Fundamentals of Artificial Intelligence Chapter 13: **Quantifying Uncertainty**

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it
https://disi.unitn.it/rseba/DIDATTICA/fai_2023/

Teaching assistants:

Mauro Dragoni, dragoni@fbk.eu, https://www.maurodragoni.com/teaching/fai/Paolo Morettin, paolo.morettin@unitn.it, https://paolomorettin.github.io/

M.S. Course "Artificial Intelligence Systems", academic year 2023-2024

Last update: Saturday 9th December, 2023, 16:40

Outline

- Acting Under Uncertainty
- Basics on Probability
- Probabilistic Inference via Enumeration
- 4 Independence and Conditional Independence
- Applying Bayes' Rule
- An Example: The Wumpus World Revisited

Outline

- Acting Under Uncertainty
- Basics on Probability
- Probabilistic Inference via Enumeration
- 4 Independence and Conditional Independence
- Applying Bayes' Rule
- 6 An Example: The Wumpus World Revisited

- Agents often make decisions based on incomplete information
 - partial observability
 - nondeterministic actions
- Partial solution (see previous chapters): maintain belief states
 - represent the set of all possible world states the agent might be in
 - generating a contingency plan handling every possible eventuality
- Several drawbacks:
 - must consider every possible explanation for the observation (even very-unlikely ones)
 impossibly complex belief-states
 - contingent plans handling every eventuality grow arbitrarily large
 - sometimes there is no plan that is guaranteed to achieve the goal
- Agent's knowledge cannot guarantee a successful outcome ...
 - ... but can provide some degree of belief (likelihood) on it
- A rational decision depends on both the relative importance of (sub)goals and the likelihood that they will be achieved
- Probability theory offers a clean way to quantify likelihood

- Agents often make decisions based on incomplete information
 - partial observability
 - nondeterministic actions
- Partial solution (see previous chapters): maintain belief states
 - represent the set of all possible world states the agent might be in
 - generating a contingency plan handling every possible eventuality
- Several drawbacks:
 - must consider every possible explanation for the observation (even very-unlikely ones)
 impossibly complex belief-states
 - contingent plans handling every eventuality grow arbitrarily large
 - sometimes there is no plan that is guaranteed to achieve the goal
- Agent's knowledge cannot guarantee a successful outcome ...
 - ... but can provide some degree of belief (likelihood) on it
- A rational decision depends on both the relative importance of (sub)goals and the likelihood that they will be achieved
- Probability theory offers a clean way to quantify likelihood

- Agents often make decisions based on incomplete information
 - partial observability
 - nondeterministic actions
- Partial solution (see previous chapters): maintain belief states
 - represent the set of all possible world states the agent might be in
 - generating a contingency plan handling every possible eventuality
- Several drawbacks:
 - must consider every possible explanation for the observation (even very-unlikely ones)
 impossibly complex belief-states
 - contingent plans handling every eventuality grow arbitrarily large
 - sometimes there is no plan that is guaranteed to achieve the goal
- Agent's knowledge cannot guarantee a successful outcome ...
 - ... but can provide some degree of belief (likelihood) on it
- A rational decision depends on both the relative importance of (sub)goals and the likelihood that they will be achieved
- Probability theory offers a clean way to quantify likelihood

- Agents often make decisions based on incomplete information
 - partial observability
 - nondeterministic actions
- Partial solution (see previous chapters): maintain belief states
 - represent the set of all possible world states the agent might be in
 - generating a contingency plan handling every possible eventuality
- Several drawbacks:
 - must consider every possible explanation for the observation (even very-unlikely ones)
 impossibly complex belief-states
 - contingent plans handling every eventuality grow arbitrarily large
 - sometimes there is no plan that is guaranteed to achieve the goal
- Agent's knowledge cannot guarantee a successful outcome ...
 - ... but can provide some degree of belief (likelihood) on it
- A rational decision depends on both the relative importance of (sub)goals and the likelihood that they will be achieved
- Probability theory offers a clean way to quantify likelihood

- Agents often make decisions based on incomplete information
 - partial observability
 - nondeterministic actions
- Partial solution (see previous chapters): maintain belief states
 - represent the set of all possible world states the agent might be in
 - generating a contingency plan handling every possible eventuality
- Several drawbacks:
 - must consider every possible explanation for the observation (even very-unlikely ones)
 impossibly complex belief-states
 - contingent plans handling every eventuality grow arbitrarily large
 - sometimes there is no plan that is guaranteed to achieve the goal
- Agent's knowledge cannot guarantee a successful outcome ...
 - ... but can provide some degree of belief (likelihood) on it
- A rational decision depends on both the relative importance of (sub)goals and the likelihood that they will be achieved
- Probability theory offers a clean way to quantify likelihood

- Agents often make decisions based on incomplete information
 - partial observability
 - nondeterministic actions
- Partial solution (see previous chapters): maintain belief states
 - represent the set of all possible world states the agent might be in
 - generating a contingency plan handling every possible eventuality
- Several drawbacks:
 - must consider every possible explanation for the observation (even very-unlikely ones)
 impossibly complex belief-states
 - contingent plans handling every eventuality grow arbitrarily large
 - sometimes there is no plan that is guaranteed to achieve the goal
- Agent's knowledge cannot guarantee a successful outcome ...
 - ... but can provide some degree of belief (likelihood) on it
- A rational decision depends on both the relative importance of (sub)goals and the likelihood that they will be achieved
- Probability theory offers a clean way to quantify likelihood

Automated taxi to Airport

- Goal: deliver a passenger to the airport on time
- Action A_t: leave for airport t minutes before flight
 - How can we be sure that A₉₀ will succeed?
- Too many sources of uncertainty:
 - partial observability (ex: road state, other drivers' plans, etc.)
 - uncertainty in action outcome (ex: flat tire, etc.)
 - noisy sensors (ex: unreliable traffic reports)
 - complexity of modelling and predicting traffic

⇒ With purely-logical approach it is difficult to anticipate everything that can go wrong

- risks falsehood: "A25 will get me there on time" or
- leads to conclusions that are too weak for decision making:
 "A₂₅ will get me there on time if there's no accident on the bridge, and it doesn't rain and my tires remain intact, and..."
- Over-cautious choices are not rational solutions either
 - ex: A_{1440} causes staying overnight at the airport

Automated taxi to Airport

- Goal: deliver a passenger to the airport on time
- Action A_t: leave for airport t minutes before flight
 - How can we be sure that A₉₀ will succeed?
- Too many sources of uncertainty:
 - partial observability (ex: road state, other drivers' plans, etc.)
 - uncertainty in action outcome (ex: flat tire, etc.)
 - noisy sensors (ex: unreliable traffic reports)
 - complexity of modelling and predicting traffic

\Rightarrow With purely-logical approach it is difficult to anticipate everything that can go wrong

- risks falsehood: "A25 will get me there on time" or
- "A₂₅ will get me there on time if there's no accident on the bridge, and it doesn't rain and my tires remain intact, and..."
- Over-cautious choices are not rational solutions either
 - ex: A_{1440} causes staying overnight at the airport

Automated taxi to Airport

- Goal: deliver a passenger to the airport on time
- Action A_t: leave for airport t minutes before flight
 - How can we be sure that A₉₀ will succeed?
- Too many sources of uncertainty:
 - partial observability (ex: road state, other drivers' plans, etc.)
 - uncertainty in action outcome (ex: flat tire, etc.)
 - noisy sensors (ex: unreliable traffic reports)
 - complexity of modelling and predicting traffic
- ⇒ With purely-logical approach it is difficult to anticipate everything that can go wrong
 - risks falsehood: "A25 will get me there on time" or
 - leads to conclusions that are too weak for decision making:
 "A₂₅ will get me there on time if there's no accident on the bridge, and it doesn't rain and my tires remain intact, and..."
 - Over-cautious choices are not rational solutions eithe
 - ex: A_{1440} causes staying overnight at the airport

Automated taxi to Airport

- Goal: deliver a passenger to the airport on time
- Action A_t: leave for airport t minutes before flight
 - How can we be sure that A₉₀ will succeed?
- Too many sources of uncertainty:
 - partial observability (ex: road state, other drivers' plans, etc.)
 - uncertainty in action outcome (ex: flat tire, etc.)
 - noisy sensors (ex: unreliable traffic reports)
 - complexity of modelling and predicting traffic
- ⇒ With purely-logical approach it is difficult to anticipate everything that can go wrong
 - risks falsehood: "A25 will get me there on time" or
 - leads to conclusions that are too weak for decision making:
 "A₂₅ will get me there on time if there's no accident on the bridge, and it doesn't rain and my tires remain intact, and..."
 - Over-cautious choices are not rational solutions either
 - ex: A₁₄₄₀ causes staying overnight at the airport

- Given the symptoms (toothache) infer the cause (cavity)
- How to encode this relation in logic?

```
    diagnostic rules:
        Toothache → Cavity (wrong)
        Toothache → (Cavity ∨ GumProblem ∨ Abscess ∨ ...)
        (too many possible causes, some very unlikely)
    causal rules:
```

- causal rules: $Cavity \rightarrow Toothache$ (wrong) $(Cavity \land ...) \rightarrow Toothache$ (many possible (con)causes
- Problems in specifying the correct logical rules:
 - Complexity: too many possible antecedents or consequents
 - Theoretical ignorance: no complete theory for the domain
 - Practical ignorance: no complete knowledge of the patien

- Given the symptoms (toothache) infer the cause (cavity)
- How to encode this relation in logic?
- diagnostic rules:
 Toothache → Cavity (wrong)
 Toothache → (Cavity ∨ GumProblem ∨ Abscess ∨ ...)
 (too many possible causes, some very unlikely)
 - causal rules:
 Cavity → Toothache (wrong)
 (Cavity ∧ ...) → Toothache (many possible (con)causes
- Problems in specifying the correct logical rules:
 - Complexity: too many possible antecedents or consequents
 - Theoretical ignorance: no complete theory for the domain
 - Practical ignorance: no complete knowledge of the patien

- Given the symptoms (toothache) infer the cause (cavity)
- How to encode this relation in logic?
 - diagnostic rules:
 Toothache → *Cavity* (wrong)
 Toothache → (*Cavity* ∨ *GumProblem* ∨ *Abscess* ∨ ...)
 (too many possible causes, some very unlikely)
 - causal rules:
 Cavity → Toothache (wrong)
 (Cavity ∧ ...) → Toothache (many possible (con)causes)
- Problems in specifying the correct logical rules:
 - Complexity: too many possible antecedents or consequents
 - Theoretical ignorance: no complete theory for the domain
 - Practical ignorance: no complete knowledge of the patient

- Given the symptoms (toothache) infer the cause (cavity)
- How to encode this relation in logic?
- diagnostic rules:
 Toothache → *Cavity* (wrong)
 Toothache → (*Cavity* ∨ *GumProblem* ∨ *Abscess* ∨ ...)
 (too many possible causes, some very unlikely)
 - causal rules:
 Cavity → Toothache (wrong)
 (Cavity ∧ ...) → Toothache (many possible (con)causes)
- Problems in specifying the correct logical rules:
 - Complexity: too many possible antecedents or consequents
 - Theoretical ignorance: no complete theory for the domain
 - Practical ignorance: no complete knowledge of the patient

- Probability allows to summarize the uncertainty on effects of
 - laziness: failure to enumerate exceptions, qualifications, etc.
 - ignorance: lack of relevant facts, initial conditions, etc.
- Probability can be derived from
 - statistical data (ex: 80% of toothache patients so far had cavities)
 - some knowledge (ex: 80% of toothache patients has cavities)
 - their combination thereof
- Probability statements are made with respect to a state of knowledge (aka evidence), not with respect to the real world
 - e.g., "The probability that the patient has a cavity, given that she has a toothache, is 0.8": $P(HasCavity(patient) \mid hasToothAche(patient)) = 0.8$
- Probabilities of propositions change with new evidence:
 - "The probability that the patient has a cavity, given that she has a toothache and a history of gum disease, is 0.4":
 - $P(HasCavity(patient) \mid hasToothAche(patient) \land HistoryOfGum(patient)) = 0.4$

- Probability allows to summarize the uncertainty on effects of
 - laziness: failure to enumerate exceptions, qualifications, etc.
 - ignorance: lack of relevant facts, initial conditions, etc.
- Probability can be derived from
 - statistical data (ex: 80% of toothache patients so far had cavities)
 - some knowledge (ex: 80% of toothache patients has cavities)
 - their combination thereof
- Probability statements are made with respect to a state of knowledge (aka evidence), not with respect to the real world
 - e.g., "The probability that the patient has a cavity, given that she has a toothache, is 0.8": $P(HasCavity(patient) \mid hasToothAche(patient)) = 0.8$
- Probabilities of propositions change with new evidence:
 - "The probability that the patient has a cavity, given that she has a toothache and a history of gum disease, is 0.4":
 - $P(HasCavity(patient) \mid hasToothAche(patient) \land HistoryOfGum(patient)) = 0.4$

- Probability allows to summarize the uncertainty on effects of
 - laziness: failure to enumerate exceptions, qualifications, etc.
 - ignorance: lack of relevant facts, initial conditions, etc.
- Probability can be derived from
 - statistical data (ex: 80% of toothache patients so far had cavities)
 - some knowledge (ex: 80% of toothache patients has cavities)
 - their combination thereof
- Probability statements are made with respect to a state of knowledge (aka evidence), not with respect to the real world
 - e.g., "The probability that the patient has a cavity, given that she has a toothache, is 0.8":
 P(HasCavity(patient) | hasToothAche(patient)) = 0.8
- Probabilities of propositions change with new evidence:
 - "The probability that the patient has a cavity, given that she has a toothache and a history of gum disease, is 0.4":
 - $P(HasCavity(patient) \mid hasToothAche(patient) \land HistoryOfGum(patient)) = 0.4$

- Probability allows to summarize the uncertainty on effects of
 - laziness: failure to enumerate exceptions, qualifications, etc.
 - ignorance: lack of relevant facts, initial conditions, etc.
- Probability can be derived from
 - statistical data (ex: 80% of toothache patients so far had cavities)
 - some knowledge (ex: 80% of toothache patients has cavities)
 - their combination thereof
- Probability statements are made with respect to a state of knowledge (aka evidence), not with respect to the real world
 - e.g., "The probability that the patient has a cavity, given that she has a toothache, is 0.8":
 P(HasCavity(patient) | hasToothAche(patient)) = 0.8
- Probabilities of propositions change with new evidence:
 - "The probability that the patient has a cavity, given that she has a toothache and a history of gum disease, is 0.4":
 - $P(HasCavity(patient) \mid hasToothAche(patient) \land HistoryOfGum(patient)) = 0.4$

```
P(A_{25} \text{ gets me there on time } | ...) = 0.04

P(A_{90} \text{ gets me there on time } | ...) = 0.70

P(A_{120} \text{ gets me there on time } | ...) = 0.95

P(A_{1440} \text{ gets me there on time } | ...) = 0.9999

Which action to choose?
```

