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e Syntax and Semantics of FOL
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© Using FOL
@ FOL Agents
@ Example: The Wumpus World
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Recall: State Representations [Ch. 02]

Representations of states and transitions

@ Three ways to represent states and transitions between them:

o atomic: a state is a black box with no internal structure

o factored: a state consists of a vector of attribute values

e structured: a state includes objects, each of which may have attributes of its own as well as
relationships to other objects

@ increasing expressive power and computational complexity
@ reality represented at different levels of abstraction

e

mlno.o.
OHU..OO

(a) Atomic (b) Factored (b) Structured

(©S. Russell & P. Norwig, AIMA)




Pros of Propositional Logic

@ PL language is formal

@ non-ambiguous semantics
e unlike natural language, which is intrinsically ambiguous (ex “key”)

@ PL is declarative

e knowledge and inference are separate
@ inference is entirely domain independent

@ PL allows for partial/disjunctive/negated information

o unlike, e.g., data bases
@ PL is compositional

e the meaning of (A A B) — C derives from the meaning of A,B,C
@ The meaning of PL sentence is context independent

e unlike with natural language, where meaning depends on context
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Cons of Propositional Logic

@ Is “Atomic”: based on atomic events which cannot be decomposed
@ Assumes the world contains facts in the world that are either true or false, nothing else
e ex: Man_Socrates, Man_Plato, Man_Aristotle, ... distinct atoms
— PL has has very limited expressive power

e unlike natural language

@ cannot concisely describe an environment with many objects

@ e.g., cannot say “pits cause breezes in adjacent squares”
(need writing one sentence for each square)
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Logics

@ Alogicis a triple (£, S, R) where
e L, the logic’s language: a class of sentences described by a formal grammar
e S, the logic’s semantics: a formal specification of how to assign meaning in the “real world” to the
elements of £
e R, the logic’s inference system: is a set of formal derivation rules over £
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Logics

@ Alogicis a triple (£, S, R) where
e L, the logic’s language: a class of sentences described by a formal grammar
e S, the logic’s semantics: a formal specification of how to assign meaning in the “real world” to the
elements of £
e R, the logic’s inference system: is a set of formal derivation rules over £

@ There are several logics:
e propositional logic (PL)
first-order logic (FOL)
modal logics (MLs)
description logics (DLs)
temporal logics (TLs)
(fuzzy logics, probabilistic logics, ...)
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First-Order Logic (FOL)

@ |s structured: a world/state includes objects, each of which may have attributes of its own as
well as relationships to other objects
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First-Order Logic (FOL)

@ |s structured: a world/state includes objects, each of which may have attributes of its own as
well as relationships to other objects

@ Assumes the world contains:
e Objects:
e.g., people, houses, numbers, theories, Jim Morrison, colors, basketball games, wars, centuries,

o Relations:
e.g., red, round, bogus, prime, tall ...,

brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
@ Functions:

e.g., father of, best friend, one more than, end of, ...
@ Allows to quantify on objects
e ex: “All man are equal”, “some persons are left-handed”, ...
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Syntax of FOL: Basic Elements

@ Constant symbols: KingJohn, 2, UniversityofTrento,...
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Syntax of FOL: Basic Elements

@ Constant symbols: KingJohn, 2, UniversityofTrento,...

@ Predicate symbols: Man(.), Brother(.,.), (. > .), AlDifferent(...),...
e may have different arities (1,2,3,...)
e may be prefix (e.g. Brother(.,.)) orinfix (e.g. (. > .))

Function symbols: Sqgrt, LeftLeg, MotherOf

e may have different arities (1,2,3,...)
e may be prefix (e.g. Sqrt(.)) or infix (e.g. (. +.))

Variable symbols: x, y, a, b, ...

Propositional Connectives: —, A, V, —, +, <, &

Equality: “=" (also “#” s.t. “a # b” shortcut for “—(a = b))
Quantifiers: “v” (“forall”), “3” (“exists”, aka “for some”)
Punctuation Symbols: “,”, “(”, “)”

@ Constants symbols are 0-ary function symbols
@ Propositions are 0-ary predicates —- PL subcase of FOL
@ Signature: the set of predicate, function & constant symbols )
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FOL: Syntax

o 5 = = = DA
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FOL: Syntax

@ Terms:
e constant or variable or function(termy, ..., termy)
e ex: KingJohn, x, LeftLeg(Richard), (z*log(2))
e denote objects in the real world (aka domain)
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FOL: Syntax

@ Terms:

e constant or variable or function(termy, ..., termy)
e ex: KingJohn, x, LeftLeg(Richard), (z*log(2))
e denote objects in the real world (aka domain)

@ Atomic sentences (aka atomic formulas):

e T, L

@ proposition or predicate(termy, ..., term,) or termy = term,
o (Length(LeftLeg(Richard)) > Length(LeftLeg(KingJohn)))
e denote facts

@ Non-atomic sentences/formulas:

@ a,aNfB,aVp a— B, a— B,adps,
Vx.a, Ix.a 8.1, x (typically) occurs in «

e Ex: Vy.(ltalian(y) — President(Mattarella, y))
IxVy.President(x, y) — Yy3x.President(x, y)
Vx.(P(X) A Q(X)) < ((Vx.P(x)) A (VX.Q(x)))
Vx.(((x > 0) A (x < 7)) — (sin(x) > 0))

e denote (complex) facts
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FOL: Ground and Closed Formulas

@ A term/formula is ground iff no variable occurs in it (ex: 2 > 1)
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@ A term/formula is ground iff no variable occurs in it (ex: 2 > 1)

@ A formula is closed iff all variables occurring in it (if any) are quantified
(ex: Vx3y.(x > y))
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FOL: Ground and Closed Formulas

@ A term/formula is ground iff no variable occurs in it (ex: 2 > 1)
@ A formula is closed iff all variables occurring in it (if any) are quantified
(ex: Vx3y.(x > y))
— Ground formulas are closed, but not vice versa.
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FOL: Syntax (BNF)

(
(

(ComplexSentence)

(

(
(
(
(
(
(

Sentence)
AtomicSentence)

Term)

Connective)
Quantifier)
Variable)
ConstantSymbol)
FunctionSymbol)
PredicateSymbol)

(AtomicSentence) | (ComplexSentence)
T|L|

(PredicateSymbol)((Term), ...) |
(Term) = (Term)

—(Sentence) |

Sentence) (Connective) (Sentence) |
Quantifier) (Sentence)
ConstantSymbol) | (Variable) |
FunctionSymbol)((Term),...)
ANV]|=|+]e|a

v (Variable). | 3 (Variable).

o~ o~~~

A|B|---|John|O|1]---|x]...
F|G|--|Cos | FatherOf | + | ...
P|Q]|---| Red | Brother | > | - --
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POLARITY of subformulas

