNF:

1 Eliminate implications and biconditionals:
α → β =⇒ ¬α ∨ β
α ↔ β =⇒ (¬α ∨ β) ∧ (α ∨ ¬β)

2 Push inwards negations recursively:
¬(α ∧ β) =⇒ ¬α ∨ ¬β
¬(α ∨ β) =⇒ ¬α ∧ ¬β
¬¬α =⇒ α
¬∀x .α =⇒ ∃x .¬α
¬∃x .α =⇒ ∀x .¬α

=⇒ Negation normal form: negations only in front of atomic formulae
=⇒ quantified subformulas occur only with positive polarity

36 / 56

FOL CNF Conversion CNF (φ) [cont.]

Remove quantifiers
3 Standardize variables: each quantifier should use a different var

(∀x .∃y .α) ∧ ∃y .β ∧ ∀x .γ =⇒ (∀x .∃y .α) ∧ ∃y1.β{y/y1} ∧ ∀x1.γ{x/x1}
4 Skolemize (a generalization of EI):

Each existential variable is replaced by a fresh Skolem function applied to the enclosing
universally-quantified variables
∃y .α =⇒ α{y/c}
∀x .(...∃y .α...) =⇒ ∀x .(...α{y/F1(x)}...)
∀x1x2.(...∃y .α...) =⇒ ∀x1x2.(...α{y/F1(x1, x2)...)}
∃y1∀x1x2∃y2∀x3∃y3.α =⇒ ∀x1x2x3.α{y1/c, y2/F1(x1, x2), y3/F2(x1, x2, x3)}

Ex: ∀x∃y .Father(y , x) =⇒ ∀x .Father(s(x), x)
(s(x) implictly means "father of x" although s() is a fresh function)

5 Drop universal quantifiers: ∀x1...xk .α =⇒ α
=⇒ free variables implicitly universally quantified

37 / 56

FOL CNF Conversion CNF (φ) [cont.]

Remove quantifiers
3 Standardize variables: each quantifier should use a different var

(∀x .∃y .α) ∧ ∃y .β ∧ ∀x .γ =⇒ (∀x .∃y .α) ∧ ∃y1.β{y/y1} ∧ ∀x1.γ{x/x1}
4 Skolemize (a generalization of EI):

Each existential variable is replaced by a fresh Skolem function applied to the enclosing
universally-quantified variables
∃y .α =⇒ α{y/c}
∀x .(...∃y .α...) =⇒ ∀x .(...α{y/F1(x)}...)
∀x1x2.(...∃y .α...) =⇒ ∀x1x2.(...α{y/F1(x1, x2)...)}
∃y1∀x1x2∃y2∀x3∃y3.α =⇒ ∀x1x2x3.α{y1/c, y2/F1(x1, x2), y3/F2(x1, x2, x3)}

Ex: ∀x∃y .Father(y , x) =⇒ ∀x .Father(s(x), x)
(s(x) implictly means "father of x" although s() is a fresh function)

5 Drop universal quantifiers: ∀x1...xk .α =⇒ α
=⇒ free variables implicitly universally quantified

37 / 56

FOL CNF Conversion CNF (φ) [cont.]

Remove quantifiers
3 Standardize variables: each quantifier should use a different var

(∀x .∃y .α) ∧ ∃y .β ∧ ∀x .γ =⇒ (∀x .∃y .α) ∧ ∃y1.β{y/y1} ∧ ∀x1.γ{x/x1}
4 Skolemize (a generalization of EI):

Each existential variable is replaced by a fresh Skolem function applied to the enclosing
universally-quantified variables
∃y .α =⇒ α{y/c}
∀x .(...∃y .α...) =⇒ ∀x .(...α{y/F1(x)}...)
∀x1x2.(...∃y .α...) =⇒ ∀x1x2.(...α{y/F1(x1, x2)...)}
∃y1∀x1x2∃y2∀x3∃y3.α =⇒ ∀x1x2x3.α{y1/c, y2/F1(x1, x2), y3/F2(x1, x2, x3)}

Ex: ∀x∃y .Father(y , x) =⇒ ∀x .Father(s(x), x)
(s(x) implictly means "father of x" although s() is a fresh function)

5 Drop universal quantifiers: ∀x1...xk .α =⇒ α
=⇒ free variables implicitly universally quantified

37 / 56

FOL CNF Conversion CNF (φ) [cont.]

Remove quantifiers
3 Standardize variables: each quantifier should use a different var

(∀x .∃y .α) ∧ ∃y .β ∧ ∀x .γ =⇒ (∀x .∃y .α) ∧ ∃y1.β{y/y1} ∧ ∀x1.γ{x/x1}
4 Skolemize (a generalization of EI):

Each existential variable is replaced by a fresh Skolem function applied to the enclosing
universally-quantified variables
∃y .α =⇒ α{y/c}
∀x .(...∃y .α...) =⇒ ∀x .(...α{y/F1(x)}...)
∀x1x2.(...∃y .α...) =⇒ ∀x1x2.(...α{y/F1(x1, x2)...)}
∃y1∀x1x2∃y2∀x3∃y3.α =⇒ ∀x1x2x3.α{y1/c, y2/F1(x1, x2), y3/F2(x1, x2, x3)}

Ex: ∀x∃y .Father(y , x) =⇒ ∀x .Father(s(x), x)
(s(x) implictly means "father of x" although s() is a fresh function)

5 Drop universal quantifiers: ∀x1...xk .α =⇒ α
=⇒ free variables implicitly universally quantified

37 / 56

FOL CNF Conversion CNF (φ) [cont.]

CNF-ize propositionally
6 CNF-ize propositionally (see previous chapters):

either apply recursively the DeMorgan’s Rule: (α ∧ β) ∨ γ =⇒ (α ∨ γ) ∧ (β ∨ γ)
or rename subformulas and add definitions: (α ∧ β) ∨ γ =⇒ (B ∨ γ) ∧ CNF (B ↔ (α ∧ β))

7 Standardize Apart (again) (Personal suggestion, not in AIMA book):
prevent the same (implicitly universally-quantified) variable to occur in distinct clauses
(correct because ∀x .(α ∧ β) equivalent to ∀x .α ∧ ∀y .β)

Properties of FOL CNF-ization

Preserves satisfiability: M(φ) ̸= ∅ iff M(CNF (φ)) ̸= ∅
=⇒ Preserves entailment: φ |= α iff CNF (φ) |= α (in fact, φ ∧ ¬α unsat iff φ ∧ ¬CNF (α) unsat)

Does not preserve validity (but we do not need it)

38 / 56

FOL CNF Conversion CNF (φ) [cont.]