- Depends on tradeoffs among preferences
 - missing flight vs. costs (airport cuisine, sleep overnight in airport)
 - When there are conflicting goals the agent may express preferences among them by means of a utility function.
 - Utilities are combined with probabilities in the general theory of rational decisions, aka decision theory:
 - Decision theory = Probability theory + Utility theory
 - Maximum Expected Utility (MEU): an agent is rational if and only if it chooses the action that
 yields the maximum expected utility, averaged over all the possible outcomes of the action.

```
P(A_{25} \text{ gets me there on time } | ...) = 0.04

P(A_{90} \text{ gets me there on time } | ...) = 0.70

P(A_{120} \text{ gets me there on time } | ...) = 0.95

P(A_{1440} \text{ gets me there on time } | ...) = 0.9999

Which action to choose?
```

- Depends on tradeoffs among preferences:
 - missing flight vs. costs (airport cuisine, sleep overnight in airport)
 - When there are conflicting goals the agent may express preferences among them by means of a utility function.
 - Utilities are combined with probabilities in the general theory of rational decisions, aka decision theory:
 - Decision theory = Probability theory + Utility theory
 - Maximum Expected Utility (MEU): an agent is rational if and only if it chooses the action that
 yields the maximum expected utility, averaged over all the possible outcomes of the action.

```
P(A_{25} gets me there on time |...) = 0.04 P(A_{90} gets me there on time |...) = 0.70 P(A_{120} gets me there on time |...) = 0.95 P(A_{1440} gets me there on time |...) = 0.9999 Which action to choose?
```

- Depends on tradeoffs among preferences:
 - missing flight vs. costs (airport cuisine, sleep overnight in airport)
 - When there are conflicting goals the agent may express preferences among them by means of a utility function.
 - Utilities are combined with probabilities in the general theory of rational decisions, aka decision theory:
 - Decision theory = Probability theory + Utility theory
 - Maximum Expected Utility (MEU): an agent is rational if and only if it chooses the action that
 yields the maximum expected utility, averaged over all the possible outcomes of the action.

```
P(A_{25} gets me there on time |...) = 0.04 P(A_{90} gets me there on time |...) = 0.70 P(A_{120} gets me there on time |...) = 0.95 P(A_{1440} gets me there on time |...) = 0.9999 Which action to choose?
```

- Depends on tradeoffs among preferences:
 - missing flight vs. costs (airport cuisine, sleep overnight in airport)
 - When there are conflicting goals the agent may express preferences among them by means of a utility function.
 - Utilities are combined with probabilities in the general theory of rational decisions, aka decision theory:
 - Decision theory = Probability theory + Utility theory
 - Maximum Expected Utility (MEU): an agent is rational if and only if it chooses the action that
 yields the maximum expected utility, averaged over all the possible outcomes of the action.

```
P(A_{25} \text{ gets me there on time } | ...) = 0.04

P(A_{90} \text{ gets me there on time } | ...) = 0.70

P(A_{120} \text{ gets me there on time } | ...) = 0.95

P(A_{1440} \text{ gets me there on time } | ...) = 0.9999

Which action to choose?
```

- Depends on tradeoffs among preferences:
 - missing flight vs. costs (airport cuisine, sleep overnight in airport)
 - When there are conflicting goals the agent may express preferences among them by means of a utility function.
 - Utilities are combined with probabilities in the general theory of rational decisions, aka decision theory:
 - Decision theory = Probability theory + Utility theory
 - Maximum Expected Utility (MEU): an agent is rational if and only if it chooses the action that
 yields the maximum expected utility, averaged over all the possible outcomes of the action.

Outline

- Acting Under Uncertainty
- Basics on Probability
- Probabilistic Inference via Enumeration
- 4 Independence and Conditional Independence
- 6 Applying Bayes' Rule
- 6 An Example: The Wumpus World Revisited

- Probabilistic assertions: state how likely possible worlds are
- Sample space Ω : the set of all possible worlds
 - $\omega \in \Omega$ is a possible world (aka sample point or atomic event)
 - ex: the dice roll (1,4)
 - the possible worlds are mutually exclusive and exhaustive
 - ex: the 36 possible outcomes of rolling two dice: (1,1), (1,2), ...
- A probability model (aka probability space) is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.
 - $0 \le P(\omega) \le 1$, for every $\omega \in \Omega$
 - $\Sigma_{\omega \in \Omega} P(\omega) = 1$
- Ex: 1-die roll: P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6
- An Event A is any subset of Ω , s.t. $P(A) = \sum_{\omega \in A} P(\omega)$
 - events can be described by propositions in some formal language
 - ex: P(Total = 11) = P(5,6) + P(6,5) = 1/36 + 1/36 = 1/18
 - ex: P(doubles) = P(1,1) + P(2,2) + ... + P(6,6) = 6/36 = 1/6

- Probabilistic assertions: state how likely possible worlds are
- Sample space Ω : the set of all possible worlds
 - $\omega \in \Omega$ is a possible world (aka sample point or atomic event)
 - ex: the dice roll (1,4)
 - the possible worlds are mutually exclusive and exhaustive
 - ex: the 36 possible outcomes of rolling two dice: (1,1), (1,2), ...
- A probability model (aka probability space) is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.
 - $0 \le P(\omega) \le 1$, for every $\omega \in \Omega$
 - $\Sigma_{\omega \in \Omega} P(\omega) = 1$
- Ex: 1-die roll: P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6
- An Event A is any subset of Ω , s.t. $P(A) = \sum_{\omega \in A} P(\omega)$
 - events can be described by propositions in some formal language
 - ex: P(Total = 11) = P(5,6) + P(6,5) = 1/36 + 1/36 = 1/18
 - ex: P(doubles) = P(1,1) + P(2,2) + ... + P(6,6) = 6/36 = 1/6

- Probabilistic assertions: state how likely possible worlds are
- Sample space Ω : the set of all possible worlds
 - $\omega \in \Omega$ is a possible world (aka sample point or atomic event)
 - ex: the dice roll (1,4)
 - the possible worlds are mutually exclusive and exhaustive
 - ex: the 36 possible outcomes of rolling two dice: (1,1), (1,2), ...
- A probability model (aka probability space) is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.
 - $0 \le P(\omega) \le 1$, for every $\omega \in \Omega$
 - $\Sigma_{\omega \in \Omega} P(\omega) = 1$
- Ex: 1-die roll: P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6
- An Event A is any subset of Ω , s.t. $P(A) = \sum_{\omega \in A} P(\omega)$
 - events can be described by propositions in some formal language
 - ex: P(Total = 11) = P(5,6) + P(6,5) = 1/36 + 1/36 = 1/18
 - ex: P(doubles) = P(1,1) + P(2,2) + ... + P(6,6) = 6/36 = 1/6

- Probabilistic assertions: state how likely possible worlds are
- Sample space Ω : the set of all possible worlds
 - $\omega \in \Omega$ is a possible world (aka sample point or atomic event)
 - ex: the dice roll (1,4)
 - the possible worlds are mutually exclusive and exhaustive
 - ex: the 36 possible outcomes of rolling two dice: (1,1), (1,2), ...
- A probability model (aka probability space) is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.
 - $0 \le P(\omega) \le 1$, for every $\omega \in \Omega$
 - $\Sigma_{\omega \in \Omega} P(\omega) = 1$
- Ex: 1-die roll: P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6
- An Event A is any subset of Ω , s.t. $P(A) = \sum_{\omega \in A} P(\omega)$
 - events can be described by propositions in some formal language
 - ex: P(Total = 11) = P(5,6) + P(6,5) = 1/36 + 1/36 = 1/18
 - ex: P(doubles) = P(1,1) + P(2,2) + ... + P(6,6) = 6/36 = 1/6

Random Variables

- Factored representation of possible worlds: sets of (variable, value) pairs
- Variables in probability theory: Random variables
 - domain: the set of possible values a variable can take on
 ex: Die: {1,2,3,4,5,6}, Weather: {sunny, rain, cloudy, snow}, Odd: {true, false}
 - a r.v. can be seen as a function from sample points to the domain: ex: $Die(\omega)$, $Weather(\omega)$,... (" (ω) " typically omitted)
- Probability Distribution gives the probabilities of all the possible values of a random variable

$$X: P(X = x_i) \stackrel{\text{def}}{=} \Sigma_{\omega \in X(\omega)} P(\omega)$$

• ex: P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2

Random Variables

- Factored representation of possible worlds: sets of (variable, value) pairs
- Variables in probability theory: Random variables
 - domain: the set of possible values a variable can take on
 ex: Die: {1, 2, 3, 4, 5, 6}, Weather: {sunny, rain, cloudy, snow}, Odd: {true, false}
 - a r.v. can be seen as a function from sample points to the domain: ex: $Die(\omega)$, $Weather(\omega)$,... ("(ω)" typically omitted)
- Probability Distribution gives the probabilities of all the possible values of a random variable

$$X: P(X = x_i) \stackrel{\text{def}}{=} \Sigma_{\omega \in X(\omega)} P(\omega)$$

• ex: P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2

Random Variables

- Factored representation of possible worlds: sets of (variable, value) pairs
- Variables in probability theory: Random variables
 - domain: the set of possible values a variable can take on
 ex: Die: {1, 2, 3, 4, 5, 6}, Weather: {sunny, rain, cloudy, snow}, Odd: {true, false}
 - a r.v. can be seen as a function from sample points to the domain: ex: $Die(\omega)$, $Weather(\omega)$,... (" (ω) " typically omitted)
- Probability Distribution gives the probabilities of all the possible values of a random variable

$$X: P(X = x_i) \stackrel{\text{def}}{=} \Sigma_{\omega \in X(\omega)} P(\omega)$$

• ex: P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2

Propositions and Probabilities

- We think a proposition a as the event A (set of sample points) where the proposition is true
 - odd is a propositional random variable of range {true, false}
 - notation: $a \iff$ "A = true" (e.g., $odd \iff$ "Odd = true")
- Given Boolean random variables A and B:
 - a: set of sample points where $A(\omega) = true$
 - $\neg a$: set of sample points where $A(\omega) = false$
 - $a \wedge b$: set of sample points where $A(\omega) = true$, $B(\omega) = true$
- ⇒ with Boolean random variables, sample points are PL models
- Proposition: disjunction of the sample points in which it is true
 - ex: $(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$
 - $\implies P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$
- Some derived facts:
 - $P(\neg a) = 1 P(a)$
 - $P(a \lor b) = P(a) + P(b) P(a \land b)$

Propositions and Probabilities

- We think a proposition a as the event A (set of sample points) where the proposition is true
 - odd is a propositional random variable of range {true, false}
 - notation: $a \iff "A = true"$ (e.g., $odd \iff "Odd = true"$)
- Given Boolean random variables A and B:
 - a: set of sample points where $A(\omega) = true$
 - $\neg a$: set of sample points where $A(\omega) = false$
 - $a \wedge b$: set of sample points where $A(\omega) = true$, $B(\omega) = true$
- ⇒ with Boolean random variables, sample points are PL models
 - Proposition: disjunction of the sample points in which it is true
 - ex: $(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$
 - $\implies P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$
 - Some derived facts:
 - $P(\neg a) = 1 P(a)$
 - $P(a \lor b) = P(a) + P(b) P(a \land b)$

Propositions and Probabilities

- We think a proposition a as the event A (set of sample points) where the proposition is true
 - odd is a propositional random variable of range {true, false}
 - notation: $a \iff "A = true"$ (e.g., $odd \iff "Odd = true"$)
- Given Boolean random variables A and B:
 - a: set of sample points where $A(\omega) = true$
 - $\neg a$: set of sample points where $A(\omega) = false$
 - $a \wedge b$: set of sample points where $A(\omega) = true$, $B(\omega) = true$
- ⇒ with Boolean random variables, sample points are PL models
 - Proposition: disjunction of the sample points in which it is true
 - ex: $(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$
 - $\implies P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$
 - Some derived facts:
 - $P(\neg a) = 1 P(a)$
 - $P(a \lor b) = P(a) + P(b) P(a \land b)$

Propositions and Probabilities

- We think a proposition a as the event A (set of sample points) where the proposition is true
 - odd is a propositional random variable of range {true, false}
 - notation: $a \iff "A = true"$ (e.g., $odd \iff "Odd = true"$)
- Given Boolean random variables A and B:
 - a: set of sample points where $A(\omega) = true$
 - $\neg a$: set of sample points where $A(\omega) = false$
 - $a \wedge b$: set of sample points where $A(\omega) = true$, $B(\omega) = true$
- ⇒ with Boolean random variables, sample points are PL models
 - Proposition: disjunction of the sample points in which it is true
 - ex: $(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$
 - $\implies P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$
 - Some derived facts:
 - $P(\neg a) = 1 P(a)$
 - $P(a \lor b) = P(a) + P(b) P(a \land b)$

Probability Distributions

Probability Distribution gives the probabilities of all the possible values of a random variable

```
• ex: Weather: \{sunny, rain, cloudy, snow\}
\Rightarrow \mathbf{P}(Weather) = (0.6, 0.1, 0.29, 0.01) \Leftrightarrow \begin{cases} P(Weather = sunny) = 0.6 \\ P(Weather = rain) = 0.1 \\ P(Weather = cloudy) = 0.29 \\ P(Weather = snow) = 0.01 \end{cases}
```

- normalized: their sum is 1
- Joint Probability Distribution for multiple variables
 - gives the probability of every sample point

ex: P(Weather, C				

- Every event is a sum of sample points,
 - \Longrightarrow its probability is determined by the joint distribution

Probability Distributions

Probability Distribution gives the probabilities of all the possible values of a random variable

```
• ex: Weather: \{sunny, rain, cloudy, snow\}
\implies P(Weather) = (0.6, 0.1, 0.29, 0.01) \iff \begin{cases} P(Weather = sunny) = 0.6 \\ P(Weather = rain) = 0.1 \\ P(Weather = cloudy) = 0.29 \\ P(Weather = snow) = 0.01 \end{cases}
```

- normalized: their sum is 1
- Joint Probability Distribution for multiple variables
 - gives the probability of every sample point

Every event is a sum of sample points,
 its probability is determined by the joint distribution

Probability Distributions

Probability Distribution gives the probabilities of all the possible values of a random variable

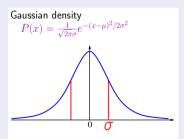
```
• ex: Weather: \{sunny, rain, cloudy, snow\}
\implies P(Weather) = (0.6, 0.1, 0.29, 0.01) \iff \begin{cases} P(Weather = sunny) = 0.6 \\ P(Weather = rain) = 0.1 \\ P(Weather = cloudy) = 0.29 \\ P(Weather = snow) = 0.01 \end{cases}
```

- normalized: their sum is 1
- Joint Probability Distribution for multiple variables
 - gives the probability of every sample point

- Every event is a sum of sample points,
 - ⇒ its probability is determined by the joint distribution

- Express continuous probability distributions:
 - density functions $f(x) \in [0,1]$ s.t $\int_{-\infty}^{+\infty} f(x) dx = 1$
- $P(x \in [a, b]) = \int_a^b f(x) dx$ $\Rightarrow P(x \in [val, val]) = 0, P(x \in [-\infty, +\infty]) = 0$
- Density: $P(x) = P(X = x) \stackrel{\text{def}}{=} \lim_{dx \to 0} P(X \in [x, x + dx])/dx$
 - note: $P(v) \neq P(x \in [v, v]) = 0$

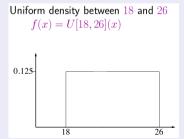
Uniform density between 18 and 26 f(x) = U[18, 26](x) 0.125

