Fundamentals of Artificial Intelligence Chapter 08: First-Order Logic

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it https://disi.unitn.it/rseba/DIDATTICA/fai_2023/

Teaching assistants:

Mauro Dragoni, dragoni@fbk.eu, https://www.maurodragoni.com/teaching/fai/ Paolo Morettin, paolo.morettin@unitn.it, https://paolomorettin.github.io/

M.S. Course "Artificial Intelligence Systems", academic year 2023-2024

Last update: Friday $3^{\text {rd }}$ November, 2023, 16:21

Outline

(1) Generalities
(2) Syntax and Semantics of FOL

- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(3) Using FOL
- FOL Agents
- Example: The Wumpus World

Outline

(1) Generalities

2 Syntax and Semantics of FOL

- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(3) Using FOL
- FOL Agents
- Example: The Wumpus World

Recall: State Representations [Ch. 02]

Representations of states and transitions

- Three ways to represent states and transitions between them:
- atomic: a state is a black box with no internal structure
- factored: a state consists of a vector of attribute values
- structured: a state includes objects, each of which may have attributes of its own as well as relationships to other objects
- increasing expressive power and computational complexity
- reality represented at different levels of abstraction

Pros of Propositional Logic

- PL language is formal
- non-ambiguous semantics
- unlike natural language, which is intrinsically ambiguous (ex "key")
- PL is declarative
- knowledge and inference are separate
- inference is entirely domain independent
- PL allows for partial/disjunctive/negated information
- unlike, e.g., data bases
- PL is compositional
- the meaning of $(A \wedge B) \rightarrow C$ derives from the meaning of A, B, C
- The meaning of PL sentence is context independent
- unlike with natural language, where meaning depends on context

Cons of Propositional Logic

- Is "Atomic": based on atomic events which cannot be decomposed
- Assumes the world contains facts in the world that are either true or false, nothing else
- ex: Man_Socrates, Man_Plato, Man_Aristotle, ... distinct atoms
\Longrightarrow PL has has very limited expressive power
- unlike natural language
- cannot concisely describe an environment with many objects
- e.g., cannot say "pits cause breezes in adjacent squares" (need writing one sentence for each square)

Logics

- A logic is a triple $\langle\mathcal{L}, \mathcal{S}, \mathcal{R}\rangle$ where
- \mathcal{L}, the logic's language: a class of sentences described by a formal grammar
- \mathcal{S}, the logic's semantics: a formal specification of how to assign meaning in the "real world" to the elements of \mathcal{L}
- \mathcal{R}, the logic's inference system: is a set of formal derivation rules over \mathcal{L}
- There are several logics:
- propositional logic (PL)
- first-order logic (FOL)
- modal logics (MLs)
- description logics (DLs)
- temporal logics (TLs)
- (fuzzy logics, probabilistic logics, ...)

First-Order Logic (FOL)

- Is structured: a world/state includes objects, each of which may have attributes of its own as well as relationships to other objects
- Assumes the world contains:
- Objects:
e.g., people, houses, numbers, theories, Jim Morrison, colors, basketball games, wars, centuries,
- Relations:
e.g., red, round, bogus, prime, tall ...,
brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions:
e.g., father of, best friend, one more than, end of, ...
- Allows to quantify on objects
- ex: "All man are equal", "some persons are left-handed", ...

Outline

(1) Generalities
(2) Syntax and Semantics of FOL

- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(3) Using FOL
- FOL Agents
- Example: The Wumpus World

Outline

(1) Generalities
(2) Syntax and Semantics of FOL

- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(3) Using FOL
- FOL Agents
- Example: The Wumpus World

Syntax of FOL: Basic Elements

- Constant symbols: KingJohn, 2, UniversityofTrento,...
- Predicate symbols: Man(.), Brother(...), (. > .), AllDifferent(...),...
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Brother(...)) or infix (e.g. (. > .))
- Function symbols: Sqrt, LeftLeg, MotherOf
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Sqrt(.)) or infix (e.g. (. + .))
- Variable symbols: x, y, a, b, \ldots
- Propositional Connectives: $\neg, \wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus$
- Equality: " =" (also " \neq " s.t. " $a \neq b$ " shortcut for " $\neg(a=b)$ ")
- Quantifiers: " V " ("forall"), " "" ("exists", aka "for some")
- Punctuation Symbols: ",", "(", ")"
- Constants symbols are 0-ary function symbols
- Propositions are 0 -ary predicates \Longrightarrow PL subcase of FOL
- Signature: the set of predicate, function \& constant symbols

FOL: Syntax

- Terms:
- constant or variable or function(term,\ldots, term $_{n}$)
- ex: KingJohn, x, LeftLeg(Richard), (z*log(2))
- denote objects in the real world (aka domain)
- Atomic sentences (aka atomic formulas):
- \quad, \perp
- proposition or predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ or term ${ }_{1}=$ term $_{2}$
- (Length(LeftLeg(Richard)) > Length(LeftLeg(KingJohn)))
- denote facts
- Non-atomic sentences/formulas:
- $\neg \alpha, \alpha \wedge \beta, \alpha \vee \beta, \alpha \rightarrow \beta, \alpha \leftrightarrow \beta, \alpha \oplus \beta$, $\forall x . \alpha, \exists x . \alpha$ s.t. x (typically) occurs in α
- Ex: $\forall y$. (Italian $(y) \rightarrow$ President(Mattarella, y))
$\exists x \forall y$.President $(x, y) \rightarrow \forall y \exists x$.President (x, y)
$\forall x .(P(x) \wedge Q(x)) \leftrightarrow((\forall x . P(x)) \wedge(\forall x \cdot Q(x)))$
$\forall x .(((x \geq 0) \wedge(x \leq \pi)) \rightarrow(\sin (x) \geq 0))$
- denote (complex) facts

FOL: Ground and Closed Formulas

- A term/formula is ground iff no variable occurs in it (ex: $2 \geq 1$)
- A formula is closed iff all variables occurring in it (if any) are quantified (ex: $\forall x \exists y .(x>y))$
\Longrightarrow Ground formulas are closed, but not vice versa.

