
Fundamentals of Artificial Intelligence
Chapter 11: Planning in the Real World

Roberto Sebastiani
DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it

https://disi.unitn.it/rseba/DIDATTICA/fai_2023/

Teaching assistants:
Mauro Dragoni, dragoni@fbk.eu, https://www.maurodragoni.com/teaching/fai/
Paolo Morettin, paolo.morettin@unitn.it, https://paolomorettin.github.io/

M.S. Course “Artificial Intelligence Systems”, academic year 2023-2024
Last update: Friday 24th November, 2023, 09:15

Copyright notice: Most examples and images displayed in the slides of this course are taken from [Russell & Norwig, “Artificial Intelligence, a Modern Approach”, 3rd ed., Pearson],
including explicitly figures from the above-mentioned book, so that their copyright is detained by the authors. A few other material (text, figures, examples) is authored by (in alphabetical

order): Pieter Abbeel, Bonnie J. Dorr, Anca Dragan, Dan Klein, Nikita Kitaev, Tom Lenaerts, Michela Milano, Dana Nau, Maria Simi, who detain its copyright.
These slides cannot be displayed in public without the permission of the author. 1 / 38

roberto.sebastiani@unitn.it
https://disi.unitn.it/rseba/DIDATTICA/fai_2023/
dragoni@fbk.eu
https://www.maurodragoni.com/teaching/fai/
paolo.morettin@unitn.it
https://paolomorettin.github.io/

Outline

1 Time, Schedules & Resources

2 Planning & Acting in Non-Determistic Domains
Generalities
Sensorless Planning (aka Conformant Planning)
Conditional Planning (aka Contingent Planning)

2 / 38

Outline

1 Time, Schedules & Resources

2 Planning & Acting in Non-Determistic Domains
Generalities
Sensorless Planning (aka Conformant Planning)
Conditional Planning (aka Contingent Planning)

3 / 38

Planning with Time, Schedules and Resources

Planning so far: choice of actions
Real world: Planning with time/schedules

actions occur at certain moments in time
actions have a beginning and an end
actions have a duration

=⇒ Scheduling

Real world: Planning with resources
actions may require resources
ex: limited number of staff, planes, hoists, ...

Preconditions and effects can include
logical inferences
numeric computations
interactions with other software packages

Approach “plan first, schedule later”:
planning phase: build a (partial) plan, regardless action durations
scheduling phase: add temporal info to the plan, s.t. to meet resource and deadline constrains

4 / 38

Planning with Time & Resources: Example
Planning Phase

Init(Chassis(C1) ∧ Chassis(C2) ∧ Engine(E1,C1, 30)∧
Engine(E1,C2, 60) ∧ Wheels(W1,C1, 30) ∧ Wheels(W2,C2, 15))

Goal(Done(C1) ∧ Done(C2))
Action(AddEngine(e, c, d)

PRECOND : Engine(e, c, d) ∧ Chassis(c) ∧ ¬EngineIn(c)
EFFECT : EngineIn(c) ∧ Duration(d)
Consume : LugNuts(20),Use : EngineHoists(1))

Action(AddWheels(w , c, d)
PRECOND : Wheels(w , c, d) ∧ Chassis(c)
EFFECT : WheelsOn(c) ∧ Duration(d)
Consume : LugNuts(20),Use : WheelStations(1))

Action(Inspect(c, 10)
PRECOND : EngineIn(c) ∧ WheelsOn(c) ∧ Chassis(c)
EFFECT : Done(c) ∧ Duration(10)
Use : Inspectors(1))

Solution (partial plan):{
AddEngine(E1,C1, 30) ≺ AddWheels(W1,C1, 30) ≺ Inspect(C1, 10);
AddEngine(E2,C2, 60) ≺ AddWheels(W2,C2, 15) ≺ Inspect(C2, 10)

}
5 / 38

Job-Shop Scheduling

Problem:
complete a set of jobs,
a job consists of a collection of actions with ordering constraints
an action has a duration and is subject to resource constraints
resource constraints specify

the type of resource (e.g., bolts, wrenches, or pilots),
the number of that resource required
if the resource is consumable (e.g., bolts) or reusable (e.g. pilot)
resources can be produced by actions with negative consumption