Polarity: the number of nested negations modulo 2.
@ Positive/negative occurrences

o occurs positively in ¢;

if =1 occurs positively [negatively] in ¢,

then ¢1 occurs negatively [positively] in ¢

if o1 A w2 Or 1 V @2 occur positively [negatively] in ¢,
then o1 and ¢» occur positively [negatively] in ¢;

if o1 — (2 occurs positively [negatively] in ¢,

then ¢4 occurs negatively [positively] in ¢ and ¢, occurs positively [negatively] in ¢;
if 1 > @2 Or 1 @ o Occurs in ¢,

then ¢1 and ¢, occur positively and negatively in p;

if VXx.¢o1 or x.¢p¢ occurs positively [negatively] in ¢,
then ¢1 occurs positively [negatively] in ¢
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Outline

e Syntax and Semantics of FOL

@ Semantics
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Truth in FOL: Intuitions

@ Sentences are true with respect to a model
@ containing a domain and an interpretation
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Truth in FOL: Intuitions

@ Sentences are true with respect to a model
e containing a domain and an interpretation

@ The domain contains > 1 objects (domain elements) and relations and functions over them
@ An interpretation specifies referents for

e variables — objects

e constant symbols — objects

e predicate symbols — relations

e function symbols — functional relations

@ An atomic sentence P(4, ..., tp) is true in an interpretation iff the objects referred to by
t, ..., t; are in the relation referred to by P
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FOL: Semantics

FOL Models (aka possible worlds)
@ A model M is a pair (D, Z) ({(domain, interpretation))
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FOL: Semantics

FOL Models (aka possible worlds)
@ A model M is a pair (D, Z) ({domain, interpretation))
@ Domain D: a non-empty set of objects (aka domain elements)
@ Interpretation Z: a (non-injective) map on elements of the signature
e constant symbols — domain elements:
a constant symbol C is mapped into a particular object [C]* in D
e predicate symbols — domain relations:
a k-ary predicate P(...) is mapped into a subset [P]* of D
(i.e., the set of object tuples satisfying the predicate in this world)
e functions symbols — domain functions:
a k-ary function f is mapped into a domain function [f]* : DX — D ([f]* must be total)

(we denote by [.]* the result of the interpretation 7)
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FOL Models (aka possible worlds)
@ A model M is a pair (D, Z) ({domain, interpretation))
@ Domain D: a non-empty set of objects (aka domain elements)
@ Interpretation Z: a (non-injective) map on elements of the signature
e constant symbols — domain elements:
a constant symbol C is mapped into a particular object [C]* in D
e predicate symbols — domain relations:
a k-ary predicate P(...) is mapped into a subset [P]* of D
(i.e., the set of object tuples satisfying the predicate in this world)
e functions symbols — domain functions:
a k-ary function f is mapped into a domain function [f]* : DX — D ([f]* must be total)

(we denote by [.]* the result of the interpretation 7)

An Interpretation Z is extended to assign domain values to variables, domain values to terms and
truth values to formulas. J
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FOL: Semantics [cont.]

Interpretation of terms

7 maps terms into domain elements

19/52




FOL: Semantics [cont.]

Interpretation of terms
Z maps terms into domain elements

@ Variables are assigned domain values

e variables — domain elements:
a variable x is mapped into a particular object [x]* in D
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FOL: Semantics [cont.]

Interpretation of terms

Z maps terms into domain elements
@ Variables are assigned domain values

e variables — domain elements:
a variable x is mapped into a particular object [x]* in D

o Aterm f(ty, ..., t) is mapped by Z into the value [f(t;, ..., t)]* returned by applying the
domain function [f]%, into which f is mapped, to the values [t;]%, ..., [t]* obtained by applying
recursively 7 to the terms t, ..., I:

o [(ti, ... t)]% = [F((1]7, ..., [t]7)

e Ex: if “Me, Mother, Father” are interpreted as usual, then “Mother(Father(Me))” is interpreted as
my (paternal) grandmother

o Ex:if“+,—,-,0,1,2,3,4” are interpreted as usual, then “(3 — 1) - (0 + 2)” is interpreted as 4
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FOL: Semantics [cont.]

Interpretation of formulas
Z maps formulas into truth values
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FOL: Semantics [cont.]

Interpretation of formulas

Z maps formulas into truth values
@ An atomic formula P(ti, ..., &) is true in Z iff the objects into which the terms t,,...tc are
mapped by Z comply to the relation into which P is mapped
o [P(ty,..., &)]F is true iff ([t]%, ..., [t]F) € [P)*
e Ex: if “Me, Mother, Father, Married” are interpreted as traditon, then
“Married(Mother(Me),Father(Me))” is interpreted as true

e Ex:if“+,—,>,0,1,2,3,4” are interpreted as usual, then “(4 — 0) > (1 + 2)” is interpreted as true
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Interpretation of formulas

Z maps formulas into truth values

@ An atomic formula P(ti, ..., &) is true in Z iff the objects into which the terms t,,...tc are
mapped by Z comply to the relation into which P is mapped
o [P(ty,..., &)]F is true iff ([t]%, ..., [t]F) € [P)*
e Ex: if “Me, Mother, Father, Married” are interpreted as traditon, then
“Married(Mother(Me),Father(Me))” is interpreted as true
e Ex:if“+,—,>,0,1,2,3,4” are interpreted as usual, then “(4 — 0) > (1 + 2)” is interpreted as true

@ An atomic formula t; = & is true in Z iff the terms #, t, are mapped by Z into the same
domain element
o [ty = b]” is true iff [1]* same as [t]*
e Ex: if “Mother” is interpreted as usual, Richard, John are brothers, then
“Mother(Richard)=Mother(John))” is interpreted as true
o Ex:if“+,—,0,1,2,3,4” are interpreted as usual, then “(4 — 1) = (1 + 2)” is interpreted as true
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FOL: Semantics [cont.]

Interpretation of formulas

Z maps formulas into truth values

@ An atomic formula P(ti, ..., &) is true in Z iff the objects into which the terms t,,...tc are
mapped by Z comply to the relation into which P is mapped
o [P(ty,..., &)]F is true iff ([t]%, ..., [t]F) € [P)*
e Ex: if “Me, Mother, Father, Married” are interpreted as traditon, then
“Married(Mother(Me),Father(Me))” is interpreted as true
e Ex:if“+,—,>,0,1,2,3,4” are interpreted as usual, then “(4 — 0) > (1 + 2)” is interpreted as true
@ An atomic formula t; = & is true in Z iff the terms #, t, are mapped by Z into the same
domain element
o [ty = b]” is true iff [1]* same as [t]*
e Ex: if “Mother” is interpreted as usual, Richard, John are brothers, then
“Mother(Richard)=Mother(John))” is interpreted as true
o Ex:if“+,—,0,1,2,8,4” are interpreted as usual, then “(4 — 1) = (1 + 2)” is interpreted as true

@ A\, V,—, <+, @ interpreted by 7 as in PL
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Models for FOL: Example

Richard Lionhearth and John Lackland

@ D: domain at right
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Models for FOL: Example

Richard Lionhearth and John Lackland

@ D: domain at right
@ 7:s.t.

e [Richard]*: Richard the Lionhearth
e [John]*: evil King John
e [Brother]*: brotherhood

@ [Brother(Richard, John)|* is true

person

(©S. Russell & P. Norwig, AIMA)
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Models for FOL: Example

Richard Lionhearth and John Lackland

@ D: domain at right

@ 7:s.t.
e [Richard]*: Richard the Lionhearth
e [John]*: evil King John
e [Brother]*: brotherhood

@ [Brother(Richard, John)|* is true

o [LeftLeg]* maps any individual to his

left leg
° ..

brother

EEI’SOH
ing

eftleg

(©S. Russell & P. Norwig, AIMA)




Models for FOL: Remark

@ [f]* total: must provide an output for every input

@ e.g.: [LeftLeg(crown)]*?