CNF-ize propositionally
6 CNF-ize propositionally (see previous chapters):

either apply recursively the DeMorgan’s Rule: (α ∧ β) ∨ γ =⇒ (α ∨ γ) ∧ (β ∨ γ)
or rename subformulas and add definitions: (α ∧ β) ∨ γ =⇒ (B ∨ γ) ∧ CNF (B ↔ (α ∧ β))

7 Standardize Apart (again) (Personal suggestion, not in AIMA book):
prevent the same (implicitly universally-quantified) variable to occur in distinct clauses
(correct because ∀x .(α ∧ β) equivalent to ∀x .α ∧ ∀y .β)

Properties of FOL CNF-ization

Preserves satisfiability: M(φ) ̸= ∅ iff M(CNF (φ)) ̸= ∅
=⇒ Preserves entailment: φ |= α iff CNF (φ) |= α (in fact, φ ∧ ¬α unsat iff φ ∧ ¬CNF (α) unsat)

Does not preserve validity (but we do not need it)

38 / 56

FOL CNF Conversion CNF (φ) [cont.]

CNF-ize propositionally
6 CNF-ize propositionally (see previous chapters):

either apply recursively the DeMorgan’s Rule: (α ∧ β) ∨ γ =⇒ (α ∨ γ) ∧ (β ∨ γ)
or rename subformulas and add definitions: (α ∧ β) ∨ γ =⇒ (B ∨ γ) ∧ CNF (B ↔ (α ∧ β))

7 Standardize Apart (again) (Personal suggestion, not in AIMA book):
prevent the same (implicitly universally-quantified) variable to occur in distinct clauses
(correct because ∀x .(α ∧ β) equivalent to ∀x .α ∧ ∀y .β)

Properties of FOL CNF-ization

Preserves satisfiability: M(φ) ̸= ∅ iff M(CNF (φ)) ̸= ∅
=⇒ Preserves entailment: φ |= α iff CNF (φ) |= α (in fact, φ ∧ ¬α unsat iff φ ∧ ¬CNF (α) unsat)

Does not preserve validity (but we do not need it)

38 / 56

FOL CNF Conversion CNF (φ) [cont.]

CNF-ize propositionally
6 CNF-ize propositionally (see previous chapters):

either apply recursively the DeMorgan’s Rule: (α ∧ β) ∨ γ =⇒ (α ∨ γ) ∧ (β ∨ γ)
or rename subformulas and add definitions: (α ∧ β) ∨ γ =⇒ (B ∨ γ) ∧ CNF (B ↔ (α ∧ β))

7 Standardize Apart (again) (Personal suggestion, not in AIMA book):
prevent the same (implicitly universally-quantified) variable to occur in distinct clauses
(correct because ∀x .(α ∧ β) equivalent to ∀x .α ∧ ∀y .β)

Properties of FOL CNF-ization

Preserves satisfiability: M(φ) ̸= ∅ iff M(CNF (φ)) ̸= ∅
=⇒ Preserves entailment: φ |= α iff CNF (φ) |= α (in fact, φ ∧ ¬α unsat iff φ ∧ ¬CNF (α) unsat)

Does not preserve validity (but we do not need it)

38 / 56

Conversion to CNF: Example
Consider: “Everyone who loves all animals is loved by someone”
∀x .([∀y .(Animal(y) → Loves(x , y))] → [∃y .Loves(y , x)])

1 Eliminate implications and biconditionals:
∀x .(¬[∀y .(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])

2 Push inwards negations recursively (NNF)
∀x .([∃y .¬(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(¬¬Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])

3 Standardize variables:
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃z.Loves(z, x)])

4 Skolemize:
∀x .([Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)])
(F(x): “an animal unloved by x”; G(x): “someone who loves x”)

5 Drop universal quantifiers::
[Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)]

6 CNF-ize propositionally (and standardize apart the result):
(Animal(F (x)) ∨ Loves(G(x), x))∧ (¬Loves(x1,F (x1)) ∨ Loves(G(x1), x1))

39 / 56

Conversion to CNF: Example
Consider: “Everyone who loves all animals is loved by someone”
∀x .([∀y .(Animal(y) → Loves(x , y))] → [∃y .Loves(y , x)])

1 Eliminate implications and biconditionals:
∀x .(¬[∀y .(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])

2 Push inwards negations recursively (NNF)
∀x .([∃y .¬(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(¬¬Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])

3 Standardize variables:
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃z.Loves(z, x)])

4 Skolemize:
∀x .([Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)])
(F(x): “an animal unloved by x”; G(x): “someone who loves x”)

5 Drop universal quantifiers::
[Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)]

6 CNF-ize propositionally (and standardize apart the result):
(Animal(F (x)) ∨ Loves(G(x), x))∧ (¬Loves(x1,F (x1)) ∨ Loves(G(x1), x1))

39 / 56

Conversion to CNF: Example
Consider: “Everyone who loves all animals is loved by someone”
∀x .([∀y .(Animal(y) → Loves(x , y))] → [∃y .Loves(y , x)])

1 Eliminate implications and biconditionals:
∀x .(¬[∀y .(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])

2 Push inwards negations recursively (NNF)
∀x .([∃y .¬(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(¬¬Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])

3 Standardize variables:
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃z.Loves(z, x)])

4 Skolemize:
∀x .([Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)])
(F(x): “an animal unloved by x”; G(x): “someone who loves x”)

5 Drop universal quantifiers::
[Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)]

6 CNF-ize propositionally (and standardize apart the result):
(Animal(F (x)) ∨ Loves(G(x), x))∧ (¬Loves(x1,F (x1)) ∨ Loves(G(x1), x1))

39 / 56

Conversion to CNF: Example
Consider: “Everyone who loves all animals is loved by someone”
∀x .([∀y .(Animal(y) → Loves(x , y))] → [∃y .Loves(y , x)])

1 Eliminate implications and biconditionals:
∀x .(¬[∀y .(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])

2 Push inwards negations recursively (NNF)
∀x .([∃y .¬(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(¬¬Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])

3 Standardize variables:
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃z.Loves(z, x)])

4 Skolemize:
∀x .([Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)])
(F(x): “an animal unloved by x”; G(x): “someone who loves x”)

5 Drop universal quantifiers::
[Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)]

6 CNF-ize propositionally (and standardize apart the result):
(Animal(F (x)) ∨ Loves(G(x), x))∧ (¬Loves(x1,F (x1)) ∨ Loves(G(x1), x1))