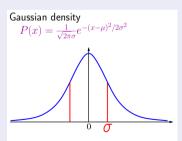


- Express continuous probability distributions:
 - density functions $f(x) \in [0, 1]$ s.t $\int_{-\infty}^{+\infty} f(x) dx = 1$
- $P(x \in [a, b]) = \int_a^b f(x) dx$

$$\implies P(x \in [val, val]) = 0, P(x \in [-\infty, +\infty]) = 1$$

- ex: $P(x \in [20, 22]) = \int_{20}^{22} 0.125 dx = 0.25$
- Density: $P(x) = P(X = x) \stackrel{\text{def}}{=} \lim_{dx \to 0} P(X \in [x, x + dx])/dx$





- Express continuous probability distributions:
 - density functions $f(x) \in [0,1]$ s.t $\int_{-\infty}^{+\infty} f(x) dx = 1$
- $P(x \in [a,b]) = \int_a^b f(x) dx$
 - $\implies P(x \in [val, val]) = 0, P(x \in [-\infty, +\infty]) = 1$
 - ex: $P(x \in [20, 22]) = \int_{20}^{22} 0.125 \ dx = 0.25$
- Density: $P(x) = P(X = x) \stackrel{\text{def}}{=} \lim_{dx \mapsto 0} P(X \in [x, x + dx])/dx$
 - note: $P(v) \neq P(x \in [v, v]) = 0$

Uniform density between 18 and 26

$$f(x) = U[18, 26](x)$$
0.125

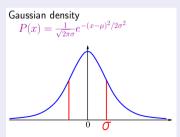
- Express continuous probability distributions:
 - density functions $f(x) \in [0,1]$ s.t $\int_{-\infty}^{+\infty} f(x) dx = 1$

26

- $P(x \in [a,b]) = \int_a^b f(x) dx$
 - $\implies P(x \in [val, val]) = 0, P(x \in [-\infty, +\infty]) = 1$
 - ex: $P(x \in [20, 22]) = \int_{20}^{22} 0.125 \ dx = 0.25$
- Density: $P(x) = P(X = x) \stackrel{\text{def}}{=} \lim_{dx \mapsto 0} P(X \in [x, x + dx])/dx$
 - ex: $P(20.1) = \lim_{dx \to 0} P(X \in [20.1, 20.1 + dx])/dx = 0.125$
 - note: $P(v) \neq P(x \in [v, v]) = 0$
 - Uniform density between 18 and 26

$$f(x) = U[18, 26](x)$$

18



- Express continuous probability distributions:
 - density functions $f(x) \in [0,1]$ s.t $\int_{-\infty}^{+\infty} f(x) dx = 1$

26

 $P(x \in [a,b]) = \int_a^b f(x) \ dx$

$$\implies P(x \in [val, val]) = 0, P(x \in [-\infty, +\infty]) = 1$$

- ex: $P(x \in [20, 22]) = \int_{20}^{22} 0.125 \ dx = 0.25$
- Density: $P(x) = P(X = x) \stackrel{\text{def}}{=} \lim_{dx \mapsto 0} P(X \in [x, x + dx])/dx$
 - ex: $P(20.1) = \lim_{dx \to 0} P(X \in [20.1, 20.1 + dx])/dx = 0.125$
 - note: $P(v) \neq P(x \in [v, v]) = 0$

Uniform density between $18\ \mathrm{and}\ 26$

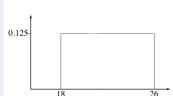
$$f(x) = U[18, 26](x)$$
0.125

18

- Express continuous probability distributions:
 - density functions $f(x) \in [0,1]$ s.t $\int_{-\infty}^{+\infty} f(x) dx = 1$
- $P(x \in [a,b]) = \int_a^b f(x) \ dx$
 - $\implies P(x \in [val, val]) = 0, P(x \in [-\infty, +\infty]) = 1$
 - ex: $P(x \in [20, 22]) = \int_{20}^{22} 0.125 \ dx = 0.25$
- Density: $P(x) = P(X = x) \stackrel{\text{def}}{=} \lim_{dx \mapsto 0} P(X \in [x, x + dx])/dx$
 - ex: $P(20.1) = \lim_{dx \to 0} P(X \in [20.1, 20.1 + dx])/dx = 0.125$
 - note: $P(v) \neq P(x \in [v, v]) = 0$

Uniform density between $18\ \mathrm{and}\ 26$

$$f(x) = U[18, 26](x)$$



- Unconditional or prior probabilities refer to degrees of belief in propositions in the absence of any other information (evidence)
 - ex: P(cavity) = 0.2, P(Total = 11) = 1/18, P(double) = 1/6
- Conditional or posterior probabilities refer to degrees of belief in proposition a given some evidence b: P(a|b)
 - evidence: information already revealed
 - ex: P(cavity|toothache) = 0.6: p. of a cavity given a toothache (assuming no other information is provided!)
 - ex: P(Total=11|die₁=5)=1/6: p. of total 11 given first die is 5
 ⇒ restricts the set of possible worlds to those where the first die is 5
- Note: $P(a|... \land a) = 1$, $P(a|... \land \neg a) = 0$
 - ex: $P(cavity | toothache \land cavity) = 1$, $P(cavity | toothache \land \neg cavity) = 0$
- Less specific belief still valid after more evidence arrives
 - ex: P(cavity) = 0.2 holds even if P(cavity|toothache) = 0.6
- New evidence may be irrelevant, allowing for simplification
 - ex: P(cavity|toothache, 49ersWin) = P(cavity|toothache) = 0.8

- Unconditional or prior probabilities refer to degrees of belief in propositions in the absence of any other information (evidence)
 - ex: P(cavity) = 0.2, P(Total = 11) = 1/18, P(double) = 1/6
- Conditional or posterior probabilities refer to degrees of belief in proposition a given some evidence b: P(a|b)
 - evidence: information already revealed
 - ex: P(cavity|toothache) = 0.6: p. of a cavity given a toothache (assuming no other information is provided!)
 - ex: $P(Total = 11 | die_1 = 5) = 1/6$: p. of total 11 given first die is 5
 - \implies restricts the set of possible worlds to those where the first die is 5
- Note: $P(a|... \land a) = 1$, $P(a|... \land \neg a) = 0$
 - ex: $P(cavity|toothache \land cavity) = 1$, $P(cavity|toothache \land \neg cavity) = 0$
- Less specific belief still valid after more evidence arrives
 - ex: P(cavity) = 0.2 holds even if P(cavity|toothache) = 0.6
- New evidence may be irrelevant, allowing for simplification
 - ex: P(cavity|toothache, 49ersWin) = P(cavity|toothache) = 0.8

- Unconditional or prior probabilities refer to degrees of belief in propositions in the absence of any other information (evidence)
 - ex: P(cavity) = 0.2, P(Total = 11) = 1/18, P(double) = 1/6
- Conditional or posterior probabilities refer to degrees of belief in proposition a given some evidence b: P(a|b)
 - evidence: information already revealed
 - ex: P(cavity|toothache) = 0.6: p. of a cavity given a toothache (assuming no other information is provided!)
 - ex: *P*(*Total* = 11|*die*₁ = 5) = 1/6: p. of total 11 given first die is 5 ⇒ restricts the set of possible worlds to those where the first die is 5
- Note: $P(a|... \land a) = 1$, $P(a|... \land \neg a) = 0$
 - ex: $P(cavity | toothache \land cavity) = 1$, $P(cavity | toothache \land \neg cavity) = 0$
- Less specific belief still valid after more evidence arrives
 - ex: P(cavity) = 0.2 holds even if P(cavity|toothache) = 0.6
- New evidence may be irrelevant, allowing for simplification
 - ex: P(cavity|toothache, 49ersWin) = P(cavity|toothache) = 0.8

- Unconditional or prior probabilities refer to degrees of belief in propositions in the absence of any other information (evidence)
 - ex: P(cavity) = 0.2, P(Total = 11) = 1/18, P(double) = 1/6
- Conditional or posterior probabilities refer to degrees of belief in proposition a given some evidence b: P(a|b)
 - evidence: information already revealed
 - ex: P(cavity|toothache) = 0.6: p. of a cavity given a toothache (assuming no other information is provided!)
 - ex: $P(Total = 11 | die_1 = 5) = 1/6$: p. of total 11 given first die is 5
 - \implies restricts the set of possible worlds to those where the first die is 5
- Note: $P(a|... \land a) = 1$, $P(a|... \land \neg a) = 0$
 - ex: $P(cavity|toothache \land cavity) = 1$, $P(cavity|toothache \land \neg cavity) = 0$
- Less specific belief still valid after more evidence arrives
 - ex: P(cavity) = 0.2 holds even if P(cavity|toothache) = 0.6
- New evidence may be irrelevant, allowing for simplification
 - ex: P(cavity|toothache, 49ersWin) = P(cavity|toothache) = 0.8

- Unconditional or prior probabilities refer to degrees of belief in propositions in the absence of any other information (evidence)
 - ex: P(cavity) = 0.2, P(Total = 11) = 1/18, P(double) = 1/6
- Conditional or posterior probabilities refer to degrees of belief in proposition a given some evidence b: P(a|b)
 - evidence: information already revealed
 - ex: P(cavity|toothache) = 0.6: p. of a cavity given a toothache (assuming no other information is provided!)
 - ex: *P*(*Total* = 11|*die*₁ = 5) = 1/6: p. of total 11 given first die is 5 ⇒ restricts the set of possible worlds to those where the first die is 5
- Note: $P(a|... \land a) = 1, P(a|... \land \neg a) = 0$
 - ex: $P(cavity|toothache \land cavity) = 1$, $P(cavity|toothache \land \neg cavity) = 0$
- Less specific belief still valid after more evidence arrives
 - ex: P(cavity) = 0.2 holds even if P(cavity|toothache) = 0.6
- New evidence may be irrelevant, allowing for simplification
 - ex: P(cavity|toothache, 49ersWin) = P(cavity|toothache) = 0.8

- Conditional probability: $P(a|b) \stackrel{\text{def}}{=} \frac{P(a \wedge b)}{P(b)}$, s.t. P(b) > 0
 - ex: $P(Total = 11 | die_1 = 5) = \frac{P(Total = 11 \land die_1 = 5)}{P(die_1 = 5)} = \frac{1/6 \cdot 1/6}{1/6} = 1/6$
 - observing b restricts the possible worlds to those where b is true
- Production rule: $P(a \land b) = P(a|b) \cdot P(b) = P(b|a) \cdot P(a)$
- Production rule for whole distributions: $P(X, Y) = P(X|Y) \cdot P(Y)$
 - ex: P(Weather, Cavity) = P(Weather|Cavity)P(Cavity), that is: P(sunny, cavity) = P(sunny|cavity)P(cavity)

$$P(snow, \neg cavity) = P(snow|\neg cavity)P(\neg cavity)$$

- a 4 × 2 set of equations, not matrix multiplication!
- Chain rule is derived by successive application of product rule:
 - $\begin{aligned} & \mathbf{P}(X_1,...,X_n) \\ & = \mathbf{P}(X_1,...,X_{n-1})\mathbf{P}(X_n|X_1,...,X_{n-1}) \\ & = \mathbf{P}(X_1,...,X_{n-2})\mathbf{P}(X_{n-1}|X_1,...,X_{n-2})\mathbf{P}(X_n|X_1,...,X_{n-1}) \\ & = ... \\ & = \prod_{i=1}^n \mathbf{P}(X_i|X_1,...,X_{i-1}) \end{aligned}$

- Conditional probability: $P(a|b) \stackrel{\text{def}}{=} \frac{P(a \land b)}{P(b)}$, s.t. P(b) > 0
 - ex: $P(Total = 11 | die_1 = 5) = \frac{P(Total = 11 \land die_1 = 5)}{P(die_1 = 5)} = \frac{1/6 \cdot 1/6}{1/6} = 1/6$
 - observing b restricts the possible worlds to those where b is true
- Production rule: $P(a \land b) = P(a|b) \cdot P(b) = P(b|a) \cdot P(a)$
- Production rule for whole distributions: $P(X, Y) = P(X|Y) \cdot P(Y)$
 - ex: P(Weather, Cavity) = P(Weather|Cavity)P(Cavity), that is: P(sunny, cavity) = P(sunny|cavity)P(cavity)

$$P(snow, \neg cavity) = P(snow|\neg cavity)P(\neg cavity)$$

- a 4 × 2 set of equations, not matrix multiplication!
- Chain rule is derived by successive application of product rule:

```
P(X_{1},...,X_{n})
= P(X_{1},...,X_{n-1})P(X_{n}|X_{1},...,X_{n-1})

= P(X_{1},...,X_{n-2})P(X_{n-1}|X_{1},...,X_{n-2})P(X_{n}|X_{1},...,X_{n-1})

= ...

= \prod_{i=1}^{n} P(X_{i}|X_{1},...,X_{i-1})
```

- Conditional probability: $P(a|b) \stackrel{\text{def}}{=} \frac{P(a \wedge b)}{P(b)}$, s.t. P(b) > 0
 - ex: $P(Total = 11 | die_1 = 5) = \frac{P(Total = 11 \land die_1 = 5)}{P(die_1 = 5)} = \frac{1/6 \cdot 1/6}{1/6} = 1/6$
 - observing b restricts the possible worlds to those where b is true
- Production rule: $P(a \land b) = P(a|b) \cdot P(b) = P(b|a) \cdot P(a)$
- Production rule for whole distributions: $P(X, Y) = P(X|Y) \cdot P(Y)$
 - ex: P(Weather, Cavity) = P(Weather|Cavity)P(Cavity), that is: P(sunny, cavity) = P(sunny|cavity)P(cavity)

$$P(snow, \neg cavity) = P(snow|\neg cavity)P(\neg cavity)$$

- a 4 × 2 set of equations, not matrix multiplication!
- Chain rule is derived by successive application of product rule:

```
P(X_1, ..., X_n) = P(X_1, ..., X_{n-1}) P(X_n | X_1, ..., X_{n-1})
= P(X_1, ..., X_{n-2}) P(X_{n-1} | X_1, ..., X_{n-2}) P(X_n | X_1, ..., X_{n-1})
= ...
= ...
= ...
= ...
```

- Conditional probability: $P(a|b) \stackrel{\text{def}}{=} \frac{P(a \wedge b)}{P(b)}$, s.t. P(b) > 0
 - ex: $P(Total = 11 | die_1 = 5) = \frac{P(Total = 11 \land die_1 = 5)}{P(die_1 = 5)} = \frac{1/6 \cdot 1/6}{1/6} = 1/6$
 - observing b restricts the possible worlds to those where b is true
- Production rule: $P(a \land b) = P(a|b) \cdot P(b) = P(b|a) \cdot P(a)$
- Production rule for whole distributions: $P(X, Y) = P(X|Y) \cdot P(Y)$
 - ex: P(Weather, Cavity) = P(Weather|Cavity)P(Cavity), that is: P(sunny, cavity) = P(sunny|cavity)P(cavity)

$$P(snow, \neg cavity) = P(snow|\neg cavity)P(\neg cavity)$$

- a 4 × 2 set of equations, not matrix multiplication!
- Chain rule is derived by successive application of product rule:

$$\mathbf{P}(X_{1},...,X_{n}) = \mathbf{P}(X_{1},...,X_{n-1})\mathbf{P}(X_{n}|X_{1},...,X_{n-1}) \\
= \mathbf{P}(X_{1},...,X_{n-2})\mathbf{P}(X_{n-1}|X_{1},...,X_{n-2})\mathbf{P}(X_{n}|X_{1},...,X_{n-1}) \\
= ... \\
= \prod_{i=1}^{n} \mathbf{P}(X_{i}|X_{1},...,X_{i-1})$$

