# Fundamentals of Artificial Intelligence Chapter 14: Probabilistic Reasoning 

## Roberto Sebastiani

DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it https://disi.unitn.it/rseba/DIDATTICA/fai_2023/

## Teaching assistants:

Mauro Dragoni, dragoni@fbk.eu, https://www.maurodragoni.com/teaching/fai/ Paolo Morettin, paolo.morettin@unitn.it, https://paolomorettin.github.io/

## M.S. Course "Artificial Intelligence Systems", academic year 2023-2024

Last update: Friday $15^{\text {th }}$ December, 2023, 12:38

## Outline

(1) Bayesian Networks

- Basics
- Global Semantics
- Local Semantics
- Independence Property: Markov Blanket

2 Constructing Bayesian Networks
(3) Exact Inference with Bayesian Networks

- Inference by Enumeration
- Inference by Variable Elimination
- Complexity of Exact Inference


## Outline

## （1）Bayesian Networks

－Basics
－Global Semantics
－Local Semantics
－Independence Property：Markov Blanket

2 Constructing Bayesian Networks
（3）Exact Inference with Bayesian Networks
－Inference by Enumeration
－Inference by Variable Elimination
－Complexity of Exact Inference

## Outline

(1) Bayesian Networks

- Basics
- Global Semantics
- Local Semantics
- Independence Property: Markov Blanket

2 Constructing Bayesian Networks
(3) Exact Inference with Bayesian Networks

- Inference by Enumeration
- Inference by Variable Elimination
- Complexity of Exact Inference


## Bayesian Networks

Bayesian Networks (aka Belief Networks):

- Syntax: a directed acyclic graph (DAG):
- each node represents a random variable (discrete or continuous)
- directed arcs connect pairs of nodes: $X \rightarrow Y$ ( X is a parent of Y )
- a conditional distribution $\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$ for each node $X_{i}$
- Conditional distribution represented as a conditional probability table (CPT)
- distribution over $X_{i}$ for each combination of parent values
- Allow for compact specification of full joint distributions
- Represent explicit conditional dependencies among variables:
an arc from $X$ to $Y$ means that $X$ has a direct influence on $Y$
- Topology encodes conditional independence assertions:
- Toothache, Catch conditionally independent given Cavity
- Tootchache, Catch depend on Cavity
- Weather independent from others
- No arc $\Longleftrightarrow$ independence



## Bayesian Networks

## Bayesian Networks (aka Belief Networks):

- Syntax: a directed acyclic graph (DAG):
- each node represents a random variable (discrete or continuous)
- directed arcs connect pairs of nodes: $X \rightarrow Y$ ( X is a parent of Y )
- a conditional distribution $\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$ for each node $X_{i}$
- Conditional distribution represented as a conditional probability table (CPT)
- distribution over $X_{i}$ for each combination of parent values
- Allow for compact specification of full joint distributions
- Represent explicit conditional dependencies among variables:
an arc from $X$ to $Y$ means that $X$ has a direct influence on $Y$
- Topology encodes conditional independence assertions:
- Toothache, Catch conditionally independent given Cavity
- Tootchache, Catch depend on Cavity
- Weather independent from others
- No arc $\Longleftrightarrow$ independence

(©S. Russell \& P. Norwig, AIMA)


## Bayesian Networks

## Bayesian Networks (aka Belief Networks):

- Syntax: a directed acyclic graph (DAG):
- each node represents a random variable (discrete or continuous)
- directed arcs connect pairs of nodes: $X \rightarrow Y(\mathrm{X}$ is a parent of Y$)$
- a conditional distribution $\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$ for each node $X_{i}$
- Conditional distribution represented as a conditional probability table (CPT)
- distribution over $X_{i}$ for each combination of parent values
- Allow for compact specification of full joint distributions
- Represent explicit conditional dependencies among variables:
an arc from $X$ to $Y$ means that $X$ has a direct influence on $Y$
- Tonology encodes conditional indenendence assertions
- Toothache, Catch conditionally independent given Cavity
- Tootchache, Catch depend on Cavity
- Weather independent from others
- No arc $\Longleftrightarrow$ independence

(© S. Russell \& P. Norwig, AIMA)


## Bayesian Networks

## Bayesian Networks (aka Belief Networks):

- Syntax: a directed acyclic graph (DAG):
- each node represents a random variable (discrete or continuous)
- directed arcs connect pairs of nodes: $X \rightarrow Y$ ( X is a parent of Y )
- a conditional distribution $\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$ for each node $X_{i}$
- Conditional distribution represented as a conditional probability table (CPT)
- distribution over $X_{i}$ for each combination of parent values
- Allow for compact specification of full joint distributions
- Represent explicit conditional dependencies among variables: an arc from $X$ to $Y$ means that $X$ has a direct influence on $Y$
- Topology encodes conditional independence assertions
- Toothache, Catch conditionally independent given Cavity
- Tootchache, Catch depend on Cavity
- Weather independent from others
- No arc $\Longleftrightarrow$ independence



## Bayesian Networks

## Bayesian Networks (aka Belief Networks):

- Syntax: a directed acyclic graph (DAG):
- each node represents a random variable (discrete or continuous)
- directed arcs connect pairs of nodes: $X \rightarrow Y$ ( X is a parent of Y )
- a conditional distribution $\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$ for each node $X_{i}$
- Conditional distribution represented as a conditional probability table (CPT)
- distribution over $X_{i}$ for each combination of parent values
- Allow for compact specification of full joint distributions
- Represent explicit conditional dependencies among variables:
an arc from $X$ to $Y$ means that $X$ has a direct influence on $Y$
- Topology encodes conditional independence assertions:
- Toothache, Catch conditionally independent given Cavity
- Tootchache, Catch depend on Cavity
- Weather independent from others



## Bayesian Networks

## Bayesian Networks (aka Belief Networks):

- Syntax: a directed acyclic graph (DAG):
- each node represents a random variable (discrete or continuous)
- directed arcs connect pairs of nodes: $X \rightarrow Y$ ( X is a parent of Y )
- a conditional distribution $\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$ for each node $X_{i}$
- Conditional distribution represented as a conditional probability table (CPT)
- distribution over $X_{i}$ for each combination of parent values
- Allow for compact specification of full joint distributions
- Represent explicit conditional dependencies among variables: an arc from $X$ to $Y$ means that $X$ has a direct influence on $Y$
- Topology encodes conditional independence assertions:
- Toothache, Catch conditionally independent given Cavity
- Tootchache, Catch depend on Cavity
- Weather independent from others
- No arc $\Longleftrightarrow$ independence



## Example (from Judea Pearl, UCLA)

"The burglary alarm goes off very likely on burglary and occasionally on earthquakes. John and Mary are neighbors who agreed to call when the alarm goes off. Their reliability is different ..."

- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call
- CPTs:
- alarm setoff if bunglar in 94\% of cases
- alarm setoff if hearthquake in $29 \%$ of cases
- false alarm setoff in $0.1 \%$ of cases
- Notice: in CPTs like $P(A \mid B)$, only $P(a \mid B)$ are reported, because $P(\neg a \mid B)=1-P(a \mid B)$


## Example (from Judea Pearl, UCLA)

"The burglary alarm goes off very likely on burglary and occasionally on earthquakes. John and Mary are neighbors who agreed to call when the alarm goes off.
Their reliability is different ..."

- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call
- CPTs:
- alarm setoff if bunglar
in 94\% of cases
- alarm setoff if hearthquake
in $29 \%$ of cases
- false alarm setoff
in $0.1 \%$ of cases

- Notice: in CPTs like $\mathbf{P}(A \mid B)$, only $P(a \mid B)$ are reported, because $P(\neg a \mid B)=1-P(a \mid B)$


## Example (from Judea Pearl, UCLA)

"The burglary alarm goes off very likely on burglary and occasionally on earthquakes. John and Mary are neighbors who agreed to call when the alarm goes off.
Their reliability is different ..."

- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call
- alarm setoff if bunglar
in $94 \%$ of cases
- alarm setoff if hearthquake
in $29 \%$ of cases
- false alarm setoff
in $0.1 \%$ of cases

- Notice: in CPTs like $P(A \mid B)$, only $P(a \mid B)$ are reported, because $P(\neg a \mid B)=1-P(a \mid B)$


## Example (from Judea Pearl, UCLA)

"The burglary alarm goes off very likely on burglary and occasionally on earthquakes. John and Mary are neighbors who agreed to call when the alarm goes off.
Their reliability is different ..."

- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call
- CPTs:
- alarm setoff if bunglar in $94 \%$ of cases
- alarm setoff if hearthquake in 29\% of cases
- false alarm setoff in $0.1 \%$ of cases

- Notice: in CPTs like $\mathbf{P}(A \mid B)$, only $P(a \mid B)$ are reported, because $P(\neg a \mid B)=1-P(a \mid B)$


## Outline

(1) Bayesian Networks

- Basics
- Global Semantics
- Local Semantics
- Independence Property: Markov Blanket
(2) Constructing Bayesian Networks
(3) Exact Inference with Bayesian Networks
- Inference by Enumeration
- Inference by Variable Elimination
- Complexity of Exact Inference


## Compactness of Bayesian Networks

- In most domains, it is reasonable to suppose that each random variable $X_{i}$ is directly influenced by only a small number $k_{i}$ of other variables, called parents of $X_{i}$ (parents $\left(X_{i}\right)$ )
- A CPT for Boolean $X_{i}$ with $k_{i}$ Boolean parents has
- $2^{k_{i}}$ rows for the combinations of parent values
- each row requires one number p for $P\left(X_{i}=\right.$ true $)$ $\left(P\left(X_{i}=\right.\right.$ false $)=1-P\left(X_{i}=\right.$ true $\left.)\right)$
If each variable has no more than $k$ parents, the complete network requires $O\left(n \cdot 2^{k}\right)$ numbers
- a full joint distribution requires $2^{n}-1$ numbers
- linear vs. exponential!
- Ex: for burglary example:
- $1+1+4+2+2=10$ numbers vs. $2^{5}-1=31$


## Compactness of Bayesian Networks

- In most domains, it is reasonable to suppose that each random variable $X_{i}$ is directly influenced by only a small number $k_{i}$ of other variables, called parents of $X_{i}$ (parents $\left(X_{i}\right)$ )
- A CPT for Boolean $X_{i}$ with $k_{i}$ Boolean parents has
- $2^{k_{i}}$ rows for the combinations of parent values
- each row requires one number p for $P\left(X_{i}=\right.$ true $)$
$\left(P\left(X_{i}=\right.\right.$ false $\left.)=1-P\left(X_{i}=t r u e\right)\right)$
If each variable has no more than $k$ parents, the complete network requires $O\left(n \cdot 2^{k}\right)$ numbers
- a full ioint distribution requires $2^{n}-1$ numbers
- linear vs. exponential!
- Ex: for burglary example:
- $1+1+4+2+2=10$ numbers vs. $2^{5}-1=31$