39 / 56

Conversion to CNF: Example
Consider: “Everyone who loves all animals is loved by someone”
∀x .([∀y .(Animal(y) → Loves(x , y))] → [∃y .Loves(y , x)])

1 Eliminate implications and biconditionals:
∀x .(¬[∀y .(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])

2 Push inwards negations recursively (NNF)
∀x .([∃y .¬(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(¬¬Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])

3 Standardize variables:
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃z.Loves(z, x)])

4 Skolemize:
∀x .([Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)])
(F(x): “an animal unloved by x”; G(x): “someone who loves x”)

5 Drop universal quantifiers::
[Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)]

6 CNF-ize propositionally (and standardize apart the result):
(Animal(F (x)) ∨ Loves(G(x), x))∧ (¬Loves(x1,F (x1)) ∨ Loves(G(x1), x1))

39 / 56

Conversion to CNF: Example
Consider: “Everyone who loves all animals is loved by someone”
∀x .([∀y .(Animal(y) → Loves(x , y))] → [∃y .Loves(y , x)])

1 Eliminate implications and biconditionals:
∀x .(¬[∀y .(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])

2 Push inwards negations recursively (NNF)
∀x .([∃y .¬(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(¬¬Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])

3 Standardize variables:
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃z.Loves(z, x)])

4 Skolemize:
∀x .([Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)])
(F(x): “an animal unloved by x”; G(x): “someone who loves x”)

5 Drop universal quantifiers::
[Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)]

6 CNF-ize propositionally (and standardize apart the result):
(Animal(F (x)) ∨ Loves(G(x), x))∧ (¬Loves(x1,F (x1)) ∨ Loves(G(x1), x1))

39 / 56

Conversion to CNF: Example
Consider: “Everyone who loves all animals is loved by someone”
∀x .([∀y .(Animal(y) → Loves(x , y))] → [∃y .Loves(y , x)])

1 Eliminate implications and biconditionals:
∀x .(¬[∀y .(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])

2 Push inwards negations recursively (NNF)
∀x .([∃y .¬(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(¬¬Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])

3 Standardize variables:
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃z.Loves(z, x)])

4 Skolemize:
∀x .([Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)])
(F(x): “an animal unloved by x”; G(x): “someone who loves x”)

5 Drop universal quantifiers::
[Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)]

6 CNF-ize propositionally (and standardize apart the result):
(Animal(F (x)) ∨ Loves(G(x), x))∧ (¬Loves(x1,F (x1)) ∨ Loves(G(x1), x1))

39 / 56

Conversion to CNF: Example
Consider: “Everyone who loves all animals is loved by someone”
∀x .([∀y .(Animal(y) → Loves(x , y))] → [∃y .Loves(y , x)])

1 Eliminate implications and biconditionals:
∀x .(¬[∀y .(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])

2 Push inwards negations recursively (NNF)
∀x .([∃y .¬(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(¬¬Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])

3 Standardize variables:
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃z.Loves(z, x)])

4 Skolemize:
∀x .([Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)])
(F(x): “an animal unloved by x”; G(x): “someone who loves x”)

5 Drop universal quantifiers::
[Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)]

6 CNF-ize propositionally (and standardize apart the result):
(Animal(F (x)) ∨ Loves(G(x), x))∧ (¬Loves(x1,F (x1)) ∨ Loves(G(x1), x1))

39 / 56

Remark about Skolemization

Common mistake to avoid
Do not

apply Skolemization or
drop universal quantifiers

before converting into NNF & standardize apart variables!
Polarity of quantified subformulas affects Skolemization!

=⇒ NNF-ization may convert ∃’s into ∀’s, and vice versa
Same-name quantified variable may cause errors

=⇒ standardize variable may rename variables
(which, e.g., could be wrongly Skolemized into the same function)

40 / 56

Remark about Skolemization

Common mistake to avoid
Do not

apply Skolemization or
drop universal quantifiers

before converting into NNF & standardize apart variables!
Polarity of quantified subformulas affects Skolemization!

=⇒ NNF-ization may convert ∃’s into ∀’s, and vice versa
Same-name quantified variable may cause errors

=⇒ standardize variable may rename variables
(which, e.g., could be wrongly Skolemized into the same function)

40 / 56

Remark about Skolemization

Common mistake to avoid
Do not

apply Skolemization or
drop universal quantifiers

before converting into NNF & standardize apart variables!
Polarity of quantified subformulas affects Skolemization!

=⇒ NNF-ization may convert ∃’s into ∀’s, and vice versa
Same-name quantified variable may cause errors

=⇒ standardize variable may rename variables
(which, e.g., could be wrongly Skolemized into the same function)

40 / 56

Remark about Skolemization: Example

Wrong CNF-ization

∀x .([∀y .(Animal(y) → Loves(x , y))] → [∃y .Loves(y , x)])
1 Too-early Skolemization & universal-quantifier dropping:

∀x .([∀y .(Animal(y) → Loves(x , y))] → [Loves(G(x), x)])
([(Animal(y) → Loves(x , y))] → [Loves(G(x), x)])

2 NNF-ization and CNF-ization ([(Animal(y) ∧ ¬Loves(x , y))] ∨ [Loves(G(x), x)])
((Animal(y)∨Loves(G(x), x))∧((¬Loves(x , y))∨Loves(G(x), x)))

“y” should be a Skolem function F(x) instead
because “∀y .(...)” occurred negatively
=⇒ should become “∃y .¬(...)”, and hence y Skolemized into F (x)
(compare with previous slide)

41 / 56

Remark about Skolemization: Example

Wrong CNF-ization

∀x .([∀y .(Animal(y) → Loves(x , y))] → [∃y .Loves(y , x)])
1 Too-early Skolemization & universal-quantifier dropping:

∀x .([∀y .(Animal(y) → Loves(x , y))] → [Loves(G(x), x)])
([(Animal(y) → Loves(x , y))] → [Loves(G(x), x)])

2 NNF-ization and CNF-ization ([(Animal(y) ∧ ¬Loves(x , y))] ∨ [Loves(G(x), x)])
((Animal(y)∨Loves(G(x), x))∧((¬Loves(x , y))∨Loves(G(x), x)))

“y” should be a Skolem function F(x) instead
because “∀y .(...)” occurred negatively
=⇒ should become “∃y .¬(...)”, and hence y Skolemized into F (x)
(compare with previous slide)

41 / 56

Remark about Skolemization: Example

Wrong CNF-ization

∀x .([∀y .(Animal(y) → Loves(x , y))] → [∃y .Loves(y , x)])
1 Too-early Skolemization & universal-quantifier dropping:

∀x .([∀y .(Animal(y) → Loves(x , y))] → [Loves(G(x), x)])
([(Animal(y) → Loves(x , y))] → [Loves(G(x), x)])

2 NNF-ization and CNF-ization ([(Animal(y) ∧ ¬Loves(x , y))] ∨ [Loves(G(x), x)])
((Animal(y)∨Loves(G(x), x))∧((¬Loves(x , y))∨Loves(G(x), x)))

“y” should be a Skolem function F(x) instead
because “∀y .(...)” occurred negatively
=⇒ should become “∃y .¬(...)”, and hence y Skolemized into F (x)
(compare with previous slide)

41 / 56

Remark about Skolemization: Example

Wrong CNF-ization

∀x .([∀y .(Animal(y) → Loves(x , y))] → [∃y .Loves(y , x)])
1 Too-early Skolemization & universal-quantifier dropping:

∀x .([∀y .(Animal(y) → Loves(x , y))] → [Loves(G(x), x)])
([(Animal(y) → Loves(x , y))] → [Loves(G(x), x)])

2 NNF-ization and CNF-ization ([(Animal(y) ∧ ¬Loves(x , y))] ∨ [Loves(G(x), x)])
((Animal(y)∨Loves(G(x), x))∧((¬Loves(x , y))∨Loves(G(x), x)))

“y” should be a Skolem function F(x) instead
because “∀y .(...)” occurred negatively
=⇒ should become “∃y .¬(...)”, and hence y Skolemized into F (x)
(compare with previous slide)

41 / 56

Exercise

Did Curiosity kill the cat?

Formalize and CNF-ize the following:

Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by no one.
Jack loves all animals.
Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?

(See also AIMA book for FOL formalization and CNF-ization)

42 / 56

Outline

1 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

2 Handling Definite FOL KBs & Datalog
Forward Chaining (hints)
Backward Chaining (hints)

3 Resolution for General FOL KBs
CNF-Ization
Resolution
A Complete Example

43 / 56

Resolution
FOL resolution rule, let θ def

= mgu(li ,¬mj), s.t. liθ = ¬mjθ:
(l1 ∨ ... ∨ li ∨ ... ∨ lk) (m1 ∨ ... ∨ mj ∨ ... ∨ mn)

(l1 ∨ ... ∨ li−1 ∨ li+1 ∨ ... ∨ lk ∨ m1 ∨ ... ∨ mj−1 ∨ mj+1 ∨ ... ∨ mn)θ

Ex:
Man(Socrates) (¬Man(x) ∨ Mortal(x))

Mortal(Socrates) s.t. θ def
= {x/Socrates}

To prove that Γ |= α in FOL:
convert Γ ∧ ¬α to CNF
apply repeatedly resolution rule to CNF (Γ ∧ ¬α) until either

the empty clause is generated =⇒ Γ |= α
no more resolution step is applicable =⇒ Γ ̸|= α
resource (time, memory) exhausted =⇒ ??

Hint: apply resolution first to unit clauses (unit resolution)
Unit resolution alone complete for definite clauses

choose positive unit-clauses first (DFS) =⇒ Forward chaining
choose negative clauses first (DFS) =⇒ Backward chaining

Refutation-Complete:
If there is a substitution θ such that Γ |= θα , then it will return θ
If there is no such θ, then the procedure may not terminate
Many strategies and tools available 44 / 56

Resolution
FOL resolution rule, let θ def

= mgu(li ,¬mj), s.t. liθ = ¬mjθ:
(l1 ∨ ... ∨ li ∨ ... ∨ lk) (m1 ∨ ... ∨ mj ∨ ... ∨ mn)

(l1 ∨ ... ∨ li−1 ∨ li+1 ∨ ... ∨ lk ∨ m1 ∨ ... ∨ mj−1 ∨ mj+1 ∨ ... ∨ mn)θ

Ex:
Man(Socrates) (¬Man(x) ∨ Mortal(x))

Mortal(Socrates) s.t. θ def
= {x/Socrates}

To prove that Γ |= α in FOL:
convert Γ ∧ ¬α to CNF
apply repeatedly resolution rule to CNF (Γ ∧ ¬α) until either

the empty clause is generated =⇒ Γ |= α
no more resolution step is applicable =⇒ Γ ̸|= α
resource (time, memory) exhausted =⇒ ??

Hint: apply resolution first to unit clauses (unit resolution)
Unit resolution alone complete for definite clauses

choose positive unit-clauses first (DFS) =⇒ Forward chaining
choose negative clauses first (DFS) =⇒ Backward chaining

Refutation-Complete:
If there is a substitution θ such that Γ |= θα , then it will return θ
If there is no such θ, then the procedure may not terminate
Many strategies and tools available 44 / 56

Resolution
FOL resolution rule, let θ def

= mgu(li ,¬mj), s.t. liθ = ¬mjθ:
(l1 ∨ ... ∨ li ∨ ... ∨ lk) (m1 ∨ ... ∨ mj ∨ ... ∨ mn)

(l1 ∨ ... ∨ li−1 ∨ li+1 ∨ ... ∨ lk ∨ m1 ∨ ... ∨ mj−1 ∨ mj+1 ∨ ... ∨ mn)θ

Ex:
Man(Socrates) (¬Man(x) ∨ Mortal(x))

Mortal(Socrates) s.t. θ def
= {x/Socrates}

To prove that Γ |= α in FOL:
convert Γ ∧ ¬α to CNF
apply repeatedly resolution rule to CNF (Γ ∧ ¬α) until either

the empty clause is generated =⇒ Γ |= α
no more resolution step is applicable =⇒ Γ ̸|= α
resource (time, memory) exhausted =⇒ ??

Hint: apply resolution first to unit clauses (unit resolution)
Unit resolution alone complete for definite clauses

choose positive unit-clauses first (DFS) =⇒ Forward chaining
choose negative clauses first (DFS) =⇒ Backward chaining

Refutation-Complete:
If there is a substitution θ such that Γ |= θα , then it will return θ
If there is no such θ, then the procedure may not terminate
Many strategies and tools available 44 / 56

Resolution
FOL resolution rule, let θ def

= mgu(li ,¬mj), s.t. liθ = ¬mjθ:
(l1 ∨ ... ∨ li ∨ ... ∨ lk) (m1 ∨ ... ∨ mj ∨ ... ∨ mn)

(l1 ∨ ... ∨ li−1 ∨ li+1 ∨ ... ∨ lk ∨ m1 ∨ ... ∨ mj−1 ∨ mj+1 ∨ ... ∨ mn)θ

Ex:
Man(Socrates) (¬Man(x) ∨ Mortal(x))

Mortal(Socrates) s.t. θ def
= {x/Socrates}

To prove that Γ |= α in FOL:
convert Γ ∧ ¬α to CNF
apply repeatedly resolution rule to CNF (Γ ∧ ¬α) until either

the empty clause is generated =⇒ Γ |= α
no more resolution step is applicable =⇒ Γ ̸|= α
resource (time, memory) exhausted =⇒ ??