@ possible solution: assume “null” object ([LeftLeg(crown) = null]*
(other solution, sorts, not considered here)
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Universal Quantification

DAy
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Universal Quantification

@ Vx.a(x,...) (x variable, typically occurs in x)
e ex: Vx.(King(x) — Person(x)) (“all kings are persons”)
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a is true in M for every possible domain value x is mapped to
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Universal Quantification

@ Vx.a(x,...) (x variable, typically occurs in x)

e ex: Vx.(King(x) — Person(x)) (“all kings are persons”)

@ Vx.«a(x,...) true in M iff

a is true in M for every possible domain value x is mapped to
@ Roughly speaking, can be seen as a conjunction over all (typically infinite) possible

instantiations of x in «

(King(John)
(King(Richard)
(King(crown)
(King(LeftLeg(John))
(

— Person(John)

— Person(Richard)

— Person(crown)

— Person(LeftLeg(John))
(

)A
A
)A
)A

King(LeftLeg(LeftLeg(John))) — Person(LeftLeg(LeftLeg(John))) )A
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Universal Quantification [cont.]
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Universal Quantification [cont.]

@ One may want to restrict the domain of universal quantification to elements of some kind P
o ex “forall kings ...”, “forall integer numbers...”
@ Idea: use an implication, with restrictive predicate as implicant:
Vx.(P(x) = a(x,...))
e ex "Vx.(King(x) — ...)", “Vx.(Integer(x) — ...)",
@ Beware of typical mistake: do not use “A” instead of “—”
e ex: “Vx.(King(x) A Person(x))” means “everything/one is a King and is a Person”
e ex: “Vx.(King(x) — Person(x))” means “everything/one who is a King is a Person
(i.e. “every king is a person”)”
@ “v” distributes with “A”, but not with “v”
e Vx.(P(x) A Q(x)) equivalent to (Vx.P(x)) A (Vx.Q(x))
e “Everybody is a king and is a person” same as
“Everybody is a king and everybody is a person”
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Universal Quantification [cont.]

@ One may want to restrict the domain of universal quantification to elements of some kind P
o ex “forall kings ...”, “forall integer numbers...”

@ Idea: use an implication, with restrictive predicate as implicant:
Vx.(P(x) = a(x,...))
@ ex “Vx.(King(x) — ...)", “Vx.(Integer(x) — ...)",
@ Beware of typical mistake: do not use “A” instead of “—”

e ex: “Vx.(King(x) A Person(x))” means “everything/one is a King and is a Person”
e ex: “Vx.(King(x) — Person(x))” means “everything/one who is a King is a Person
(i.e. “every king is a person”)”
@ “V” distributes with “A”, but not with “v”
e Vx.(P(x) A Q(x)) equivalent to (Vx.P(x)) A (Vx.Q(x))
e “Everybody is a king and is a person” same as
“Everybody is a king and everybody is a person”
e Vx.(P(x) Vv Q(x)) not equivalent to (Vx.P(x)) V (Vx.Q(x)):
e “Everybody is a king or is a peasant” much weaker than
“Everybody is a king or everybody is a peasant”
(Vx.P(x)) V (Vx.Q(x)) = Vx.(P(x) V Q(x)),
Vx.(P(x) V Q(x)) & (Vx.P(x)) V (Vx.Q(x))

4




Existential Quantification

@ dx.a(x,...) (x variable, typically occurs in x)
e ex: Ix.(King(x) A Evil(x)) (“there is an evil king”)
@ pronounced “exists x s.t. ...” or “for some x ...”
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@ dx.a(x,...) (x variable, typically occurs in x)
e ex: Ix.(King(x) A Evil(x)) (“there is an evil king”)
@ pronounced “exists x s.t. ...” or “for some x ...”
@ Ix.«a(x,...) true in M iff
a is true in M for some possible domain value x is mapped to

@ Roughly speaking, can be seen as a disjunction over all (typically infinite) possible
instantiations of x in «

(King(Richard) AEVil(Richard) WV
(King(John) AEvil(John) WV
(King(crown) AEvil(crown) WV
(King(LeftLeg(John)) AEVvil(LeftLeg(John)) WV
(King(LeftLeg(LeftLeg(John))) AEvil(LeftLeg(LeftLeg(John))) )V
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Existential Quantification [cont.]

@ One may want to restrict the domain of existential quantification to elements of some kind P
@ ex “exists a king s.t. ...”, “for some integer numbers...”
@ Idea: use a conjunction with restrictive predicate:
Ix.(P(x) A a(x,...))
e ex “Ix.(King(x) A ...)", “Ix.(Integer(x) A ...)",
@ Beware of typical mistake: do not use “—” instead of “A”

e ex: “Ix.(King(x) — Evil(x))” means “Someone is not a king or is evil”
e ex: “Ix.(King(x) A Evil(x))” means “Someone is king and is evil”
(i.e., “Some king is evil”)
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@ One may want to restrict the domain of existential quantification to elements of some kind P
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Existential Quantification [cont.]

@ One may want to restrict the domain of existential quantification to elements of some kind P
@ ex “exists a king s.t. ...”, “for some integer numbers...”
@ Idea: use a conjunction with restrictive predicate:
Ix.(P(x) A a(x,...))
e ex “Ix.(King(x) A ...)", “Ix.(Integer(x) A ...)",
@ Beware of typical mistake: do not use “—” instead of “A”
e ex: “Ix.(King(x) — Evil(x))” means “Someone is not a king or is evil”
e ex: “Ix.(King(x) A Evil(x))” means “Someone is king and is evil”
(i.e., “Some king is evil”)
@ “J” distributes with “v”, but not with “A”
e Ix.(P(x) Vv Q(x)) equivalent to (3x.P(x)) V (3x.Q(x))
e “Somebody is a king or is a knight” same as
“Somebody is a king or somebody is a knight”
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Existential Quantification [cont.]

@ One may want to restrict the domain of existential quantification to elements of some kind P
@ ex “exists a king s.t. ...”, “for some integer numbers...”