## Compactness of Bayesian Networks

- In most domains, it is reasonable to suppose that each random variable $X_{i}$ is directly influenced by only a small number $k_{i}$ of other variables, called parents of $X_{i}$ (parents $\left(X_{i}\right)$ )
- A CPT for Boolean $X_{i}$ with $k_{i}$ Boolean parents has
- $2^{k_{i}}$ rows for the combinations of parent values
- each row requires one number p for $P\left(X_{i}=\right.$ true $)$

$$
\left(P\left(X_{i}=\text { false }\right)=1-P\left(X_{i}=\text { true }\right)\right)
$$

$\Longrightarrow$ If each variable has no more than k parents, the complete network requires $O\left(n \cdot 2^{k}\right)$ numbers

- a full joint distribution requires $2^{n}-1$ numbers
- linear vs. exponential!
- Ex: for burglary example:
- $1+1+4+2+2=10$ numbers vs. $2^{5}-1=31$


## Compactness of Bayesian Networks

- In most domains, it is reasonable to suppose that each random variable $X_{i}$ is directly influenced by only a small number $k_{i}$ of other variables, called parents of $X_{i}$ (parents $\left(X_{i}\right)$ )
- A CPT for Boolean $X_{i}$ with $k_{i}$ Boolean parents has
- $2^{k_{i}}$ rows for the combinations of parent values
- each row requires one number p for $P\left(X_{i}=\right.$ true $)$

$$
\left(P\left(X_{i}=\text { false }\right)=1-P\left(X_{i}=\text { true }\right)\right)
$$

$\Longrightarrow$ If each variable has no more than k parents, the complete network requires $O\left(n \cdot 2^{k}\right)$ numbers

- a full joint distribution requires $2^{n}-1$ numbers
- linear vs. exponential!
- Ex: for burglary example:
- $1+1+4+2+2=10$ numbers vs. $2^{5}-1=31$


## Global Semantics of Bayesian Networks

- Global semantics defines the full joint distribution as the product of the local conditional distributions:
$\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- if $X_{i}$ has no parent, then conditional distributions reduce to prior probability $\mathbf{P}\left(X_{i}\right)$
- Intuition: order $X_{1}, \ldots, X_{n}$ s.t. parents $\left(X_{i}\right) \prec X_{i}$ for each $i$ :


## Global Semantics of Bayesian Networks

- Global semantics defines the full joint distribution as the product of the local conditional distributions:
$\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- if $X_{i}$ has no parent, then conditional distributions reduce to prior probability $\mathbf{P}\left(X_{i}\right)$
- Intuition: order $X_{1}, \ldots, X_{n}$ s.t. parents $\left(X_{i}\right) \prec X_{i}$ for each $i$ :
$\left.=\prod_{i=1}^{n} \mathrm{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)\right) / /$ chain rule
$=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right) / /$ conditional independence
A Bayesian network is a distributed representation of the full joint distribution


## Global Semantics of Bayesian Networks

- Global semantics defines the full joint distribution as the product of the local conditional distributions:
$\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- if $X_{i}$ has no parent, then conditional distributions reduce to prior probability $\mathbf{P}\left(X_{i}\right)$
- Intuition: order $X_{1}, \ldots, X_{n}$ s.t. parents $\left(X_{i}\right) \prec X_{i}$ for each $i$ :
$\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$
$\left.=\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)\right) / /$ chain rule
/ conditional independence
A Bayesian network is a distributed representation of the full joint distribution


## Global Semantics of Bayesian Networks

- Global semantics defines the full joint distribution as the product of the local conditional distributions:
$\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- if $X_{i}$ has no parent, then conditional distributions reduce to prior probability $\mathbf{P}\left(X_{i}\right)$
- Intuition: order $X_{1}, \ldots, X_{n}$ s.t. parents $\left(X_{i}\right) \prec X_{i}$ for each $i$ :
$\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$
$\left.=\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)\right) / /$ chain rule
$=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right) / /$ conditional independence
A Bayesian network is a distributed representation of the full joint distribution


## Global Semantics of Bayesian Networks

- Global semantics defines the full joint distribution as the product of the local conditional distributions:
$\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- if $X_{i}$ has no parent, then conditional distributions reduce to prior probability $\mathbf{P}\left(X_{i}\right)$
- Intuition: order $X_{1}, \ldots, X_{n}$ s.t. parents $\left(X_{i}\right) \prec X_{i}$ for each $i$ :
$\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$
$\left.=\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)\right) / /$ chain rule
$=\prod_{i=1} \mathbf{P}\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right) / /$ conditional independence
$\Longrightarrow$ A Bayesian network is a distributed representation of the full joint distribution


## Global Semantics: Example

- $\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
- Ex: "Prob. that both John and Mary call, the alarm sets off but no burglary nor earthquake"


## Global Semantics: Example

- $\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- Ex: "Prob. that both John and Mary call, the alarm sets off but no burglary nor earthquake" $P(j \mid m \wedge a \wedge \neg b \wedge \neg e) P(m \mid a \wedge \neg b \wedge \neg e) P(a \mid-b \wedge-e) P(\neg b \mid \neg e) P(\neg e)=$
$P(j \mid a) P(m \mid a) P(a \mid \neg b \wedge \neg e) P(\neg b) P(\neg e)=0.9 \cdot 0.7 \cdot 0.001 \cdot 0.999 \cdot 0.998$
$\approx 0.00063$



## Global Semantics: Example

- $\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- Ex: "Prob. that both John and Mary call, the alarm sets off but no burglary nor earthquake" $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)=$
$P(j \mid m \wedge a \wedge \neg b \wedge \neg e) P(m \mid a \wedge \neg b \wedge \neg e) P(a \mid-b \wedge \neg e) P(\neg b \mid \neg e) P(\neg e)=$
$P(j \mid a) P(m \mid a) P(a \mid \neg b \wedge \neg e) P(\neg b) P(\neg e)=0.9 \cdot 0.7 \cdot 0.001 \cdot 0.999 \cdot 0.998$
$\approx 0.00063$



## Global Semantics: Example

- $\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- Ex: "Prob. that both John and Mary call, the alarm sets off but no burglary nor earthquake" $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)=$
$P(j \mid m \wedge a \wedge \neg b \wedge \neg e) P(m \mid a \wedge \neg b \wedge \neg e) P(a \mid \neg b \wedge-e) P(\neg b \mid \neg e) P(\neg e)=$
$P(j a) P(m \mid a) P(a \mid \neg b \wedge \neg e) P(\neg b) P(\neg e)=0.9 \cdot 0.7 \cdot 0.001 \cdot 0.999 \cdot 0.998$
$\approx 0.00063$



## Global Semantics: Example

- $\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- Ex: "Prob. that both John and Mary call, the alarm sets off but no burglary nor earthquake" $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)=$
$P(j \mid m \wedge a \wedge \neg b \wedge \neg e) P(m \mid a \wedge \neg b \wedge \neg e) P(a \mid \neg b \wedge-e) P(\neg b \mid \neg e) P(\neg e)=$
$P(j \mid a) P(m \mid a) P(a \neg b \wedge \neg e) P(\neg b) P(\neg e)=0.9 \cdot 0.7 \cdot 0.001 \cdot 0.999 \cdot 0.998$
$\approx 0.00063$



## Global Semantics: Example

- $\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- Ex: "Prob. that both John and Mary call, the alarm sets off but no burglary nor earthquake" $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)=$
$P(j \mid m \wedge a \wedge \neg b \wedge \neg e) P(m \mid a \wedge \neg b \wedge \neg e) P(a \mid \neg b \wedge-e) P(\neg b \mid \neg e) P(\neg e)=$
$P(j \mid a) P(m \mid a) P(a-\neg \wedge \neg e) P(\neg b) P(\neg e)=0.9 \cdot 0.7 \cdot 0.001 \cdot 0.999 \cdot 0.998$
$\approx 0.00063$



## Global Semantics: Example

- $\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- Ex: "Prob. that both John and Mary call, the alarm sets off but no burglary nor earthquake" $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)=$
$P(j \mid m \wedge a \wedge \neg b \wedge \neg e) P(m \mid a \wedge \neg b \wedge \neg e) P(a \mid \neg b \wedge-e) P(\neg b \neg e) P(\neg e)=$
$P(j \mid a) P(m \mid a) P(a-\neg \wedge \neg e) P(\neg b) P(\neg e)=0.9 \cdot 0.7 \cdot 0.001 \cdot 0.999 \cdot 0.998$
$\approx 0.00063$



## Global Semantics: Example

- $\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- Ex: "Prob. that both John and Mary call, the alarm sets off but no burglary nor earthquake" $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)=$
$P(j \mid m \wedge a \wedge \neg b \wedge \neg e) P(m \mid a \wedge \neg b \wedge \neg e) P(a \mid-b \wedge-e) P(\neg b \neg e) P(\neg e)=$ $P(j \mid a) P(m \mid a) P(a \mid \neg b \wedge \neg e) P(\neg b) P(\neg e)=0.9 \cdot 0.7 \cdot 0.001 \cdot 0.999 \cdot 0.998$



## Global Semantics: Example

- $\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- Ex: "Prob. that both John and Mary call, the alarm sets off but no burglary nor earthquake" $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)=$
$P(j \mid m \wedge a \wedge \neg b \wedge \neg e) P(m \mid a \wedge \neg b \wedge \neg e) P(a \mid-b \wedge-e) P(\neg b \neg e) P(\neg e)=$ $P(j \mid a) P(m \mid a) P(a \mid \neg b \wedge \neg e) P(\neg b) P(\neg e)=0.9 \cdot 0.7 \cdot 0.001 \cdot 0.999 \cdot 0.998$



## Global Semantics: Example

- $\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- Ex: "Prob. that both John and Mary call, the alarm sets off but no burglary nor earthquake" $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)=$
$P(j \mid m \wedge a \wedge \neg b \wedge \neg e) P(m \mid a \wedge \neg b \wedge \neg e) P(a \mid \neg b \wedge \neg e) P(\neg b \neg e) P(\neg e)=$
$P(j \mid a) P(m \mid a) P(a \mid \neg b \wedge \neg e) P(\neg b) P(\neg e)=0.9 \cdot 0.7 \cdot 0.001 \cdot 0.999 \cdot 0.998$
$\approx 0.00063$



## Exercises

- Compute:
- The probability that John calls and Mary does not, the alarm is not set off with a burglar entering during an earthquake
- The probability that John calls and Mary does not, given a burglar entering the house
- The probability of an earthquake given the fact that John has called
- ...


