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0 Ontologies and Ontological Engineering
e Categories and Objects
© Reasoning about Knowledge

e Reasoning about Categories
@ Semantic Networks (hints)
@ Description Logics
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e how do we represent facts about the world?

4/41



Generalities

Q: What content do we put into an agent’s KB?

e how do we organize such content?
e how do we represent facts about the world?

@ A whole Al field: Knowledge Representation, KR

e often combined with Automated Reasoning on KB
— Knowledge Representation & Reasoning, KRR

4/41



Generalities

Q: What content do we put into an agent’s KB?

e how do we organize such content?
e how do we represent facts about the world?

@ A whole Al field: Knowledge Representation, KR

e often combined with Automated Reasoning on KB
— Knowledge Representation & Reasoning, KRR

@ KR: use logics (e.g. FOL) to represent the most important aspects of the real world, such as:

action, space, time, knowledge, belief

4/41



Generalities

Q: What content do we put into an agent’s KB?

e how do we organize such content?
e how do we represent facts about the world?

@ A whole Al field: Knowledge Representation, KR

o
=

@ KR: use logics (e.g. FOL) to represent the most important aspects of the real world, such as:

often combined with Automated Reasoning on KB
Knowledge Representation & Reasoning, KRR

action, space, time, knowledge, belief
@ Topics:

ontologies and ontological engineering

objects and categories, composite objects, measurements, ...
actions and change, events, temporal intervals, ...

reasoning about knowledge & beliefs

reasoning about categories

default reasoning
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Knowledge Engineering and Ontological Engineering

Knowledge Engineering

@ The activity to formalize a specific problem or task domain
@ Relevant questions to be addressed:

e What are the relevant facts, objects, relations ... ?
e Which is the right level of abstraction?
o What are the queries to the KB (inferences)?
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Knowledge Engineering

@ The activity to formalize a specific problem or task domain
@ Relevant questions to be addressed:

e What are the relevant facts, objects, relations ... ?
e Which is the right level of abstraction?
o What are the queries to the KB (inferences)?

Ontological Engineering

@ The activity to build general-purpose ontologies

e should be applicable in any special-purpose domain (with the addition of domain-specific axioms)
@ In non trivial domains, reasoning and problem solving could involve several areas of knowledge
simultaneously
= different areas of knowledge must be combined

@ Several attempts to build general-purpose ontologies

e CYC, DBpedia, TextRunner, ...
@ not very successful so far
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Categories and Objects

Categories, Objects, Members and Subclasses

@ KR requires the organisation of objects into categories
@ interaction at the level of the object
@ reasoning at the level of categories
e ex: typically we want to buy a basketball, rather than a particular basketball instance
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Categories, Objects, Members and Subclasses

@ KR requires the organisation of objects into categories

@ interaction at the level of the object

@ reasoning at the level of categories

e ex: typically we want to buy a basketball, rather than a particular basketball instance
@ Categories play a role in predictions about objects

@ agent infers the presence of certain objects from perceptual input
@ infers category from the perceived properties of the objects,
@ uses category information to make predictions about the objects

@ Categories can be represented in two ways by FOL

o predicates (ex Basketball(x)): relations

e reification of categories into objects (ex Basketballs): sets

— allows categories to be argument of predicates/functions

@ Membership of a category as set membership

o ex: Member(b, Basketballs) (abbr. b € Basketballs)
@ Subcategories (aka subclasses) are (strict) subsets

e ex: Subset(Basketballs, Balls) (abbr. Basketballs C Balls)




Categories and Objects [cont.]

Inheritance and Taxonomies

@ A subcategory inherits the properties of the category
@ ex:
if Vx.(x € Food — Edible(x)), Fruit C Food, Apples C Fruit
then Vx.(x € Apple — Edible(x))
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Categories and Objects [cont.]

Inheritance and Taxonomies

@ A subcategory inherits the properties of the category

° ex:
if Vx.(x € Food — Edible(x)), Fruit C Food, Apples C Fruit
then Vx.(x € Apple — Edible(x))

@ A member inherits the properties of the category
o if a € Apples, then Edible(a)

@ Subclass relation organize categories into taxonomies
(aka taxonomic hierarchies)
@ ex: taxonomy of >10M living&extinct species
e ex: Dewey Decimal System: taxonomy of all fields of knowledge
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Categories and Objects [cont.]

FOL Reasoning about Categories
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Categories and Objects [cont.]