FOL：Syntax（BNF）

〈Sentence〉		
〈AtomicSentence〉	：＝	T｜\perp｜
		\langle PredicateSymbol $\rangle\left(\left\langle\right.\right.$ Term ${ }^{\text {，}}$ ，．）｜
		\langle Term $\rangle=\langle$ Term \rangle
〈ComplexSentence〉	：：$=$	\neg SSentence ${ }^{\text {｜}}$
		〈Sentence〉 〈Connective〉＜Sentence〉｜
		〈Quantifier〉＜Sentence〉
〈Term＞	＝	〈ConstantSymbol｜｜ Variable〉｜
		〈FunctionSymbol〉（〈Term〉，．．．）
＜Connective〉	＝	$\wedge\|\vee\| \rightarrow\|\leftarrow\| \leftrightarrow \mid \oplus$
〈Quantifier〉	$=$	$\forall\langle$ Variable \rangle ． $\mid \exists\langle$ Variable \rangle ．
〈Variable〉	$=$	$a\|b\| \cdots\|x\| y \mid \cdots$
＜ConstantSymbol）	：：＝	A $B\|\cdots\|$ John 0 ｜ $1\|\cdots\| \pi \mid$
＜FunctionSymbol＞	：＝	$F\|G\| \cdots \mid$ Cos｜FatherOf $\|+\|$ ．
〈PredicateSymbol〉	：：$=$	$P\|Q\| \cdots \mid$ Red \mid Brother $\|>\| \cdots$

POLARITY of subformulas

Polarity: the number of nested negations modulo 2.

- Positive/negative occurrences
- φ occurs positively in φ;
- if $\neg \varphi_{1}$ occurs positively [negatively] in φ, then φ_{1} occurs negatively [positively] in φ
- if $\varphi_{1} \wedge \varphi_{2}$ or $\varphi_{1} \vee \varphi_{2}$ occur positively [negatively] in φ, then φ_{1} and φ_{2} occur positively [negatively] in φ;
- if $\varphi_{1} \rightarrow \varphi_{2}$ occurs positively [negatively] in φ, then φ_{1} occurs negatively [positively] in φ and φ_{2} occurs positively [negatively] in φ;
- if $\varphi_{1} \leftrightarrow \varphi_{2}$ or $\varphi_{1} \oplus \varphi_{2}$ occurs in φ, then φ_{1} and φ_{2} occur positively and negatively in φ;
- if $\forall x . \varphi_{1}$ or $\exists x . \varphi_{1}$ occurs positively [negatively] in φ, then φ_{1} occurs positively [negatively] in φ

Outline

(1) Generalities
(2) Syntax and Semantics of FOL

- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(3) Using FOL
- FOL Agents
- Example: The Wumpus World

Truth in FOL: Intuitions

- Sentences are true with respect to a model
- containing a domain and an interpretation
- The domain contains ≥ 1 objects (domain elements) and relations and functions over them
- An interpretation specifies referents for
- variables \rightarrow objects
- constant symbols \rightarrow objects
- predicate symbols \rightarrow relations
- function symbols \rightarrow functional relations
- An atomic sentence $P\left(t_{1}, \ldots, t_{n}\right)$ is true in an interpretation iff the objects referred to by t_{1}, \ldots, t_{n} are in the relation referred to by P

FOL: Semantics

FOL Models (aka possible worlds)

- A model \mathcal{M} is a pair $\langle\mathcal{D}, \mathcal{I}\rangle$ (〈domain, interpretation \rangle)
- Domain \mathcal{D} : a non-empty set of objects (aka domain elements)
- Interpretation \mathcal{I} : a (non-injective) map on elements of the signature
- constant symbols \longmapsto domain elements:
a constant symbol C is mapped into a particular object $[C]^{\mathcal{I}}$ in \mathcal{D}
- predicate symbols \longmapsto domain relations:
a k-ary predicate $P(\ldots)$ is mapped into a subset $[P]^{\mathcal{I}}$ of \mathcal{D}^{k}
(i.e., the set of object tuples satisfying the predicate in this world)
- functions symbols \longmapsto domain functions:
a k-ary function f is mapped into a domain function $[f]^{\mathcal{I}}: \mathcal{D}^{k} \longmapsto \mathcal{D}$ ([f] $]^{\mathcal{I}}$ must be total) (we denote by $[.]^{\mathcal{I}}$ the result of the interpretation \mathcal{I})

An Interpretation \mathcal{I} is extended to assign domain values to variables, domain values to terms and truth values to formulas.

FOL: Semantics [cont.]

Interpretation of terms

I maps terms into domain elements

- Variables are assigned domain values
- variables \longmapsto domain elements:
a variable x is mapped into a particular object $[x]^{\mathcal{I}}$ in \mathcal{D}
- A term $f\left(t_{1}, \ldots, t_{k}\right)$ is mapped by \mathcal{I} into the value $\left[f\left(t_{1}, \ldots, t_{k}\right)\right]^{\mathcal{I}}$ returned by applying the domain function $[f]^{\mathcal{I}}$, into which f is mapped, to the values $\left[t_{1}\right]^{\mathcal{I}}, \ldots,\left[t_{k}\right]^{\mathcal{I}}$ obtained by applying recursively \mathcal{I} to the terms t_{1}, \ldots, t_{k} :
- $\left[f\left(t_{1}, \ldots, t_{k}\right)\right]^{\mathcal{I}}=[f]^{\mathcal{I}}\left(\left[t_{1}\right]^{\mathcal{I}}, \ldots,\left[t_{k}\right]^{\mathcal{I}}\right)$
- Ex: if "Me, Mother, Father" are interpreted as usual, then "Mother(Father(Me))" is interpreted as my (paternal) grandmother
- Ex: if " $+,-, \cdot, 0,1,2,3,4$ " are interpreted as usual, then " $(3-1) \cdot(0+2)$ " is interpreted as 4

FOL: Semantics [cont.]