Solution (aka Schedule):
specify the start times for each action
must satisfy all the temporal ordering constraints and resource constraints

Cost function
may be very complicate (e.g. non-linear constraints)
we assume is the total duration of the plan (makespan)

=⇒ Determine a schedule that minimizes the makespan, respecting all temporal and resource
constraints

6 / 38

Solving Scheduling Problems
Critical-Path Method

A path is a ordered sequence of actions from Start to Finish
The critical path is the path with maximum total duration

delaying the start of any action on it slows down the whole plan
=⇒ determines the duration of the entire plan

shortening other paths does not shorten the plan as a whole

Actions have a window of time in which they can be started: [ES,LS]

ES: earliest possible start time
LS: latest possible start time
LS-ES: slack of the action

LS & ES for all actions can be computed recursively:
ES(Start) = 0
ES(B) = max{A |A≺B}(ES(A) + Duration(A))
LS(Finish) = ES(Finish)
LS(A) = min{B |A≺B}(LS(B)− Duration(A))

Action Ai in the critical path are s.t. ES(Ai) = LS(Ai)

Complexity: O(Nb), N: #actions, b: max branching factor
7 / 38

Planning with Time & Resources: Example [cont.]

Scheduling Phase

(© S. Russell & P. Norwig, AIMA)

8 / 38

Planning with Time & Resources: Example [cont.]

Scheduling Phase

(© S. Russell & P. Norwig, AIMA) 9 / 38

Adding Resources

Critical-path problems (without resources) computationally easy:
conjunction of linear inequalities on the start and end times:
ex: (ES2 ≥ ES1 + duration1) ∧ (ES3 ≥ ES2 + duration2) ∧ ...

=⇒ Polynomial: O(Nb), N: number of actions; b: maximum branching factor in/out of an action

Reusable resources: R(k) (ex: Use: EngineHoists(1))
k units of resource are required by the action.
availability is a pre-requisite before the action can be performed.

Adding resources makes problems much harder
“cannot overlap” constraint is disjunction of linear inequalities
ex: ((ES2 ≥ ES1 + duration1) ∨ (ES1 ≥ ES2 + duration2)) ∧ ...

=⇒ NP-hard

Various techniques:
branch-and-bound, simulated annealing, tabu search, ...
reduction to constraint optimization problems
reduction to optimization modulo theories (combined SAT+LP)

Integrate planning and scheduling

10 / 38

Planning with Time & Resources: Example [cont.]

Scheduling Phase

(© S. Russell & P. Norwig, AIMA)

left-hand margin lists the three reusable resources
two possible schedules: which assembly uses the hoist first
shortest-duration solution, which takes 115 minutes

11 / 38

Exercise

Consider the previous example
find another solution
draw the diagram
check its length and compare it with that in the previous slide

12 / 38

Outline

1 Time, Schedules & Resources

2 Planning & Acting in Non-Determistic Domains
Generalities
Sensorless Planning (aka Conformant Planning)
Conditional Planning (aka Contingent Planning)

13 / 38

Outline

1 Time, Schedules & Resources

2 Planning & Acting in Non-Determistic Domains
Generalities
Sensorless Planning (aka Conformant Planning)
Conditional Planning (aka Contingent Planning)

14 / 38

Generalities [also recall Ch.04]
Assumptions so far:

the environment is deterministic
the environment is fully observable
the environment is static
the agent knows the effects of each action

=⇒ The agent does not need perception:
can calculate which state results from any sequence of actions
always knows which state it is in

In the real world, the environment may be uncertain
partially observable and/or nondeterministic environment
incorrect information (differences between world and model)

=⇒ If one of the above assumptions does not hold, use percepts
the agent’s future actions will depend on future percepts
the future percepts cannot be determined in advance

Use percepts:
perceive the changes in the world
act accordingly
adapt plan when necessary

15 / 38

Handling Indeterminacy

Sensorless planning (aka conformant planning):
find plan that achieves goal in all possible circumstances (if any)

regardless of initial state and action effects
for environments with no observations

Conditional planning (aka contingency planning):
construct conditional plan with different branches for possible contingencies

for partially-observable and nondeterministic environments

Execution monitoring and replanning:
while constructing plan, judge whether plan requires revision

for partially-known or evolving environments

Differences wrt. general Search (Ch.04)

planners deal with factored representations rather than atomic
different representation of actions and observation
different representation of belief states

16 / 38

Handling Indeterminacy [cont.]