Logic vs. Probability

Logic	Probability
а	P(a) = 1
$\neg a$	P(a) = 0
$ extbf{\textit{a}} ightarrow extbf{\textit{b}}$	P(b a) = 1
(a,a o b)	P(a) = 1, P(b a) = 1
b	P(b) = 1
$(\neg b, a \rightarrow b)$	P(b) = 0, P(b a) = 1
$\neg a$	P(a) = 0
$(a \rightarrow b, b \rightarrow c)$	P(b a) = 1, P(c b) = 1
$a \rightarrow c$	P(c a)=1

(Courtesy of Maria Simi, UniPI)

Outline

- Acting Under Uncertainty
- Basics on Probability
- Probabilistic Inference via Enumeration
- 4 Independence and Conditional Independence
- Applying Bayes' Rule
- An Example: The Wumpus World Revisited

Probabilistic Inference via Enumeration

Basic Ideas

- Start with the joint distribution
- For any proposition φ , sum the atomic events where φ is true: $P(\varphi) = \sum_{\omega : \omega \models \omega} P(\omega)$

Probabilistic Inference via Enumeration

Basic Ideas

- Start with the joint distribution
- For any proposition φ , sum the atomic events where φ is true: $P(\varphi) = \sum_{\omega : \omega \models \varphi} P(\omega)$

Probabilistic Inference via Enumeration: Example

Example: Generic Inference

- Start with the joint distribution **P**(*Toothache*, *Catch*, *Cavity*)
- For any proposition φ , sum the atomic events where φ is true: $P(\varphi) = \sum_{\omega : \omega \models \varphi} P(\omega)$:
- Ex: $P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Probabilistic Inference via Enumeration: Example

Example: Generic Inference

- Start with the joint distribution **P**(*Toothache*, *Catch*, *Cavity*)
- For any proposition φ , sum the atomic events where φ is true: $P(\varphi) = \sum_{\omega : \omega \models \varphi} P(\omega)$:
- Ex: $P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108 .012		.072	.008
$\neg cavity$.016	.064	.144	.576

Marginalization

- Start with the joint distribution P(Toothache, Catch, Cavity)
- Marginalization (aka summing out):
 sum up the probabilities for each possible value of the other variables:

$$\begin{aligned} \textbf{P}(\textbf{Y}) &= \sum_{\textbf{z} \in \textbf{Z}} \textbf{P}(\textbf{Y}, \textbf{z}) \\ \textbf{Ex: } \textbf{P}(\textit{Toothache}) &= \sum_{\textbf{z} \in \{\textit{Catch, Cavity}\}} \textbf{P}(\textit{Toothache}, \textbf{z}) \end{aligned}$$

 Conditioning: variant of marginalization, involving conditional probabilities instead of joint probabilities (using the product rule)

$$P(Y) = \sum_{z \in Z} P(Y|z)P(z)$$

Ex: $P(Toothache) = \sum_{z \in \{Catch, Cavity\}} P(Toothache|z)P(z)$

Marginalization

- Start with the joint distribution **P**(*Toothache*, *Catch*, *Cavity*)
- Marginalization (aka summing out):
 sum up the probabilities for each possible value of the other variables:

$$\begin{aligned} & \textbf{P}(\textbf{Y}) = \sum_{\textbf{z} \in \textbf{Z}} \textbf{P}(\textbf{Y}, \textbf{z}) \\ & \text{Ex: } \textbf{P}(\textit{Toothache}) = \sum_{\textbf{z} \in \{\textit{Catch}, \textit{Cavity}\}} \textbf{P}(\textit{Toothache}, \textbf{z}) \end{aligned}$$

 Conditioning: variant of marginalization, involving conditional probabilities instead of joint probabilities (using the product rule)

$$\begin{aligned} \mathbf{P}(\mathbf{Y}) &= \sum_{\mathbf{z} \in \mathbf{Z}} \mathbf{P}(\mathbf{Y}|\mathbf{z}) P(\mathbf{z}) \\ \text{Ex: } \mathbf{P}(\textit{Toothache}) &= \sum_{\mathbf{z} \in \{\textit{Catch}, \textit{Cavity}\}} \mathbf{P}(\textit{Toothache}|\mathbf{z}) P(\mathbf{z}) \end{aligned}$$

Marginalization

- Start with the joint distribution **P**(*Toothache*, *Catch*, *Cavity*)
- Marginalization (aka summing out):
 sum up the probabilities for each possible value of the other variables:

$$\begin{aligned} & \textbf{P}(\textbf{Y}) = \sum_{\textbf{z} \in \textbf{Z}} \textbf{P}(\textbf{Y}, \textbf{z}) \\ & \text{Ex: } \textbf{P}(\textit{Toothache}) = \sum_{\textbf{z} \in \{\textit{Catch}, \textit{Cavity}\}} \textbf{P}(\textit{Toothache}, \textbf{z}) \end{aligned}$$

 Conditioning: variant of marginalization, involving conditional probabilities instead of joint probabilities (using the product rule)

$$\begin{aligned} & \mathbf{P}(\mathbf{Y}) = \sum_{\mathbf{z} \in \mathbf{Z}} \mathbf{P}(\mathbf{Y}|\mathbf{z}) P(\mathbf{z}) \\ & \text{Ex: } \mathbf{P}(\textit{Toothache}) = \sum_{\mathbf{z} \in \{\textit{Catch}, \textit{Cavity}\}} \mathbf{P}(\textit{Toothache}|\mathbf{z}) P(\mathbf{z}) \end{aligned}$$

Marginalization: Example

- Start with the joint distribution **P**(*Toothache*, *Catch*, *Cavity*)
- Marginalization (aka summing out):
 sum up the probabilities for each possible value of the other variables:

$$\mathbf{P}(\mathbf{Y}) = \sum_{\mathbf{z} \in \mathbf{Z}} \mathbf{P}(\mathbf{Y}, \mathbf{z})$$

Ex:
$$P(Toothache) = \sum_{z \in \{Catch, Cavity\}} P(Toothache, z)$$

$$P(-toothache) = 0.108 + 0.012 + 0.016 + 0.004 = 0.004$$

$$\implies$$
 P(*Toothache*) = $\langle 0.2, 0.8 \rangle$

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008

Marginalization: Example

- Start with the joint distribution P(Toothache, Catch, Cavity)
- Marginalization (aka summing out): sum up the probabilities for each possible value of the other variables:

$$\begin{aligned} \mathbf{P}(\mathbf{Y}) &= \sum_{\mathbf{z} \in \mathbf{Z}} \mathbf{P}(\mathbf{Y}, \mathbf{z}) \\ \text{Ex: } \mathbf{P}(\textit{Toothache}) &= \sum_{\mathbf{z} \in \{\textit{Catch}, \textit{Cavity}\}} \mathbf{P}(\textit{Toothache}, \mathbf{z}) \\ P(\textit{toothache}) &= 0.108 + 0.012 + 0.016 + 0.064 = 0.2 \\ P(-\textit{toothache}) &= 1 - P(\textit{toothache}) = 1 - 0.2 = 0.8 \end{aligned}$$

$$\implies$$
 P(*Toothache*) = $\langle 0.2, 0.8 \rangle$

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Marginalization: Example

- Start with the joint distribution P(Toothache, Catch, Cavity)
- Marginalization (aka summing out): sum up the probabilities for each possible value of the other variables:

$$\begin{aligned} \mathbf{P}(\mathbf{Y}) &= \sum_{\mathbf{z} \in \mathbf{Z}} \mathbf{P}(\mathbf{Y}, \mathbf{z}) \\ \text{Ex: } \mathbf{P}(\textit{Toothache}) &= \sum_{\mathbf{z} \in \{\textit{Catch}, \textit{Cavity}\}} \mathbf{P}(\textit{Toothache}, \mathbf{z}) \\ &P(\textit{toothache}) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2 \\ &P(\neg toothache) = 1 - P(\textit{toothache}) = 1 - 0.2 = 0.8 \end{aligned}$$

$$\implies$$
 P(*Toothache*) = $\langle 0.2, 0.8 \rangle$

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Conditional Probability via Enumeration: Example

- Start with the joint distribution P(Toothache, Catch, Cavity)
- Conditional Probability:

```
Ex: P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}
= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4
Ex: P(cavity | toothache) = \frac{P(cavity \land toothache)}{P(toothache)} = ... = 0.6
```

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
$\neg cavity$.016	.064	.144	.576

Conditional Probability via Enumeration: Example

- Start with the joint distribution P(Toothache, Catch, Cavity)
- Conditional Probability:

```
Ex: P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}
= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4
Ex: P(cavity | toothache) = \frac{P(cavity \land toothache)}{P(toothache)} = ... = 0.66
```

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108 .012		.072	.008
$\neg cavity$.016	.064	.144	.576

Conditional Probability via Enumeration: Example

- Start with the joint distribution P(Toothache, Catch, Cavity)
- Conditional Probability:

```
Ex: P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}
= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4
Ex: P(cavity | toothache) = \frac{P(cavity \land toothache)}{P(toothache)} = ... = 0.6
```

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Normalization

- Let **X** be all the variables. Typically, we want P(Y|E=e):
 - the conditional joint distribution of the guery variables Y
 - given specific values **e** for the evidence variables **E**
 - let the hidden variables be $\mathbf{H} \stackrel{\text{def}}{=} \mathbf{X} \setminus (\mathbf{Y} \cup \mathbf{E})$
- The summation of joint entries is done by summing out the hidden variables:

$$P(Y|E=e) = \alpha P(Y,E=e) = \alpha \Sigma_{h\in H} P(Y,E=e,H=h)$$

- where $\alpha \stackrel{\text{def}}{=} 1/\mathbf{P}(\mathbf{E} = \mathbf{e})$ (Notice: different α 's for different values of \mathbf{e} !)
- \Rightarrow it is easy to compute α by normalization
 - note: the terms in the summation are joint entries,
 because Y, E, H together exhaust the set of random variables X
- Idea: compute whole distribution on guery variable by:
 - fixing evidence variables and summing over hidden variables
 - normalize the final distribution, so that $\sum ... = 1$
- Complexity: $O(2^n)$, *n* number of propositions \Longrightarrow impractical for large n's

Common practice: deal with non-normalized distributions, normalize at the end of the process (see e.g. "Wumpus world" example at the end of this chapter)

Normalization

- Let **X** be all the variables. Typically, we want P(Y|E=e):
 - the conditional joint distribution of the guery variables Y
 - given specific values **e** for the evidence variables **E**
 - let the hidden variables be $\mathbf{H} \stackrel{\text{def}}{=} \mathbf{X} \setminus (\mathbf{Y} \cup \mathbf{E})$
- The summation of joint entries is done by summing out the hidden variables:

```
P(Y|E = e) = \alpha P(Y, E = e) = \alpha \Sigma_{h \in H} P(Y, E = e, H = h)
where \alpha \stackrel{\text{def}}{=} 1/P(E = e) (Notice: different \alpha's for different values of e!)
```

- \implies it is easy to compute α by normalization
 - note: the terms in the summation are joint entries,
 because Y, E, H together exhaust the set of random variables X
- Idea: compute whole distribution on query variable by:
 - fixing evidence variables and summing over hidden variables
 - normalize the final distribution, so that $\sum ... = 1$
- Complexity: $O(2^n)$, n number of propositions \Longrightarrow impractical for large n's

Common practice: deal with non-normalized distributions, normalize at the end of the process (see e.g. "Wumpus world" example at the end of this chapter)

Normalization

- Let **X** be all the variables. Typically, we want P(Y|E=e):
 - the conditional joint distribution of the guery variables Y
 - given specific values **e** for the evidence variables **E**
 - let the hidden variables be $\mathbf{H} \stackrel{\text{def}}{=} \mathbf{X} \setminus (\mathbf{Y} \cup \mathbf{E})$
- The summation of joint entries is done by summing out the hidden variables:

```
P(Y|E=e) = \alpha P(Y,E=e) = \alpha \Sigma_{h \in H} P(Y,E=e,H=h)
where \alpha \stackrel{\text{def}}{=} 1/P(E=e) (Notice: different \alpha's for different values of e!)
```

- \implies it is easy to compute α by normalization
 - note: the terms in the summation are joint entries,
 because Y, E, H together exhaust the set of random variables X
- Idea: compute whole distribution on query variable by:
 - fixing evidence variables and summing over hidden variables
 - normalize the final distribution, so that $\sum ... = 1$
- Complexity: $O(2^n)$, n number of propositions \Longrightarrow impractical for large n's

Common practice: deal with non-normalized distributions, normalize at the end of the process (see e.g. "Wumpus world" example at the end of this chapter)

Normalization

- Let **X** be all the variables. Typically, we want P(Y|E=e):
 - the conditional joint distribution of the guery variables Y
 - given specific values e for the evidence variables E
 - let the hidden variables be $\mathbf{H} \stackrel{\text{def}}{=} \mathbf{X} \setminus (\mathbf{Y} \cup \mathbf{E})$
- The summation of joint entries is done by summing out the hidden variables:

$$P(Y|E=e) = \alpha P(Y, E=e) = \alpha \Sigma_{h \in H} P(Y, E=e, H=h)$$

where $\alpha \stackrel{\text{def}}{=} 1/\mathbf{P}(\mathbf{E} = \mathbf{e})$ (Notice: different α 's for different values of \mathbf{e} !)