Interpretation of formulas

I maps formulas into truth values

- An atomic formula $P\left(t_{1}, \ldots, t_{k}\right)$ is true in \mathcal{I} iff the objects into which the terms $t_{1}, \ldots t_{k}$ are mapped by \mathcal{I} comply to the relation into which P is mapped
- $\left[P\left(t_{1}, \ldots, t_{k}\right)\right]^{\mathcal{I}}$ is true iff $\left\langle\left[t_{1}\right]^{I}, \ldots,\left[t_{k}\right]^{\mathcal{I}}\right\rangle \in[P]^{\mathcal{I}}$
- Ex: if "Me, Mother, Father, Married" are interpreted as traditon, then
"Married(Mother(Me),Father(Me))" is interpreted as true
- Ex: if " $+,-,>, 0,1,2,3,4$ " are interpreted as usual, then " $(4-0)>(1+2)$ " is interpreted as true
- An atomic formula $t_{1}=t_{2}$ is true in \mathcal{I} iff the terms t_{1}, t_{2} are mapped by \mathcal{I} into the same domain element
- $\left[t_{1}=t_{2}\right]^{\mathcal{I}}$ is true iff $\left[t_{1}\right]^{I}$ same as $\left[t_{2}\right]^{I}$
- Ex: if "Mother" is interpreted as usual, Richard, John are brothers, then "Mother(Richard)=Mother(John))" is interpreted as true
- Ex: if " $+,-, 0,1,2,3,4$ " are interpreted as usual, then " $(4-1)=(1+2)$ " is interpreted as true
- $\neg, \wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus$ interpreted by \mathcal{I} as in PL

Models for FOL: Example

Richard Lionhearth and John Lackland

- \mathcal{D} : domain at right
- I: s.t.
- [Richard] ${ }^{\text {I }}$: Richard the Lionhearth
- [John] ${ }^{\text {I }}$: evil King John
- [Brother] ${ }^{I}$: brotherhood
- [Brother(Richard, John) ${ }^{I}$ is true
- [LeftLeg] ${ }^{I}$ maps any individual to his left leg

Models for FOL: Remark

- $[f]^{\mathcal{I}}$ total: must provide an output for every input
- e.g.: $\left[\right.$ LeftLeg(crown) ${ }^{\text {I }}$?
- possible solution: assume "null" object ([LeftLeg(crown) $=n u l l]^{\text {I }}$ (other solution, sorts, not considered here)

Universal Quantification

- $\forall x . \alpha(x, \ldots)(x$ variable, typically occurs in $x)$
- ex: $\forall x$. $(\operatorname{King}(x) \rightarrow \operatorname{Person}(x))$ ("all kings are persons")
- $\forall x . \alpha(x, \ldots)$ true in \mathcal{M} iff α is true in \mathcal{M} for every possible domain value x is mapped to
- Roughly speaking, can be seen as a conjunction over all (typically infinite) possible instantiations of x in α

```
(King(John) }->\mathrm{ Person(John)
(King(Richard) }->\mathrm{ Person(Richard)
(King(crown) }->\mathrm{ Person(crown)
(King(LeftLeg(John)) )
(King(LeftLeg(LeftLeg(John))) ->Person(LeftLeg(LeftLeg(John))) )^
```


Universal Quantification [cont.]

- One may want to restrict the domain of universal quantification to elements of some kind P
- ex "forall kings ...", "forall integer numbers..."
- Idea: use an implication, with restrictive predicate as implicant:
$\forall x .(P(x) \rightarrow \alpha(x, \ldots))$
- ex " $\forall x$. $(\operatorname{King}(x) \rightarrow \ldots)$ ", " $\forall x$. $(\operatorname{Integer}(x) \rightarrow \ldots)$ ",
- Beware of typical mistake: do not use " \wedge " instead of " \rightarrow "
- ex: " $\forall x$. $(\operatorname{King}(x) \wedge$ Person $(x))$ " means "everything/one is a King and is a Person"
- ex: " $\forall x$. $(\operatorname{King}(x) \rightarrow$ Person $(x))$ " means "everything/one who is a King is a Person (i.e. "every king is a person")"
- " \forall " distributes with " \wedge ", but not with " \vee "
- $\forall x \cdot(P(x) \wedge Q(x))$ equivalent to $(\forall x \cdot P(x)) \wedge(\forall x \cdot Q(x))$
- "Everybody is a king and is a person" same as
"Everybody is a king and everybody is a person"
- $\forall x .(P(x) \vee Q(x))$ not equivalent to $(\forall x \cdot P(x)) \vee(\forall x \cdot Q(x))$:
- "Everybody is a king or is a peasant" much weaker than
"Everybody is a king or everybody is a peasant"
$(\forall x . P(x)) \vee(\forall x . Q(x)) \models \forall x .(P(x) \vee Q(x))$,
$\forall x .(P(x) \vee Q(x)) \not \models(\forall x \cdot P(x)) \vee(\forall x \cdot Q(x))$

Existential Quantification

- $\exists x . \alpha(x, \ldots)$ (x variable, typically occurs in x)
- ex: $\exists x .(\operatorname{King}(x) \wedge E v i l(x))$ ("there is an evil king")
- pronounced "exists x s.t. ..." or "for some x ..."
- $\exists x . \alpha(x, \ldots)$ true in \mathcal{M} iff α is true in \mathcal{M} for some possible domain value x is mapped to
- Roughly speaking, can be seen as a disjunction over all (typically infinite) possible instantiations of x in α

```
(King(Richard)
(King(John)
(King(crown)
(King(LeftLeg(John))
(King(LeftLeg(LeftLeg(John))) ^Evil(LeftLeg(LeftLeg(John))) )v
```


Existential Quantification [cont.]