@ Idea: use a conjunction with restrictive predicate:
Ix.(P(x) A a(x,...))
e ex “Ix.(King(x) A ...)", “Ix.(Integer(x) A ...)",
@ Beware of typical mistake: do not use “—” instead of “A”
e ex: “Ix.(King(x) — Evil(x))” means “Someone is not a king or is evil”
e ex: “Ix.(King(x) A Evil(x))” means “Someone is king and is evil”
(i.e., “Some king is evil”)
@ “J” distributes with “v”, but not with “A”
e Ix.(P(x) Vv Q(x)) equivalent to (3x.P(x)) V (3x.Q(x))
e “Somebody is a king or is a knight” same as
“Somebody is a king or somebody is a knight”
e Ix.(P(x) A Q(x)) not equivalent to (3x.P(x)) A (3x.Q(x))
e “Somebody is a king and is evil” much stronger than
“Somebody is a king and somebody is evil”
Ix.(P(x) A Q(x)) E (3x.P(x)) A (3x.Q(x))
(3x.P(x)) A (3x.Q(x)) = Ix.(P(x) A Q(x))
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Examples

@ Brothers are siblings

e Vx,y. (Brothers(x,y) — Siblings(x,y))
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Examples

@ Brothers are siblings
e Vx,y. (Brothers(x,y) — Siblings(x,y))
@ “Siblings” is symmetric
e Vx,y. (Siblings(x,y) <+ Siblings(y, x))
@ One’s mother is one’s female parent
@ Vx,y. (Mother(x,y) «+ (Female(x) A Parent(x,y)))
@ A first cousin is a child of a parent’s sibling

® Vxy,Xo. (FirstCousin(xy,X2) <>
3p1,po. (Siblings(p1,p2) A Parent(p1, x1) A Parent(p2, x2)))

@ Dogs are mammals
e Vx. (Dog(x) — Mammal(x))
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Equality

@ Equality is a special predicate: t; = t, is true under a given interpretation if and only if # and
f> refer to the same object
e Ex: 1 =2and x x x = x are satisfiable (!)
e Ex: 2 =2isvalid
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Equality

@ Equality is a special predicate: t; = t, is true under a given interpretation if and only if # and
f> refer to the same object
e Ex: 1 =2and x x x = x are satisfiable (!)
e Ex: 2 =2isvalid
@ Ex: definition of Sibling in terms of Parent

Vx,y. (Siblings(x,y) < [=(x=y)A3p1,p2. (=(p1 = p2) A
Parent(py, x) A\ Parent(pz, x) A Parent(py, y) A Parent(pz, y)]))
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Example

No one is his/her own sibling
e Vx. —Siblings(x, x)
Sisters are female, brothers are male

vV x,y. ((Sisters(x,y) — (Female(x) A Female(y))) A
(Brothers(x, y) — (Male(x) A Male(y))))

@ Every married person has a spouse
e Vx. ((Person(x) A Married(x)) — 3y. Spouse(x,y))
Married people have spouses
e Vx. ((Person(x) A Married(x)) — 3y. Spouse(x,y))
Only married people have spouses
e Vx,y. ((Person(x) A Person(y) A Spouse(x,y)) — (Married(x) A Married(y)))
People cannot be married to their siblings
e Vx,y. (Spouse(x,y) — —Siblings(x, y))
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@ Not everybody has a spouse

e —Vx. (Person(x) — 3y. Spouse(x,y)) or
e dx. (Person(x) A—3y. Spouse(x,y))

@ Everybody has a mother
e Vx. (Person(x) — 3y. Mother(y, x))
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Example (cont.)

@ Not everybody has a spouse

e —Vx. (Person(x) — 3y. Spouse(x,y)) or
e dx. (Person(x) A—3y. Spouse(x,y))

@ Everybody has a mother
e Vx. (Person(x) — 3y. Mother(y, x))
@ Everybody has a mother and only one
e VXx. Person(x) — (3y. Mother(y,x) A =3z. (=(y = z) A Mother(z, x)))
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@ Ixy.P(x,y) equivalent to Jyx.P(x, y)
e ex: Jxy.Twins(x, y) same as 3yx.Twins(x, y)
@ IxVy.P(x,y) not equivalent to Vy3x.P(x, y)

e ex: Vy3dx.Father(x,y) much weaker than 3xVy.Father(x, y)
“everybody has a father” vs. “exists a father of everybody”
IxVy.P(x,y) = Vy3ax.P(x,y)

Vy3x.P(x, y) = 3IxVy.P(x,y)
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@ Variable names are irrelevant: e.g., Vx.P(x) is the same as Vy.P(y)
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Notation variants: Vx(Vy.a) <= VxVy.a <= VX, y.a <= VXy.«
(same with 3)
@ if x does not occur in ¢, Vx.¢ equivalent to 3x.¢ equivalent to ¢
@ Vxy.P(x,y) equivalent to Vyx.P(x, y)
@ ex: Vxy.(x < y) same as Vyx.(x < y)
@ Ixy.P(x,y) equivalent to Jyx.P(x, y)
e ex: Jxy.Twins(x, y) same as 3yx.Twins(x, y)
@ IxVy.P(x,y) not equivalent to Vy3x.P(x, y)

e ex: Vy3dx.Father(x,y) much weaker than 3xVy.Father(x, y)
“everybody has a father” vs. “exists a father of everybody”
IxVy.P(x,y) = Vy3ax.P(x,y)

Vy3x.P(x, y) = 3xVy.P(x, y)

Remark
@ Variable names are irrelevant: e.g., Vx.P(x) is the same as Vy.P(y)

@ ... provided there are no name conflicts: e.g., Vx.3yP(x, y) is not the same as Vy.3yP(y.y)! |
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Duality of Universal and Existential Quantification

@ V and 3 are dual
0 VX.a < —dx.—«
0 VX.a <= IX.—«
0 IX.a < —VX.—«
0 —dX.a < VXx.—«
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Duality of Universal and Existential Quantification

@ V and 3 are dual
0 VX.a0 <= —IX.—«v
0 VX.a <= IX.—«
° IX.a <= VXx.—«
0 —dx.a < VX.—«
@ Examples
e Vx.Likes(x, Icecream) equivalent to —3x.—Likes(x, Icecream)
e Jx.Likes(x, Broccoli) equivalent to —Vx.—Likes(x, Broccoli)
@ Negated restricted quantifiers switch “—” with “A”
@ Vx.(P(x) = o) < —3x.(P(x) A ~a)
o —Vx.(P(x) = a) <= 3x.(P(x) A ~a)
@
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Duality of Universal and Existential Quantification