- \implies it is easy to compute α by normalization
 - note: the terms in the summation are joint entries,
 because Y, E, H together exhaust the set of random variables X
- Idea: compute whole distribution on query variable by:
 - fixing evidence variables and summing over hidden variables
 - normalize the final distribution, so that $\sum ... = 1$
- Complexity: $O(2^n)$, n number of propositions \Longrightarrow impractical for large n's

Common practice: deal with non-normalized distributions, normalize at the end of the process (see e.g. "Wumpus world" example at the end of this chapter)

Normalization: Example

- $\alpha \stackrel{\text{def}}{=} 1/P(toothache)$ (previous example) can be viewed as a normalization constant
- Idea: compute whole distribution on query variable by:
 - fixing evidence variables and summing over hidden variables
 - normalize the final distribution, so that $\sum ... = 1$

```
• Ex:<sup>a</sup> \mathbf{P}(Cavity | toothache) = \alpha \mathbf{P}(Cavity \land toothache)
= \alpha [\mathbf{P}(Cavity, toothache, catch) + \mathbf{P}(Cavity, toothache, \neg catch)]
= \alpha [\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle]
= \alpha \langle 0.12, 0.08 \rangle = (normalization) = \langle 0.6, 0.4 \rangle [\alpha = 5]
```

 $\mathbf{P}(\textit{Cavity} | \neg \textit{toothache}) = ... = \alpha \langle 0.08, 0.72 \rangle = \langle 0.1, 0.9 \rangle [\alpha = 1.25]$

	toothache		\neg toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008

(@ S. Russell & P. Norwig, AIMA)

an.b.: here "Cavity" is a variable, "toothache" is a proposition (i.e. Toothache=true)

Normalization: Example

- $\alpha \stackrel{\text{def}}{=} 1/P(toothache)$ (previous example) can be viewed as a normalization constant
- Idea: compute whole distribution on query variable by:
 - fixing evidence variables and summing over hidden variables
 - normalize the final distribution, so that $\sum ... = 1$
- Ex:^a $P(Cavity | toothache) = \alpha P(Cavity \land toothache)$ = $\alpha [P(Cavity, toothache, catch) + P(Cavity, toothache, \neg catch)]$ = $\alpha [\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle]$ = $\alpha \langle 0.12, 0.08 \rangle = (normalization) = \langle 0.6, 0.4 \rangle [\alpha = 5]$

 $P(Cavity | \neg toothache) = \dots = \alpha \langle 0.08, 0.72 \rangle = \langle 0.1, 0.9 \rangle [\alpha = 1.25]$

	toothache		$\neg t$	¬ toothache	
	catch	¬ catci	cate	ch ¬ catch	'n
cavity	.108	.012	.07	2 .008	
¬ cavity	.016	.064	.14	4 .576	

(@ S. Russell & P. Norwig, AIMA)

^an.b.: here "Cavity" is a variable, "toothache" is a proposition (i.e. Toothache=true)

Normalization: Example

- $\alpha \stackrel{\text{def}}{=} 1/P(toothache)$ (previous example) can be viewed as a normalization constant
- Idea: compute whole distribution on query variable by:
 - fixing evidence variables and summing over hidden variables
 - normalize the final distribution, so that $\sum ... = 1$
- Ex:^a $P(Cavity | toothache) = \alpha P(Cavity \land toothache)$
 - $= \alpha[P(Cavity, toothache, catch) + P(Cavity, toothache, \neg catch)]$
 - $= \alpha[\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle]$
 - $= \alpha \langle 0.12, 0.08 \rangle = (normalization) = \langle 0.6, 0.4 \rangle [\alpha = 5]$
 - $\mathbf{P}(\textit{Cavity} | \neg \textit{toothache}) = ... = \alpha \langle 0.08, 0.72 \rangle = \langle 0.1, 0.9 \rangle [\alpha = 1.25]$

	toothache		\neg toothache	
	catch	¬ catch	catch	¬ catch
cavity	100	012	072	.008
cavity	.100	.012	.072	.008

(© S. Russell & P. Norwig, AIMA)

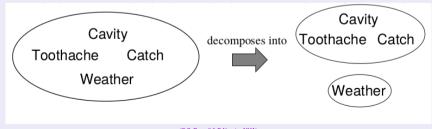
^an.b.: here "Cavity" is a variable, "toothache" is a proposition (i.e. Toothache=true)

Outline

- Acting Under Uncertainty
- Basics on Probability
- Probabilistic Inference via Enumeration
- 4 Independence and Conditional Independence
- 6 Applying Bayes' Rule
- 6 An Example: The Wumpus World Revisited

Independence

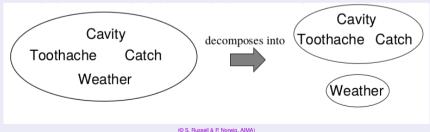
- Variables X and Y are independent iff P(X, Y) = P(X)P(Y) (equivalently, iff P(X|Y) = P(X) and iff P(Y|X) = P(Y))
 - ex: **P**(Toothache, Catch, Cavity, Weather) = **P**(Toothache, Catch, Cavity)**P**(Weather)
 - \implies e.g. P(toothache, catch, cavity, cloudy) = <math>P(toothache, catch, cavity)P(cloudy)
 - typically based on domain knowledge
- May drastically reduce the number of entries and computation
 ex: 32-element table decomposed into one 8-element and one 4-element table
- Unfortunately, absolute independence is quite rare



(© S. Russell & P. Norwig, AIMA)

Independence

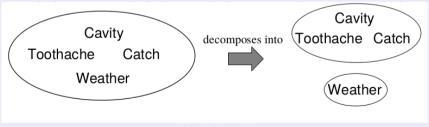
- Variables X and Y are independent iff P(X, Y) = P(X)P(Y) (equivalently, iff P(X|Y) = P(X) and iff P(Y|X) = P(Y))
 - ex: **P**(Toothache, Catch, Cavity, Weather) = **P**(Toothache, Catch, Cavity)**P**(Weather)
 - \implies e.g. P(toothache, catch, cavity, cloudy) = <math>P(toothache, catch, cavity)P(cloudy)
 - typically based on domain knowledge
- May drastically reduce the number of entries and computation
 - ⇒ ex: 32-element table decomposed into one 8-element and one 4-element table
- Unfortunately, absolute independence is quite rare



(@ 5. Hussell & P. Norwig, AliviA)

Independence

- Variables X and Y are independent iff P(X, Y) = P(X)P(Y) (equivalently, iff P(X|Y) = P(X) and iff P(Y|X) = P(Y))
 - ex: P(Toothache, Catch, Cavity, Weather) = P(Toothache, Catch, Cavity)P(Weather)
 - \implies e.g. P(toothache, catch, cavity, cloudy) = <math>P(toothache, catch, cavity)P(cloudy)
 - typically based on domain knowledge
- May drastically reduce the number of entries and computation
 - ⇒ ex: 32-element table decomposed into one 8-element and one 4-element table
- Unfortunately, absolute independence is quite rare



Conditional Independence

- Variables X and Y are conditionally independent given **Z** iff P(X, Y|Z) = P(X|Z)P(Y|Z) (equivalently, iff P(X|Y,Z) = P(X|Z) and iff P(Y|X,Z) = P(Y|Z))
- Consider P(Toothache, Cavity, Catch)
 - if I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache: P(catch|toothache, cavity) = P(catch|cavity)
 - the same independence holds if I haven't got a cavity: $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$
 - Catch is conditionally independent of Toothache given Cavity:
 P(Catch|Toothache, Cavity) = P(Catch|Cavity)
 or, equivalently: P(Toothache|Catch, Cavity) = P(Toothache|Cavity), or
 P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
- Hint: Toothache and Catch are two (mutually-independent) effects of the same cause Cavity

Conditional Independence

- Variables X and Y are conditionally independent given **Z** iff P(X, Y|Z) = P(X|Z)P(Y|Z) (equivalently, iff P(X|Y,Z) = P(X|Z) and iff P(Y|X,Z) = P(Y|Z))
- Consider P(Toothache, Cavity, Catch)
 - if I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache: P(catch|toothache, cavity) = P(catch|cavity)
 - the same independence holds if I haven't got a cavity: $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$
 - ⇒ Catch is conditionally independent of Toothache given Cavity:

 P(Catch|Toothache, Cavity) = P(Catch|Cavity)

 or, equivalently: P(Toothache|Catch, Cavity) = P(Toothache|Cavity), or

 P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
- Hint: Toothache and Catch are two (mutually-independent) effects of the same cause Cavity

Conditional Independence

- Variables X and Y are conditionally independent given **Z** iff P(X, Y|Z) = P(X|Z)P(Y|Z) (equivalently, iff P(X|Y,Z) = P(X|Z) and iff P(Y|X,Z) = P(Y|Z))
- Consider **P**(*Toothache*, *Cavity*, *Catch*)
 - if I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a
 toothache: P(catch|toothache, cavity) = P(catch|cavity)
 - the same independence holds if I haven't got a cavity: $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$
 - ⇒ Catch is conditionally independent of Toothache given Cavity:

 P(Catch|Toothache, Cavity) = P(Catch|Cavity)

 or, equivalently: P(Toothache|Catch, Cavity) = P(Toothache|Cavity), or

 P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
- Hint: Toothache and Catch are two (mutually-independent) effects of the same cause Cavity

- In many cases, the use of conditional independence reduces the size of the representation of the joint distribution dramatically
 - even from exponential to linear!

- Ex: = P(Toothache|Catch, Cavity)P(Catch, Cavity) = P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
- - P(Toothache, Catch, Cavity) contains 7 independent entries
 - P(Toothache Cavity),P(Catch Cavity) contain 2 independent entries (2 × 2 matrix, each row
 - P(Cavity) contains 1 independent entry
 - General Case: if one cause has n independent effects:

- In many cases, the use of conditional independence reduces the size of the representation of the joint distribution dramatically
 - even from exponential to linear!
 - P(Toothache, Catch, Cavity)
- Ex: = P(Toothache|Catch, Cavity)P(Catch, Cavity) = P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
 - = P(Toothache Cavity)P(Catch Cavity)P(Cavity)
- - P(Toothache, Catch, Cavity) contains 7 independent entries
 - P(Toothache Cavity),P(Catch Cavity) contain 2 independent entries (2 × 2 matrix, each row
 - P(Cavity) contains 1 independent entry
 - General Case: if one cause has n independent effects:

- In many cases, the use of conditional independence reduces the size of the representation of the joint distribution dramatically
 - even from exponential to linear!
 - P(Toothache, Catch, Cavity)
- Ex: = P(Toothache|Catch, Cavity)P(Catch, Cavity) = P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
 - = P(Toothache Cavity)P(Catch Cavity)P(Cavity)
- ⇒ Passes from 7 to 2+2+1=5 independent numbers
 - P(Toothache, Catch, Cavity) contains 7 independent entries (the 8th can be obtained as $1 - \sum ...$)
 - P(Toothache|Cavity), P(Catch|Cavity) contain 2 independent entries (2 × 2 matrix, each row sums to 1)
 - P(Cavity) contains 1 independent entry
 - General Case: if one cause has n independent effects:

- In many cases, the use of conditional independence reduces the size of the representation of the joint distribution dramatically
 - even from exponential to linear!
 - P(Toothache, Catch, Cavity)
- Ex: = P(Toothache|Catch, Cavity)P(Catch, Cavity) = P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
 - = P(Toothache Cavity)P(Catch Cavity)P(Cavity)
- ⇒ Passes from 7 to 2+2+1=5 independent numbers
 - P(Toothache, Catch, Cavity) contains 7 independent entries (the 8th can be obtained as $1 - \sum ...$)
 - P(Toothache Cavity), P(Catch Cavity) contain 2 independent entries (2 × 2 matrix, each row sums to 1)
 - P(Cavity) contains 1 independent entry
 - General Case: if one cause has n independent effects:
 - $P(Cause, Effect_1, ..., Effect_n) = P(Cause) \prod_i P(Effect_i | Cause)$
 - \implies reduces from $2^{n+1} 1$ to 2n + 1 independent entries

Exercise

Consider the joint probability distribution described in the table in previous section: **P**(*Toothache*, *Catch*, *Cavity*)

- Consider the example in previous slide:
 - P(Toothache, Catch, Cavity)
 - $= \mathbf{P}(Toothache|Catch, Cavity)\mathbf{P}(Catch, Cavity)$
 - $= \mathbf{P}(\textit{Toothache}|\textit{Catch},\textit{Cavity})\mathbf{P}(\textit{Catch}|\textit{Cavity})\mathbf{P}(\textit{Cavity})$
 - = P(Toothache Cavity)P(Catch Cavity)P(Cavity)
- Compute separately the distributions **P**(*Toothache*|*Catch*, *Cavity*), **P**(*Catch*|*Cavity*), **P**(*Cavity*), **P**(*Toothache*|*Cavity*).
- Recompute **P**(*Toothache*, *Catch*, *Cavity*) in two ways:
 - **P**(Toothache| Catch, Cavity)**P**(Catch| Cavity)**P**(Cavity)
 - P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)
 - and compare the result with P(Toothache, Catch, Cavity)

Exercise

Consider the joint probability distribution described in the table in previous section: **P**(*Toothache*, *Catch*, *Cavity*)

- Consider the example in previous slide:
 - P(Toothache, Catch, Cavity)
 - = **P**(Toothache|Catch, Cavity)**P**(Catch, Cavity)
 - = P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
 - = P(Toothache Cavity)P(Catch Cavity)P(Cavity)
- Compute separately the distributions P(Toothache|Catch, Cavity), P(Catch|Cavity),
 P(Cavity), P(Toothache|Cavity).
- Recompute **P**(*Toothache*, *Catch*, *Cavity*) in two ways:
 - **P**(Toothache| Catch, Cavity)**P**(Catch| Cavity)**P**(Cavity)
 - **P**(Toothache|Cavity)**P**(Catch|Cavity)**P**(Cavity)
 - and compare the result with P(Toothache, Catch, Cavity)

Exercise

Consider the joint probability distribution described in the table in previous section: **P**(*Toothache*, *Catch*, *Cavity*)

- Consider the example in previous slide:
 - P(Toothache, Catch, Cavity)
 - = **P**(Toothache|Catch, Cavity)**P**(Catch, Cavity)
 - = P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)
 - = P(Toothache Cavity)P(Catch Cavity)P(Cavity)
- Compute separately the distributions P(Toothache|Catch, Cavity), P(Catch|Cavity),
 P(Cavity), P(Toothache|Cavity).
- Recompute P(Toothache, Catch, Cavity) in two ways:
 - **P**(Toothache|Catch, Cavity)**P**(Catch|Cavity)**P**(Cavity)
 - P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

and compare the result with P(Toothache, Catch, Cavity)

Outline

- Acting Under Uncertainty
- Basics on Probability
- Probabilistic Inference via Enumeration
- Independence and Conditional Independence
- Applying Bayes' Rule
- 6 An Example: The Wumpus World Revisited

- Bayes' rule: $P(a|b) = \frac{P(a \land b)}{P(b)} = \frac{P(b|a)P(a)}{P(b)}$
- In distribution form $P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} = \alpha P(X|Y)P(Y)$
 - α = 1/P(X): normalization constant to make P(Y|X) entries sum to 1 (different α's for different values of X)
- A version conditionalized on some background evidence e:

$$P(Y|X,e) = \frac{P(X|Y,e)P(Y|e)}{P(X|e)}$$

• Bayes' rule:
$$P(a|b) = \frac{P(a \wedge b)}{P(b)} = \frac{P(b|a)P(a)}{P(b)}$$

- In distribution form $P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} = \alpha P(X|Y)P(Y)$
 - α = 1/P(X): normalization constant to make P(Y|X) entries sum to 1 (different α's for different values of X)
- A version conditionalized on some background evidence e:

$$P(Y|X,e) = \frac{P(X|Y,e)P(Y|e)}{P(X|e)}$$

• Bayes' rule:
$$P(a|b) = \frac{P(a \wedge b)}{P(b)} = \frac{P(b|a)P(a)}{P(b)}$$

- In distribution form $P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} = \alpha P(X|Y)P(Y)$
 - α = 1/P(X): normalization constant to make P(Y|X) entries sum to 1 (different α's for different values of X)
- A version conditionalized on some background evidence e:

$$P(Y|X, \mathbf{e}) = \frac{P(X|Y, \mathbf{e})P(Y|\mathbf{e})}{P(X|\mathbf{e})}$$