Hint: apply resolution first to unit clauses (unit resolution)
Unit resolution alone complete for definite clauses

choose positive unit-clauses first (DFS) =⇒ Forward chaining
choose negative clauses first (DFS) =⇒ Backward chaining

Refutation-Complete:
If there is a substitution θ such that Γ |= θα , then it will return θ
If there is no such θ, then the procedure may not terminate
Many strategies and tools available 44 / 56

Resolution
FOL resolution rule, let θ def

= mgu(li ,¬mj), s.t. liθ = ¬mjθ:
(l1 ∨ ... ∨ li ∨ ... ∨ lk) (m1 ∨ ... ∨ mj ∨ ... ∨ mn)

(l1 ∨ ... ∨ li−1 ∨ li+1 ∨ ... ∨ lk ∨ m1 ∨ ... ∨ mj−1 ∨ mj+1 ∨ ... ∨ mn)θ

Ex:
Man(Socrates) (¬Man(x) ∨ Mortal(x))

Mortal(Socrates) s.t. θ def
= {x/Socrates}

To prove that Γ |= α in FOL:
convert Γ ∧ ¬α to CNF
apply repeatedly resolution rule to CNF (Γ ∧ ¬α) until either

the empty clause is generated =⇒ Γ |= α
no more resolution step is applicable =⇒ Γ ̸|= α
resource (time, memory) exhausted =⇒ ??

Hint: apply resolution first to unit clauses (unit resolution)
Unit resolution alone complete for definite clauses

choose positive unit-clauses first (DFS) =⇒ Forward chaining
choose negative clauses first (DFS) =⇒ Backward chaining

Refutation-Complete:
If there is a substitution θ such that Γ |= θα , then it will return θ
If there is no such θ, then the procedure may not terminate
Many strategies and tools available 44 / 56

Resolution
FOL resolution rule, let θ def

= mgu(li ,¬mj), s.t. liθ = ¬mjθ:
(l1 ∨ ... ∨ li ∨ ... ∨ lk) (m1 ∨ ... ∨ mj ∨ ... ∨ mn)

(l1 ∨ ... ∨ li−1 ∨ li+1 ∨ ... ∨ lk ∨ m1 ∨ ... ∨ mj−1 ∨ mj+1 ∨ ... ∨ mn)θ

Ex:
Man(Socrates) (¬Man(x) ∨ Mortal(x))

Mortal(Socrates) s.t. θ def
= {x/Socrates}

To prove that Γ |= α in FOL:
convert Γ ∧ ¬α to CNF
apply repeatedly resolution rule to CNF (Γ ∧ ¬α) until either

the empty clause is generated =⇒ Γ |= α
no more resolution step is applicable =⇒ Γ ̸|= α
resource (time, memory) exhausted =⇒ ??

Hint: apply resolution first to unit clauses (unit resolution)
Unit resolution alone complete for definite clauses

choose positive unit-clauses first (DFS) =⇒ Forward chaining
choose negative clauses first (DFS) =⇒ Backward chaining

Refutation-Complete:
If there is a substitution θ such that Γ |= θα , then it will return θ
If there is no such θ, then the procedure may not terminate
Many strategies and tools available 44 / 56

Resolution
FOL resolution rule, let θ def

= mgu(li ,¬mj), s.t. liθ = ¬mjθ:
(l1 ∨ ... ∨ li ∨ ... ∨ lk) (m1 ∨ ... ∨ mj ∨ ... ∨ mn)

(l1 ∨ ... ∨ li−1 ∨ li+1 ∨ ... ∨ lk ∨ m1 ∨ ... ∨ mj−1 ∨ mj+1 ∨ ... ∨ mn)θ

Ex:
Man(Socrates) (¬Man(x) ∨ Mortal(x))

Mortal(Socrates) s.t. θ def
= {x/Socrates}

To prove that Γ |= α in FOL:
convert Γ ∧ ¬α to CNF
apply repeatedly resolution rule to CNF (Γ ∧ ¬α) until either

the empty clause is generated =⇒ Γ |= α
no more resolution step is applicable =⇒ Γ ̸|= α
resource (time, memory) exhausted =⇒ ??

Hint: apply resolution first to unit clauses (unit resolution)
Unit resolution alone complete for definite clauses

choose positive unit-clauses first (DFS) =⇒ Forward chaining
choose negative clauses first (DFS) =⇒ Backward chaining

Refutation-Complete:
If there is a substitution θ such that Γ |= θα , then it will return θ
If there is no such θ, then the procedure may not terminate
Many strategies and tools available 44 / 56

Resolution
FOL resolution rule, let θ def

= mgu(li ,¬mj), s.t. liθ = ¬mjθ:
(l1 ∨ ... ∨ li ∨ ... ∨ lk) (m1 ∨ ... ∨ mj ∨ ... ∨ mn)

(l1 ∨ ... ∨ li−1 ∨ li+1 ∨ ... ∨ lk ∨ m1 ∨ ... ∨ mj−1 ∨ mj+1 ∨ ... ∨ mn)θ

Ex:
Man(Socrates) (¬Man(x) ∨ Mortal(x))

Mortal(Socrates) s.t. θ def
= {x/Socrates}

To prove that Γ |= α in FOL:
convert Γ ∧ ¬α to CNF
apply repeatedly resolution rule to CNF (Γ ∧ ¬α) until either

the empty clause is generated =⇒ Γ |= α
no more resolution step is applicable =⇒ Γ ̸|= α
resource (time, memory) exhausted =⇒ ??