- One may want to restrict the domain of existential quantification to elements of some kind P
- ex "exists a king s.t. ...", "for some integer numbers..."
- Idea: use a conjunction with restrictive predicate:
$\exists x .(P(x) \wedge \alpha(x, \ldots))$
- ex "ヨx. $(\operatorname{King}(x) \wedge$...)", "ヨx. (Integer $(x) \wedge . .$.$) ",$
- Beware of typical mistake: do not use " \rightarrow " instead of " \wedge "
- ex: " $\exists x$. $(\operatorname{King}(x) \rightarrow \operatorname{Evil}(x))$ " means "Someone is not a king or is evil"
- ex: " $\exists x$. $(\operatorname{King}(x) \wedge E v i l(x))$ " means "Someone is king and is evil"
(i.e., "Some king is evil")
- " \exists " distributes with " \vee ", but not with " \wedge "
- $\exists x .(P(x) \vee Q(x))$ equivalent to $(\exists x \cdot P(x)) \vee(\exists x \cdot Q(x))$
- "Somebody is a king or is a knight" same as
"Somebody is a king or somebody is a knight"
- $\exists x .(P(x) \wedge Q(x))$ not equivalent to $(\exists x . P(x)) \wedge(\exists x \cdot Q(x))$
- "Somebody is a king and is evil" much stronger than
"Somebody is a king and somebody is evil"
$\exists x .(P(x) \wedge Q(x)) \vDash(\exists x . P(x)) \wedge(\exists x . Q(x))$
$(\exists x . P(x)) \wedge(\exists x \cdot Q(x)) \not \models \exists x .(P(x) \wedge Q(x))$

Examples

- Brothers are siblings
- $\forall x, y$. $($ Brothers $(x, y) \rightarrow \operatorname{Siblings}(x, y))$
- "Siblings" is symmetric
- $\forall x, y$. (Siblings $(x, y) \leftrightarrow \operatorname{Siblings}(y, x)$)
- One's mother is one's female parent
- $\forall x, y$. $(\operatorname{Mother}(x, y) \leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y)))$
- A first cousin is a child of a parent's sibling
- $\forall x_{1}, x_{2}$. (FirstCousin $\left(x_{1}, x_{2}\right) \leftrightarrow$
$\left.\exists p_{1}, p_{2} .\left(\operatorname{Siblings}\left(p_{1}, p_{2}\right) \wedge \operatorname{Parent}\left(p_{1}, x_{1}\right) \wedge \operatorname{Parent}\left(p_{2}, x_{2}\right)\right)\right)$
- Dogs are mammals
- $\forall x . \quad(\operatorname{Dog}(x) \rightarrow \operatorname{Mammal}(x))$

Equality

- Equality is a special predicate: $t_{1}=t_{2}$ is true under a given interpretation if and only if t_{1} and t_{2} refer to the same object
- Ex: $1=2$ and $x * x=x$ are satisfiable (!)
- Ex: $2=2$ is valid
- Ex: definition of Sibling in terms of Parent
$\forall x, y$. (Siblings $(x, y) \leftrightarrow\left[\neg(x=y) \wedge \exists p_{1}, p_{2} .\left(\neg\left(p_{1}=p_{2}\right) \wedge\right.\right.$ $\left.\left.\left.\operatorname{Parent}\left(p_{1}, x\right) \wedge \operatorname{Parent}\left(p_{2}, x\right) \wedge \operatorname{Parent}\left(p_{1}, y\right) \wedge \operatorname{Parent}\left(p_{2}, y\right)\right]\right)\right)$

Example

- No one is his/her own sibling
- $\forall x$. \neg Siblings (x, x)
- Sisters are female, brothers are male
- $\forall x, y$. $((\operatorname{Sisters}(x, y) \rightarrow($ Female $(x) \wedge$ Female $(y))) \wedge$ $($ Brothers $(x, y) \rightarrow($ Male $(x) \wedge$ Male $(y))))$
- Every married person has a spouse
- $\forall x$. $((\operatorname{Person}(x) \wedge \operatorname{Married}(x)) \rightarrow \exists y$. Spouse $(x, y))$
- Married people have spouses
- $\forall x$. $((\operatorname{Person}(x) \wedge \operatorname{Married}(x)) \rightarrow \exists y$. Spouse $(x, y))$
- Only married people have spouses
- $\forall x, y$. $((\operatorname{Person}(x) \wedge \operatorname{Person}(y) \wedge \operatorname{Spouse}(x, y)) \rightarrow(\operatorname{Married}(x) \wedge \operatorname{Married}(y)))$
- People cannot be married to their siblings
- $\forall x, y$. $($ Spouse $(x, y) \rightarrow \neg$ Siblings $(x, y))$

Example (cont.)

- Not everybody has a spouse
- $\neg \forall x$. (Person $(x) \rightarrow \exists y$. Spouse $(x, y))$ or
- $\exists x$. $(\operatorname{Person}(x) \wedge \neg \exists y$. Spouse $(x, y))$
- Everybody has a mother
- $\forall x$. $(\operatorname{Person}(x) \rightarrow \exists y$. $\operatorname{Mother}(y, x))$
- Everybody has a mother and only one
- $\forall x$. Person $(x) \rightarrow(\exists y$. Mother $(y, x) \wedge \neg \exists z .(\neg(y=z) \wedge \operatorname{Mother}(z, x)))$

Properties of Quantifiers

Notation variants: $\forall x(\forall y . \alpha) \Longleftrightarrow \forall x \forall y . \alpha \Longleftrightarrow \forall x, y . \alpha \Longleftrightarrow \forall x y . \alpha$ (same with \exists)

- if x does not occur in $\varphi, \forall x . \varphi$ equivalent to $\exists x . \varphi$ equivalent to φ
- $\forall x y . P(x, y)$ equivalent to $\forall y x \cdot P(x, y)$
- ex: $\forall x y .(x<y)$ same as $\forall y x .(x<y)$
- $\exists x y . P(x, y)$ equivalent to $\exists y x . P(x, y)$
- ex: $\exists x y$.Twins (x, y) same as $\exists y x$.Twins (x, y)
- $\exists x \forall y \cdot P(x, y)$ not equivalent to $\forall y \exists x . P(x, y)$
- ex: $\forall y \exists x$.Father (x, y) much weaker than $\exists x \forall y$.Father (x, y) "everybody has a father" vs. "exists a father of everybody"
$\exists x \forall y . P(x, y) \models \forall y \exists x . P(x, y)$
$\forall y \exists x . P(x, y) \not \models \exists x \forall y \cdot P(x, y)$

Remark

- Variable names are irrelevant: e.g., $\forall x . P(x)$ is the same as $\forall y . P(y)$
- ... provided there are no name conflicts: e.g., $\forall x . \exists y P(x, y)$ is not the same as $\forall y . \exists y P(y, y)$!