## Outline

(1) Bayesian Networks

- Basics
- Global Semantics
- Local Semantics
- Independence Property: Markov Blanket
(2) Constructing Bayesian Networks
(3) Exact Inference with Bayesian Networks
- Inference by Enumeration
- Inference by Variable Elimination
- Complexity of Exact Inference


## Local Semantics

- Local Semantics: each node is conditionally independent of its nondescendants given its parents: $\mathbf{P}\left(X \mid U_{1}, . ., U_{m}, Z_{1 j}, \ldots, Z_{n j}\right)=\mathbf{P}\left(X \mid U_{1}, . ., U_{m}\right)$, for each $X$
- "nondecendants" include ancestors


## - Theorem: Local semantics holds iff global semantics holds: $\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$



## Local Semantics

- Local Semantics: each node is conditionally independent of its nondescendants given its parents: $\mathbf{P}\left(X \mid U_{1}, . ., U_{m}, Z_{1 j}, \ldots, Z_{n j}\right)=\mathbf{P}\left(X \mid U_{1}, . ., U_{m}\right)$, for each $X$
- "nondecendants" include ancestors
- Theorem: Local semantics holds iff global semantics holds:
$\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$



## Local Semantics: Example

Ex: JohnCalls is independent of Burglary, Earthquake, and MaryCalls given the value of Alarm $\mathbf{P}($ JohnCalls $\mid$ Alarm, Burglary, Earthquake, MaryCalls $)=\mathbf{P}($ JohnCalls $\mid$ Alarm $)$


## Outline

(1) Bayesian Networks

- Basics
- Global Semantics
- Local Semantics
- Independence Property: Markov Blanket

2 Constructing Bayesian Networks
(3) Exact Inference with Bayesian Networks

- Inference by Enumeration
- Inference by Variable Elimination
- Complexity of Exact Inference


## Independence Property: Markov Blanket

In an Bayesian Network, each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents:

$$
\mathbf{P}\left(X \mid U_{1}, . ., U_{m}, Y_{1}, \ldots, Y_{n}, Z_{1 j}, \ldots, Z_{n j}, W_{1}, \ldots, W_{k}\right)=\mathbf{P}\left(X \mid U_{1}, . ., U_{m}, Y_{1}, . ., Y_{n}, Z_{1 j}, \ldots, Z_{n j}\right) \text {, for each } X
$$



## Markov Blanket: Example

Ex: Burglary is independent of JohnCalls and MaryCalls, given Alarm and Earthquake $\mathbf{P}$ (Burglary $\mid$ Alarm, Earthquake, JohnCalls, MaryCalls $)=\mathbf{P}($ Burglary $\mid$ Alarm, Earthquake)


## Exercise

Verify numerically the two previous examples:

- Local Semantics
- Markov Blanket


## Outline

(4) Bayesian Networks

- Basics
- Global Semantics
- Local Semantics
- Independence Property: Markov Blanket

2 Constructing Bayesian Networks
3) Exact Inference with Bayesian Networks

- Inference by Enumeration
- Inference by Variable Elimination
- Complexity of Exact Inference


## Constructing Bayesian Networks

## Building the graph

Given a set of random variables

1. Choose an ordering $\left\{X_{1}, \ldots, X_{n}\right\}$

- in principle, any ordering will work (but some may cause blowups)
- general rule: follow causality, $X \prec Y$ if $X \in \operatorname{causes}(Y)$

2. For $\mathrm{i}=1$ to n do
3. add $X_{i}$ to the network
4. as $\operatorname{Parents}\left(X_{i}\right)$, choose a subset of $\left\{X_{1}, \ldots, X_{i-1}\right\}$ s.t. $P\left(X_{\mid} \mid X_{1}, \ldots, X_{1-1}\right)=P\left(X \mid P a r e n t s\left(X_{i}\right)\right)$ Guarantees the global semantics by construction
$\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$

## Constructing Bayesian Networks

## Building the graph

Given a set of random variables

1. Choose an ordering $\left\{X_{1}, \ldots, X_{n}\right\}$

- in principle, any ordering will work (but some may cause blowups)
- general rule: follow causality, $X \prec Y$ if $X \in \operatorname{causes}(Y)$

2. For $\mathrm{i}=1$ to n do
3. add $X_{i}$ to the network
4. as $\operatorname{Parents}\left(X_{i}\right)$, choose a subset of $\left\{X_{1}, \ldots, X_{i-1}\right\}$ s.t. $P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$ Guarantees the global semantics by construction
$\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$

## Constructing Bayesian Networks

## Building the graph

Given a set of random variables

1. Choose an ordering $\left\{X_{1}, \ldots, X_{n}\right\}$

- in principle, any ordering will work (but some may cause blowups)
- general rule: follow causality, $X \prec Y$ if $X \in \operatorname{causes}(Y)$

2. For $\mathrm{i}=1$ to n do
3. add $X_{i}$ to the network
4. as $\operatorname{Parents}\left(X_{i}\right)$, choose a subset of $\left\{X_{1}, \ldots, X_{i-1}\right\}$ s.t. $P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
$\Longrightarrow$ Guarantees the global semantics by construction

$$
\mathbf{P}\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1} \mathbf{P}\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

## Constructing Bayesian Networks: Example

Suppose we choose the ordering $\{M, J, A, B, E\}$ (non-causal ordering):


## Constructing Bayesian Networks: Example

Suppose we choose the ordering $\{M, J, A, B, E\}$ (non-causal ordering):


$$
\begin{aligned}
& P(J \mid M)=P(J) ? \quad \text { No } \\
& P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) ?
\end{aligned}
$$

## Constructing Bayesian Networks: Example

Suppose we choose the ordering $\{M, J, A, B, E\}$ (non-causal ordering):


Burglary

$$
\begin{aligned}
& P(J \mid M)=P(J) \text { ? No } \\
& P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) \text { ? No } \\
& P(B \mid A, J, M)=P(B \mid A) \text { ? } \\
& P(B \mid A, J, M)=P(B) \text { ? }
\end{aligned}
$$

## Constructing Bayesian Networks: Example

Suppose we choose the ordering $\{M, J, A, B, E\}$ (non-causal ordering):


## Constructing Bayesian Networks: Example

Suppose we choose the ordering $\{M, J, A, B, E\}$ (non-causal ordering):


$$
\begin{aligned}
& P(J \mid M)=P(J) \text { ? No } \\
& P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) \text { ? No } \\
& P(B \mid A, J, M)=P(B \mid A) \text { ? Yes } \\
& P(B \mid A, J, M)=P(B) \text { ? No } \\
& P(E \mid B, A, J, M)=P(E \mid A) \text { ? No } \\
& P(E \mid B, A, J, M)=P(E \mid A, B) \text { ? Yes }
\end{aligned}
$$

## Constructing Bayesian Networks: Example [cont.]

- In non-causal directions
- deciding conditional independence is hard
- assessing conditional probabilities is hard
- typically networks less compact
- Ex: $1+2+4+2+4=13$ numbers needed (rather than 10)
- Can be much worse
- ex: $\operatorname{try}\{M, J, E, B, A$ (see AIMA)
- ex: $\operatorname{try}\{J, M, E, B, A\}$
- Much better with causal orderings
- ex: try either

(both B and E cause $\mathrm{A}, \mathrm{A}$ causes both M and J )


## Constructing Bayesian Networks: Example [cont.]

- In non-causal directions
- deciding conditional independence is hard
- assessing conditional probabilities is hard
- typically networks less compact
- Ex: $1+2+4+2+4=13$ numbers needed (rather than 10 )
- Can be much worse
- ex: $\operatorname{try}\{M, J, E, B, A\}$ (see AIMA)
- ex: $\operatorname{try}\{J, M, E, B, A\}$
- Much better with causal orderings
- ex: try either

(both B and E cause A, A causes both M and J)


## Constructing Bayesian Networks: Example [cont.]

- In non-causal directions
- deciding conditional independence is hard
- assessing conditional probabilities is hard
- typically networks less compact
- Ex: $1+2+4+2+4=13$ numbers needed (rather than 10 )
- Can be much worse
- ex: $\operatorname{try}\{M, J, E, B, A\}$ (see AIMA)
- ex: $\operatorname{try}\{J, M, E, B, A\}$
- ex: $\operatorname{try}\{J, M, E, A, B\}$
- Much better with causal orderings
- ex: try either

(both B and E cause $\mathrm{A}, \mathrm{A}$ causes both M and J )


## Constructing Bayesian Networks: Example [cont.]

- In non-causal directions
- deciding conditional independence is hard
- assessing conditional probabilities is hard
- typically networks less compact
- Ex: $1+2+4+2+4=13$ numbers needed (rather than 10 )
- Can be much worse
- ex: $\operatorname{try}\{M, J, E, B, A\}$ (see AIMA)
- ex: $\operatorname{try}\{J, M, E, B, A\}$
- ex: $\operatorname{try}\{J, M, E, A, B\}$
- Much better with causal orderings
- ex: try either
$\{B, E, A, J, M\}$
$\{E, B, A, J, M\}$
$\{B, E, A, M, J\}$
$\{E, B, A, M, J\}$

(both B and E cause A, A causes both M and J)


## Building Conditional Probability Tables, CPTs

- Problem: CPT grow exponentially with number of parents
- If the causes don't interact: use a Noisy-OR distribution (generalization of logical or)
- Ex: $q_{\text {cold }}=0.6, q_{\text {Flu }}=0.2, q_{\text {Malaria }}=0.1$ :


## Building Conditional Probability Tables, CPTs

- Problem: CPT grow exponentially with number of parents
- If the causes don't interact: use a Noisy-OR distribution (generalization of logical or)
- assume parents $U_{1}, \ldots, U_{k}$ include all causes (can add leak node representing "other causes"):
- assume independent failure probability $q_{i} \stackrel{\text { det }}{=} P\left(\neg X \mid U_{i} \wedge \bigwedge_{i \neq i} \neg U_{j}\right)$ for each cause $U_{i}$
$\Longrightarrow$ number of parameters linear in number of parents!
- Ex: $q_{\text {cold }}=0.6, q_{\text {Flu }}=0.2, q_{\text {Malaria }}=0.1$ :


## Building Conditional Probability Tables, CPTs

- Problem: CPT grow exponentially with number of parents
- If the causes don't interact: use a Noisy-OR distribution (generalization of logical or)
- assume parents $U_{1}, \ldots, U_{k}$ include all causes (can add leak node representing "other causes"):

$$
P\left(\neg X \mid \neg \dot{U}_{1} \ldots \neg U_{k}\right)=1.0
$$

- assume independent failure probability $q_{i} \stackrel{\text { def }}{=} P\left(\neg X \mid U_{i} \wedge \bigwedge_{j \neq i} \neg U_{j}\right)$ for each cause $U_{i}$ :

$$
P\left(\neg X \mid U_{1} \ldots U_{j}, \neg U_{j+1} \ldots \neg U_{k}\right)=\prod_{i=1}^{j} q_{i}
$$

- Ex: $q_{\text {cold }}=0.6, q_{\text {Flu }}=0.2, q_{\text {Malaria }}=0.1$ :


## Building Conditional Probability Tables, CPTs

- Problem: CPT grow exponentially with number of parents
- If the causes don't interact: use a Noisy-OR distribution (generalization of logical or)
- assume parents $U_{1}, \ldots, U_{k}$ include all causes (can add leak node representing "other causes"): $P\left(\neg X \mid \neg U_{1} \ldots \neg U_{k}\right)=1.0$
- assume independent failure probability $q_{i} \stackrel{\text { def }}{=} P\left(\neg X \mid U_{i} \wedge \bigwedge_{j \neq i} \neg U_{j}\right)$ for each cause $U_{i}$ :

$$
P\left(\neg X \mid U_{1} \ldots U_{j}, \neg U_{j+1} \ldots \neg U_{k}\right)=\prod_{i=1}^{j} q_{i}
$$

$\Longrightarrow$ number of parameters linear in number of parents!

```
- Ex: \(q_{\text {cold }}=0.6, q_{\text {Flu }}=0.2, q_{\text {Malaria }}=0.1\) :
```


## Building Conditional Probability Tables, CPTs

- Problem: CPT grow exponentially with number of parents
- If the causes don't interact: use a Noisy-OR distribution (generalization of logical or)
- assume parents $U_{1}, \ldots, U_{k}$ include all causes (can add leak node representing "other causes"):

$$
P\left(\neg X \mid \neg U_{1} \ldots \neg U_{k}\right)=1.0
$$

- assume independent failure probability $q_{i} \stackrel{\text { def }}{=} P\left(\neg X \mid U_{i} \wedge \bigwedge_{j \neq i} \neg U_{j}\right)$ for each cause $U_{i}$ :

$$
P\left(\neg X \mid U_{1} \ldots U_{j}, \neg U_{j+1} \ldots \neg U_{k}\right)=\prod_{i=1}^{j} q_{i}
$$

$\Longrightarrow$ number of parameters linear in number of parents!