@ vV and 3 are dual

0 VX.a < —dx.—«
0 VX.a < IXx.~«
0 IX.a < VX.~«
0 —dX.a < VXx.—«

@ Examples
e Vx.Likes(x, Icecream) equivalent to —3x.—Likes(x, Icecream)
e Jx.Likes(x, Broccoli) equivalent to —Vx.—Likes(x, Broccoli)
@ Negated restricted quantifiers switch “—” with “A”
@ Vx.(P(x) = o) < —3x.(P(x) A ~a)
o —Vx.(P(x) = a) <= 3x.(P(x) A ~a)
o ...
@ Ex: “not all kings are evil” same as “some king is not evil”
@ —Vx.(King(x) — Evil(x)) <= 3x.(King(x) A —EVvil(x))
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Duality of Universal and Existential Quantification

@ V and 3 are dual
° VX.a <= —~3Ix.—«x
0 ~VX.a <= Ix.~v
° IX.a <= VXx.—«
0 —dX.a <= VXx.—«
@ Examples
e Vx.Likes(x, Icecream) equivalent to —3x.—Likes(x, Icecream)
e Jx.Likes(x, Broccoli) equivalent to —Vx.—Likes(x, Broccoli)
@ Negated restricted quantifiers switch “—” with “A”
@ Vx.(P(x) = o) < —3x.(P(x) A ~a)
o —Vx.(P(x) = a) <= 3x.(P(x) A ~a)
@
@ Ex: “not all kings are evil” same as “some king is not evil”
@ —Vx.(King(x) — Evil(x)) <= 3x.(King(x) A —EVvil(x))
@ Unsurprising, since (¥, 3) are (A, V) over infinite instantiations
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Outline

e Syntax and Semantics of FOL

@ Satisfiability, Validity, Entailment
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Satisfiability, Validity, Entailment

def

@ A model M = (D, T) satisfies ¢ (M = o) iff [¢]” is true
@ M(p) = {M | M = ¢} (the set of models of ()
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def

@ A model M = (D, T) satisfies ¢ (M = o) iff [¢]” is true

@ M(p) £ {M | M = ¢} (the set of models of ¢)
@ o is satisfiable iff M = ¢ for some M (i.e. M(p) # 0)

34/52



Satisfiability, Validity, Entailment
@ A model M £ (D, T) satisfies ¢ (M = ¢) iff []” is true
@ M(p) £ {M | M = ¢} (the set of models of ¢)
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@ M(p) = {M | M = ¢} (the set of models of ()
@ o is satisfiable iff M = ¢ for some M (i.e. M(p) # 0)

@ « entails 3 (« = p) iff, foral M, M = a = M E 3
(ie., M(a) € M(B))

@ yisvalid (= o) iff M |= ¢ forall Ms (i.e., M € M(yp) forall Ms)
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Satisfiability, Validity, Entailment
@ A model M £ (D, T) satisfies ¢ (M = ¢) iff []” is true
@ M(p) £ {M | M = ¢} (the set of models of ¢)
@ o is satisfiable iff M = ¢ for some M (i.e. M(p) # 0)

@ « entails 3 (« = p) iff, foral M, M = a = M E 3
(ie., M(a) € M(B))

@ yisvalid (= o) iff M |= ¢ forall Ms (i.e., M € M(yp) forall Ms)
@ «, 3 are equivalentiff = 6 and 8 E « (i.e. M(a) = M(5))
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Satisfiability, Validity, Entailment
@ A model M £ (D, T) satisfies ¢ (M = ¢) iff []” is true
@ M(p) = {M | M = ¢} (the set of models of ()
@ ¢ is satisfiable iff M |= ¢ for some M (i.e. M(y) # 0)

@ « entails 3 (« = p) iff, foral M, M = a = M E 3
(i.e., M(a) € M(B))

@ pisvalid (E ) iff M | ¢ forall Ms (i.e., M € M(yp) forall Ms)
@ «, 3 are equivalentiff = 6 and 8 E « (i.e. M(a) = M(5))

Sets of formulas as conjunctions

Let T = {1, ..., n}. Then:
o [ satisfiable iff A7_, o; satisfiable
oI Eoiff ALipiE ¢
o I validiff A", ¢; valid
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Properties & Results

Property

p is valid iff —¢ is unsatisfiable

DAy
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Properties & Results

Property

p is valid iff —¢ is unsatisfiable

Deduction Theorem
a = Biffa — Bisvalid (= o — B)

DAy
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Properties & Results

Property
p is valid iff —¢ is unsatisfiable

Deduction Theorem
a = Biffa — Bisvalid (= o — B)

Corollary
a |= B iff a A = is unsatisfiable

o 5 = E £ DA
35/52



Properties & Results

Property
p is valid iff —¢ is unsatisfiable

Deduction Theorem
a | piffa — gisvalid (= a — B)

Corollary
a |= B iff a A = is unsatisfiable

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking! J

35/52



Examples

@ P(x), Vx.(x > y), {Vx.(x > 0),Vx.(x + 1 > x)} satisfiable

DAy
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Examples

@ P(x), Vx.(x > y), {Vx.(x > 0),Vx.(x + 1 > x)} satisfiable

@ P(x) A =P(x), =(x = x), (Vx,y.Q(x,y)) ——Q(a, b) unsatisfiable




Examples

@ P(x), Vx.(x > y), {Vx.(x > 0),Vx.(x + 1 > x)} satisfiable

@ P(x) A =P(x), =(x = x), (Vx,y.Q(x,y)) ——Q(a, b) unsatisfiable
@ Vx.P(x) — 3x.P(x) valid




Examples

@ P(x), Vx.(x > y), {Vx.(x > 0),Vx.(x + 1 > x)} satisfiable

@ P(x) A =P(x), =(x = x), (Vx,y.Q(x,y)) ——Q(a, b) unsatisfiable
@ Vx.P(x) — 3x.P(x) valid

@ Vx.P(x) = 3x.P(x)
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Examples

@ P(x), Vx.(x > y), {Vx.(x > 0),Vx.(x + 1 > x)} satisfiable

@ P(x) A =P(x), =(x = x), (Vx,y.Q(x,y)) ——Q(a, b) unsatisfiable
@ Vx.P(x) — 3x.P(x) valid

@ Vx.P(x) |= 3Ix.P(x)

@ —(¥x.P(x)) — 3x.P(x)) unsatisfiable
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Examples

@ P(x), Vx.(x > y), {Vx.(x > 0),Vx.(x + 1 > x)} satisfiable

@ P(x) A =P(x), =(x = x), (Vx,y.Q(x,y)) ——Q(a, b) unsatisfiable
@ Vx.P(x) — 3x.P(x) valid

@ Vx.P(x) |= 3Ix.P(x)

@ —(¥x.P(x)) — 3x.P(x)) unsatisfiable

@ Vx.P(x) A =3x.P(x)) unsatisfiable
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Examples

@ P(x), Vx.(x > y), {Vx.(x > 0),Vx.(x + 1 > x)} satisfiable

@ P(x) A =P(x), =(x = x), (Vx,y.Q(x,y)) ——Q(a, b) unsatisfiable
@ Vx.P(x) — 3x.P(x) valid

@ Vx.P(x) |= 3Ix.P(x)

@ —(¥x.P(x)) — 3x.P(x)) unsatisfiable

@ Vx.P(x) A =3x.P(x)) unsatisfiable

(1 > 2) is satisfiable. Why? J
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Exercises

@ Is Vx.P(x) equivalent to Vy.P(y)?
@ Is Vxy.P(x, y) equivalent to Vyx.P(y, x)?
@ Vx.3x.P(x) is equivalent to:
e Ix.P(x)
® Vx.P(x)
e neither
@ Ix.Vx.P(x) is equivalent to:
e Ix.P(x)
e Vx.P(x)
e neither
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Enumeration of Models?