Open-World vs. Closed-World Assumption

Classical Planning based on Closed-World Assumption (CWA)
states contain only positive fluents
we assume that every fluent not mentioned in a state is false

Sensorless & Partially-observable Planning based on Open-World Assumption (OWA)
states contain both positive and negative fluents
if a fluent does not appear in the state, its value is unknown

Belief States
A belief state is represented by a logical formula (not an explicitly-enumerated set of states)

=⇒ The belief state corresponds exactly to the set of possible worlds that satisfy the formula
representing it
The unknown information can be retrieved via sensing actions (aka percept actions) added
to the plan

17 / 38

A Case Study

The table & chair painting problem

Given a chair and a table, the goal is to have them of the same color.
Initially we have two cans of paint, but the colors of the paint and of the furniture are unknown.
Only the table is initially in the agent’s field of view

18 / 38

A Case Study [cont.]
The table & chair painting problem [cont.]

Initial state:
Init(Object(Table) ∧ Object(Chair) ∧ Can(C1) ∧ Can(C2) ∧ InView(Table))

Goal: Goal(Color(Chair , c) ∧ Color(Table, c))
recall: in goal, variable c existentially quantified

Actions:
Action(RemoveLid(can),

Precond : Can(can)
Effect : Open(can))

Action(Paint(x , can),
Precond : Object(x) ∧ Can(can) ∧ Color(can, c) ∧ Open(can)
Effect : Color(x , c))

c is implicitly universally quantified, and is not part of action’s variable list (partially observable only)

Add an action causing objects to come into view (one at a time):
Action(LookAt(x),

Precond : InView(y) ∧ (x ̸= y)
Effect : InView(x) ∧ ¬InView(y))

19 / 38

A Case Study [cont.]
The table & chair painting problem [cont.]

Partially-Observable Problems:
need to reason about percepts obtained during action

=⇒ Augment PDDL with percept schemata Percept(⟨fluent⟩,Precond : ⟨fluents⟩))
for each fluent. Ex:

Percept(Color(x , c),
Precond : Object(x) ∧ InView(x))

“if an object is in view, then the agent will perceive its color”
=⇒ perception will acquire the truth value of Color(x , c), for every x, c

Percept(Color(can, c),
Precond : Can(can) ∧ InView(can) ∧ Open(can))

“if an open can is in view, then the agent perceives the color of the paint in the can”
=⇒ perception will acquire the truth value of Color(can, c), for every can, c

Fully-Observable Problems:
=⇒ Percept schemata with no preconditions for each fluent. Ex:

Percept(Color(x , c))

Sensorless Agent: no percept schema
20 / 38

Handling Indeterminacy [cont.]

Sensorless planning (aka conformant planning):
find plan that achieves goal in all possible circumstances (if any)

regardless of initial state and action effects
for environments with no observations
ex: “Open any can of paint and apply it to both chair and table”

Conditional planning (aka contingency planning):
construct conditional plan with different branches for possible contingencies

for partially-observable and nondeterministic environments
ex: “Sense color of table and chair;
if they are the same, then finish, else sense can paint;
if color(can) =color(furniture) then apply color to other piece;
else apply color to both”

Execution monitoring and replanning:
while constructing plan, judge whether plan requires revision

for partially-known or evolving environments
ex: Same as conditional, and can fix errors

21 / 38

Outline

1 Time, Schedules & Resources

2 Planning & Acting in Non-Determistic Domains
Generalities
Sensorless Planning (aka Conformant Planning)
Conditional Planning (aka Contingent Planning)