- Ex: $q_{\text {cold }}=0.6, q_{\text {Fu }}=0.2, q_{\text {Malaria }}=0.1$ :

| Cold | Flu | Malaria | $P($ Fever $)$ | $P(\neg$ Fever $)$ |
| :---: | :---: | :---: | :--- | :--- |
| F | F | F | 0.0 | 1.0 |
| F | F | T | 0.9 | 0.1 |
| F | T | F | 0.8 | 0.2 |
| F | T | T | 0.98 | $0.02=0.2 \times 0.1$ |
| T | F | F | 0.4 | 0.6 |
| T | F | T | 0.94 | $0.06=0.6 \times 0.1$ |
| T | T | F | 0.88 | $0.12=0.6 \times 0.2$ |
| T | T | T | 0.988 | $0.012=0.6 \times 0.2 \times 0.1$ |

## Exercises

1. Consider the probabilistic Wumpus World of previous chapter
(a) Describe it as a Bayesian network

## Outline

(1) Bayesian Networks

- Basics
- Global Semantics
- Local Semantics
- Independence Property: Markov Blanket
(2) Constructing Bayesian Networks
(3) Exact Inference with Bayesian Networks
- Inference by Enumeration
- Inference by Variable Elimination
- Complexity of Exact Inference


## Exact inference in Bayesian Networks

- Given:
- X: the query variable (we assume one for simplicity)
- E/e: the set of evidence variables $\left\{E_{1}, \ldots, E_{m}\right\}$ and of evidence values $\left\{e_{1}, \ldots, \boldsymbol{e}_{m}\right\}$
- $\mathbf{Y} / \mathbf{y}$ : the set of unknown variables (aka hidden variables) $\left\{Y_{1}, \ldots, Y_{l}\right\}$ and unknown values $\left\{y_{1}, \ldots, y_{l}\right\}$
$\Longrightarrow \mathbf{X}=X \cup \mathbf{E} \cup \mathbf{Y}$
A typical query asks for the posterior probability distribution:
$P(X \mid E=e)$ (also written $P(X \mid e)$ )
- Ex: $\mathbf{P}($ Burglar JohnCalls $=$ true, MaryCalls $=$ true $)$
- query: Burglar
- evidence variables: $\mathrm{E}=\{$ JohnCalls, MaryCalls $\}$
- hidden variables: $\mathrm{Y}=\{$ Earthquake, Alarm\}


## Exact inference in Bayesian Networks

- Given:
- X: the query variable (we assume one for simplicity)
- E/e: the set of evidence variables $\left\{E_{1}, \ldots, E_{m}\right\}$ and of evidence values $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right\}$
- $\mathbf{Y} / \mathbf{y}$ : the set of unknown variables (aka hidden variables) $\left\{Y_{1}, \ldots, Y_{l}\right\}$ and unknown values $\left\{y_{1}, \ldots, y_{l}\right\}$
$\Longrightarrow \mathbf{X}=X \cup \mathbf{E} \cup \mathbf{Y}$
A typical query asks for the posterior probability distribution:
$P(X \mid E=e)$ (also written $P(X \mid e)$ )
- Ex: $\mathbf{P}$ (Burglar $\mid$ JohnCalls = true, MaryCalls = true)
- query: Burglar
- evidence variables: E = \{JohnCalls, MaryCalls\}
- hidden variables: $\mathbf{Y}=\{$ Earthquake, Alarm $\}$


## Outline

（1）Bayesian Networks
－Basics
－Global Semantics
－Local Semantics
－Independence Property：Markov Blanket
（2）Constructing Bayesian Networks
（3）Exact Inference with Bayesian Networks
－Inference by Enumeration
－Inference by Variable Elimination
－Complexity of Exact Inference

## Inference by Enumeration

- We defined a procedure for the task as: $\mathbf{P}(X \mid \mathbf{e})=\alpha \mathbf{P}(X, \mathbf{e})=\alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$

```
P}(X,\textrm{e},\textrm{y})\mathrm{ can be rewritten as product of prior and conditional probabilities according to the
Bayesian Network
    - then apply factorization and simplify algebraically when possible
```

- Ex
$\mathrm{P}(B \mid j, m)=$
$a \sum_{e} \sum_{a} \mathbf{P}(B, e, a, j, m)=$
$a \sum_{e} \sum_{a} P(B) P(e) P(a \mid B, e) P(j \mid a) P(m \mid a)=$
$a P(B) \sum_{e} P(e) \sum_{a} P(a \mid B, e) P(j \mid a) P(m \mid a)$
$P(b \mid j, m)$
$\alpha P(b) \sum_{e} F(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)$
- Recursive depth-first enumeration:
$O(n)$ space, $O\left(2^{n}\right)$ time with $n$ propositional variables
- Enumeration can be inefficient: repeated computation


## Inference by Enumeration

- We defined a procedure for the task as: $\mathbf{P}(X \mid \mathbf{e})=\alpha \mathbf{P}(X, \mathbf{e})=\alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$
$\Rightarrow \mathbf{P}(X, \mathbf{e}, \mathbf{y})$ can be rewritten as product of prior and conditional probabilities according to the Bayesian Network
- then apply factorization and simplify algebraically when possible
- Ex

$P(b \mid j, m)$
$\alpha P(b) \sum_{e}$
$P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)$
- Recursive depth-first enumeration:
$O(n)$ space, $O\left(2^{n}\right)$ time with $n$ propositional variables
- Enumeration can be inefficient: repeated computation


## Inference by Enumeration

- We defined a procedure for the task as: $\mathbf{P}(X \mid \mathbf{e})=\alpha \mathbf{P}(X, \mathbf{e})=\alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$
$\Longrightarrow \mathbf{P}(X, \mathbf{e}, \mathbf{y})$ can be rewritten as product of prior and conditional probabilities according to the Bayesian Network
- then apply factorization and simplify algebraically when possible
- Ex:
$\mathbf{P}(B \mid j, m)=$
$\alpha \sum_{e} \sum_{a} \mathbf{P}(B, e, a, j, m)=$
$\alpha \sum_{e} \sum_{a} \mathbf{P}(B) P(e) \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)=$
$\alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$
P(blim) $\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)$

- Recursive depth-first enumeration:


## Inference by Enumeration

- We defined a procedure for the task as: $\mathbf{P}(X \mid \mathbf{e})=\alpha \mathbf{P}(X, \mathbf{e})=\alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$
$\Longrightarrow \mathbf{P}(X, \mathbf{e}, \mathbf{y})$ can be rewritten as product of prior and conditional probabilities according to the Bayesian Network
- then apply factorization and simplify algebraically when possible
- Ex:
$\mathbf{P}(B \mid j, m)=$
$\alpha \sum_{e} \sum_{a} \mathbf{P}(B, e, a, j, m)=$
$\alpha \sum_{e} \sum_{\mathbf{a}} \mathbf{P}(B) P(e) \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)=$
$\alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$
$\Longrightarrow P(b \mid j, m)=$
$\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)$

- Recursive depth-first enumeration:


## Inference by Enumeration

- We defined a procedure for the task as: $\mathbf{P}(X \mid \mathbf{e})=\alpha \mathbf{P}(X, \mathbf{e})=\alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$
$\Longrightarrow \mathbf{P}(X, \mathbf{e}, \mathbf{y})$ can be rewritten as product of prior and conditional probabilities according to the Bayesian Network
- then apply factorization and simplify algebraically when possible
- Ex:
$\mathbf{P}(B \mid j, m)=$
$\alpha \sum_{e} \sum_{a} \mathbf{P}(B, e, a, j, m)=$
$\alpha \sum_{e} \sum_{a} \mathbf{P}(B) P(e) \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)=$
$\alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$
$\Longrightarrow P(b \mid j, m)=$
$\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)$

- Recursive depth-first enumeration:
$O(n)$ space, $O\left(2^{n}\right)$ time with $n$ propositional variables
- Enumeration can be inefficient: repeated computation


## Inference by Enumeration

- We defined a procedure for the task as: $\mathbf{P}(X \mid \mathbf{e})=\alpha \mathbf{P}(X, \mathbf{e})=\alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$
$\Longrightarrow \mathbf{P}(X, \mathbf{e}, \mathbf{y})$ can be rewritten as product of prior and conditional probabilities according to the Bayesian Network
- then apply factorization and simplify algebraically when possible
- Ex:
$\mathbf{P}(B \mid j, m)=$
$\alpha \sum_{e} \sum_{a} \mathbf{P}(B, e, a, j, m)=$
$\alpha \sum_{e} \sum_{a} \mathbf{P}(B) P(e) \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)=$
$\alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$
$\Longrightarrow P(b \mid j, m)=$
$\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)$

- Recursive depth-first enumeration:
$O(n)$ space, $O\left(2^{n}\right)$ time with $n$ propositional variables
- Enumeration can be inefficient: repeated computation


## Inference by Enumeration: Example



Repeated computation: $P(j \mid a) P(m \mid a) \& P(j \mid \neg a) P(m \mid \neg a)$ for each value of $e$

## Inference by Enumeration: Example



Repeated computation: $P(j \mid a) P(m \mid a) \& P(j \mid \neg a) P(m \mid \neg a)$ for each value of $e$

## Inference by Enumeration: Example

$P(\quad b \mid j, m)=\alpha P(\quad b) \sum_{e} P(e) \sum_{a} P(a \mid \quad b, e) P(j \mid a) P(m \mid a)=\alpha \cdot 0.00059224$
$P(\neg b \mid j, m)=\alpha P(\neg b) \sum_{e} P(e) \sum_{a} P(a \mid \neg b, e) P(j \mid a) P(m \mid a)=\alpha \cdot 0.0014919$