@ We can enumerate the models for a given FOL sentence:

For each number of universe elements n from 1 to co
For each k-ary predicate Py in the sentence
For each possible k-ary relation on n objects
For each constant symbol C in the sentence
For each one of n objects C is mapped to
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Enumeration of Models?

@ We can enumerate the models for a given FOL sentence:

For each number of universe elements n from 1 to co
For each k-ary predicate Py in the sentence
For each possible k-ary relation on n objects
For each constant symbol C in the sentence
For each one of n objects C is mapped to

@ — Enumerating models is not going to be easy!
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Semi-decidability of FOL

Theorem

Entailment (validity, unsatisfiability) in FOL is only semi-decidable:
@ if I' = «, this can be checked in finite time
@ if I j~ «, no algorithm is guaranteed to check it in finite time
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Semi-decidability of FOL

Theorem

Entailment (validity, unsatisfiability) in FOL is only semi-decidable:
@ if I' = «, this can be checked in finite time
@ if I j~ «, no algorithm is guaranteed to check it in finite time

©Munch Museum, Oslo 39/§



Outline

© Using FOL

40/52



Outline

© Using FOL
@ FOL Agents
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[Recall:] Knowledge-Based Agent: General Schema

@ Given a percept, the agent
o Tells the KB of the percept at time step t
@ ASKs the KB for the best action to do at time step t
e Tells the KB that it has in fact taken that action
@ Details hidden in three functions:
MAKE-PERCEPT-SENTENCE, MAKE-ACTION-QUERY, MAKE-ACTION-SENTENCE
e construct logic sentences
e implement the interface between sensors/actuators and KRR core

@ Tell and Ask may require complex logical inference

function KB-AGENT( percept) returns an action
persistent: KB, a knowledge base
t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE( percept, t))
action «— ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t—t+1

return action

(©S. Russell & P. Norwig, AIMA)

42/}
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FOL Knowledge-Based Agent

@ We can assert FOL sentences (assertions) into the KB. Ex:
e ex: Tell(KB, King(John))
e ex: Tell(KB, Person(Richard))
o ex: Tell(KB, Vx.(King(x) — Person(x)))
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FOL Knowledge-Based Agent

@ We can assert FOL sentences (assertions) into the KB. Ex:
e ex: Tell(KB, King(John))
e ex: Tell(KB, Person(Richard))
o ex: Tell(KB, Vx.(King(x) — Person(x)))
@ We can ask queries (aka goals) to the KB. Ex:
o ex: Ask(KB, King(John))
@ ex: Ask(KB, Person(John))
e ex: Ask(KB, 3x.Person(x))

= Ask(KB,a) returns true only if KB | «
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FOL Knowledge-Based Agent

@ We can assert FOL sentences (assertions) into the KB. Ex:
e ex: Tell(KB, King(John))
e ex: Tell(KB, Person(Richard))
o ex: Tell(KB, Vx.(King(x) — Person(x)))
@ We can ask queries (aka goals) to the KB. Ex:
o ex: Ask(KB, King(John))
@ ex: Ask(KB, Person(John))
e ex: Ask(KB, 3x.Person(x))

—> Ask(KB,a) returns true only if KB = «
@ Other queries: AskVars, asking for variable values
— returns one (or more) binding lists (aka substitutions) {var/term; var/term, ...}

o ex: AskVars(KB, 3x.Person(x)) => {x/John}; {x/Richard}
e typical for Horn clauses
(e.g- with King(John) v King(Richard),
the query AskVars(KB, 3x.King(x)) would not cause a binding list)
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Example: The Kinship Domain

Domain of family relationships

@ Binary predicate symbols (family relationships):

e Parent, Sibling, Brother, Sister, Child , Daughter, Son, Spouse, Wife, Husband, Grandparent,
Grandchild, Cousin, Aunt, Uncle

Notation: “t # s” shortcut for “=(f = s)”

SNl
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Example: The Kinship Domain

Domain of family relationships

@ Binary predicate symbols (family relationships):

e Parent, Sibling, Brother, Sister, Child , Daughter, Son, Spouse, Wife, Husband, Grandparent,
Grandchild, Cousin, Aunt, Uncle

@ function symbols:
@ Mother, Father

Notation: “t # s” shortcut for “—(f = s)”

SNl
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Example: The Kinship Domain

Domain of family relationships

@ Binary predicate symbols (family relationships):
e Parent, Sibling, Brother, Sister, Child , Daughter, Son, Spouse, Wife, Husband, Grandparent,
Grandchild, Cousin, Aunt, Uncle
@ function symbols:
@ Mother, Father
@ Knowledge base KB:
@ Vx,y.(x = Mother(y) <+ (Female(x) A Parent(x, y)))
@ Vvx, y.(Brother(x, y) < (Male(x) A Sibling(x, y)))
@ Vx, y.(Grandparent(x, y) <+ 3z.(Parent(x, z) A Parent(z,y)))

Q Vx, y.(Sibling(x,y) <> ((x # y) A 3p1, P2-((P1 # P2)A
Parent(ps, x) A\ Parent(ps, y) A (Parent(p2, x) A Parent(pz, y))))

Notation: “t # s” shortcut for “=(f = s)”
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Example: The Kinship Domain

Domain of family relationships

@ Binary predicate symbols (family relationships):
e Parent, Sibling, Brother, Sister, Child , Daughter, Son, Spouse, Wife, Husband, Grandparent,
Grandchild, Cousin, Aunt, Uncle
@ function symbols:
@ Mother, Father
@ Knowledge base KB:

@ Vx,y.(x = Mother(y) <+ (Female(x) A Parent(x, y)))
@ Vx,y.(Brother(x, y) <+ (Male(x) A Sibling(x, y)))
@ Vx, y.(Grandparent(x, y) <+ 3z.(Parent(x, z) A Parent(z,y)))

Q Vx, y.(Sibling(x,y) <> ((x # y) A 3p1, P2-((P1 # P2)A
Parent(ps, x) A\ Parent(ps, y) A (Parent(p2, x) A Parent(pz, y))))

@ Queries inferred from KB
e ex: (4) = Vx, y.(Sibling(x,y) + Sibling(y, x))
Notation: “f # s” shortcut for “=(t = s)”
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Example: Integer Numbers