22 / 38

[Recall from Ch.04]: Search with No Observation

Search with No Observation
aka Sensorless Search or Conformant Search
Idea: To solve sensorless problems, the agent searches in the space of belief states rather
than in that of physical states

fully observable, because the agent knows its own belief space
solutions are always sequences of actions (no contingency plan), because percepts are always
empty and thus predictable

Main drawback: 2N candidate states rather than N

23 / 38

[Recall from Ch.04]: Belief-State Problem Formulation
Example: Sensorless Vacuum Cleaner: Belief State Space
(note: self-loops are omitted)

(© S. Russell & P. Norwig, AIMA)

=⇒ [Left,Suck,Right,Suck] contingent plan
24 / 38

Sensorless Planning

Main idea [see ch.04]: see a sensorless planning problem as a belief-state planning problem
Main differences:

planners deal with factored representations rather than atomic
physical transition model is a collection of action schemata
the belief state represented by a logical formula instead of an explicitly-enumerated set of states

Open-World Assumption =⇒ a belief state corresponds to the set of possible worlds that
satisfy the formula representing it
All belief states (implicitly) include unchanging facts (invariants)
ex: Object(Table) ∧ Object(Chair) ∧ Can(C1) ∧ Can(C2)

Initial belief state includes facts that are part of the agent’s domain knowledge
Ex: “objects and cans have colors”
∀x .∃c. Color(x , c) =⇒ (Skolemization) =⇒ b0 : Color(x ,C(x)) (C(x): the color of x)

25 / 38

Sensorless Planning [cont.]

In belief state b, it is possible to apply every action a s.t. b |= Precond(a)
e.g., RemoveLid(Can1) applicable in b0 since Can(C1) true in b0

Result(b,a) is computed:
start from b
set to false any atom that appears in Del(a) (after unification)
set to true any atom that appears in Add(a) (after unification)

i.e., conjoin Effects(a) to b

Property

If the belief state starts as a conjunction of literals, then any update will yield a conjunction of
literals

with n fluents, any belief state can be compactly represented by a conjunction of size O(n)
=⇒ much simplifies complexity of belief-state reasoning

26 / 38

Sensorless Planning: Example

Start from b0 : Color(x ,C(x))
Apply RemoveLid(Can1) in b0 and obtain:
b1 : Color(x ,C(x)) ∧ Open(Can1)

Apply Paint(Chair ,Can1) in b1 using {x/Chair , c/C(Can1)}:
b2 : Color(x ,C(x)) ∧ Open(Can1) ∧ Color(Chair ,C(Can1))

Apply Paint(Table,Can1) in b2 :
b3 : Color(x ,C(x)) ∧ Open(Can1) ∧ Color(Chair ,C(Can1)) ∧ Color(Table,C(Can1))

b3 Satisfies the goal: b3 |= Color(Table, c) ∧ Color(Chair , c)
=⇒ [RemoveLid(Can1),Paint(Chair ,Can1),Paint(Table,Can1)]

valid conformant plan

27 / 38

Exercise

Provide a novel formalization of the above problem with distinct predicates for the color of an
object and for the color the paint in a can

find step-by-step a plan with the new formalization

28 / 38

Outline

1 Time, Schedules & Resources

2 Planning & Acting in Non-Determistic Domains
Generalities
Sensorless Planning (aka Conformant Planning)
Conditional Planning (aka Contingent Planning)

29 / 38

[Recall from Ch.4]: Searching with Nondeterministic Actions

Generalized notion of transition model
RESULTS(S,A) returns a set of possible outcomes states

Ex: RESULTS(1,SUCK)={5, 7}, RESULTS(5,SUCK)={1, 5}, ...

A solution is a contingency plan (aka conditional plan, strategy)
contains nested conditions on future percepts (if-then-else, case-switch, ...)
Ex: from state 1 we can act the following contingency plan:
[SUCK, IF STATE = 5 THEN [RIGHT, SUCK] ELSE []]

Can cause loops (see later)

30 / 38

[Recall from Ch.4]: Searching with Nondeterministic Actions [cont.]