Repeated computation: $P(j \mid a) P(m \mid a) \& P(j \mid \neg a) P(m \mid \neg a)$ for each value of $e$

## Inference by Enumeration: Example

$$
\begin{aligned}
& P(\quad b \mid j, m)=\alpha P(\quad b) \sum_{e} P(e) \sum_{a} P(a \mid \quad b, e) P(j \mid a) P(m \mid a)=\alpha \cdot 0.00059224 \\
& P(\neg b \mid j, m)=\alpha P(\neg b) \sum_{e} P(e) \sum_{a} P(a \mid \neg b, e) P(j \mid a) P(m \mid a)=\alpha \cdot 0.0014919 \\
& \Longrightarrow \mathbf{P}(B \mid j, m)=\alpha \cdot\langle 0.00059224,0.0014919\rangle=[\text { normal. }] \approx\langle 0.284,0.716\rangle
\end{aligned}
$$



Repeated computation: $P(j \mid a) P(m \mid a) \& P(j \mid \neg a) P(m \mid \neg a)$ for each value of $e$

## Enumeration Algorithm

function EnUMERATION- $\operatorname{ASK}(X, \mathbf{e}, b n)$ returns a distribution over $X$ computes $\mathbf{P}(\mathrm{X} \mid \mathbf{e})$ inputs: $X$, the query variable
$\mathbf{e}$, observed values for variables $\mathbf{E}$
$b n$, a Bayes net with variables $\{X\} \cup \mathbf{E} \cup \mathbf{Y} \quad / * \mathbf{Y}=$ hidden variables */
$\mathbf{Q}(X) \leftarrow$ a distribution over $X$, initially empty
for each value $x_{i}$ of $X$ do
$\mathbf{Q}\left(x_{i}\right) \leftarrow$ Endmerate-ALL $\left(b n\right.$.VARS, $\left.\mathbf{e}_{x_{i}}\right)$ computes $\mathrm{P}(\mathrm{xi}, \mathbf{Y}, \mathrm{e})$ (single probability value) where $\mathbf{e}_{x_{i}}$ is $\mathbf{e}$ extended with $X=x_{i}$
return Normalize $(\mathbf{Q}(X))$
function EnUMERATE-ALL(vars, e) returns a real number
if EMPTY? (vars) then return 1.0
$Y \leftarrow$ FIRST(vars)
if $Y$ has value $y$ in $\mathbf{e}$
then return $P(y \mid \operatorname{parents}(Y)) \times$ EnUmERATE-ALL(REST(vars), e) X or evidence var else return $\sum_{y} P(y \mid \operatorname{parents}(Y)) \times$ Enumerate-All(Rest(vars), $\left.\mathbf{e}_{y}\right)$ hidden var where $\mathbf{e}_{y}$ is $\mathbf{e}$ extended with $Y=y$

## Exercises

1. Consider the probabilistic Wumpus World of previous chapter
(a) Describe it as a Bayesian network
(b) Compute the query $P\left(P_{1,3} \mid b^{*}, p^{*}\right)$ via enumeration
(c) Compare the result with that of the example in Ch. 13

## Outline

(1) Bayesian Networks

- Basics
- Global Semantics
- Local Semantics
- Independence Property: Markov Blanket
(2) Constructing Bayesian Networks
(3) Exact Inference with Bayesian Networks
- Inference by Enumeration
- Inference by Variable Elimination
- Complexity of Exact Inference


## Inference by Variable Elimination

- Variable elimination:
- carry out summations right-to-left (i.e., bottom-up in the tree)
- store intermediate results (factors) to avoid recomputation
- Ex: $\mathrm{P}(B \mid j, m)$


## Inference by Variable Elimination

- Variable elimination:
- carry out summations right-to-left (i.e., bottom-up in the tree)
- store intermediate results (factors) to avoid recomputation
- Ex: $\mathbf{P}(B \mid j, m)$



## Inference by Variable Elimination

- Variable elimination:
- carry out summations right-to-left (i.e., bottom-up in the tree)
- store intermediate results (factors) to avoid recomputation
- Ex: $\mathbf{P}(B \mid j, m)$

$$
=\alpha \overbrace{\mathbf{P}(B)}^{\mathbf{f}_{1}(B)} \sum_{e} \overbrace{P(e)}^{\mathbf{f}_{2}(E)} \sum_{a} \overbrace{P(a \mid B, e)}^{\mathbf{f}_{3}(A, B, E)} \overbrace{P(j \mid a)}^{\mathbf{f}_{4}(A)} \overbrace{P(m \mid a)}^{\mathbf{f}_{5}(A)}
$$

- $f_{5}(A) \stackrel{\text { def }}{=}\left[\begin{array}{l}P(m \mid a) \\ P(m \mid \neg a)\end{array}\right], f_{4}(A) \stackrel{\text { def }}{=}\left[\begin{array}{c}P(j \mid \\ P(j \mid \neg a)\end{array}\right], \ldots$
- " + " standard matric sum; " $\times$ " pointwise product (see later) -



## Inference by Variable Elimination

- Variable elimination:
- carry out summations right-to-left (i.e., bottom-up in the tree)
- store intermediate results (factors) to avoid recomputation
- Ex: $\mathbf{P}(B \mid j, m)$

$$
\begin{aligned}
& =\alpha \overbrace{\mathbf{P}(B)}^{\mathbf{f}_{1}(B)} \sum_{e} \overbrace{P(e)}^{\mathbf{f}_{2}(E)} \sum_{a} \overbrace{\mathbf{P}}^{\left.\mathbf{f}_{3}(A, B, B), E\right)} \overbrace{\left.\mathbf{P}^{2}, B, e\right)}^{\mathbf{f}_{4}(A)} \overbrace{P(j \mid a)} \overbrace{P(m \mid a)}^{\mathbf{f}_{5}(A)} \\
& =\alpha \mathbf{f}_{1}(B) \times \sum_{e} \mathbf{f}_{2}(E) \times \sum_{a} \mathbf{f}_{3}(A, B, E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A)
\end{aligned}
$$

- $\mathbf{f}_{5}(A) \stackrel{\text { def }}{=}\left[\begin{array}{l}P(m \mid a) \\ P(m \mid \neg a)\end{array}\right], \mathbf{f}_{4}(A) \stackrel{\text { def }}{=}\left[\begin{array}{c}P(j \mid a) \\ P(j \mid \neg a)\end{array}\right], \ldots$
- "+" standard matric sum; "×" pointwise product (see later)



## Inference by Variable Elimination

- Variable elimination:
- carry out summations right-to-left (i.e., bottom-up in the tree)
- store intermediate results (factors) to avoid recomputation
- Ex: $\mathbf{P}(B \mid j, m)$

$$
\begin{aligned}
& =\alpha \overbrace{\mathbf{P}(B)}^{\mathbf{f}_{1}(B)} \sum_{e} \overbrace{P(e)}^{\mathbf{f}_{2}(E)} \sum_{a} \overbrace{\mathbf{P}(a \mid B, e)}^{\mathbf{f}_{3}(A, B, E)} \overbrace{P(j \mid a)}^{\mathbf{f}_{4}(A)} \overbrace{P(m \mid a)}^{\mathbf{f}_{5}(A)} \\
& =\alpha \mathbf{f}_{1}(B) \times \sum_{e} \mathbf{f}_{2}(E) \times \sum_{\sum_{a} \mathbf{f}_{3}(A, B, E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A)} \\
& =\alpha \mathbf{f}_{1}(B) \times \sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{6}(B, E) \quad(\text { sum out } A)
\end{aligned}
$$

- $\mathbf{f}_{5}(A) \stackrel{\text { def }}{=}\left[\begin{array}{l}P(m \mid a) \\ P(m \mid \neg a)\end{array}\right], \mathbf{f}_{4}(A) \stackrel{\text { def }}{=}\left[\begin{array}{l}P(j \mid \\ P(j \mid \neg a)\end{array}\right], \ldots$
- "+" standard matric sum; " $\times$ " pointwise product (see later)
- $\mathbf{f}_{6}(B, E)=\sum_{a} \mathbf{f}_{3}(A, B, E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A)=$ $\left(\mathbf{f}_{3}(a, B, E) \times \mathbf{f}_{4}(a) \times \mathbf{f}_{5}(a)\right)+\left(\mathbf{f}_{3}(\neg a, B, E) \times \mathbf{f}_{4}(\neg a) \times \mathbf{f}_{5}(\neg a)\right)$



## Inference by Variable Elimination

- Variable elimination:
- carry out summations right-to-left (i.e., bottom-up in the tree)
- store intermediate results (factors) to avoid recomputation
- Ex: $\mathbf{P}(B \mid j, m)$

$$
\begin{aligned}
& =\alpha \overbrace{\mathbf{P}(B)}^{\mathbf{f}_{1}(B)} \sum_{e} \overbrace{P(e)}^{\mathbf{f}_{2}(E)} \sum_{a} \overbrace{P_{P(a \mid B, e)}}^{\mathbf{f}_{3}(A, B, E)} \overbrace{P(j \mid a)}^{\mathbf{f}_{4}(A)} \overbrace{P(m \mid a)}^{\mathbf{f}_{5}(A)} \\
& =\alpha \mathbf{f}_{1}(B) \times \sum_{e} \mathbf{f}_{2}(E) \times \sum_{a} \mathbf{f}_{3}(A, B, E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A) \\
& =\alpha \mathbf{f}_{1}(B) \times \sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{6}(B, E)(\text { sum out A)} \\
& =\alpha \mathbf{f}_{1}(B) \times \mathbf{f}_{7}(B)(\text { sum out } E)
\end{aligned}
$$

- $\mathbf{f}_{5}(A) \stackrel{\text { def }}{=}\left[\begin{array}{l}P(m \mid a) \\ P(m \mid \neg a)\end{array}\right], \mathbf{f}_{4}(A) \stackrel{\text { det }}{=}\left[\begin{array}{c}P(j \mid a) \\ P(j \mid \neg a)\end{array}\right], \ldots$
- "+" standard matric sum; " $\times$ " pointwise product (see later)
- $\mathbf{f}_{6}(B, E)=\sum_{a} \mathbf{f}_{3}(A, B, E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A)=$ $\left(\mathbf{f}_{3}(a, B, E) \times \mathbf{f}_{4}(a) \times \mathbf{f}_{5}(a)\right)+\left(\mathbf{f}_{3}(\neg a, B, E) \times \mathbf{f}_{4}(\neg a) \times \mathbf{f}_{5}(\neg a)\right)$
- $f_{7}(B)=\sum_{e} f_{2}(E) \times f_{6}(B, E)=$ $\left(\mathbf{f}_{2}(e) \times \mathbf{f}_{6}(B, e)+\left(\mathbf{f}_{2}(\neg e) \times \mathbf{f}_{6}(B, \neg e)\right)\right.$