- Bayes' rule: $P(a|b) = \frac{P(a \land b)}{P(b)} = \frac{P(b|a)P(a)}{P(b)}$ In distribution form $P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} = \alpha P(X|Y)P(Y)$
 - $\alpha \stackrel{\text{def}}{=} 1/\mathbf{P}(X)$: normalization constant to make $\mathbf{P}(Y|X)$ entries sum to 1
- A version conditionalized on some background evidence e:

$$P(Y|X,e) = \frac{P(X|Y,e)P(Y|e)}{P(X|e)}$$

- Bayes' rule: $P(a|b) = \frac{P(a \land b)}{P(b)} = \frac{P(b|a)P(a)}{P(b)}$
- In distribution form $\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X|Y)\mathbf{P}(Y)$
 - $\alpha \stackrel{\text{def}}{=} 1/\mathbf{P}(X)$: normalization constant to make $\mathbf{P}(Y|X)$ entries sum to 1 (different α' s for different values of X)
- A version conditionalized on some background evidence e:

$$P(Y|X,e) = \frac{P(X|Y,e)P(Y|e)}{P(X|e)}$$

• Bayes' rule:
$$P(a|b) = \frac{P(a \wedge b)}{P(b)} = \frac{P(b|a)P(a)}{P(b)}$$

- In distribution form $\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X|Y)\mathbf{P}(Y)$
 - $\alpha \stackrel{\text{def}}{=} 1/\mathbf{P}(X)$: normalization constant to make $\mathbf{P}(Y|X)$ entries sum to 1 (different α' s for different values of X)
- A version conditionalized on some background evidence e:

$$\mathbf{P}(Y|X,\mathbf{e}) = \frac{\mathbf{P}(X|Y,\mathbf{e})\mathbf{P}(Y|\mathbf{e})}{\mathbf{P}(X|\mathbf{e})}$$

• Used to assess diagnostic probability from causal probability:

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

- P(cause|effect) goes from effect to cause (diagnostic direction)
- P(effect|cause) goes from cause to effect (causal direction)

- An expert doctor is likely to have causal knowledge ... P(symptoms|disease).
 - (i.e., P(effect|cause))
 - ... and needs producing diagnostic knowledge $P(\emph{disease}|symptoms)$ (i.e., $P(\emph{cause}|\emph{effect}|$
- Ex: let m be meningitis, s be stiff neck
 - P(m) = 1/50000, P(s) = 0.01 (prior knowledge, from statistics)
 - ullet "meningitis causes to the patient a stiff neck in 70% of cases": P(s|m)=0.7 (doctor's experience
- $P(s|m)P(m) = 0.7 \cdot 1/50000$
- $\Rightarrow P(m|s) = \frac{(1-m)(m)}{P(s)} = \frac{(1-m)(m)}{0.01} = 0.0014$

Used to assess diagnostic probability from causal probability:

```
P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}
```

- P(cause|effect) goes from effect to cause (diagnostic direction)
- P(effect|cause) goes from cause to effect (causal direction)

- An expert doctor is likely to have causal knowledge ... P(symptoms|disease)
- (i.e., P(effect|cause))
 - ... and needs producing diagnostic knowledge $P(\mathit{disease}|\mathit{symptoms})$ (i.e., $P(\mathit{cause}|\mathit{effect})$
- Ex: let m be meningitis, s be stiff neck
 - P(m) = 1/50000, P(s) = 0.01 (prior knowledge, from statistics)
 - "meningitis causes to the patient a stiff neck in 70% of cases": P(s|m) = 0.7 (doctor's experience
- $\Rightarrow P(m|s) = \frac{r(s|m)r(m)}{P(s)} = \frac{0.7 \cdot 173000}{0.01} = 0.0014$

Used to assess diagnostic probability from causal probability:

```
P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}
```

- P(cause|effect) goes from effect to cause (diagnostic direction)
- P(effect|cause) goes from cause to effect (causal direction)

- An expert doctor is likely to have causal knowledge ... P(symptoms|disease)
- ... and needs producing diagnostic knowledge P(disease|symptoms) (i.e., P(cause|effect
- Ex: let m be meningitis, s be stiff neck
 - P(m) = 1/50000, P(s) = 0.01 (prior knowledge, from statistics)
 - "meningitis causes to the patient a stiff neck in 70% of cases": P(s|m) = 0.7 (doctor's experience
- $\Rightarrow P(m|s) = \frac{P(s)}{P(s)} = \frac{30.07}{0.01} = 0.0014$

Used to assess diagnostic probability from causal probability:

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

- *P*(*cause*| *effect*) goes from effect to cause (diagnostic direction)
- P(effect | cause) goes from cause to effect (causal direction)

- An expert doctor is likely to have causal knowledge ... P(symptoms|disease)
 (i.e., P(effect|cause))
- ... and needs producing diagnostic knowledge P(disease|symptoms) (i.e., P(cause|effect)
- Ex: let *m* be meningitis, *s* be stiff neck
 - P(m) = 1/50000, P(s) = 0.01 (prior knowledge, from statistics)
 - "meningitis causes to the patient a stiff neck in 70% of cases": P(s|m) = 0.7 (doctor's experience)

$$\Rightarrow P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.7 \cdot 1/50000}{0.01} = 0.0014$$

Used to assess diagnostic probability from causal probability:

$$P(\textit{cause}|\textit{effect}) = \frac{P(\textit{effect}|\textit{cause})P(\textit{cause})}{P(\textit{effect})}$$

- P(cause|effect) goes from effect to cause (diagnostic direction)
- P(effect|cause) goes from cause to effect (causal direction)

- An expert doctor is likely to have causal knowledge ... P(symptoms|disease)
 (i.e., P(effect|cause))
 - \dots and needs producing diagnostic knowledge P(disease|symptoms) (i.e., P(cause|effect))
- Ex: let *m* be meningitis, *s* be stiff neck
 - P(m) = 1/50000, P(s) = 0.01 (prior knowledge, from statistics)
 - "meningitis causes to the patient a stiff neck in 70% of cases": P(s|m) = 0.7 (doctor's experience)

$$\Rightarrow P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.7 \cdot 1/50000}{0.01} = 0.0014$$

Used to assess diagnostic probability from causal probability:

```
P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}
```

- P(cause|effect) goes from effect to cause (diagnostic direction)
- P(effect|cause) goes from cause to effect (causal direction)

- An expert doctor is likely to have causal knowledge ... P(symptoms|disease)
 (i.e., P(effect|cause))
 - ... and needs producing diagnostic knowledge P(disease|symptoms) (i.e., P(cause|effect))
- Ex: let *m* be meningitis, *s* be stiff neck
 - P(m) = 1/50000, P(s) = 0.01 (prior knowledge, from statistics)
 - "meningitis causes to the patient a stiff neck in 70% of cases": P(s|m) = 0.7 (doctor's experience)

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.7 \cdot 1/50000}{0.01} = 0.0014$$

Used to assess diagnostic probability from causal probability:

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

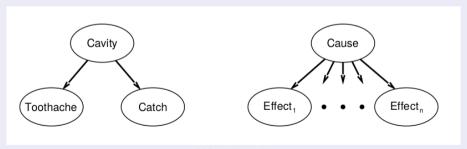
- P(cause|effect) goes from effect to cause (diagnostic direction)
- P(effect|cause) goes from cause to effect (causal direction)

- An expert doctor is likely to have causal knowledge ... P(symptoms|disease)
 (i.e., P(effect|cause))
 - ... and needs producing diagnostic knowledge P(disease|symptoms) (i.e., P(cause|effect))
- Ex: let *m* be meningitis, *s* be stiff neck
 - P(m) = 1/50000, P(s) = 0.01 (prior knowledge, from statistics)
 - "meningitis causes to the patient a stiff neck in 70% of cases": P(s|m) = 0.7 (doctor's experience)

$$\implies P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.7 \cdot 1/50000}{0.01} = 0.0014$$

Using Bayes' Rule: Combining Evidence

- A naive Bayes model is a probability model that assumes the effects are conditionally independent, given the cause
 - \implies **P**(Cause, Effect₁, ..., Effect_n) = **P**(Cause) \prod_i **P**(Effect_i|Cause)
 - total number of parameters is linear in n
 - ex: P(Cavity, Toothache, Catch) = P(Cavity)P(Toothache|Cavity)P(Catch|Cavity)
- Q: How can we compute $P(Cause | Effect_1, ..., Effect_k)$?
 - ex P(Cavity | toothache ∧ catch)?

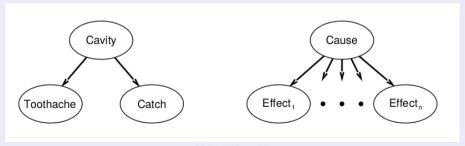


Using Bayes' Rule: Combining Evidence

- A naive Bayes model is a probability model that assumes the effects are conditionally independent, given the cause
 - \implies **P**(Cause, Effect₁, ..., Effect_n) = **P**(Cause) \prod_i **P**(Effect_i|Cause)
 - total number of parameters is linear in n
 - ex: P(Cavity, Toothache, Catch) = P(Cavity)P(Toothache|Cavity)P(Catch|Cavity)

Q: How can we compute $P(Cause|Effect_1, ..., Effect_k)$?

ex P(Cavity | toothache ∧ catch)?



Using Bayes' Rule: Combining Evidence [cont.]

```
Q: How can we compute P(Cause | Effect_1, ..., Effect_k)?
        • ex: P(Cavity toothache ∧ catch)?
        • \alpha \stackrel{\text{def}}{=} 1/P(toothache \wedge catch) not computed explicitly
 • General case: P(Cause | Effect_1, ..., Effect_n) = \alpha P(Cause) \prod_i P(Effect_i | Cause)
        • \alpha \stackrel{\text{def}}{=} 1/\mathbf{P}(Effect_1, ..., Effect_n) not computed explicitly
```

Using Bayes' Rule: Combining Evidence [cont.]

```
Q: How can we compute P(Cause | Effect_1, ..., Effect_k)?
        • ex: P(Cavity toothache ∧ catch)?
                                P(Cavity | toothache ∧ catch)
                                = \mathbf{P}(toothache \land catch|Cavity)\mathbf{P}(Cavity)/P(toothache \land catch)
A: Apply Bayes' Rule
                                = \alpha \mathbf{P}(toothache \wedge catch|Cavity)\mathbf{P}(Cavity)
                                = \alpha P(toothache|Cavity)P(catch|Cavity)P(Cavity)
        • \alpha \stackrel{\text{def}}{=} 1/P(toothache \wedge catch) not computed explicitly
 • General case: P(Cause | Effect_1, ..., Effect_n) = \alpha P(Cause) \prod_i P(Effect_i | Cause)
        • \alpha \stackrel{\text{def}}{=} 1/\mathbf{P}(Effect_1, \dots, Effect_n) not computed explicitly
```

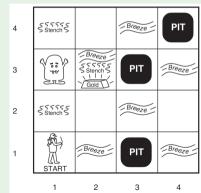
Using Bayes' Rule: Combining Evidence [cont.]

```
Q: How can we compute P(Cause | Effect_1, ..., Effect_k)?
        • ex: P(Cavity toothache ∧ catch)?
                                P(Cavity | toothache ∧ catch)
                                = \mathbf{P}(toothache \land catch|Cavity)\mathbf{P}(Cavity)/P(toothache \land catch)
A: Apply Bayes' Rule
                                = \alpha \mathbf{P}(toothache \wedge catch|Cavity)\mathbf{P}(Cavity)
                                = \alpha P(toothache|Cavity)P(catch|Cavity)P(Cavity)
        • \alpha \stackrel{\text{def}}{=} 1/P(toothache \wedge catch) not computed explicitly
 • General case: P(Cause | Effect_1, ..., Effect_n) = \alpha P(Cause) \prod_i P(Effect_i | Cause)
        • \alpha \stackrel{\text{def}}{=} 1/\mathbf{P}(Effect_1, ..., Effect_n) not computed explicitly
           (one \alpha value for every value of Effect<sub>1</sub>, ..., Effect<sub>n</sub>)
     \implies reduces from 2^{n+1} - 1 to 2n + 1 independent entries
```

Outline

- Acting Under Uncertainty
- Basics on Probability
- Probabilistic Inference via Enumeration
- 4 Independence and Conditional Independence
- Applying Bayes' Rule
- 6 An Example: The Wumpus World Revisited

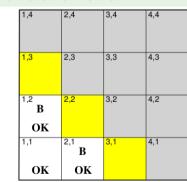
- Consider again the Wumpus World (restricted to pit detection)
- Evidence: no pit in (1,1), (1,2), (2,1), breezy in (1,2), (2,1)
- Q. Given the evidence, what is the probability of having a pit in (1,3), (2,2) or (3,1)
- Two groups of variables:
 - P_{ij} = true iff [i, j] contains a pit ("causes")
 - B_{ij} = true iff [i, j] is breezy ("effects", consider only
 - $B_{1,1}, B_{1,2}, B_{2,1}$
 - Joint Distribution:
 - $\mathbf{P}(P_{1,1},...,P_{4,4},B_{1,1},B_{1,2},B_{2,1})$
- Known facts (evidence):
 - $\bullet \ b^* \stackrel{\text{def}}{=} \neg b_{1,1} \land \ b_{1,2} \land \ b_{2,1}$
 - $\bullet \ p^* \stackrel{\text{def}}{=} \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$
- Queries: $P(P_{1,3}|b^*,p^*)$? $P(P_{22}|b^*,p^*)$? $(P(P_{3,1}|b^*,p^*)$ symmetric)



- Consider again the Wumpus World (restricted to pit detection)
- Evidence: no pit in (1,1), (1,2), (2,1), breezy in (1,2), (2,1)
- Q. Given the evidence, what is the probability of having a pit in (1,3), (2,2) or (3,1)
 - Two groups of variables:
 - $P_{ij} = true$ iff [i, j] contains a pit ("causes")
 - $B_{ij} = true$ iff [i, j] is breezy ("effects", consider only
 - $B_{1,1}, B_{1,2}, B_{2,1}$
 - Joint Distribution:

$$\mathbf{P}(P_{1,1},...,P_{4,4},B_{1,1},B_{1,2},B_{2,1})$$

- Known facts (evidence):
 - $\bullet b^* \stackrel{\text{def}}{=} \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$
 - $\bullet \ p^* \stackrel{\mathsf{def}}{=} \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$
- Queries: $P(P_{1,3}|b^*,p^*)$? $P(P_{22}|b^*,p^*)$? $(P(P_{3,1}|b^*,p^*)$ symmetric)



- Consider again the Wumpus World (restricted to pit detection)
- Evidence: no pit in (1,1), (1,2), (2,1), breezy in (1,2), (2,1)
- Q. Given the evidence, what is the probability of having a pit in (1,3), (2,2) or (3,1)?
- Two groups of variables:
 - P_{ij} = true iff [i, j] contains a pit ("causes")
 - $B_{ij} = true$ iff [i, j] is breezy ("effects", consider only
 - $B_{1,1}, B_{1,2}, B_{2,1}$
 - Joint Distribution:

$$P(P_{1,1},...,P_{4,4},B_{1,1},B_{1,2},B_{2,1})$$

- Known facts (evidence):
 - $b^* \stackrel{\text{def}}{=} \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$
- Queries: $P(P_{1,3}|b^*,p^*)$? $P(P_{22}|b^*,p^*)$? $(P(P_{3,1}|b^*,p^*)$ symmetric)

- Consider again the Wumpus World (restricted to pit detection)
- Evidence: no pit in (1,1), (1,2), (2,1), breezy in (1,2), (2,1)
- Q. Given the evidence, what is the probability of having a pit in (1,3), (2,2) or (3,1)?
- Two groups of variables:
 - P_{ij} = true iff [i, j] contains a pit ("causes")
 - B_{ij} = true iff [i, j] is breezy ("effects", consider only B_{1,1}, B_{1,2}, B_{2,1})
- Joint Distribution:

$$\mathbf{P}(P_{1,1},...,P_{4,4},B_{1,1},B_{1,2},B_{2,1})$$

- Known facts (evidence):
 - $b^* \stackrel{\text{def}}{=} \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$
 - $\bullet p^* \stackrel{\mathrm{def}}{=} \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$
- Queries: $P(P_{1,3}|b^*,p^*)$? $P(P_{22}|b^*,p^*)$? $(P(P_{3,1}|b^*,p^*)$ symmetric)