And-Or Search Trees
In a deterministic environment, branching on agent’s choices
=⇒ OR nodes, hence OR search trees

OR nodes correspond to states

In a nondeterministic environment, branching also on environment’s choice of outcome for
each action

the agent has to handle all such outcomes
=⇒ AND nodes, hence AND-OR search trees

AND nodes correspond to actions
leaf nodes are goal, dead-end or loop OR nodes

A solution for an AND-OR search problem is a subtree s.t.:
has a goal node at every leaf
specifies one action at each of its OR nodes
includes all outcome branches at each of its AND nodes

OR tree: AND-OR tree with 1 outcome each AND node (determinism)

31 / 38

[Recall from Ch.4]: And-Or Search Trees: Example

(Part of) And-Or Search Tree for Erratic Vacuum Cleaner Example.

Solution for [SUCK, IF STATE = 5 THEN [RIGHT, SUCK] ELSE []]

(© S. Russell & P. Norwig, AIMA)

32 / 38

[Recall from Ch.4]: AND-OR Search

Recursive Depth-First (Tree-based) AND-OR Search

(© S. Russell & P. Norwig, AIMA)

Note: nested if-then-else can be rewritten as case-switch
33 / 38

[Recall from Ch.4]: Cyclic Solution: Example
Example: Slippery Vacuum Cleaner

Movement actions may fail: e.g., Results(1,Right) = {1,2}
A cyclic solution
Use labels: [Suck, L1 : Right, if State = 5 then L1 else Suck]
Use cycles: [Suck, While State = 5 do Right, Suck]

(© S. Russell & P. Norwig, AIMA)

34 / 38

Contingent Planning

Contingent Planning: generation of plans with conditional branching based on percepts
appropriate for partial observability, non-determinism, or both

Main differences:
planners deal with factored representations rather than atomic
physical transition model is a collection of action schemata
the belief state represented by a logical formula instead of an explicitly-enumerated set of states
sets of belief states represented as disjunctions of logical formulas representing belief states

When executing a contingent plan, the agent:
maintain its belief state as a logical formula
evaluate each branch condition:

if the belief state entails the condition formula, then proceed with the “then” branch
if the belief state entails the negation of the condition formula, then proceed with the “else” branch

Note: The planning algorithm must guarantee that the agent never ends in a belief state
where the condition’s truth value is unknown

35 / 38

Computing Result(a,b) with Conditional Steps

Three steps (aka prediction-observation-update)

1 Prediction: (same as for sensorless): b̂ = b \ Del(a) ∪ Add(a) // b̂ = b ∧ Effects(a)
2 Observation prediction: determines the set of percepts that could be observed in the

predicted belief state P def
= PossiblePercepts(b̂) def

= {p | b̂ |= Precond(p)}
3 Update: Result(b,a) = b̂ ∧

∧
p∈P bp, s.t.:

if p has one percept schema, Percept(p,Precond : c), s.t. b̂ |= c,
then bp

def
= p ∧ c

if p has k percept schemata, Percept(p,Precond : ci), s.t. b̂ |= ci , i = 1..k ,
then bp

def
=

∨k
i=1(p ∧ ci)

=⇒ Result(b,a) CNF formula, not simply conjunction of literals (cubes)
=⇒ much harder to deal with
=⇒ often (over)approximations used to guantantee bi cube

36 / 38

Contingent Planning: Example

Possible contingent plan for previous problem described below
variables in the plan to be considered existentially quantified
ex (2nd row): “if there exists some color c that is the color of the table and the chair, then do
nothing” (goal reached)

“Color(Table,c)”, “Color(Chair,c)’ and “Color(Can,c)” percepts
=⇒ must be matched against percept schemata

(© S. Russell & P. Norwig, AIMA)

37 / 38

Exercises

Try to draw an execution of the conditional plan in previous slide against an imaginary
physical state of the world of your choice

track step by step the belief states, the logical inferences, the actions performed

38 / 38

	Time, Schedules & Resources
	Planning & Acting in Non-Determistic Domains
	Generalities
	Sensorless Planning (aka Conformant Planning)
	Conditional Planning (aka Contingent Planning)