Duality of Universal and Existential Quantification

- \forall and \exists are dual
- $\forall x . \alpha \Longleftrightarrow \neg \exists x . \neg \alpha$
- $\neg \forall x . \alpha \Longleftrightarrow \exists x . \neg \alpha$
- $\exists x . \alpha \Longleftrightarrow \neg \forall x . \neg \alpha$
- $\neg \exists x . \alpha \Longleftrightarrow \forall x . \neg \alpha$
- Examples
- $\forall x$.Likes $(x$, Icecream) equivalent to $\neg \exists x$. $\neg \operatorname{Likes}(x$, Icecream)
- $\exists x$.Likes(x, Broccoli) equivalent to $\neg \forall x$. $\neg \operatorname{Likes(x,\text {Broccoli)})~(1)}$
- Negated restricted quantifiers switch " \rightarrow " with " \wedge "
- $\forall x .(P(x) \rightarrow \alpha) \Longleftrightarrow \neg \exists x .(P(x) \wedge \neg \alpha)$
- $\neg \forall x .(P(x) \rightarrow \alpha) \Longleftrightarrow \exists x .(P(x) \wedge \neg \alpha)$
- ...
- Ex: "not all kings are evil" same as "some king is not evil"
$\bullet \neg \forall x$. $(\operatorname{King}(x) \rightarrow \operatorname{Evil}(x)) \Longleftrightarrow \exists x$. $(\operatorname{King}(x) \wedge \neg \operatorname{Evil}(x))$
- Unsurprising, since $\langle\forall, \exists\rangle$ are $\langle\wedge, \vee\rangle$ over infinite instantiations

Outline

(2) Syntax and Semantics of FOL

- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(3) Using FOL
- FOL Agents
- Example: The Wumpus World

Satisfiability, Validity, Entailment

- A model $\mathcal{M} \stackrel{\text { def }}{=}\langle\mathcal{D}, \mathcal{I}\rangle$ satisfies $\varphi(\mathcal{M}=\varphi)$ iff $[\varphi]^{\mathcal{I}}$ is true
- $M(\varphi) \stackrel{\text { def }}{=}\{\mathcal{M} \mid \mathcal{M} \models \varphi\}$ (the set of models of φ)
- φ is satisfiable iff $\mathcal{M} \models \varphi$ for some \mathcal{M} (i.e. $M(\varphi) \neq \emptyset$)
- α entails $\beta(\alpha \models \beta)$ iff, for all $\mathcal{M}, \mathcal{M} \models \alpha \Longrightarrow \mathcal{M} \models \beta$ (i.e., $M(\alpha) \subseteq M(\beta)$)
- φ is valid $(\models \varphi)$ iff $\mathcal{M} \models \varphi$ forall \mathcal{M} (i.e., $\mathcal{M} \in M(\varphi)$ forall \mathcal{M} s)
- α, β are equivalent iff $\alpha \models \beta$ and $\beta \models \alpha$ (i.e. $M(\alpha)=M(\beta)$)

Sets of formulas as conjunctions

Let $\Gamma \stackrel{\text { def }}{=}\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$. Then:

- 「 satisfiable iff $\bigwedge_{i=1}^{n} \varphi_{i}$ satisfiable- 「 $\models \phi$ iff $\bigwedge_{i=1}^{n} \varphi_{i} \models \phi$
- Γ valid iff $\bigwedge_{i=1}^{n} \varphi_{i}$ valid

Properties \& Results

```
Property
\varphi \text { is valid iff } \neg \varphi \text { is unsatisfiable}
```

```
Deduction Theorem
\alpha\models\beta iff \alpha->\beta is valid (\models\alpha->\beta)
```

Corollary
$\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ is unsatisfiable

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!

Examples

- $P(x), \forall x .(x \geq y),\{\forall x .(x \geq 0), \forall x .(x+1>x)\}$ satisfiable
- $P(x) \wedge \neg P(x), \neg(x=x),(\forall x, y \cdot Q(x, y)) \rightarrow \neg Q(a, b)$ unsatisfiable
- $\forall x . P(x) \rightarrow \exists x . P(x)$ valid
- $\forall x . P(x) \models \exists x . P(x)$
- $\neg(\forall x . P(x)) \rightarrow \exists x \cdot P(x))$ unsatisfiable
- $\forall x \cdot P(x) \wedge \neg \exists x \cdot P(x))$ unsatisfiable
$(1>2)$ is satisfiable. Why?

Exercises

- Is $\forall x . P(x)$ equivalent to $\forall y . P(y)$?
- Is $\forall x y \cdot P(x, y)$ equivalent to $\forall y x \cdot P(y, x)$?
- $\forall x \cdot \exists x \cdot P(x)$ is equivalent to:
- $\exists x . P(x)$
- $\forall x . P(x)$
- neither
- $\exists x . \forall x . P(x)$ is equivalent to:
- $\exists x . P(x)$
- $\forall x . P(x)$
- neither

Enumeration of Models?

- We can enumerate the models for a given FOL sentence:

For each number of universe elements n from 1 to ∞
For each k-ary predicate P_{k} in the sentence
For each possible k-ary relation on n objects
For each constant symbol C in the sentence
For each one of n objects C is mapped to

- \Longrightarrow Enumerating models is not going to be easy!