## Inference by Variable Elimination

- Variable elimination:
- carry out summations right-to-left (i.e., bottom-up in the tree)
- store intermediate results (factors) to avoid recomputation
- Ex: $\mathbf{P}(B \mid j, m)$

$$
\begin{aligned}
& =\alpha \overbrace{\mathbf{P}(B)}^{\mathbf{f}_{1}(B)} \sum_{e} \overbrace{e}^{\mathbf{f}_{2}(E)} \overbrace{(e)} \sum_{a} \overbrace{\overbrace{(2 a \mid B, e)}}^{\mathbf{f}_{3}(A, B, E)} \overbrace{P(j \mid a)}^{\mathbf{f}_{4}(A)} \overbrace{P(m \mid a)}^{\mathbf{f}_{5}(A)} \\
& =\alpha \mathbf{f}_{1}(B) \times \sum_{e} \mathbf{f}_{2}(E) \times \sum_{a} \mathbf{f}_{3}(A, B, E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A) \\
& =\alpha \mathbf{f}_{1}(B) \times \sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{6}(B, E)(\text { sum out A)} \\
& =\alpha \mathbf{f}_{1}(B) \times \mathbf{f}_{7}(B)(\text { sum out } E) \\
& =\alpha \mathbf{f}_{8}(B)
\end{aligned}
$$

- $\mathbf{f}_{5}(A) \stackrel{\text { def }}{=}\left[\begin{array}{l}P(m \mid a) \\ P(m \mid \neg a)\end{array}\right], \mathbf{f}_{4}(A) \stackrel{\text { det }}{=}\left[\begin{array}{c}P(j \mid a) \\ P(j \mid \neg a)\end{array}\right], \ldots$
- "+" standard matric sum; " $\times$ " pointwise product (see later)
- $\mathbf{f}_{6}(B, E)=\sum_{a} \mathbf{f}_{3}(A, B, E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A)=$ $\left(\mathbf{f}_{3}(a, B, E) \times \mathbf{f}_{4}(a) \times \mathbf{f}_{5}(a)\right)+\left(\mathbf{f}_{3}(\neg a, B, E) \times \mathbf{f}_{4}(\neg a) \times \mathbf{f}_{5}(\neg a)\right)$
- $\mathbf{f}_{7}(B)=\sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{6}(B, E)=$ $\left(\mathbf{f}_{2}(e) \times \mathbf{f}_{6}(B, e)+\left(\mathbf{f}_{2}(\neg e) \times \mathbf{f}_{6}(B, \neg e)\right)\right.$



## Variable Elimination: Basic Operations

- Factor summation: $\mathbf{f}_{3}\left(X_{1}, \ldots, X_{j}\right)=\mathbf{f}_{1}\left(X_{1}, \ldots, X_{j}\right)+\mathbf{f}_{2}\left(X_{1}, \ldots, X_{j}\right)$
- standard matrix summation:
$\left[\begin{array}{lll}a_{11} & a_{21} & \ldots \\ \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 1} & \ldots\end{array}\right]+\left[\begin{array}{lll}b_{11} & b_{21} & \ldots \\ \ldots & \ldots & \ldots \\ b_{n 1} & b_{n 1} & \ldots\end{array}\right]=\left[\begin{array}{lll}a_{11}+b_{11} & a_{21}+b_{21} & \ldots \\ \ldots & \ldots & \ldots \\ a_{n 1}+b_{n 1} & a_{n 1}+b_{n 1} & \ldots\end{array}\right]$
- must have the same argument variables
- Pointwise product: Multiply the array elements for the same variable values
- Ex: $f_{4}(A) \times f_{5}(A)=$ $\left[\begin{array}{cl}P(j & a) \\ P(j \mid-a)\end{array}\right] \times\left[\begin{array}{l}P(m \mid a) \\ P(m \mid-a)\end{array}\right]=\left[\begin{array}{ll}P(j \mid a) P(m \mid a) \\ P(j \mid-a) P(m \mid-a)\end{array}\right]$
- General case:
$\mathrm{f}_{3}\left(X_{1}, \ldots, X_{j}, Y_{1}, \ldots, Y_{k}, Z_{1}, \ldots, Z_{l}\right)=\mathrm{f}_{1}\left(X_{1}, \ldots, X_{j}, Y_{1}, \ldots, Y_{k}\right) \times \mathrm{f}_{2}\left(Y_{1}, \ldots, Y_{k}, Z_{1}, \ldots, Z_{l}\right)$
- union of arguments
- values: $\mathbf{f}_{3}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{f}_{1}(\mathrm{x}, \mathrm{y}) \cdot \mathrm{f}_{2}(\mathrm{y}, \mathrm{z})$
- matrix size:


## Variable Elimination: Basic Operations

- Factor summation: $\mathbf{f}_{3}\left(X_{1}, \ldots, X_{j}\right)=\mathbf{f}_{1}\left(X_{1}, \ldots, X_{j}\right)+\mathbf{f}_{2}\left(X_{1}, \ldots, X_{j}\right)$
- standard matrix summation:

$$
\left[\begin{array}{ccc}
a_{11} & a_{21} & \ldots \\
\ldots & \ldots & \ldots \\
a_{n 1} & a_{n 1} & \ldots
\end{array}\right]+\left[\begin{array}{lll}
b_{11} & b_{21} & \ldots \\
\ldots & \ldots & \ldots \\
b_{n 1} & b_{n 1} & \ldots
\end{array}\right]=\left[\begin{array}{lll}
a_{11}+b_{11} & a_{21}+b_{21} & \ldots \\
\ldots & \ldots & \ldots \\
a_{n 1}+b_{n 1} & a_{n 1}+b_{n 1} & \ldots
\end{array}\right]
$$

- must have the same argument variables
- Pointwise product: Multiply the array elements for the same variable values
- Ex: $\mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A)=\left[\begin{array}{c}P(j \mid a) \\ P(j \mid \neg a)\end{array}\right] \times\left[\begin{array}{c}P(m \mid \\ P(m \mid \neg a)\end{array}\right]=\left[\begin{array}{ll}P(j \mid & a) P(m \mid \\ P(j \mid \neg a) P(m \mid \neg a)\end{array}\right]$
- General case:
- union of arguments
- values: $\mathbf{f}_{3}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{f}_{1}(x, y) \cdot f_{2}(y, z)$
- matrix size:


## Variable Elimination: Basic Operations

- Factor summation: $\mathbf{f}_{3}\left(X_{1}, \ldots, X_{j}\right)=\mathbf{f}_{1}\left(X_{1}, \ldots, X_{j}\right)+\mathbf{f}_{2}\left(X_{1}, \ldots, X_{j}\right)$
- standard matrix summation:

$$
\left[\begin{array}{ccc}
a_{11} & a_{21} & \ldots \\
\ldots & \ldots & \ldots \\
a_{n 1} & a_{n 1} & \ldots
\end{array}\right]+\left[\begin{array}{lll}
b_{11} & b_{21} & \ldots \\
\ldots & \ldots & \ldots \\
b_{n 1} & b_{n 1} & \ldots
\end{array}\right]=\left[\begin{array}{lll}
a_{11}+b_{11} & a_{21}+b_{21} & \ldots \\
\ldots & \ldots & \ldots \\
a_{n 1}+b_{n 1} & a_{n 1}+b_{n 1} & \ldots
\end{array}\right]
$$

- must have the same argument variables
- Pointwise product: Multiply the array elements for the same variable values
- Ex: $\mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A)=\left[\begin{array}{c}P(j \mid \\ P(j \mid \neg a) \\ P a)\end{array}\right] \times\left[\begin{array}{c}P(m \mid \\ P(m \mid \neg a)\end{array}\right]=\left[\begin{array}{ll}P(j \mid & a) P(m \mid \\ P(j \mid \neg a) P(m \mid \neg a)\end{array}\right]$
- General case:
$\mathbf{f}_{3}\left(X_{1}, \ldots, X_{j}, Y_{1}, \ldots, Y_{k}, Z_{1}, \ldots, Z_{l}\right)=\mathbf{f}_{1}\left(X_{1}, \ldots, X_{j}, Y_{1}, \ldots, Y_{k}\right) \times \mathbf{f}_{2}\left(Y_{1}, \ldots, Y_{k}, Z_{1}, \ldots, Z_{l}\right)$
- union of arguments
- values: $\mathbf{f}_{3}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{f}_{1}(\mathbf{x}, \mathbf{y}) \cdot \mathbf{f}_{2}(\mathbf{y}, \mathbf{z})$
- matrix size: $\mathbf{f}_{1}: 2^{j+k}, \mathbf{f}_{2}: 2^{k+1}, \mathbf{f}_{3}: 2^{j+k+1}$


## Variable Elimination: Basic Operations

- $\mathbf{f}_{3}(A, B, C)=\mathbf{f}_{1}(A, B) \times \mathbf{f}_{2}(B, C)$
- Summing out one variable: $f(B, C)=\sum_{a} f_{3}(A, B, C)=f_{3}(a, B, C)+f_{3}(-a, B, C)=$
$\square$

| $A$ | $B$ | $\mathbf{f}_{1}(A, B)$ | $B$ | $C$ | $\mathbf{f}_{2}(B, C)$ | $A$ | $B$ | $C$ | $\mathbf{f}_{3}(A, B, C)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | .3 | T | T | .2 | T | T | T | $.3 \times .2=.06$ |
| T | F | .7 | T | F | .8 | T | T | F | $.3 \times .8=.24$ |
| F | T | .9 | F | T | .6 | T | F | T | $.7 \times .6=.42$ |
| F | F | .1 | F | F | .4 | T | F | F | $.7 \times .4=.28$ |
|  |  |  |  |  |  | F | T | T | $.9 \times .2=.18$ |
|  |  |  |  |  |  | F | T | F | $.9 \times .8=.72$ |
|  |  |  |  |  |  | F | F | T | $.1 \times .6=.06$ |
|  |  |  |  |  |  | F | F | F | $.1 \times .4=.04$ |

## Variable Elimination: Basic Operations

- $\mathbf{f}_{3}(A, B, C)=\mathbf{f}_{1}(A, B) \times \mathbf{f}_{2}(B, C)$
- Summing out one variable: $f(B, C)=\sum_{a} f_{3}(A, B, C)=f_{3}(a, B, C)+f_{3}(\neg a, B, C)=$ $\left[\begin{array}{ll}0.06 & 0.24 \\ 0.42 & 0.28\end{array}\right]+\left[\begin{array}{ll}0.18 & 0.72 \\ 0.06 & 0.04\end{array}\right]=\left[\begin{array}{ll}0.24 & 0.96 \\ 0.48 & 0.32\end{array}\right]$

| $A$ | $B$ | $\mathbf{f}_{1}(A, B)$ | $B$ | $C$ | $\mathbf{f}_{2}(B, C)$ | $A$ | $B$ | $C$ | $\mathbf{f}_{3}(A, B, C)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | .3 | T | T | .2 | T | T | T | $.3 \times .2=.06$ |
| T | F | .7 | T | F | .8 | T | T | F | $.3 \times .8=.24$ |
| F | T | .9 | F | T | .6 | T | F | T | $.7 \times .6=.42$ |
| F | F | .1 | F | F | .4 | T | F | F | $.7 \times .4=.28$ |
|  |  |  |  |  |  | F | T | T | $.9 \times .2=.18$ |
|  |  |  |  |  |  | F | T | F | $.9 \times .8=.72$ |
|  |  |  |  |  |  | F | F | T | $.1 \times .6=.06$ |
|  |  |  |  |  |  | F | F | F | $.1 \times .4=.04$ |