Peano Arithmetic

@ Basic symbols
e Unary predicate symbol: NatNum (natural number)
e Unary function symbol: S (Successor)
e Constant symbol: 0
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Peano Arithmetic

@ Basic symbols
e Unary predicate symbol: NatNum (natural number)
e Unary function symbol: S (Successor)
e Constant symbol: 0
@ Defined symbols:
@ Binary function symbols: +,* (infix)
e Constant symbols: 1,2,3,4,5,6,...
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Example: Integer Numbers

Peano Arithmetic

@ Basic symbols
e Unary predicate symbol: NatNum (natural number)
e Unary function symbol: S (Successor)
e Constant symbol: 0

@ Defined symbols:

@ Binary function symbols: +,* (infix)
e Constant symbols: 1,2,3,4,5,6,...
@ Knowledge base KB:
@ NatNum(0)
@ vx.(NatNum(x) — NatNum(S(x)))
Q VX.(NatNum( ) — (0 # S(x)))
Q V. y.((NatNum(x) A NatNum(y)) = ((x # y) = (S(x) # S(¥))))
@ Vx.(NatNum(x) — (x = (0 + x)))
Q vx, ((NatNum(x) A NatNum(y)) — (S(x) +y) = S(x + y))
01: ),2=35(1),3=S(2), ...




Example: Integer Numbers

Peano Arithmetic

@ Basic symbols
e Unary predicate symbol: NatNum (natural number)
e Unary function symbol: S (Successor)
e Constant symbol: 0
@ Defined symbols:
@ Binary function symbols: +,* (infix)
e Constant symbols: 1,2,3,4,5,6,...
@ Knowledge base KB:
@ NatNum(0)
@ vx.(NatNum(x) — NatNum(S(x)))
@ Vx.(NatNum(x) — (0 # S(x)))
Q vx,y.((NatNum(x) A NatNum(y)) — ((x # y) — (S(x) # S(¥))))
@ vx.(NatNum(x) — (x = (0 + x)))
Q@ Vx, y.((NatNum(x) A NatNum(y)) — (S(x) +¥) = S(x + ¥))
@ 1=95(0),2=35(1),3=5(2), ...
@ Queries inferred from KB
e ex: (4) = Vx, y.((NatNum(x) A (NatNum(y))) — ((x + y) = (¥ + x)))




Exercises

About the Kinship domain
@ Try to add the axioms defining other predicates or functions
(e.g. Brother, Sister, Child , Daughter, Son, Spouse, Wife, Husband, Grandparent,
Grandchild, Cousin, Aunt, Uncle, ...)
@ Add some ground atom or its negation to the KB
(ex: Brother(Steve,Mary), Mary=Mother(Paul),...)

@ Try to solve some query by entailment
(e.g. Uncle(Steve,Paul), 3x.Uncle(x, Paul), ...)
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Exercises

About the Kinship domain
@ Try to add the axioms defining other predicates or functions
(e.g. Brother, Sister, Child , Daughter, Son, Spouse, Wife, Husband, Grandparent,
Grandchild, Cousin, Aunt, Uncle, ...)
@ Add some ground atom or its negation to the KB
(ex: Brother(Steve,Mary), Mary=Mother(Paul),...)

@ Try to solve some query by entailment
(e.g. Uncle(Steve,Paul), 3x.Uncle(x, Paul), ...)

About the Peano Arithmetic domain
@ Try to add the axioms defining other predicate or functions
(e.g. “n<m’or“m=xn”, “n™)
@ Add some ground atom or its negation to the KB
(ex: 1 =95(0),2=5(1),...)
@ Try to solve some query by entailment
(.9-3+2=5,2%x3=6, ...) :
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Outline

© Using FOL

@ Example: The Wumpus World
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Example: The Wumpus World

The FOL KB

@ Perception: binary predicate Percept([s, b, g, b, sc],t)
o (recall: perception is [Stench,Breeze,Glitter,Bump,Scream])
e Stench, Breeze, Glitter, Bump, Scream constant symbols
e time step t represented as integer
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Example: The Wumpus World

The FOL KB

@ Perception: binary predicate Percept([s, b, g, b, sc],t)
o (recall: perception is [Stench,Breeze,Glitter,Bump,Scream])
e Stench, Breeze, Glitter, Bump, Scream constant symbols
e time step t represented as integer

@ Percepts imply facts about the current state.
e Vt,s, g, m, c.(Percept([s, Breeze, g, m,c|, t) — Breeze(t))
e Vi, s,9,m,c.(Percept([s, Null, g, m,c],t) — —~Breeze(t))
o ...
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Example: The Wumpus World

The FOL KB

@ Perception: binary predicate Percept([s, b, g, b, sc],t)
o (recall: perception is [Stench,Breeze,Glitter,Bump,Scream])
e Stench, Breeze, Glitter, Bump, Scream constant symbols
e time step t represented as integer
@ Percepts imply facts about the current state.
e Vt,s, g, m, c.(Percept([s, Breeze, g, m,c|, t) — Breeze(t))
e Vi, s,9,m,c.(Percept([s, Null, g, m,c],t) — —~Breeze(t))
O oo
@ Environment:
e Square: term (pair of integers): [1, 2]
e Adjacency: binary predicate Adjacent:
VX, y, a, b.(Adjacent([x, y], [a, b]) <
(x=an(y=b—-1vy=b+1))V(y=bA(x=a—-1Vvx=a+1)))
Position: predicate At(Agent, s, t), ex: At(Agent,[1,1],1)
Unique position: Vx, s1, So, t.((Af(X, 51, t) A At(X, So, 1)) — S1 = S2)
Wumpus: predicate Wumpus(s), ex: Wumpus([3, 1])
Pits: predicate Pit(s), ex: Pit([3,1])
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Personal Remark

@ For Wumpus, AIMA suggests;
e Wumpus: constant, ex Vt.At(Wumpus, 2, 2], t)
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Personal Remark

@ For Wumpus, AIMA suggests;
e Wumpus: constant, ex Vt.At(Wumpus, [2,2], t)

@ Simplification: assume Wumpus status does not evolve with time
o predicate Wumpus(s), ex: Wumpus([3,1])

= makes inference much easier
e if we consider the case the Wumpus is killed by arrow, then we need reintroducing the “At”

formalization

49/52



Example: The Wumpus World [cont.]

The FOL KB [cont.]

@ Infer properties from percepts:
e Vs, t.((At(Agent, s, t) A Breeze(t)) — Breezy(s))
e Vs, t.((At(Agent, s, t) N —Breeze(t)) — —Breezy(s))
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Example: The Wumpus World [cont.]

The FOL KB [cont.]

@ Infer properties from percepts:

e Vs, t.((At(Agent, s, t) A Breeze(t)) — Breezy(s))

e Vs, t.((At(Agent,s,t) N —Breeze(t)) — —Breezy(s))
@ Infer information about pits & Wumpus

@ Vs. (Breezy(s) + dr.(Adjacent(r, s) A Pit(r)))

@ Vs. (Stench(s) «+» 3r.(Adjacent(r,s) AN Wumpus(r)))
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Example: The Wumpus World [cont.]