Semi-decidability of FOL

Theorem

Entailment (validity, unsatisfiability) in FOL is only semi-decidable:

- if $\Gamma \models \alpha$, this can be checked in finite time
- if $\Gamma \not \vDash \alpha$, no algorithm is guaranteed to check it in finite time

Outline

(1) Generalities

2 Syntax and Semantics of FOL

- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(3) Using FOL
- FOL Agents
- Example: The Wumpus World

Outline

(1) Generalities

2 Syntax and Semantics of FOL

- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(3) Using FOL
- FOL Agents
- Example: The Wumpus World

[Recall:] Knowledge-Based Agent: General Schema

- Given a percept, the agent
- Tells the KB of the percept at time step t
- ASKs the KB for the best action to do at time step t
- Tells the KB that it has in fact taken that action
- Details hidden in three functions:

Make-Percept-Sentence, Make-Action-Query, Make-Action-Sentence

- construct logic sentences
- implement the interface between sensors/actuators and KRR core
- Tell and Ask may require complex logical inference

```
function KB-AGENT(percept) returns an action
    persistent: }KB\mathrm{ , a knowledge base
            t \text { , a counter, initially 0, indicating time}
    TEll(KB,MAKE-PERCEPT-SENTENCE(percept, t))
    action \leftarrow ASK(KB,MAKE-ACTION-QUERY(t))
    TElL(KB,MAKE-ACTION-SENTENCE(action, }t\mathrm{ ))
    t\leftarrowt+1
    return action

\section*{FOL Knowledge-Based Agent}
- We can assert FOL sentences (assertions) into the KB. Ex:
- ex: Tell(KB, King(John))
- ex: Tell(KB, Person(Richard))
- ex: Tell \((K B, \forall x\). \((K i n g(x) \rightarrow\) Person \((x)))\)
- We can ask queries (aka goals) to the KB. Ex:
- ex: Ask(KB, King(John))
- ex: Ask(KB, Person(John))
- ex: \(\operatorname{Ask}(K B, \exists x\).Person \((x))\)

\section*{\(\Longrightarrow\) Ask(KB, \(\alpha\) ) returns true only if \(K B \models \alpha\)}
- Other queries: AskVars, asking for variable values
\(\Longrightarrow\) returns one (or more) binding lists (aka substitutions) \(\{\) var/term; var/term, ...\}
- ex: AskVars \((K B, \exists x\).Person \((x)) \Longrightarrow\{x /\) John \(\} ;\{x /\) Richard \(\}\)
- typical for Horn clauses
(e.g. with King(John) \(\vee\) King(Richard),
the query \(\operatorname{AskVars}(K B, \exists x\). \(\operatorname{King}(x))\) would not cause a binding list)

\section*{Example: The Kinship Domain}

\section*{Domain of family relationships}
- Binary predicate symbols (family relationships):
- Parent, Sibling, Brother, Sister, Child, Daughter, Son, Spouse, Wife, Husband, Grandparent, Grandchild, Cousin, Aunt, Uncle
- function symbols:
- Mother, Father
- Knowledge base KB:
(1) \(\forall x, y \cdot(x=\operatorname{Mother}(y) \leftrightarrow(\) Female \((x) \wedge \operatorname{Parent}(x, y)))\)
(2) \(\forall x, y\). \((\) Brother \((x, y) \leftrightarrow(\operatorname{Male}(x) \wedge \operatorname{Sibling}(x, y)))\)
(3) \(\forall x, y \cdot(\operatorname{Grandparent}(x, y) \leftrightarrow \exists z\). \((\operatorname{Parent}(x, z) \wedge \operatorname{Parent}(z, y)))\)
(4) \(\forall x, y\). \(\left(\right.\) Sibling \((x, y) \leftrightarrow\left((x \neq y) \wedge \exists p_{1}, p_{2} \cdot\left(\left(p_{1} \neq p_{2}\right) \wedge\right.\right.\) \(\left.\left.\operatorname{Parent}\left(p_{1}, x\right) \wedge \operatorname{Parent}\left(p_{1}, y\right) \wedge\left(\operatorname{Parent}\left(p_{2}, x\right) \wedge \operatorname{Parent}\left(p_{2}, y\right)\right)\right)\right)\)
©
- Queries inferred from KB
- ex: (4) \(\vDash \forall x, y\). \((\operatorname{Sibling}(x, y) \leftrightarrow \operatorname{Sibling}(y, x))\)

Notation: " \(t \neq s\) " shortcut for " \(\neg(t=s)\) "

\section*{Example: Integer Numbers}

\section*{Peano Arithmetic}
- Basic symbols
- Unary predicate symbol: NatNum (natural number)
- Unary function symbol: S (Successor)
- Constant symbol: 0
- Defined symbols:
- Binary function symbols: +,* (infix)
- Constant symbols: 1,2,3,4,5,6,...
- Knowledge base KB:
( ( \(\operatorname{NatNum}(0)\)
(2) \(\forall x \cdot(\operatorname{NatNum}(x) \rightarrow \operatorname{NatNum}(S(x)))\)
(3) \(\forall x \cdot(\operatorname{NatNum}(x) \rightarrow(0 \neq S(x)))\)
(4) \(\forall x, y \cdot((\operatorname{NatNum}(x) \wedge \operatorname{NatNum}(y)) \rightarrow((x \neq y) \rightarrow(S(x) \neq S(y))))\)