FOL Reasoning about Categories
@ FOL allows to state facts about categories:

an object is a member of a category

BBy € Basketballs

a category is a subclass of another category

Basketballs C Balls

all members of a category have some properties

Vx.(x € Basketballs — Spherical(x))

members of a category can be recognized by some properties

Vx.((Orange(x) A Round(x) A Diameter(x) = 9.5" A x € Balls)
— X € Basketballs)

category as a whole has some properties

Dogs € DomesticatedSpecies
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FOL Reasoning about Categories

@ FOL allows to state facts about categories:

@ an object is a member of a category
BBy € Basketballs

@ a category is a subclass of another category
Basketballs C Balls

e all members of a category have some properties
Vx.(x € Basketballs — Spherical(x))

e members of a category can be recognized by some properties
Vx.((Orange(x) A Round(x) A Diameter(x) = 9.5" A x € Balls)

— X € Basketballs)

e category as a whole has some properties

Dogs € DomesticatedSpecies

@ New categories can be defined by providing necessary and sufficient conditions for
membership
@ Vx.(x € Bachelors +» (Unmarried(x) A x € Adults \ x € Males))
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Categories and Objects [cont.]

Derived relations

@ Two or more categories in a set s are disjoint iff they have no members in common
e Disjoint(s) ++ (VciCa. ((¢1 € SAC € SACH # C2)
— Intersection(cy, ¢2) = 0)
@ ex:
Disjoint({ Animals, Vegetables}), Disjoint({ Insects, Birds, Mammals, Reptiles}),
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Categories and Objects [cont.]

Derived relations

@ Two or more categories in a set s are disjoint iff they have no members in common

e Disjoint(s) ++ (VciCa. ((¢1 € SAC € SACH # C2)

— Intersection(cy, ¢2) = 0)
@ ex:
Disjoint({ Animals, Vegetables}), Disjoint({ Insects, Birds, Mammals, Reptiles}),
@ A set of categories s is an exhaustive decomposition of a category c iff all members of ¢ are
covered by categories in s

e ExaustiveDecomposition(s, ¢) <> Vi.(iec + (3c.(c2E€SNIE)))

e ex: E.D.({Americans, Canadians, Mexicans}, NorthAmericans)
@ A disjoint exhaustive decomposition is a partition

e Partition(s, c) <> (Disjoint(s) A ExhaustiveDecomposition(s, c))

e ex: Partition({ Northernltalians, Centralltalians, Southernltalians, Insularltalians}, ltalians)
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Digression: Natural Kinds

@ Many categories have no clear-cut definition (ex: chair, bush, ...)
o Ex: tomatoes are sometimes green, red, yellow, black; they are mostly round
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Digression: Natural Kinds

@ Many categories have no clear-cut definition (ex: chair, bush, ...)
o Ex: tomatoes are sometimes green, red, yellow, black; they are mostly round
@ One useful solution: category “Typical(.)”, s.t. Typical(c) C c
— most knowledge about natural kinds will actually be about their typical instances
e ex: Vx.(x € Typical( Tomatoes) — (Red(x) A Round(x)))

— We can write down useful facts about categories without providing exact definitions

Note
Quine (1953) challenged the utility of the notion of strict definition.

@ Ex: “bachelor”: is the Pope a bachelor?
— technically yes, but misleading
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Physical Composition

@ PartOf(.,.) relation: One object may be part of another
e PartOf(Bucharest, Romania)
e PartOf(Romania, EasternEurope)
e PartOf(EasternEurope, Europe)
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Physical Composition

@ PartOf(.,.) relation: One object may be part of another

e PartOf(Bucharest, Romania)
e PartOf(Romania, EasternEurope)
e PartOf(EasternEurope, Europe)

@ PartOf(.,.) is reflexive and transitive:

e Vx.PartOf(x, x)
e Vx,y,z.((PartOf(x,y) A PartOf(y, z)) — PartOf(x, z))
— PartOf(Bucharest, Europe)

@ Categories of composite objects are often characterized by structural relations among parts.
Ex: Biped
Biped(a) = 3lj,la,b Leg(l1) A Leg(l2) A Body(b) A
PartOf (11, a) A PartOf (I,a) A PartOf (b,a) A
Attached(l1,b) A Attached(l2,b) A
Iy #lo AN[VI3 Leg(l3) A PartOf (I3, a) = (I3=11 Viz=1)]

(©$S. Russell & P. Norwig, AIMA)
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@ PartOf(.,.) relation: One object may be part of another

e PartOf(Bucharest, Romania)
e PartOf(Romania, EasternEurope)
e PartOf(EasternEurope, Europe)