Hint: apply resolution first to unit clauses (unit resolution)
Unit resolution alone complete for definite clauses

choose positive unit-clauses first (DFS) =⇒ Forward chaining
choose negative clauses first (DFS) =⇒ Backward chaining

Refutation-Complete:
If there is a substitution θ such that Γ |= θα , then it will return θ
If there is no such θ, then the procedure may not terminate
Many strategies and tools available 44 / 56

Resolution
FOL resolution rule, let θ def

= mgu(li ,¬mj), s.t. liθ = ¬mjθ:
(l1 ∨ ... ∨ li ∨ ... ∨ lk) (m1 ∨ ... ∨ mj ∨ ... ∨ mn)

(l1 ∨ ... ∨ li−1 ∨ li+1 ∨ ... ∨ lk ∨ m1 ∨ ... ∨ mj−1 ∨ mj+1 ∨ ... ∨ mn)θ

Ex:
Man(Socrates) (¬Man(x) ∨ Mortal(x))

Mortal(Socrates) s.t. θ def
= {x/Socrates}

To prove that Γ |= α in FOL:
convert Γ ∧ ¬α to CNF
apply repeatedly resolution rule to CNF (Γ ∧ ¬α) until either

the empty clause is generated =⇒ Γ |= α
no more resolution step is applicable =⇒ Γ ̸|= α
resource (time, memory) exhausted =⇒ ??

Hint: apply resolution first to unit clauses (unit resolution)
Unit resolution alone complete for definite clauses

choose positive unit-clauses first (DFS) =⇒ Forward chaining
choose negative clauses first (DFS) =⇒ Backward chaining

Refutation-Complete:
If there is a substitution θ such that Γ |= θα , then it will return θ
If there is no such θ, then the procedure may not terminate
Many strategies and tools available 44 / 56

Resolution
FOL resolution rule, let θ def

= mgu(li ,¬mj), s.t. liθ = ¬mjθ:
(l1 ∨ ... ∨ li ∨ ... ∨ lk) (m1 ∨ ... ∨ mj ∨ ... ∨ mn)

(l1 ∨ ... ∨ li−1 ∨ li+1 ∨ ... ∨ lk ∨ m1 ∨ ... ∨ mj−1 ∨ mj+1 ∨ ... ∨ mn)θ

Ex:
Man(Socrates) (¬Man(x) ∨ Mortal(x))

Mortal(Socrates) s.t. θ def
= {x/Socrates}

To prove that Γ |= α in FOL:
convert Γ ∧ ¬α to CNF
apply repeatedly resolution rule to CNF (Γ ∧ ¬α) until either

the empty clause is generated =⇒ Γ |= α
no more resolution step is applicable =⇒ Γ ̸|= α
resource (time, memory) exhausted =⇒ ??

Hint: apply resolution first to unit clauses (unit resolution)
Unit resolution alone complete for definite clauses

choose positive unit-clauses first (DFS) =⇒ Forward chaining
choose negative clauses first (DFS) =⇒ Backward chaining

Refutation-Complete:
If there is a substitution θ such that Γ |= θα , then it will return θ
If there is no such θ, then the procedure may not terminate
Many strategies and tools available 44 / 56

Resolution
FOL resolution rule, let θ def

= mgu(li ,¬mj), s.t. liθ = ¬mjθ:
(l1 ∨ ... ∨ li ∨ ... ∨ lk) (m1 ∨ ... ∨ mj ∨ ... ∨ mn)

(l1 ∨ ... ∨ li−1 ∨ li+1 ∨ ... ∨ lk ∨ m1 ∨ ... ∨ mj−1 ∨ mj+1 ∨ ... ∨ mn)θ

Ex:
Man(Socrates) (¬Man(x) ∨ Mortal(x))

Mortal(Socrates) s.t. θ def
= {x/Socrates}

To prove that Γ |= α in FOL:
convert Γ ∧ ¬α to CNF
apply repeatedly resolution rule to CNF (Γ ∧ ¬α) until either

the empty clause is generated =⇒ Γ |= α
no more resolution step is applicable =⇒ Γ ̸|= α
resource (time, memory) exhausted =⇒ ??

Hint: apply resolution first to unit clauses (unit resolution)
Unit resolution alone complete for definite clauses

choose positive unit-clauses first (DFS) =⇒ Forward chaining
choose negative clauses first (DFS) =⇒ Backward chaining

Refutation-Complete:
If there is a substitution θ such that Γ |= θα , then it will return θ
If there is no such θ, then the procedure may not terminate
Many strategies and tools available 44 / 56

Resolution
FOL resolution rule, let θ def

= mgu(li ,¬mj), s.t. liθ = ¬mjθ:
(l1 ∨ ... ∨ li ∨ ... ∨ lk) (m1 ∨ ... ∨ mj ∨ ... ∨ mn)

(l1 ∨ ... ∨ li−1 ∨ li+1 ∨ ... ∨ lk ∨ m1 ∨ ... ∨ mj−1 ∨ mj+1 ∨ ... ∨ mn)θ

Ex:
Man(Socrates) (¬Man(x) ∨ Mortal(x))

Mortal(Socrates) s.t. θ def
= {x/Socrates}

To prove that Γ |= α in FOL:
convert Γ ∧ ¬α to CNF
apply repeatedly resolution rule to CNF (Γ ∧ ¬α) until either

the empty clause is generated =⇒ Γ |= α
no more resolution step is applicable =⇒ Γ ̸|= α
resource (time, memory) exhausted =⇒ ??

Hint: apply resolution first to unit clauses (unit resolution)
Unit resolution alone complete for definite clauses

choose positive unit-clauses first (DFS) =⇒ Forward chaining
choose negative clauses first (DFS) =⇒ Backward chaining

Refutation-Complete:
If there is a substitution θ such that Γ |= θα , then it will return θ
If there is no such θ, then the procedure may not terminate
Many strategies and tools available 44 / 56

Resolution
FOL resolution rule, let θ def

= mgu(li ,¬mj), s.t. liθ = ¬mjθ:
(l1 ∨ ... ∨ li ∨ ... ∨ lk) (m1 ∨ ... ∨ mj ∨ ... ∨ mn)

(l1 ∨ ... ∨ li−1 ∨ li+1 ∨ ... ∨ lk ∨ m1 ∨ ... ∨ mj−1 ∨ mj+1 ∨ ... ∨ mn)θ

Ex:
Man(Socrates) (¬Man(x) ∨ Mortal(x))

Mortal(Socrates) s.t. θ def
= {x/Socrates}

To prove that Γ |= α in FOL:
convert Γ ∧ ¬α to CNF
apply repeatedly resolution rule to CNF (Γ ∧ ¬α) until either

the empty clause is generated =⇒ Γ |= α
no more resolution step is applicable =⇒ Γ ̸|= α
resource (time, memory) exhausted =⇒ ??

Hint: apply resolution first to unit clauses (unit resolution)
Unit resolution alone complete for definite clauses

choose positive unit-clauses first (DFS) =⇒ Forward chaining
choose negative clauses first (DFS) =⇒ Backward chaining

Refutation-Complete:
If there is a substitution θ such that Γ |= θα , then it will return θ
If there is no such θ, then the procedure may not terminate
Many strategies and tools available 44 / 56

Example: Resolution with Definite Clauses

KB:
The law says that it is a crime for an American to sell weapons to hostile nations.
The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it
by Colonel West, who is American.
Goal: Prove that Colonel West is a criminal.