(5) \(\forall x \cdot(\operatorname{NatNum}(x) \rightarrow(x=(0+x)))\)
(6) \(\forall x, y \cdot((\operatorname{NatNum}(x) \wedge \operatorname{NatNum}(y)) \rightarrow(S(x)+y)=S(x+y))\)
(7) \(1=S(0), 2=S(1), 3=S(2)\),
- Queries inferred from KB
- ex: (4) \(\mid=\forall x, y \cdot((\operatorname{NatNum}(x) \wedge(\operatorname{NatNum}(y))) \rightarrow((x+y)=(y+x)))\)

\section*{Exercises}

\section*{About the Kinship domain}
- Try to add the axioms defining other predicates or functions
(e.g. Brother, Sister, Child, Daughter, Son, Spouse, Wife, Husband, Grandparent, Grandchild, Cousin, Aunt, Uncle, ...)
- Add some ground atom or its negation to the KB (ex: Brother(Steve,Mary), Mary=Mother(Paul),...)
- Try to solve some query by entailment (e.g. Uncle(Steve,Paul), \(\exists x\).Uncle( \(x\), Paul), ...)

\section*{About the Peano Arithmetic domain}
- Try to add the axioms defining other predicate or functions
(e.g. " \(n \leq m\) " or " \(m * n\) ", " \(n\) "")
- Add some ground atom or its negation to the KB (ex: \(1=S(0), 2=S(1), \ldots\) )
- Try to solve some query by entailment (e.g. \(3+2=5,2 * 3=6, \ldots\) )

\section*{Outline}

\section*{(1) Generalities}

2 Syntax and Semantics of FOL
- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(3) Using FOL
- Example: The Wumpus World

\section*{Example: The Wumpus World}

\section*{The FOL KB}
- Perception: binary predicate Percept([s, b, g, b, sc],t)
- (recall: perception is [Stench,Breeze,Glitter,Bump,Scream])
- Stench, Breeze, Glitter, Bump, Scream constant symbols
- time step \(t\) represented as integer
- Percepts imply facts about the current state.
- \(\forall t, s, g, m, c .(\operatorname{Percept}([s, \operatorname{Breeze}, g, m, c], t) \rightarrow \operatorname{Breeze}(t))\)
- \(\forall t, s, g, m, c\). \((\operatorname{Percept}([s, N u l l, g, m, c], t) \rightarrow \neg \operatorname{Breeze}(t))\)
- ...
- Environment:
- Square: term (pair of integers): \([1,2]\)
- Adjacency: binary predicate Adjacent:
\[
\begin{aligned}
& \forall x, y, a, b \cdot(\operatorname{Adjacent}([x, y],[a, b]) \leftrightarrow \\
& \qquad(x=a \wedge(y=b-1 \vee y=b+1)) \vee(y=b \wedge(x=a-1 \vee x=a+1)))
\end{aligned}
\]
- Position: predicate \(\operatorname{At}(\) Agent, \(s, t)\), ex: \(\operatorname{At}(\) Agent, \([1,1], 1)\)
- Unique position: \(\forall x, s_{1}, s_{2}, t .\left(\left(A t\left(x, s_{1}, t\right) \wedge A t\left(x, s_{2}, t\right)\right) \rightarrow s_{1}=s_{2}\right)\)
- Wumpus: predicate Wumpus(s), ex: Wumpus([3, 1])
- Pits: predicate \(\operatorname{Pit}(s)\), ex: \(\operatorname{Pit}([3,1])\)

\section*{Personal Remark}
- For Wumpus, AIMA suggests;
- Wumpus: constant, ex \(\forall t . A t\) (Wumpus, [2, 2], t)
- Simplification: assume Wumpus status does not evolve with time
- predicate \(\operatorname{Wumpus(s),~ex:~} \operatorname{Wumpus}([3,1])\)
\(\Longrightarrow\) makes inference much easier
- if we consider the case the Wumpus is killed by arrow, then we need reintroducing the "At" formalization

\section*{Example: The Wumpus World [cont.]}

\section*{The FOL KB [cont.]}
- Infer properties from percepts:
- \(\forall s, t .((\) At \((\) Agent \(, ~ s, t) \wedge \operatorname{Breeze}(t)) \rightarrow \operatorname{Breezy}(s))\)
- \(\forall s, t\). \(((\) At \((\) Agent \(, s, t) \wedge \neg \operatorname{Breeze}(t)) \rightarrow \neg \operatorname{Breezy}(s))\)
- Infer information about pits \& Wumpus
- \(\forall s\). \((\operatorname{Breezy}(s) \leftrightarrow \exists r .(\operatorname{Adjacent}(r, s) \wedge \operatorname{Pit}(r)))\)
- \(\forall s\). \((\operatorname{Stench}(s) \leftrightarrow \exists r .(\operatorname{Adjacent}(r, s) \wedge\) Wumpus \((r)))\)
- Evolution on time: successor states:
- \(\forall t .(\) HaveArrow \((t+1) \leftrightarrow(\) HaveArrow \((t) \wedge \neg \operatorname{Action}(\) Shoot,\(t)))\)
- Actions: terms Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb
- simple reflex action: \(\forall t .(\operatorname{Glitter}(t) \rightarrow\) BestAction \((\) Grab, \(t))\)
- Query: AskVars \((\exists a\).BestAction \((a, 5)) \Longrightarrow\{a / \operatorname{Grab}\}\)

\section*{Personal remark}

Simplified action axiomatization: "Move(...)" instead of "Turn(...), Forward"

\section*{Example: Exploring the Wumpus World}

\section*{KB initially contains:}
```