## Variable Elimination Algorithm

function Elimination- $\operatorname{ASK}(X, \mathbf{e}, b n)$ returns a distribution over $X$
inputs: $X$, the query variable
$\mathbf{e}$, observed values for variables $\mathbf{E}$ $b n$, a Bayesian network specifying joint distribution $\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$
factors $\leftarrow[]$
for each var in ORDER( $b n$.VARS) do
factors $\leftarrow[$ MAKE-FACTOR(var, e) $\mid$ factors $]$
if var is a hidden variable then factors $\leftarrow$ Sum-OUT(var, factors)
return Normalize(Pointwise-Product(factors))

- Efficiency depends on variable ordering Order(...)
- Efficiency improvements:
- factor out of summations factors not depending on sum variable
- remove irrelevant variables


## Variable Elimination Algorithm

```
function ElImINATION-ASK( }X,\mathbf{e},bn)\mathrm{ returns a distribution over }
    inputs: }X\mathrm{ , the query variable
    e, observed values for variables \mathbf{E}
    bn, a Bayesian network specifying joint distribution }\mathbf{P}(\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{n}{}
    factors}\leftarrow[
    for each var in ORDER(bn.VARS) do
        factors \leftarrow[MAKE-FACTOR(var, e)|factors]
        if var is a hidden variable then factors }\leftarrow\mathrm{ Sum-OUT(var,factors)
    return NORMALIZE(POINTWISE-PRODUCT(factors))
```

- Efficiency depends on variable ordering Order(...)
- Efficiency improvements:
- factor out of summations factors not depending on sum variable
- remove irrelevant variables


## Variable Elimination Algorithm

```
function ElImINATION-ASK( }X,\mathbf{e},bn)\mathrm{ returns a distribution over }
    inputs: }X\mathrm{ , the query variable
    e, observed values for variables E
    bn, a Bayesian network specifying joint distribution }\mathbf{P}(\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{n}{}
    factors}\leftarrow[
    for each var in ORDER(bn.VARS) do
        factors \leftarrow[MAKE-FACTOR(var, e)|factors]
        if var is a hidden variable then factors }\leftarrowSUM-OUT(var,factors
    return NormAlIZE(POINTWISE-PRODUCT(factors))
```

- Efficiency depends on variable ordering Order(...)
- Efficiency improvements:
- factor out of summations factors not depending on sum variable
- remove irrelevant variables


## Factor Out Constant Factors

- If $f_{1}, \ldots, f_{i}$ do not depend on $X$, then move them out of a $\sum_{x}(\ldots)$ :
$\sum_{x} f_{1} \times \cdots \times f_{k}=$
$f_{1} \times \cdots \times f_{i} \sum_{x}\left(f_{i+1} \times \cdots \times f_{k}\right)=$ $f_{1} \times \cdots \times f_{i} \times f_{X}$
- 

Ex: $\sum_{a} f_{1}(A, B) \times f_{2}(B, C)$
$=f_{2}(B, C) \times \sum_{a} F_{1}(A, B)$

- Ex: $\mathbf{P}($ JohnCalls $\mid$ Burglary = true $)$ :


## Factor Out Constant Factors

- If $f_{1}, \ldots, f_{i}$ do not depend on $X$, then move them out of a $\sum_{x}(\ldots)$ : $\sum_{x} f_{1} \times \cdots \times f_{k}=$
$f_{1} \times \cdots \times f_{i} \sum_{x}\left(f_{i+1} \times \cdots \times f_{k}\right)=$ $f_{1} \times \cdots \times f_{i} \times f_{X}$
- Ex: $\sum_{a} \mathbf{f}_{1}(A, B) \times \mathbf{f}_{2}(B, C)$ $=\mathbf{f}_{2}(B, C) \times \sum_{a} \mathbf{F}_{1}(A, B)$
- Ex: $\mathrm{P}($ JohnCalls $\mid$ Burglary $=$ true $)$ :


## Factor Out Constant Factors

- If $f_{1}, \ldots, f_{i}$ do not depend on X , then move them out of a $\sum_{x}(\ldots)$ :

$$
\begin{aligned}
& \sum_{x} f_{1} \times \cdots \times f_{k}= \\
& f_{1} \times \cdots \times f_{i} \sum_{x}\left(f_{i+1} \times \cdots \times f_{k}\right)= \\
& f_{1} \times \cdots \times f_{i} \times f_{X}
\end{aligned}
$$

- Ex: $\sum_{a} \mathbf{f}_{1}(A, B) \times \mathbf{f}_{2}(B, C)$
$=\mathbf{f}_{2}(B, C) \times \sum_{a} \mathbf{F}_{1}(A, B)$
- Ex: $\mathbf{P}($ JohnCalls|Burglary = true):
$\alpha \sum_{e} \sum_{a} \sum_{m} P(b) P(e) P(a \mid b, e) P(J \mid a) P(m \mid a)=$
$\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(J \mid a) \sum_{m} P(m \mid a)$



## Factor Out Constant Factors

- If $f_{1}, \ldots, f_{i}$ do not depend on X , then move them out of a $\sum_{x}(\ldots)$ :

$$
\begin{aligned}
& \sum_{x} f_{1} \times \cdots \times f_{k}= \\
& f_{1} \times \cdots \times f_{i} \sum_{x}\left(f_{i+1} \times \cdots \times f_{k}\right)= \\
& f_{1} \times \cdots \times f_{i} \times f_{X}
\end{aligned}
$$

- Ex: $\sum_{a} \mathbf{f}_{1}(A, B) \times \mathbf{f}_{2}(B, C)$

$$
=\mathbf{f}_{2}(B, C) \times \sum_{a} \mathbf{F}_{1}(A, B)
$$

- Ex: $\mathbf{P}($ JohnCalls $\mid$ Burglary $=$ true $)$ :

$$
\mathbf{P}(J \mid b)=\alpha \sum_{e} \sum_{a} \sum_{m} \mathbf{P}(J, m, b, e, a)=
$$


(© S. Russell \& P. Norwig, AIMA)
$\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(J \mid a) \sum_{m} P(m \mid a)$

## Factor Out Constant Factors

- If $f_{1}, \ldots, f_{i}$ do not depend on X , then move them out of a $\sum_{x}(\ldots)$ :

$$
\begin{aligned}
& \sum_{x} f_{1} \times \cdots \times f_{k}= \\
& f_{1} \times \cdots \times f_{i} \sum_{x}\left(f_{i+1} \times \cdots \times f_{k}\right)= \\
& f_{1} \times \cdots \times f_{i} \times f_{X}
\end{aligned}
$$

- Ex: $\sum_{a} \mathbf{f}_{1}(A, B) \times \mathbf{f}_{2}(B, C)$

$$
=\mathbf{f}_{2}(B, C) \times \sum_{a} \mathbf{F}_{1}(A, B)
$$

- Ex: $\mathbf{P}($ JohnCalls|Burglary $=$ true $)$ :

$$
\mathbf{P}(J \mid b)=\alpha \sum_{e} \sum_{a} \sum_{m} \mathbf{P}(J, m, b, e, a)=
$$

$$
\alpha \sum_{e} \sum_{a} \sum_{m} P(b) P(e) P(a \mid b, e) \mathbf{P}(J \mid a) P(m \mid a)=
$$



## Factor Out Constant Factors

- If $f_{1}, \ldots, f_{i}$ do not depend on X , then move them out of a $\sum_{x}(\ldots)$ :

$$
\begin{aligned}
& \sum_{x} f_{1} \times \cdots \times f_{k}= \\
& f_{1} \times \cdots \times f_{i} \sum_{x}\left(f_{i+1} \times \cdots \times f_{k}\right)= \\
& f_{1} \times \cdots \times f_{i} \times f_{X}
\end{aligned}
$$

- Ex: $\sum_{a} \mathbf{f}_{1}(A, B) \times \mathbf{f}_{2}(B, C)$

$$
=\mathbf{f}_{2}(B, C) \times \sum_{a} \mathbf{F}_{1}(A, B)
$$

- Ex: $\mathbf{P}($ JohnCalls $\mid$ Burglary $=$ true $)$ :

$$
\mathbf{P}(J \mid b)=\alpha \sum_{e} \sum_{a} \sum_{m} \mathbf{P}(J, m, b, e, a)=
$$

$$
\alpha \sum_{e} \sum_{a} \sum_{m} P(b) P(e) P(a \mid b, e) \mathbf{P}(J \mid a) P(m \mid a)=
$$

$$
\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a) \sum_{m} P(m \mid a)
$$



## Remove Irrelevant Variables

- Sometimes we fave summations like $\sum_{y} P(y \mid \ldots)$
- $\sum_{y} P(y \mid \ldots)=1 \Longrightarrow$ can be dropped
- Ex: P(JohnCalls|Burglary = true):
${ }_{\alpha} P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a) \overbrace{\sum_{m} P(m \mid a)}$
- Theorem: For query $X$ and evidence $\mathbf{E}$,
$Y$ is irrelevant unless $Y \in$ Ancestors ( $X \cup E$ )
- Ex: $X=$ JohnCalls, $\mathbf{E}=\{$ Burglary $\}$, and Ancestors $(\{X\} \cup \mathbf{E})=\{$ Alarm, Earthquake $\}$ MaryCalls is irrelevant
- Related to backward-chaining with Horn clauses


## Remove Irrelevant Variables

- Sometimes we fave summations like $\sum_{y} P(y \mid \ldots)$
- $\sum_{y} P(y \mid \ldots)=1 \Longrightarrow$ can be dropped
- Ex: $\mathbf{P}($ JohnCalls|Burglary = true):

$$
\begin{aligned}
& \mathbf{P}(J \mid b)=\ldots= \\
& \alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a) \overbrace{\sum_{m} P(m \mid a)}^{1}
\end{aligned}
$$

- Theorem: For query $X$ and evidence $E$,
- Ex: $X=$ JohnCalls, $E=\{$ Burglary $\}$, and Ancestors $(\{X\} \cup E)=\{$ Alarm, Earthquake $\}$

MaryCalls is irrelevant

- Related to backward-chaining with Horn clauses



## Remove Irrelevant Variables

- Sometimes we fave summations like $\sum_{y} P(y \mid \ldots)$
- $\sum_{y} P(y \mid \ldots)=1 \Longrightarrow$ can be dropped
- Ex: $\mathbf{P}($ JohnCalls|Burglary = true):

$$
\begin{aligned}
& \mathbf{P}(J \mid b)=\ldots= \\
& \alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a) \overbrace{\sum_{m} P(m \mid a)}^{1}
\end{aligned}
$$