@ PartOf(.,.) is reflexive and transitive:

e Vx.PartOf(x, x)
e Vx,y,z.((PartOf(x, y) A PartOf(y, z)) — PartOf(x, z))
— PartOf(Bucharest, Europe)

@ Categories of composite objects are often characterized by structural relations among parts.
Ex: Biped
Biped(a) = 3lj,la,b Leg(l1) A Leg(l2) A Body(b) A
PartOf (11, a) A PartOf (I,a) A PartOf (b,a) A
Attached(l1,b) A Attached(l2,b) A
Iy #lo AN[VI3 Leg(l3) A PartOf (I3, a) = (I3=11 Viz=1)]
(05, Aussell & Nowi, AIVA)

@ Other concepts & relations: PartPartition, BunchOf...
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Measurements

Quantitative Measurements

@ Objects may have “quantitative” properties
@ e.g. height, mass, cost, ...

13/41



Measurements

Quantitative Measurements

@ Objects may have “quantitative” properties
@ e.g. height, mass, cost, ...

@ Values that we assign to these properties are measures

13/41



Measurements

Quantitative Measurements
@ Objects may have “quantitative” properties
@ e.g. height, mass, cost, ...
@ Values that we assign to these properties are measures
@ Can be represented by unit functions
e ex Length(Ly) = Inches(1.5) A Inches(1.5) = Centimeters(3.81)

13/41



Measurements

Quantitative Measurements
@ Objects may have “quantitative” properties
@ e.g. height, mass, cost, ...
@ Values that we assign to these properties are measures
@ Can be represented by unit functions
e ex Length(Ly) = Inches(1.5) A Inches(1.5) = Centimeters(3.81)
@ Conversion between units:
e Vi. Centimeters(2.54 x i) = Inches(i)

13/41



Measurements

Quantitative Measurements
@ Objects may have “quantitative” properties
@ e.g. height, mass, cost, ...
@ Values that we assign to these properties are measures
@ Can be represented by unit functions
e ex Length(Ly) = Inches(1.5) A Inches(1.5) = Centimeters(3.81)
@ Conversion between units:
e Vi. Centimeters(2.54 x i) = Inches(i)
@ Measures can be used to describe objects:

o ex: Diameter(Basketballiz) = Inches(9.5)
e ex: ListPrice(Basketballiz) = $(19)
e ex: Vd.(d € Days — Duration(d) = Hours(24))

13/41



Measurements [cont.]

Qualitative Measurements
@ Some measures have no scale
e ex: beauty, deliciousness, difficulty,...
@ Most important aspect of measures: they are orderable

e Ex: Deliciousness(SacherTorte) > Deliciousness(BrussellSprout)
o Ex: Beauty(PaulNewmann) > Beauty(MartyFeldman)
o Ex: Difficulty(Prove_P# NP) > Difficulty(SolvePuzzle)
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e ex: beauty, deliciousness, difficulty,...
@ Most important aspect of measures: they are orderable

e Ex: Deliciousness(SacherTorte) > Deliciousness(BrussellSprout)
o Ex: Beauty(PaulNewmann) > Beauty(MartyFeldman)
o Ex: Difficulty(Prove_P# NP) > Difficulty(SolvePuzzle)

@ Allow for reasoning by exploiting transitivity of monotonicity:
Ve ex.((es € Exercises N e € Exercises/\ Wrote(Norvig, e1) A Wrote(Russell, e2))
— Difficulty(er) > Difficulty(ez))
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Qualitative Measurements

@ Some measures have no scale
e ex: beauty, deliciousness, difficulty,...
@ Most important aspect of measures: they are orderable

e Ex: Deliciousness(SacherTorte) > Deliciousness(BrussellSprout)
o Ex: Beauty(PaulNewmann) > Beauty(MartyFeldman)
o Ex: Difficulty(Prove_P# NP) > Difficulty(SolvePuzzle)

@ Allow for reasoning by exploiting transitivity of monotonicity:
Ve ex.((es € Exercises N e € Exercises/\ Wrote(Norvig, e1) A Wrote(Russell, e2))
— Difficulty(e1) > Difficulty(ez))
Verex.((e1 € Exercises A e € Exercises A Difficulty(e1) > Difficulty(ez))
— ExpectedScore(e;) < ExpectedScore(ey))
Vei e:.(ExpectedScore(e1) < ExpectedScore(e;) — Pick(es, e2)=é
Then: (Wrote(Norvig, E1) A Wrote(Russell, E,)) = Pick(Eq, E2)=E