\forallx,y,a,b.(Adjacent([x,y],[a,b])\leftrightarrow(x=a\wedge(y=b-1\veey=b+1))\vee(y=b\wedge(x=a-1\veex=a+1)))
\forallt,s,g,m,c.(Percept([s, Null, g, m, c],t) -> \negBreeze(t))
\forallt,b,g,m, c.(Percept([Null, b, g, m, c], t) -> \negStench(t))
s,t.((At(Agent, s,t)\wedge\negBreeze(t)) -> \negBreezy(s))
*s.t.((At(Agent, s,t)\wedge\negStench(t)) -> \negStenchy(s))
\foralls. (Breezy(s) ↔ \existsr.(Adjacent (r,s)\wedge Pit(r)))
*s. (Stench(s)\leftrightarrow\existsr.(Adjacent(r,s)^ Wumpus(r)))
*s.(Ok(s)\leftrightarrow(\negPit(s)\wedge\negWumpus(s)))

```
- A is initially in \(1,1: \operatorname{At}(A,[1,1], 0)\)
- Perceives no stench, no breeze:

Tell(KB, Percept([Null,Null,Null,Null,Null], 0))
\(\Longrightarrow \neg\) Breeze(0), \(\neg\) Stench(0),
\(\Longrightarrow \neg \operatorname{Breezy}([1,1]), \neg \operatorname{Stenchy}([1,1])\),
\(\Longrightarrow \neg \operatorname{Pit}([1,2]), \neg \operatorname{Pit}([2,1] \neg \operatorname{Wumpus}([1,2]), \neg W u m p u s([2,1])\),
\(\Longrightarrow \operatorname{Ok}([1,2]), \operatorname{Ok}([2,1])\)
AskVars (KB, ヨa.BestAction \((a, 0))\)
\(\Longrightarrow\{a / \operatorname{Move}([1,2])\},\{a / \operatorname{Move}([2,1])\}\)


\section*{Example: Exploring the Wumpus World}

\section*{KB initially contains:}
\(\neg \operatorname{Pit}([1,1]), \neg\) Wumpus \(([1,1])\),
\(\forall x, y, a, b .(\operatorname{Adjacent}([x, y],[a, b]) \leftrightarrow(x=a \wedge(y=b-1 \vee y=b+1)) \vee(y=b \wedge(x=a-1 \vee x=a+1)))\)
\(\forall t, s, g, m, c .(\operatorname{Percept}([s\), Breeze, \(g, m, c], t) \rightarrow \operatorname{Breeze}(t))\)
\(\forall t, b, g, m, c .(\operatorname{Percept}([N u l l, b, g, m, c], t) \rightarrow \neg \operatorname{Stench}(t))\)
\(\forall s, t .((\) At \((\) Agent, \(s, t) \wedge \operatorname{Breeze}(t)) \rightarrow B r e e z y(s))\)
\(\forall s, t .((\) At \((\) Agent \(, s, t) \wedge \neg\) Stench \((t)) \rightarrow \neg\) Stenchy \((s))\)
\(\forall s .(\operatorname{Breezy}(s) \leftrightarrow \exists r .(\operatorname{Adjacent}(r, s) \wedge \operatorname{Pit}(r)))\)
\(\forall s .(\operatorname{Stench}(s) \leftrightarrow \exists r .(\operatorname{Adjacent}(r, s) \wedge\) Wumpus \((r)))\)
- Agent moves to [2,1]: \(\operatorname{At}(A,[2,1], 1)\)
- Perceives a breeze and no stench:

Tell(KB, Percept([Null,Breeze,Null,Null,Null], 1))
\(\Longrightarrow\) Breeze(1), ᄀStench(1),
\(\Longrightarrow \operatorname{Breezy}([2,1]), \neg\) Stenchy \(([2,1])\),
\(\Longrightarrow \exists r .(\operatorname{Adjacent}(r,[2,1]) \wedge \operatorname{Pit}(r))\), \(\neg\) Wumpus \(([3,1]), \neg W u m p u s([2,2])\),
\(\Longrightarrow(\operatorname{Pit}([3,1]) \vee \operatorname{Pit}([2,2]))\)
\(\operatorname{AskVars}(K B, \exists a . \operatorname{Action}(a, 1)) \Longrightarrow\{a / \operatorname{Move}([1,1])\}\)


\section*{Example: Exploring the Wumpus World}

\section*{KB initially contains:}
\(\neg \operatorname{Pit}([1,1]), \neg\) Wumpus \(([1,1])\),
\(\forall x, y, a, b .(\operatorname{Adjacent}([x, y],[a, b]) \leftrightarrow(x=a \wedge(y=b-1 \vee y=b+1)) \vee(y=b \wedge(x=a-1 \vee x=a+1)))\)
\(\forall t, s, g, m, c .(\operatorname{Percept}([s\), Breeze, \(g, m, c], t) \rightarrow \operatorname{Breeze}(t))\)
\(\forall t, b, g, m, c .(\operatorname{Percept}([N u l l, b, g, m, c], t) \rightarrow \neg \operatorname{Stench}(t))\)
\(\forall s, t .((\) At \((\) Agent, \(s, t) \wedge \operatorname{Breeze}(t)) \rightarrow B r e e z y(s))\)
\(\forall s, t .((\) At \((\) Agent \(, s, t) \wedge \neg\) Stench \((t)) \rightarrow \neg\) Stenchy \((s))\)
\(\forall s .(\operatorname{Breezy}(s) \leftrightarrow \exists r .(\operatorname{Adjacent}(r, s) \wedge \operatorname{Pit}(r)))\)
\(\forall s .(\operatorname{Stench}(s) \leftrightarrow \exists r .(\operatorname{Adjacent}(r, s) \wedge\) Wumpus \((r)))\)
- Agent moves to [2,1]: \(\operatorname{At}(A,[2,1], 1)\)
- Perceives a breeze and no stench:

Tell(KB, Percept([Null,Breeze,Null,Null,Null], 1))
\(\Longrightarrow\) Breeze(1), ᄀStench(1),
\(\Longrightarrow \operatorname{Breezy}([2,1]), \neg\) Stenchy \(([2,1])\),
\(\Longrightarrow \exists r .(\operatorname{Adjacent}(r,[2,1]) \wedge \operatorname{Pit}(r))\),
\(\neg\) Wumpus \(([3,1]), \neg\) Wumpus \(([2,2])\),
\(\Longrightarrow(\operatorname{Pit}([3,1]) \vee \operatorname{Pit}([2,2]))\)
\(\operatorname{AskVars}(K B, \exists a \operatorname{Action}(a, 1)) \Longrightarrow\{a / \operatorname{Move}([1,1])\}\)


\section*{Exercise}

Complete the example in the FOL case (see the PL case).```