45 / 56

Example: Resolution with Definite Clauses [cont.]

it is a crime for an American to sell weapons to hostile nations:
∀x , y , z.((American(x) ∧ Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z)) → Criminal(x))

=⇒ ¬American(x) ∨ ¬Weapon(y) ∨ ¬Hostile(z) ∨ ¬Sells(x , y , z) ∨ Criminal(x)

Nono ... has some missiles
∃x .(Owns(Nono, x) ∧ Missile(x)) =⇒ Owns(Nono,M1) ∧ Missile(M1)

All of its missiles were sold to it by Colonel West
∀x .((Missile(x) ∧ Owns(Nono, x)) → Sells(West , x ,Nono))

=⇒ ¬Missile(x) ∨ ¬Owns(Nono, x) ∨ Sells(West , x ,Nono)

Missiles are weapons:
∀x .(Missile(x) → Weapon(x)) =⇒ ¬Missile(x) ∨ Weapon(x)

An enemy of America counts as “hostile”: ∀x .(Enemy(x ,America) → Hostile(x))

=⇒ ¬Enemy(x ,America) ∨ Hostile(x)

West, who is American ...: American(West)

The country Nono, an enemy of America ...: Enemy(Nono,America)

46 / 56

Example: Resolution with Definite Clauses

(© S. Russell & P. Norwig, AIMA)

47 / 56

Exercise: Resolution with Definite Clauses

Resolve the problem of previous example:
1 selecting positive unit clauses first (DFS) =⇒ Forward chaining
2 selecting negative clauses first first (DFS) =⇒ Backward chaining
3 selecting unit-literals in any order first =⇒ Mixed chaining

48 / 56

Example: Resolution with General Clauses

Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by no one.
Jack loves all animals.
Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?
(See previous exercise or AIMA book for FOL formalization and CNF-ization.)

(© S. Russell & P. Norwig, AIMA)

49 / 56

Resolution Strategies

Saturation Calculus:
Given N0 : set of (implicitly universally quantified) clauses.
Derive N0, N1, N2, N3, ... s.t. Ni+1 = Ni ∪ {C},

where C is the conclusion of a resolution step from premises in Ni

(under reasonable restrictions) is refutationally complete :

N0 |= ⊥ =⇒ ⊥ ∈ Ni for some i

Problem
The resolution rule is prolific.

it generates many useless intermediate results
it may generate the same clauses in many different ways

This motivates the introduction of resolution restrictions.

50 / 56

Resolution Strategies

Saturation Calculus:
Given N0 : set of (implicitly universally quantified) clauses.
Derive N0, N1, N2, N3, ... s.t. Ni+1 = Ni ∪ {C},

where C is the conclusion of a resolution step from premises in Ni

(under reasonable restrictions) is refutationally complete :

N0 |= ⊥ =⇒ ⊥ ∈ Ni for some i

Problem
The resolution rule is prolific.

it generates many useless intermediate results
it may generate the same clauses in many different ways

This motivates the introduction of resolution restrictions.

50 / 56

Resolution Strategies

Saturation Calculus:
Given N0 : set of (implicitly universally quantified) clauses.
Derive N0, N1, N2, N3, ... s.t. Ni+1 = Ni ∪ {C},

where C is the conclusion of a resolution step from premises in Ni

(under reasonable restrictions) is refutationally complete :

N0 |= ⊥ =⇒ ⊥ ∈ Ni for some i

Problem
The resolution rule is prolific.

it generates many useless intermediate results
it may generate the same clauses in many different ways

This motivates the introduction of resolution restrictions.

50 / 56

Resolution Strategies

Saturation Calculus:
Given N0 : set of (implicitly universally quantified) clauses.
Derive N0, N1, N2, N3, ... s.t. Ni+1 = Ni ∪ {C},

where C is the conclusion of a resolution step from premises in Ni

(under reasonable restrictions) is refutationally complete :

N0 |= ⊥ =⇒ ⊥ ∈ Ni for some i

Problem
The resolution rule is prolific.

it generates many useless intermediate results
it may generate the same clauses in many different ways

This motivates the introduction of resolution restrictions.

50 / 56

Resolution Restrictions
Ordered resolution

define stable atom ordering;
resolve only maximal literals

Hyper-Resolution

Clauses are divided into
“nuclei”: those with ≥ 1 negative literals
“electrons” : those with positive literals only

Resolution can occur only among one nucleus and one electron

Ex :

¬P(x) ∨ ¬Q(x) ∨ R(x) Q(A) ∨ C
¬P(A) ∨ R(A) ∨ C P(A) ∨ D

R(A) ∨ C ∨ D

Multiple resolution steps are merged into one step

Ex :

¬P(x) ∨ ¬Q(x) ∨ R(x) Q(A) ∨ C P(A) ∨ D
R(A) ∨ C ∨ D

=⇒ Globally, can produce only electrons
51 / 56

Resolution Restrictions
Ordered resolution

define stable atom ordering;
resolve only maximal literals

Hyper-Resolution

Clauses are divided into
“nuclei”: those with ≥ 1 negative literals
“electrons” : those with positive literals only

Resolution can occur only among one nucleus and one electron

Ex :

¬P(x) ∨ ¬Q(x) ∨ R(x) Q(A) ∨ C
¬P(A) ∨ R(A) ∨ C P(A) ∨ D

R(A) ∨ C ∨ D

Multiple resolution steps are merged into one step

Ex :

¬P(x) ∨ ¬Q(x) ∨ R(x) Q(A) ∨ C P(A) ∨ D
R(A) ∨ C ∨ D

=⇒ Globally, can produce only electrons
51 / 56

Resolution Restrictions
Ordered resolution

define stable atom ordering;
resolve only maximal literals

Hyper-Resolution

Clauses are divided into
“nuclei”: those with ≥ 1 negative literals
“electrons” : those with positive literals only

Resolution can occur only among one nucleus and one electron

Ex :

¬P(x) ∨ ¬Q(x) ∨ R(x) Q(A) ∨ C
¬P(A) ∨ R(A) ∨ C P(A) ∨ D

R(A) ∨ C ∨ D

Multiple resolution steps are merged into one step

Ex :