The FOL KB [cont.]

@ Infer properties from percepts:
e Vs, t.((At(Agent, s, t) A Breeze(t)) — Breezy(s))
e Vs, t.((At(Agent,s,t) N —Breeze(t)) — —Breezy(s))
@ Infer information about pits & Wumpus
@ Vs. (Breezy(s) + dr.(Adjacent(r, s) A Pit(r)))
@ Vs. (Stench(s) «+» 3r.(Adjacent(r,s) AN Wumpus(r)))
@ Evolution on time: successor states:
e Vt.(HaveArrow(t + 1) < (HaveArrow(t) A —Action(Shoot, t)))
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Example: The Wumpus World [cont.]

The FOL KB [cont.]

@ Infer properties from percepts:
e Vs, t.((At(Agent, s, t) A Breeze(t)) — Breezy(s))
e Vs, t.((At(Agent,s,t) N —Breeze(t)) — —Breezy(s))
@ Infer information about pits & Wumpus
@ Vs. (Breezy(s) + dr.(Adjacent(r, s) A Pit(r)))
@ Vs. (Stench(s) «+» 3r.(Adjacent(r,s) AN Wumpus(r)))
@ Evolution on time: successor states:
e Vt.(HaveArrow(t + 1) < (HaveArrow(t) A —Action(Shoot, t)))
@ Actions: terms Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb

e simple reflex action: Vt.(Glitter(t) — BestAction(Grab, t))
o Query: AskVars(3a.BestAction(a,5)) = {a/Grab}
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Example: The Wumpus World [cont.]

The FOL KB [cont.]

@ Infer properties from percepts:
e Vs, t.((At(Agent, s, t) A Breeze(t)) — Breezy(s))
e Vs, t.((At(Agent,s,t) N —Breeze(t)) — —Breezy(s))
@ Infer information about pits & Wumpus
@ Vs. (Breezy(s) + dr.(Adjacent(r, s) A Pit(r)))
@ Vs. (Stench(s) «+» 3r.(Adjacent(r,s) AN Wumpus(r)))
@ Evolution on time: successor states:
e Vt.(HaveArrow(t + 1) < (HaveArrow(t) A —Action(Shoot, t)))
@ Actions: terms Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb

e simple reflex action: Vt.(Glitter(t) — BestAction(Grab, t))
o Query: AskVars(3a.BestAction(a,5)) = {a/Grab}

Personal remark
Simplified action axiomatization: “Move(...)” instead of “Turn(...), Forward”
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Example: Exploring the Wumpus World

KB initially contains:

VX, y,a, b.(Adjacent([x,y],[a,b]) < (x=aA(y=b—-1Vvy=b+1)V(y=bA(x=a—-1Vx=a+1)))

vt, s, g, m, c.(Percept([s, Null,g, m, c], t) — —Breeze(t))
vt, b, g, m, c.(Percept([Null, b, g, m, c], t) — —Stench(t))
Vs, t.((At(Agent, s, t) A ~Breeze(t)) — —Breezy(s))

Vs, t.((At(Agent, s, t) A =Stench(t)) — —Stenchy(s))
Vs. (Breezy(s) « 3r.(Adjacent(r, s) A Pit(r)))

Vs. (Stench(s) <> 3r.(Adjacent(r, s) AN Wumpus(r)))
Vs.(Ok(s) <> (=Pit(s) A =Wumpus(s)))

@ Aisinitially in 1,1: At(A,[1,1],0)
@ Perceives no stench, no breeze:

Tell(KB, Percept([Null Null, Null, Null Null], 0))
= —Breeze(0), —Stench(0),

— —Breezy([1,1]), —=Stenchy([1, 1]),
= =Pit([1,2]), ~Pit([2, 1] =Wumpus([1,2]), ~Wumpus([2, 1]),
= Ok([1,2]), Ok([2,1])

OK

AskVars(KB, 3a.BestAction(a, 0)) oK
= {a/Move([1,2])},{a/Move([2,1])}

OK
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Example: Exploring the Wumpus World

KB initially contains:

=Pit([1,1]), ~Wumpus([1,1]), ...

vXx,y,a,b.(Adjacent([x,y],[a,b]) <> (x =an(y=b—-1Vvy=b+1)V(y=bA(x=a-1Vvx=a+1)))
vt, s, g, m, c.(Percept([s, Breeze, g, m, c], t) — Breeze(t))

vt, b, g, m, c.(Percept([Null, b, g, m, c], t) — —Stench(t))

Vs, t.((At(Agent, s, t) A Breeze(t)) — Breezy(s))

Vs, t.((At(Agent, s, t) A ~Stench(t)) — —Stenchy(s))

Vs. (Breezy(s) <> 3r.(Adjacent(r, s) A Pit(r)))

Vs. (Stench(s) <+ 3r.(Adjacent(r, s) N Wumpus(r)))

@ Agent moves to [2,1]: At(A, [2,1],1)

@ Perceives a breeze and no stench:
Tell(KB, Percept([Null,Breeze Null, Null Null], 1))
= Breeze(1), =Stench(1),
— Breezy([2,1]), =Stenchy([2, 1]), B OK

| oK oK




Example: Exploring the Wumpus World

KB initially contains:

=Pit([1,1]), ~Wumpus([1,1]), ...

vXx,y,a,b.(Adjacent([x,y],[a,b]) <> (x =an(y=b—-1Vvy=b+1)V(y=bA(x=a-1Vvx=a+1)))
vt, s, g, m, c.(Percept([s, Breeze, g, m, c], t) — Breeze(t))

vt, b, g, m, c.(Percept([Null, b, g, m, c], t) — —Stench(t))

Vs, t.((At(Agent, s, t) A Breeze(t)) — Breezy(s))

Vs, t.((At(Agent, s, t) A ~Stench(t)) — —Stenchy(s))

Vs. (Breezy(s) <> 3r.(Adjacent(r, s) A Pit(r)))

Vs. (Stench(s) <+ 3r.(Adjacent(r, s) N Wumpus(r)))

@ Agent moves to [2,1]: At(A, [2,1],1)

@ Perceives a breeze and no stench: P2
Tell(KB, Percept([Null,Breeze, Null Null,Null], 1))
— Breeze(1), —=Stench(1),

— Breezy([2,1]), ~Stenchy([2,1]), B_Ookl P2
— Jr.(Adjacent(r,[2,1]) A Pit(r)), @
= Wumpus([3,1]), ~Wumpus([2, 2]), !

| oK OK

= (Pit([3,1]) Vv Pit([2,2]))

AskVars(KB, 3a.Action(a, 1)) = {a/Move([1,1])} (2]
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Exercise

Complete the example in the FOL case (see the PL case). )
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