- Consider again the Wumpus World (restricted to pit detection)
- Evidence: no pit in (1,1), (1,2), (2,1), breezy in (1,2), (2,1)
- Q. Given the evidence, what is the probability of having a pit in (1,3), (2,2) or (3,1)?
- Two groups of variables:
 - P_{ij} = true iff [i, j] contains a pit ("causes")
 - $B_{ij} = true$ iff [i, j] is breezy ("effects", consider only $B_{1,1}, B_{1,2}, B_{2,1}$)
- Joint Distribution:

$$\textbf{P}(P_{1,1},...,P_{4,4},B_{1,1},B_{1,2},B_{2,1})$$

- Known facts (evidence):
 - $b^* \stackrel{\text{def}}{=} \neg b_{1,1} \land b_{1,2} \land b_{2,1}$
- Queries: $P(P_{1,3}|b^*,p^*)$? $P(P_{22}|b^*,p^*)$? $(P(P_{3,1}|b^*,p^*)$ symmetric)

- Consider again the Wumpus World (restricted to pit detection)
- Evidence: no pit in (1,1), (1,2), (2,1), breezy in (1,2), (2,1)
- Q. Given the evidence, what is the probability of having a pit in (1,3), (2,2) or (3,1)?
- Two groups of variables:
 - P_{ij} = true iff [i, j] contains a pit ("causes")
 - B_{ij} = true iff [i, j] is breezy ("effects", consider only B_{1,1}, B_{1,2}, B_{2,1})
- Joint Distribution:

$$\textbf{P}(P_{1,1},...,P_{4,4},B_{1,1},B_{1,2},B_{2,1})$$

- Known facts (evidence):
 - $\bullet b^* \stackrel{\text{def}}{=} \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$
 - $\bullet \ p^* \stackrel{\text{def}}{=} \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$
- Queries: $P(P_{1,3}|b^*,p^*)$? $P(P_{22}|b^*,p^*)$? $(P(P_{3,1}|b^*,p^*)$ symmetric)

- Consider again the Wumpus World (restricted to pit detection)
- Evidence: no pit in (1,1), (1,2), (2,1), breezy in (1,2), (2,1)
- Q. Given the evidence, what is the probability of having a pit in (1,3), (2,2) or (3,1)?
- Two groups of variables:
 - $P_{ij} = true$ iff [i, j] contains a pit ("causes")
 - B_{ij} = true iff [i, j] is breezy ("effects", consider only
- $B_{1,1}, B_{1,2}, B_{2,1}$ Joint Distribution:
- **P**(*P*_{1,1},..., *P*_{4,4}, *B*_{1,1}, *B*_{1,2}, *B*_{2,1})
- Known facts (evidence):
 - $\bullet b^* \stackrel{\text{def}}{=} \neg b_{1,1} \land b_{1,2} \land b_{2,1}$
 - $\bullet \ p^* \stackrel{\text{def}}{=} \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$
- Queries: $P(P_{1,3}|b^*, p^*)$? $P(P_{22}|b^*, p^*)$? $(P(P_{3,1}|b^*, p^*)$ symmetric)

Specifying the probability model

- Apply the product rule to the joint distribution $P(P_{1,1},...,P_{4,4},B_{1,1},B_{1,2},B_{2,1}) = P(B_{1,1},B_{1,2},B_{2,1}|P_{1,1},...,P_{4,4}) P(P_{1,1},...,P_{4,4})$
- $P(B_{1,1}, B_{1,2}, B_{2,1}|P_{1,1}, ..., P_{4,4})$ deterministic:
 - 1 if one pit is adjacent to breeze,
 - 0 otherwise
- $P(P_{1,1},...,P_{4,4})$: pits are placed randomly except in (1,1):

$$P(P_{1,1},...,P_{4,4}) = \prod_{i=1}^{4} \prod_{j=1}^{4} P(P_{i,j})$$

$$P(P_{i,j}) = \begin{cases} 0.2 & \text{if } (i,j) \neq (1,1) \\ 0 & \text{otherwise} \end{cases}$$

• ex: $P(P_{1,1},...,P_{4,4}) = 0.2^3 \cdot (1 - 0.2)^{15-3} \approx 0.00055$ if 3 pits

Specifying the probability model

- Apply the product rule to the joint distribution $P(P_{1,1},...,P_{4,4},B_{1,1},B_{1,2},B_{2,1}) = P(B_{1,1},B_{1,2},B_{2,1}|P_{1,1},...,P_{4,4}) P(P_{1,1},...,P_{4,4})$
- \bullet **P**($B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, ..., P_{4,4}$) deterministic:
 - 1 if one pit is adjacent to breeze,
 - 0 otherwise
- $P(P_{1,1},...,P_{4,4})$: pits are placed randomly except in (1,1):

$$P(P_{1,1},...,P_{4,4}) = \prod_{i=1}^{4} \prod_{j=1}^{4} P(P_{i,j})$$

$$P(P_{i,j}) = \begin{cases} 0.2 & \text{if } (i,j) \neq (1,1) \\ 0 & \text{otherwise} \end{cases}$$

• ex: $P(P_{1,1},...,P_{4,4}) = 0.2^3 \cdot (1-0.2)^{15-3} \approx 0.00055$ if 3 pits

Specifying the probability model

- Apply the product rule to the joint distribution $\mathbf{P}(P_{1,1},...,P_{4,4},B_{1,1},B_{1,2},B_{2,1}) = \mathbf{P}(B_{1,1},B_{1,2},B_{2,1}|P_{1,1},...,P_{4,4}) \mathbf{P}(P_{1,1},...,P_{4,4})$
- $P(B_{1,1}, B_{1,2}, B_{2,1}|P_{1,1}, ..., P_{4,4})$ deterministic:
 - 1 if one pit is adjacent to breeze,
 - 0 otherwise
- $P(P_{1,1},...,P_{4,4})$: pits are placed randomly except in (1,1):

$$P(P_{1,1},...,P_{4,4}) = \prod_{i=1}^{4} \prod_{j=1}^{4} P(P_{i,j})$$

$$P(P_{i,j}) = \begin{cases} 0.2 & \text{if } (i,j) \neq (1,1) \\ 0 & \text{otherwise} \end{cases}$$

• ex: $P(P_{1,1},...,P_{4,4}) = 0.2^3 \cdot (1 - 0.2)^{15-3} \approx 0.00055$ if 3 pits

Inference by enumeration

- General form of query: $P(Y|E=e) = \alpha P(Y,E=e) = \alpha \sum_{h} P(Y,E=e,H=h)$
 - Y: query vars; E,e: evidence vars/values; H,h: hidden vars/values
- Our case: $P(P_{1,3}|p^*,b^*)$, s.t. the evidence is
 - $b^* \stackrel{\text{def}}{=} \neg b_{1,1} \land b_{1,2} \land b_{2,1}$ • $p^* \stackrel{\text{def}}{=} \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$
- Sum over hidden variables:

$$\mathbf{P}(P_{1,3}|p^*,b^*) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3}|p^*,b^*,unknown)$$
• $unknown$ are all P_{ij} 's s.t.

 $(i,j) \notin \{(1,1),(1,2),(2,1),(1,3)\}$
 $\Rightarrow 2^{16-4} = 4096$ terms of the sum.

- Grows exponentially in the number of hidden variables H!
 ⇒ Inefficient
- Can we do better?

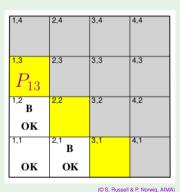
Inference by enumeration

- General form of query: $P(Y|E=e) = \alpha P(Y,E=e) = \alpha \sum_{h} P(Y,E=e,H=h)$
 - Y: query vars; E,e: evidence vars/values; H,h: hidden vars/values
- Our case: $P(P_{1,3}|p^*, b^*)$, s.t. the evidence is
 - $\bullet \ b^* \stackrel{\mathsf{def}}{=} \neg b_{1,1} \land \ b_{1,2} \land \ b_{2,1}$
 - $\bullet \ p^* \stackrel{\mathsf{def}}{=} \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$
- Sum over hidden variables:

$$\mathbf{P}(P_{1,3}|p^*,b^*) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3}|p^*,b^*,unknown)$$
• $unknown$ are all P_{ij} 's s.t.

 $(i,j) \notin \{(1,1),(1,2),(2,1),(1,3)\}$

- Grows exponentially in the number of hidden variables H!
 Inefficient
- Can we do better?

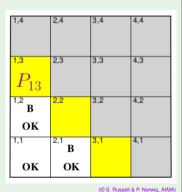


Inference by enumeration

- General form of query: $P(Y|E=e) = \alpha P(Y,E=e) = \alpha \sum_{h} P(Y,E=e,H=h)$
 - Y: query vars; E,e: evidence vars/values; H,h: hidden vars/values
- Our case: $P(P_{1,3}|p^*,b^*)$, s.t. the evidence is
 - $\bullet b^* \stackrel{\text{def}}{=} \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$
 - $\bullet \ p^* \stackrel{\mathsf{def}}{=} \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$
- Sum over hidden variables:

$$\mathbf{P}(P_{1,3}|p^*,b^*) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3}|p^*,b^*,unknown)$$

- unknown are all P_{ij} 's s.t. $(i,j) \notin \{(1,1), (1,2), (2,1), (1,3)\}$
- \implies 2¹⁶⁻⁴ = 4096 terms of the sum!
- Grows exponentially in the number of hidden variables H!
 ⇒ Inefficient
- Can we do better?

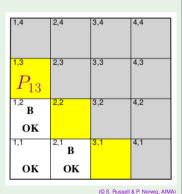


Inference by enumeration

- General form of query: $P(Y|E=e) = \alpha P(Y,E=e) = \alpha \sum_{h} P(Y,E=e,H=h)$
 - Y: query vars; E,e: evidence vars/values; H,h: hidden vars/values
- Our case: $P(P_{1,3}|p^*, b^*)$, s.t. the evidence is
 - $\bullet b^* \stackrel{\text{def}}{=} \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$
 - $\bullet \ p^* \stackrel{\mathsf{def}}{=} \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$
- Sum over hidden variables:

$$\mathbf{P}(P_{1,3}|p^*,b^*) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3}|p^*,b^*,unknown)$$

- unknown are all P_{ij} 's s.t. $(i,j) \notin \{(1,1), (1,2), (2,1), (1,3)\}$
- \implies 2¹⁶⁻⁴ = 4096 terms of the sum!
- Grows exponentially in the number of hidden variables H!
 ⇒ Inefficient
- Can we do better?

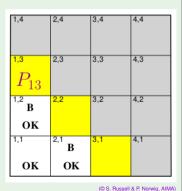


Inference by enumeration

- General form of query: $P(Y|E=e) = \alpha P(Y,E=e) = \alpha \sum_{h} P(Y,E=e,H=h)$
 - Y: query vars; E,e: evidence vars/values; H,h: hidden vars/values
- Our case: $P(P_{1,3}|p^*,b^*)$, s.t. the evidence is
 - $\bullet \ b^* \stackrel{\mathsf{def}}{=} \neg b_{1,1} \wedge \ b_{1,2} \wedge \ b_{2,1}$
 - $\bullet \ p^* \stackrel{\mathsf{def}}{=} \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$
- Sum over hidden variables:

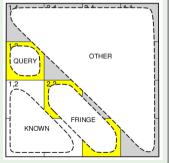
$$\mathbf{P}(P_{1,3}|p^*,b^*) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3}|p^*,b^*,unknown)$$

- unknown are all P_{ij} 's s.t. $(i,j) \notin \{(1,1), (1,2), (2,1), (1,3)\}$
- \implies 2¹⁶⁻⁴ = 4096 terms of the sum!
- Grows exponentially in the number of hidden variables H!
 ⇒ Inefficient
- Can we do better?



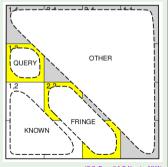
Exploiting conditional independence

- Basic insight: Given the fringe squares (see below), b^* is conditionally independent of the other hidden squares
 - $Unknown \stackrel{\text{def}}{=} Fringe \cup Other$
- $\Rightarrow \mathbf{P}(b^*|p^*,P_{1,3},Unknown) \stackrel{\text{def}}{=} \mathbb{P}(b^*|p^*,P_{1,3},Fringe,Others) = \mathbf{P}(b^*|p^*,P_{1,3},Fringe)$
- Next: manipulate the query into a form where this equation can be used



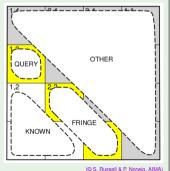
Exploiting conditional independence

- Basic insight: Given the fringe squares (see below), b* is conditionally independent of the other hidden squares
 - Unknown ^{def} Fringe ∪ Other
- \implies $P(b^*|p^*, P_{1,3}, Unknown) \stackrel{\text{def}}{=} P(b^*|p^*, P_{1,3}, Fringe, Others) = P(b^*|p^*, P_{1,3}, Fringe)$
 - Next: manipulate the query into a form where this equation can be used



Exploiting conditional independence

- Basic insight: Given the fringe squares (see below), b^* is conditionally independent of the other hidden squares
 - $Unknown \stackrel{\text{def}}{=} Fringe \cup Other$
- \implies **P**($b^*|p^*, P_{1,3}, Unknown$) $\stackrel{\text{def}}{=}$ **P**($b^*|p^*, P_{1,3}, Fringe, Others$) = **P**($b^*|p^*, P_{1,3}, Fringe$)
 - Next: manipulate the query into a form where this equation can be used



 $\mathbf{P}(p^*, b^*) = P(p^*, b^*)$ is scalar; use as a normalization constant

$$\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*) / \underline{\mathbf{P}(p^*,b^*)} = \underline{\alpha} \mathbf{P}(P_{1,3},p^*,b^*)$$

Sum over the unknowns

$$\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*)/\mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*)$$
$$= \alpha \sum_{unknown} \mathbf{P}(P_{1,3},\underline{unknown},p^*,b^*)$$

Use the product rule

$$\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*)/\mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*)$$

$$= \alpha \sum_{\substack{unknown \\ unknown}} \mathbf{P}(P_{1,3},unknown,p^*,\underline{b^*})$$

$$= \alpha \sum_{\substack{unknown \\ unknown}} \mathbf{P}(\underline{b^*}|P_{1,3},p^*,unknown)\mathbf{P}(P_{1,3},p^*,unknown)$$

Separate unknown into fringe and other

$$\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*)/\mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*)$$

$$= \alpha \sum_{\substack{unknown \\ unknown}} \mathbf{P}(P_{1,3},unknown,p^*,b^*)$$

$$= \alpha \sum_{\substack{unknown \\ pringe \ other}} \mathbf{P}(b^*|P_{1,3},p^*,\underline{unknown})\mathbf{P}(P_{1,3},p^*,\underline{unknown})$$

$$= \alpha \sum_{\substack{fringe \ other}} \sum_{\substack{nuknown \\ pringe \ other}} \mathbf{P}(b^*|p^*,P_{1,3},\underline{fringe,other})\mathbf{P}(P_{1,3},p^*,\underline{fringe,other})$$

b* is conditionally independent of other given fringe

$$\begin{split} \mathbf{P}(P_{1,3}|p^*,b^*) &= \mathbf{P}(P_{1,3},p^*,b^*)/\mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,p^*,b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(b^*|P_{1,3},p^*,unknown)\mathbf{P}(P_{1,3},p^*,unknown) \\ &= \alpha \sum_{fringe\ other} \sum_{other} \mathbf{P}(b^*|p^*,P_{1,3},\underline{fringe},other) \mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{fringe\ other} \sum_{other} \mathbf{P}(b^*|p^*,P_{1,3},\underline{fringe})\mathbf{P}(P_{1,3},p^*,fringe,other) \end{split}$$