@ Qualitative physics: a subfield of Al that investigates how to reason about physical systems
without numerical computations
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Objects vs Stuff

@ There are countable objects
e e,9, apples, holes, theorems, ...
@ ... and mass objects, aka stuff or substances
e e.g. butter, water, energy, ...
— Intuitive meaning “an amount/quantity of...”
@ ex: b € butter: “b is an amount/quantity of butter”
@ Any part of stuff is still stuff:
e ex: Vb, p.((b € Butter A PartOf(p, b)) — p € Butter)
@ Can define sub-categories, which are stuff
e ex: UnsaltedButter C Butter
@ Stuff has a number of intrinsic properties, shared by its subparts

@ e.g., color, fat content, density ...
e ex: Vb.(b € Butter — MeltingPoint(b, Centigrade(30)))

@ Stuff has no extrinsic properties
e e.g., weight, length, shape, ...




Outline

© Reasoning about Knowledge
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Agents’ Attitudes

@ Intelligence is intrinsically social: agents need to negotiate and coordinate with other agents
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Agents’ Attitudes

@ Intelligence is intrinsically social: agents need to negotiate and coordinate with other agents

@ In multi-agents scenarios, to predict what other agents will do, we need methods to model
mental states of other agents

e representations of other agents’ knowledge (and beliefs, goals)
@ Agent’s Propositional attitudes: Knows, Believes, Wants,...
o ex “Lois Knows that Superman can fly”

Problem
Propositional attitudes do not behave as regular predicates
@ issue: Referential opacity vs. referential transparency
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Referential opacity vs. Referential transparency

@ Consider the assertion “Lois knows that Superman can fly”
@ Consider the FOL formalization: Knows(Lois, CanFly(Superman))
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Referential opacity vs. Referential transparency

@ Consider the assertion “Lois knows that Superman can fly”
@ Consider the FOL formalization: Knows(Lois, CanFly(Superman))
@ Minor Problem: CanFly(Superman) is a formula
— cannot occur as argument of a predicate
— must apply reification = make it a term
@ Major Problem (Referential Transparency of FOL):
e since Superman is Clark Kent (but Lois doesn’t know it!), FOL allows to conclude “Lois knows
that Clark Kent can fly”:
Superman= Clark A Knows(Lois, CanFly(Superman))
Ero. Knows(Lois, CanFly(Clark))
= Wrong inference! (Lois doesn’t know Clark Kent can fly!)
@ Hint: FOL predicates transparent to equality reasoning:
t=sA ID(S~ ) —=FoL P(t, )
@ Need a logic which is opaque to equality reasoning (aka Referential Opacity):
Modal Logics
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Modal Logics

@ Modal logics include special modal operators that take formulas (not terms!) as arguments
e “A knows P” is represented with KqP (P formula, not term!)
e ex: “Lois knows that Superman can fly”: Ki.isCanFly(Superman)
@ ex: “Lois knows Clark Kent knows if he is Superman or not”:
Klois(Kcrark Identity (Superman, Clark) v Kciarc—Identity (Superman, Clark))




Modal Logics
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@ ex: “Lois knows Clark Kent knows if he is Superman or not”:
Klois(Kciark Identity (Superman, Clark) v Keiark—Identity (Superman, Clark))
@ Properties in all modal logics:

) KA(P/\ Q) <— KuhP N KaQ
e KuPV KxQ ‘: KA(P\/ Q), but KA(P V Q) % KaP Vv KaQ (eg KA(P\/ —‘P) l# KaP Vv KA—‘P)

@ The following axiom holds in all (normal) modal logics:
K : (Kagp A Ka(¢ — 1) — Kat (distribution axiom): “A is able to perform propositional inference”

@ The following axioms hold in some (normal) modal logics:
T : Kap — ¢ (knowledge axiom): “A knows only true facts”
4 : Kap — KaKap (positive-introspection axiom): “If A knows fact ¢, then [s]he knows [s]he knows it”
5: =Kap — Ka—Kap (negative-introspection axiom):
“If A doesn’t know ¢, then [s]he knows [s]he doesn’t know it”
@ Referential Opacity: Superman= Clark A KioisCanFly(Superman) W~ Kiis CanFly(Clark)

@ Reasoning in (propositional) Modal logics is NP-hard (most often even PSPACE-hard)

= . =
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Semantics of Modal Logics