- Theorem: For query $X$ and evidence $E$,
- Ex: $X=$ JohnCalls, $E=\{$ Burglary $\}$, and Ancestors $(\{X\} \cup E)=\{$ Alarm, Earthquake $\}$

MaryCalls is irrelevant

- Related to backward-chaining with Horn clauses



## Remove Irrelevant Variables

- Sometimes we fave summations like $\sum_{y} P(y \mid \ldots)$
- $\sum_{y} P(y \mid \ldots)=1 \Longrightarrow$ can be dropped
- Ex: $\mathbf{P}($ JohnCalls|Burglary = true):

$$
\begin{aligned}
& \mathbf{P}(J \mid b)=\ldots= \\
& \alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a) \overbrace{\sum_{m} P(m \mid a)}^{1}=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a)
\end{aligned}
$$

- Theorem: For query $X$ and evidence $E$,
- Ex: $X=$ JohnCalls, $E=\{$ Burglary $\}$, and Ancestors $(\{X\} \cup E)=\{$ Alarm, Earthquake $\}$

MaryCalls is irrelevant

- Related to backward-chaining with Horn clauses



## Remove Irrelevant Variables

- Sometimes we fave summations like $\sum_{y} P(y \mid \ldots)$
- $\sum_{y} P(y \mid \ldots)=1 \Longrightarrow$ can be dropped
- Ex: $\mathbf{P}($ JohnCalls|Burglary = true):

$$
\begin{aligned}
& \mathbf{P}(J \mid b)=\ldots= \\
& \alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a) \overbrace{\sum_{m} P(m \mid a)}^{1}=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a)
\end{aligned}
$$

- Theorem: For query $X$ and evidence $\mathbf{E}$, $Y$ is irrelevant unless $Y \in \operatorname{Ancestors}(X \cup \mathbf{E})$


## - Ex: $X=$ JohnCalls, $\mathrm{E}=\{$ Burglary $\}$, and Ancestors $(\{X\} \cup \mathrm{E})=\{$ Alarm, Earthquake

## MaryCalls is irrelevant

- Related to hackward-chaining with Horn clauses



## Remove Irrelevant Variables

- Sometimes we fave summations like $\sum_{y} P(y \mid \ldots)$
- $\sum_{y} P(y \mid \ldots)=1 \Longrightarrow$ can be dropped
- Ex: $\mathbf{P}($ JohnCalls|Burglary = true):

$$
\begin{aligned}
& \mathbf{P}(J \mid b)=\ldots= \\
& \alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a) \overbrace{\sum_{m} P(m \mid a)}^{1}=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a)
\end{aligned}
$$

- Theorem: For query $X$ and evidence $\mathbf{E}$,
$Y$ is irrelevant unless $Y \in \operatorname{Ancestors}(X \cup \mathbf{E})$
- Ex: $X=$ JohnCalls, $\mathbf{E}=\{$ Burglary $\}$, and Ancestors $(\{X\} \cup \mathbf{E})=\{$ Alarm, Earthquake $\}$
$\Longrightarrow$ MaryCalls is irrelevant
- Related to backward-chaining with Horn clauses



## Remove Irrelevant Variables

- Sometimes we fave summations like $\sum_{y} P(y \mid \ldots)$
- $\sum_{y} P(y \mid \ldots)=1 \Longrightarrow$ can be dropped
- Ex: $\mathbf{P}($ JohnCalls|Burglary = true):

$$
\begin{aligned}
& \mathbf{P}(J \mid b)=\ldots= \\
& \alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a) \overbrace{\sum_{m} P(m \mid a)}^{1}=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a)
\end{aligned}
$$

- Theorem: For query $X$ and evidence $\mathbf{E}$,
$Y$ is irrelevant unless $Y \in \operatorname{Ancestors}(X \cup \mathbf{E})$
- Ex: $X=$ JohnCalls, $\mathbf{E}=\{$ Burglary $\}$, and Ancestors $(\{X\} \cup \mathbf{E})=\{$ Alarm, Earthquake $\}$
$\Longrightarrow$ MaryCalls is irrelevant
- Related to backward-chaining with Horn clauses



## Exercises

1. Try to compute queries (your choice) on the burglary problem using variable elimination Consider the probabilistic Wumpus World of previous chapter
(a) Describe it as a Bayesian network
(b) Compute the query $P\left(P_{1,3} \mid b^{*}, p^{*}\right)$ via variable elimination
(c) Compare the result with that of the example in Ch. 13

## Exercises

1. Try to compute queries (your choice) on the burglary problem using variable elimination
2. Consider the probabilistic Wumpus World of previous chapter
(a) Describe it as a Bayesian network
(b) Compute the query $P\left(P_{1,3} \mid b^{*}, p^{*}\right)$ via variable elimination
(c) Compare the result with that of the example in Ch .13

## Outline

(4) Bayesian Networks

- Basics
- Global Semantics
- Local Semantics
- Independence Property: Markov Blanket
(2) Constructing Bayesian Networks
(3) Exact Inference with Bayesian Networks
- Inference by Enumeration
- Inference by Variable Elimination
- Complexity of Exact Inference


## Complexity of Exact Inference

- We can reduce SAT to exact inference in Bayesian Networks
- $P(A N D=T)=\frac{|\operatorname{Models}(\varphi)|}{2 \# \operatorname{vars}}$
- $\varphi$ satisfiable $\Longleftrightarrow P(A N D=T)>0$
- Both $\mathbf{P}\left(\right.$ clause $_{i} \mid$ vars $)$ and $\mathbf{P}(A N D \mid$ clauses $)\{0,1\}$-CPTs (deterministic)

1. $A \vee B \vee C$
2. $C \vee D \vee \neg A$
3. $B \vee C \vee \neg D$

(© S. Russell \& P. Norwig, AIMA)
Exact inference in Bayesian Networks is NP-Hard

## Complexity of Exact Inference

- We can reduce SAT to exact inference in Bayesian Networks
- $P(A N D=T)=\frac{|\operatorname{Models}(\varphi)|}{2 \# \operatorname{vars}}$
- $\varphi$ satisfiable $\Longleftrightarrow P(A N D=T)>0$
- Both $\mathbf{P}\left(\right.$ clause $_{i} \mid$ vars $)$ and $\mathbf{P}(A N D \mid$ clauses $)\{0,1\}$-CPTs (deterministic)

1. $A \vee B \vee C$
2. $C \vee D \vee \neg A$
3. $B \vee C \vee \neg D$

(© S. Russell \& P. Norwig, AIMA)
$\Longrightarrow$ Exact inference in Bayesian Networks is NP-Hard

## Example: From SAT to BN Inference

$$
\varphi \stackrel{\text { def }}{=}(a \wedge \neg a)
$$



$$
\begin{array}{ll}
c 1 \stackrel{\text { def }}{=} a & \Longrightarrow P(c 1 \mid a)=1, P(c 1 \mid \neg a)=0 \\
c 2 \stackrel{\text { def }}{=} \neg a & \Longrightarrow P(c 2 \mid a)=0, P(c 2 \mid \neg a)=1 \\
\text { and } \stackrel{\text { def }}{=} c 1 \wedge c 2 & \Longrightarrow\left\{\begin{array}{l}
P(\text { and } \mid c 1 c 2)=1 \\
P(\text { and } \mid c 1 \neg c 2)=P(\text { and } \mid
\end{array}\right.
\end{array}
$$

$P($ and $)$


## Example: From SAT to BN Inference

$$
\varphi \stackrel{\text { def }}{=}(a \wedge \neg a)
$$



$$
\begin{aligned}
& c 1 \stackrel{\text { def }}{=} a \quad \Longrightarrow \quad P(c 1 \mid a)=1, P(c 1 \mid \neg a)=0 \\
& c 2 \stackrel{\text { def }}{=} \neg a \quad \Longrightarrow \quad P(c 2 \mid a)=0, P(c 2 \mid \neg a)=1 \\
& \text { and } \stackrel{\text { det }}{=} c 1 \wedge c 2 \Longrightarrow\left\{\begin{array}{l}
P(\text { and } \mid c 1 c 2)=1 \\
P(\text { and } \mid c 1
\end{array}\right. \\
& P(\text { and })=\sum_{c 1} \sum_{c 2} \sum_{a} P(\text { and } \mid c 1 c 2) P(c 1 \mid a) P(c 2 \mid a) P(a) \\
& =\sum_{c 1} \sum_{c 2} P(\text { and } \mid c 1 c 2) \sum_{a} P(c 1 \mid a) P(c 2 \mid a) P(a) \\
& =1 \cdot \sum_{a} P(c 1 \mid a) P(c 2 \mid a) P(a)+0 \cdot \ldots+0 \cdot \ldots+0 \cdot \ldots \\
& =1 \cdot(P(c 1 \mid a) P(c 2 \mid a) P(a)+P(c 1 \mid \neg a) P(c 2 \mid \neg a) P(a \neg)) \\
& =1 \cdot((1 \cdot 0 \cdot 0.5)+(0 \cdot 1 \cdot 0.5))=0
\end{aligned}
$$

## Example: From SAT to BN Inference

$$
\varphi \stackrel{\text { def }}{=}(a \wedge \neg a)
$$



$$
\begin{aligned}
& c 1 \stackrel{\text { def }}{=} a \quad \Longrightarrow \quad P(c 1 \mid a)=1, P(c 1 \mid \neg a)=0 \\
& c 2 \stackrel{\text { def }}{=} \neg a \quad \Longrightarrow \quad P(c 2 \mid a)=0, P(c 2 \mid \neg a)=1 \\
& \text { and } \stackrel{\text { det }}{=} c 1 \wedge c 2 \Longrightarrow\left\{\begin{array}{l}
P(\text { and } \mid c 1 c 2)=1 \\
P(a n d \mid c 1-c 2)=
\end{array}\right. \\
& P(\text { and })=\sum_{c 1} \sum_{c 2} \sum_{a} P(\text { and } \mid c 1 c 2) P(c 1 \mid a) P(c 2 \mid a) P(a) \\
& =\sum_{c 1} \sum_{c 2} P(\text { and } \mid c 1 c 2) \sum_{a} P(c 1 \mid a) P(c 2 \mid a) P(a) \\
& \Longrightarrow \quad=1 \cdot \sum_{a} P(c 1 \mid a) P(c 2 \mid a) P(a)+0 \cdot \ldots+0 \cdot \ldots+0 \cdot \ldots \\
& =1 \cdot(P(c 1 \mid a) P(c 2 \mid a) P(a)+P(c 1 \mid \neg a) P(c 2 \mid \neg a) P(a \neg)) \\
& =1 \cdot((1 \cdot 0 \cdot 0.5)+(0 \cdot 1 \cdot 0.5))=0
\end{aligned}
$$

$\Longrightarrow$ UNSAT

## Exercise

- For each of the following formulas $\varphi$, convert $\varphi$ into a Bayesian network, and determine the number of its models
- $(\neg A \vee B) \wedge(A \vee \neg B)$
- $A \wedge(\neg A \vee B) \wedge \neg B$