Move $P(b^*|p^*, P_{1,3}, fringe)$ outward

$$\begin{split} \mathbf{P}(P_{1,3}|p^*,b^*) &= \mathbf{P}(P_{1,3},p^*,b^*)/\mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,p^*,b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(b^*|P_{1,3},p^*,unknown)\mathbf{P}(P_{1,3},p^*,unknown) \\ &= \alpha \sum_{fringe\ other} \sum_{other} \mathbf{P}(b^*|p^*,P_{1,3},fringe,other)\mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{fringe\ other} \sum_{other} \mathbf{P}(b^*|p^*,P_{1,3},fringe)\mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{fringe\ other} \mathbf{P}(b^*|p^*,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3},p^*,fringe,other) \end{split}$$

All of the pit locations are independent

$$\begin{split} &\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*)/\mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,p^*,b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(b^*|P_{1,3},p^*,unknown)\mathbf{P}(P_{1,3},p^*,unknown) \\ &= \alpha \sum_{fringe\ other} \mathbf{P}(b^*|p^*,P_{1,3},fringe,other)\mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{fringe\ other} \mathbf{P}(b^*|p^*,P_{1,3},fringe)\mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{fringe} \mathbf{P}(b^*|p^*,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{fringe} \mathbf{P}(b^*|p^*,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{fringe} \mathbf{P}(b^*|p^*,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3},p^*,fringe) \mathbf{P}(other) \end{split}$$

Move $P(p^*)$, $P(P_{1,3})$, and P(fringe) outward

$$\begin{split} &\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*)/\mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*) \\ &= \alpha \sum_{\substack{unknown\\unknown}} \mathbf{P}(P_{1,3},unknown,p^*,b^*) \\ &= \alpha \sum_{\substack{unknown\\unknown}} \mathbf{P}(b^*|P_{1,3},p^*,unknown)\mathbf{P}(P_{1,3},p^*,unknown) \\ &= \alpha \sum_{\substack{fringe\ other}} \sum_{\substack{p(b^*|p^*,P_{1,3},fringe\ other)}} \mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{\substack{fringe\ other}} \sum_{\substack{p(b^*|p^*,P_{1,3},fringe\ other)}} \mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{\substack{fringe\ other}} \mathbf{P}(b^*|p^*,P_{1,3},fringe) \sum_{\substack{other}} \mathbf{P}(P_{1,3})p(p^*)P(fringe)P(other) \\ &= \alpha \sum_{\substack{fringe\ other}} \mathbf{P}(b^*|p^*,P_{1,3},fringe) \sum_{\substack{other}} \mathbf{P}(P_{1,3})P(p^*)P(fringe)P(other) \\ &= \alpha \underbrace{P(p^*)P(P_{1,3})}_{fringe} \mathbf{P}(b^*|p^*,P_{1,3},fringe)P(fringe) \sum_{\substack{other}} P(other) \end{split}$$

Remove $\sum_{other} P(other)$ because it equals 1

$$\begin{split} &\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*)/\mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,p^*,b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(b^*|P_{1,3},p^*,unknown)\mathbf{P}(P_{1,3},p^*,unknown) \\ &= \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b^*|p^*,P_{1,3},fringe,other)\mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b^*|p^*,P_{1,3},fringe)\mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{fringe} \mathbf{P}(b^*|p^*,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{fringe} \mathbf{P}(b^*|p^*,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3})P(p^*)P(fringe)P(other) \\ &= \alpha P(p^*)\mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b^*|p^*,P_{1,3},fringe)P(fringe) \underbrace{\sum_{other} P(other)}_{other} \\ &= \alpha P(p^*)\mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b^*|p^*,P_{1,3},fringe)P(fringe) \underbrace{\sum_{other} P(other)}_{other} \end{aligned}$$

$P(p^*)$ is scalar, so make it part of the normalization constant

$$\begin{split} &\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*)/\mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,p^*,b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(b^*|P_{1,3},p^*,unknown)\mathbf{P}(P_{1,3},p^*,unknown) \\ &= \alpha \sum_{fringe\ other} \sum \mathbf{P}(b^*|p^*,P_{1,3},fringe,other)\mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{fringe\ other} \sum \mathbf{P}(b^*|p^*,P_{1,3},fringe)\mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{fringe} \mathbf{P}(b^*|p^*,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{fringe} \mathbf{P}(b^*|p^*,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3})P(p^*)P(fringe)P(other) \\ &= \alpha P(p^*)\mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b^*|p^*,P_{1,3},fringe)P(fringe) \sum_{other} P(other) \\ &= \underline{\alpha} P(p^*)\mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b^*|p^*,P_{1,3},fringe)P(fringe) \\ &= \underline{\alpha'} \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b^*|p^*,P_{1,3},fringe)P(fringe) \end{split}$$

- We have obtained: $P(P_{1,3}|p^*,b^*) = \alpha' P(P_{1,3}) \sum_{fringe} P(b^*|p^*,P_{1,3},fringe) P(fringe)$
- We know that $P(P_{1,3}) = \langle 0.2, 0.8 \rangle$ (see slide 38)
- ullet We can compute the normalization coefficient lpha' afterwards
- $\sum_{fringe} P(b^*|p^*, P_{1,3}, fringe) P(fringe)$: only 4 possible fringes
- Start by rewriting as two separate equations:

$$\mathbf{P}(\ p_{1,3}|p^*,b^*) = \alpha' P(\ p_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,\ p_{1,3},\textit{fringe}) P(\textit{fringe})$$

$$\mathbf{P}(\neg p_{1,3}|p^*,b^*) = \alpha' P(\neg p_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,\neg p_{1,3},\textit{fringe}) P(\textit{fringe})$$

- We have obtained: $P(P_{1,3}|p^*,b^*) = \alpha' P(P_{1,3}) \sum_{fringe} P(b^*|p^*,P_{1,3},fringe) P(fringe)$
- We know that $P(P_{1,3}) = (0.2, 0.8)$ (see slide 38)
- ullet We can compute the normalization coefficient lpha' afterwards
- $\sum_{fringe} P(b^*|p^*, P_{1,3}, fringe) P(fringe)$: only 4 possible fringes
- Start by rewriting as two separate equations:

```
 \mathbf{P}(\ p_{1,3}|p^*,b^*) = \alpha' P(\ p_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,\ p_{1,3},\textit{fringe}) P(\textit{fringe}) 
 \mathbf{P}(\neg p_{1,3}|p^*,b^*) = \alpha' P(\neg p_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,\neg p_{1,3},\textit{fringe}) P(\textit{fringe})
```

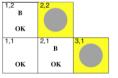
- We have obtained: $P(P_{1,3}|p^*,b^*) = \alpha' P(P_{1,3}) \sum_{fringe} P(b^*|p^*,P_{1,3},fringe) P(fringe)$
- We know that $P(P_{1,3}) = (0.2, 0.8)$ (see slide 38)
- We can compute the normalization coefficient α' afterwards
- $\sum_{fringe} P(b^*|p^*, P_{1,3}, fringe) P(fringe)$: only 4 possible fringes
- Start by rewriting as two separate equations:

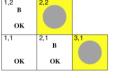
```
\begin{array}{l} \mathbf{P}(\ \ p_{1,3}|p^*,b^*) = \alpha' P(\ \ p_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,\ \ p_{1,3},\textit{fringe}) P(\textit{fringe}) \\ \mathbf{P}(\neg p_{1,3}|p^*,b^*) = \alpha' P(\neg p_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,\neg p_{1,3},\textit{fringe}) P(\textit{fringe}) \end{array}
```

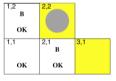
- We have obtained: $P(P_{1,3}|p^*,b^*) = \alpha' P(P_{1,3}) \sum_{fringe} P(b^*|p^*,P_{1,3},fringe) P(fringe)$
- We know that $P(P_{1,3}) = (0.2, 0.8)$ (see slide 38)
- We can compute the normalization coefficient α' afterwards
- $\sum_{fringe} P(b^*|p^*, P_{1,3}, fringe) P(fringe)$: only 4 possible fringes
- Start by rewriting as two separate equations:

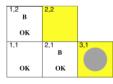
$$\mathbf{P}(\ p_{1,3}|p^*,b^*) = \alpha' P(\ p_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,\ p_{1,3},\textit{fringe}) P(\textit{fringe})$$

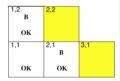
$$\mathbf{P}(\neg p_{1,3}|p^*,b^*) = \alpha' P(\neg p_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,\neg p_{1,3},\textit{fringe}) P(\textit{fringe})$$











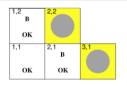
$$0.8 \times 0.8 = 0.64$$

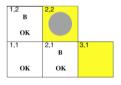
(@ S. Russell & P. Norwig, AIMA)

- We have obtained: $P(P_{1,3}|p^*,b^*) = \alpha' P(P_{1,3}) \sum_{fringe} P(b^*|p^*,P_{1,3},fringe) P(fringe)$
- We know that $P(P_{1,3}) = (0.2, 0.8)$ (see slide 38)
- We can compute the normalization coefficient α' afterwards
- $\sum_{fringe} P(b^*|p^*, P_{1,3}, fringe) P(fringe)$: only 4 possible fringes
- Start by rewriting as two separate equations:

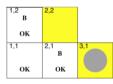
$$\begin{array}{l} \mathbf{P}(\ \ p_{1,3}|p^*,b^*) = \alpha' P(\ \ p_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,\ \ p_{1,3},\textit{fringe}) P(\textit{fringe}) \\ \mathbf{P}(\neg p_{1,3}|p^*,b^*) = \alpha' P(\neg p_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,\neg p_{1,3},\textit{fringe}) P(\textit{fringe}) \end{array}$$

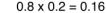
Four possible fringes:

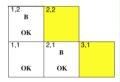




0.2	х	0.8	3 =	0.1	16







$$0.8 \times 0.8 = 0.64$$

(@ S. Russell & P. Norwig, AIMA)

Start by rewriting as two separate equations:

```
\begin{array}{l} \mathbf{P}(\ \ p_{1,3}|p^*,b^*) = \alpha' P(\ \ p_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,\ \ p_{1,3},\textit{fringe}) P(\textit{fringe}) \\ \mathbf{P}(\neg p_{1,3}|p^*,b^*) = \alpha' P(\neg p_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,\neg p_{1,3},\textit{fringe}) P(\textit{fringe}) \end{array}
```

For each of them, $P(b^*|...)$ is 1 if the breezes occur, 0 otherwise:

$$\sum_{\textit{fringe}} \mathsf{P}(b^*|p^*, \ p_{1,3}, \textit{fringe}) P(\textit{fringe}) = 1 \cdot 0.04 + 1 \cdot 0.16 + 1 \cdot 0.16 + 0 \cdot 0.64 = 0.3$$

$$\sum_{\textit{fringe}} \mathsf{P}(b^*|p^*, \neg p_{1,3}, \textit{fringe}) P(\textit{fringe}) = 1 \cdot 0.04 + 1 \cdot 0.16 + 0 \cdot 0.16 + 0 \cdot 0.64 = 0.3$$

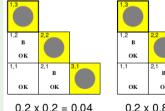
$$\implies \mathbf{P}(P_{1,3}|p^*,b^*) = \alpha' \mathbf{P}(P_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,P_{1,3},\textit{fringe}) P(\textit{fringe}) \\ = \alpha' \langle 0.2,0.8 \rangle \langle 0.36,0.2 \rangle = \alpha' \langle 0.072,0.16 \rangle = (\textit{normalization}, \textit{s.t.} \; \alpha' \approx 4.31) \approx \langle 0.31,0.69 \rangle$$

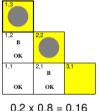
Start by rewriting as two separate equations:

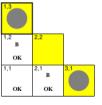
$$\begin{array}{l} \mathbf{P}(\ \ p_{1,3}|p^*,b^*) = \alpha' P(\ \ p_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,\ \ p_{1,3},\textit{fringe}) P(\textit{fringe}) \\ \mathbf{P}(\neg p_{1,3}|p^*,b^*) = \alpha' P(\neg p_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,\neg p_{1,3},\textit{fringe}) P(\textit{fringe}) \end{array}$$

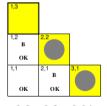
ullet For each of them, $P(b^*|...)$ is 1 if the breezes occur, 0 otherwise:

 \Rightarrow $\mathbf{P}(P_{1,3}|p^*,b^*) = \alpha'\mathbf{P}(P_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,P_{1,3},\textit{fringe}) P(\textit{fringe}) = \alpha'\langle 0.2,0.8\rangle\langle 0.36,0.2\rangle = \alpha'\langle 0.072,0.16\rangle = (\textit{normalization}, \textit{s.t.} \; \alpha' \approx 4.31) \approx \langle 0.31,0.69\rangle$









$$0.8 \times 0.2 = 0.16$$
 $0.2 \times 0.2 = 0.04$

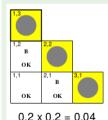
Start by rewriting as two separate equations:

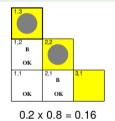
$$\begin{array}{l} \mathbf{P}(\ \ p_{1,3}|p^*,b^*) = \alpha' P(\ \ p_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,\ \ p_{1,3},\textit{fringe}) P(\textit{fringe}) \\ \mathbf{P}(\neg p_{1,3}|p^*,b^*) = \alpha' P(\neg p_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b^*|p^*,\neg p_{1,3},\textit{fringe}) P(\textit{fringe}) \end{array}$$

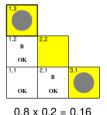
• For each of them, $P(b^*|...)$ is 1 if the breezes occur, 0 otherwise: $\sum_{\textit{fringe}} \mathbf{P}(b^*|p^*, p_{1,3}, \textit{fringe}) P(\textit{fringe}) = 1 \cdot 0.04 + 1 \cdot 0.16 + 1 \cdot 0.16 + 0 \cdot 0.64 = 0.36$ $\sum_{\textit{fringe}} \mathbf{P}(b^*|p^*, \neg p_{1,3}, \textit{fringe}) P(\textit{fringe}) = 1 \cdot 0.04 + 1 \cdot 0.16 + 0 \cdot 0.16 + 0 \cdot 0.64 = 0.2$

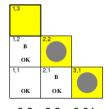
⇒
$$P(P_{1,3}|p^*,b^*) = \alpha' P(P_{1,3}) \sum_{fringe} P(b^*|p^*,P_{1,3},fringe) P(fringe)$$

= $\alpha' \langle 0.2,0.8 \rangle \langle 0.36,0.2 \rangle = \alpha' \langle 0.072,0.16 \rangle = (normalization, s.t. \alpha' \approx 4.31) \approx \langle 0.31,0.69 \rangle$









Exercise

Compute $\mathbf{P}(P_{2,2}|p^*,b^*)$ in the same way.