¬P(x) ∨ ¬Q(x) ∨ R(x) Q(A) ∨ C P(A) ∨ D
R(A) ∨ C ∨ D

=⇒ Globally, can produce only electrons
51 / 56

Resolution Restrictions
Ordered resolution

define stable atom ordering;
resolve only maximal literals

Hyper-Resolution

Clauses are divided into
“nuclei”: those with ≥ 1 negative literals
“electrons” : those with positive literals only

Resolution can occur only among one nucleus and one electron

Ex :

¬P(x) ∨ ¬Q(x) ∨ R(x) Q(A) ∨ C
¬P(A) ∨ R(A) ∨ C P(A) ∨ D

R(A) ∨ C ∨ D

Multiple resolution steps are merged into one step

Ex :

¬P(x) ∨ ¬Q(x) ∨ R(x) Q(A) ∨ C P(A) ∨ D
R(A) ∨ C ∨ D

=⇒ Globally, can produce only electrons
51 / 56

Resolution Restrictions
Ordered resolution

define stable atom ordering;
resolve only maximal literals

Hyper-Resolution

Clauses are divided into
“nuclei”: those with ≥ 1 negative literals
“electrons” : those with positive literals only

Resolution can occur only among one nucleus and one electron

Ex :

¬P(x) ∨ ¬Q(x) ∨ R(x) Q(A) ∨ C
¬P(A) ∨ R(A) ∨ C P(A) ∨ D

R(A) ∨ C ∨ D

Multiple resolution steps are merged into one step

Ex :

¬P(x) ∨ ¬Q(x) ∨ R(x) Q(A) ∨ C P(A) ∨ D
R(A) ∨ C ∨ D

=⇒ Globally, can produce only electrons
51 / 56

Resolution Restrictions
Ordered resolution

define stable atom ordering;
resolve only maximal literals

Hyper-Resolution

Clauses are divided into
“nuclei”: those with ≥ 1 negative literals
“electrons” : those with positive literals only

Resolution can occur only among one nucleus and one electron

Ex :

¬P(x) ∨ ¬Q(x) ∨ R(x) Q(A) ∨ C
¬P(A) ∨ R(A) ∨ C P(A) ∨ D

R(A) ∨ C ∨ D

Multiple resolution steps are merged into one step

Ex :

¬P(x) ∨ ¬Q(x) ∨ R(x) Q(A) ∨ C P(A) ∨ D
R(A) ∨ C ∨ D

=⇒ Globally, can produce only electrons
51 / 56

Resolution Restrictions
Ordered resolution

define stable atom ordering;
resolve only maximal literals

Hyper-Resolution

Clauses are divided into
“nuclei”: those with ≥ 1 negative literals
“electrons” : those with positive literals only

Resolution can occur only among one nucleus and one electron

Ex :

¬P(x) ∨ ¬Q(x) ∨ R(x) Q(A) ∨ C
¬P(A) ∨ R(A) ∨ C P(A) ∨ D

R(A) ∨ C ∨ D

Multiple resolution steps are merged into one step

Ex :

¬P(x) ∨ ¬Q(x) ∨ R(x) Q(A) ∨ C P(A) ∨ D
R(A) ∨ C ∨ D

=⇒ Globally, can produce only electrons
51 / 56

Exercise

Solve the example of Colonel West using Hyper-Resolution strategy
Solve the example of Curiosity & Tuna using Hyper-Resolution Strategy

52 / 56

Exercise

Solve the example of Colonel West using Hyper-Resolution strategy
Solve the example of Curiosity & Tuna using Hyper-Resolution Strategy

52 / 56

Outline

1 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

2 Handling Definite FOL KBs & Datalog
Forward Chaining (hints)
Backward Chaining (hints)

3 Resolution for General FOL KBs
CNF-Ization
Resolution
A Complete Example

53 / 56

Exercise

Problem
Consider the following FOL formula set Γ:

1 ∀x .{[∀y .(Child(y) → Loves(x , y))] → [∃y .Loves(y , x)]}
2 ∀x .[Child(x) → Loves(Mark, x)]
3 Beats(Mark,Paul) ∨ Beats(John,Paul)
4 Child(Paul)
5 ∀x .{[∃z.(Child(z) ∧ Beats(x , z))] → [∀y .¬Loves(y , x)]}

(a) Compute the CNF-ization of Γ, Skolemize & standardize variables
(b) Write a FOL-resolution inference of the query Beats(John,Paul) from the CNF-ized KB

54 / 56

Exercise solution

CNF-ization
(a) Compute the CNF-ization of Γ, Skolemize & standardize variables

1 ∀x .{[∀y .(Child(y) → Loves(x , y))] → [∃y .Loves(y , x)]}
∀x .{[¬∀y .(Child(y) → Loves(x , y))] ∨ [∃y .Loves(y , x)]}
∀x .{[∃y .(Child(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)]}
{[(Child(F (x)) ∧ ¬Loves(x ,F (x)))] ∨ [Loves(G(x), x)]}
1. Child(F (x)) ∨ Loves(G(x), x)
2. ¬Loves(y ,F (y)) ∨ Loves(G(y), y)

2 ¬Child(z) ∨ Loves(Mark, z)

3 Beats(Mark,Paul) ∨ Beats(John,Paul)

4 Child(Paul)

5 ∀x .{[∃z.(Child(z) ∧ Beats(x , z))] → [∀y .¬Loves(y , x)]}
∀x .{[¬∃z.(Child(z) ∧ Beats(x , z))] ∨ [∀y .¬Loves(y , x)]}
∀x .{[∀z.(¬Child(z) ∨ ¬Beats(x , z))] ∨ [∀y .¬Loves(y , x)]}
¬Child(z2) ∨ ¬Beats(x2, z2) ∨ ¬Loves(y2, x2)

where F (),G() are Skolem unary functions.
55 / 56

Exercise solution [cont.]

Resolution

(b) Write a FOL-resolution inference of the query Beats(John,Paul) from the CNF-ized KB:
6 [1.2, 2.] =⇒ ¬Child(F (Mark)) ∨ Loves(G(Mark),Mark);
7 [1.1, 6.] =⇒ Loves(G(Mark),Mark);
8 [4, 5.] =⇒ ¬Beats(x2,Paul) ∨ ¬Loves(y2, x2);

9 [7, 8.] =⇒ ¬Beats(Mark,Paul);
10 [3, 9.] =⇒ Beats(John,Paul);

56 / 56

	Basic First-Order Reasoning
	Substitutions & Instantiations
	From Propositional to First-Order Reasoning
	Unification and Lifting

	Handling Definite FOL KBs & Datalog
	Forward Chaining (hints)
	Backward Chaining (hints)

	Resolution for General FOL KBs
	CNF-Ization
	Resolution
	A Complete Example