@ A model (Kripke model) is a collection of possible world states w; (aka worlds, states)

@ possible states are connected in a graph by accessibility relations
@ one relation for each distinct modal operator K

20 (4




Semantics of Modal Logics

@ A model (Kripke model) is a collection of possible world states w; (aka worlds, states)

@ possible states are connected in a graph by accessibility relations
@ one relation for each distinct modal operator K

@ w; is accessible from wy wrt. Ky if everything which holds in wy is consistent with what A
q . “ ” “ Ka »”
knows in wy (written “Acc(Ka, wo, w1)” or “wo —= w;”)
— Kap holds in w, iff ¢ holds in every state w; accessible from wy

o the more is known in wp, the less states are accessible from wy
e remark: two possible states may differ also for what an agent knows there

20 (4




Semantics of Modal Logics

@ A model (Kripke model) is a collection of possible world states w; (aka worlds, states)

@ possible states are connected in a graph by accessibility relations
@ one relation for each distinct modal operator K

@ w; is accessible from wy wrt. Ky if everything which holds in wy is consistent with what A
q . “ ” “ Ka »”
knows in wy (written “Acc(Ka, wo, w1)” or “wo —= w;”)
— Kap holds in w, iff ¢ holds in every state w; accessible from wy

o the more is known in wp, the less states are accessible from wy
e remark: two possible states may differ also for what an agent knows there

@ Different modal logics differ by different properties of Acc(Ka, ...)
o T : Kapy — » holds iff Acc(Ka, ...) reflexive: w »ﬁ> w
o 4: Kup — KaKap holds iff Acc(Ka, ...) transitive: wo —2 wy and wy 2 ws = wo % we
e 5: -Kap — Ka—Kap holds iff Acc(Ka, ...) euclidean: wo »ﬁ> wy and wo »& Wo —> Wy >ﬁ> Wa

5: euclidean

Ow

o7 ol o

T: reflexive 4: transitive

20 (4

)



Semantics of Modal Logics: Some Remarks

Assume the knowledge of A is correct: T : Kap — ¢ (“Everything which A knows holds”)
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Semantics of Modal Logics: Some Remarks

Assume the knowledge of A is correct: T : Kap — ¢ (“Everything which A knows holds”)

@ £ ¢ — Kap: Adoes not know everything which holds!
@ The less states are accessible, the more precise is the knowledge of A

@ uncertainty on some information makes accessible states different
— A does not know the state [s]he is
e complete knowledge: current state is the only successor of itself
— A knows exactly the state [s]he is
VO

Uncertainty Complete knowledge

Notice the difference:
@ Ku—P: agent A knows that P does not hold (in all accessible states P is false)
@ —KuP: agent A does not know if P holds (in some accessible states P is false)
— KAﬁP ': ﬁKAP, but ﬁ}(AP # KAﬁP

™ = =

S

o
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Semantics of Modal Logics: Example

Accessibility relations: Ksyperman (SOlid arrows) and Kio;s (dotted arrows).

@ lLegenda:
e R: “the weather report says tomorrow will rain”
o |: “Superman’s secret identity is Clark Kent.”
© Ex: Kiois(Kciark! vV Kciark—1): “Lois Knows that Clark Knows if he is Superman or not.”
@ Superman knows his own identity: Ksyperman! V Ksuperman—1, @and
(a) neither Superman nor Lois has seen the weather report, she knows Superman knows if he is Clark
(ﬁKLoisH A _‘KLois_‘H) A (_‘KSupermanH A _‘KSuperman_‘H)/\ KLois(KSupermanl V KSuperman_‘l)

w,: IR |¢————— w_! =[,R
-~ »

A * ~_ - * A
| PR |
YY o« - VY
w: Il R |4————— w: 2[R

(@) (self-loop arrows not reported)

(©S. Russell & P. Norwig, AIMA)
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(b) Lois has seen the weather report, Superman has not, but he knows that Lois has seen it
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w,: IR |+————| w. =[,R
A} ﬁt
Y Y
W IR |¢—————> W =/, R
(b)
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Accessibility relations: Ksyperman (S0lid arrows) and Kj.;s (dotted arrows).
@ Legenda:
e R: “the weather report says tomorrow will rain”
o |: “Superman’s secret identity is Clark Kent.”
o Ex: Kiois(Kciark! V Kciark—1): “Lois Knows that Clark Knows if he is Superman or not.”
@ Superman knows his own identity: Ksyperman! vV Ksuperman—1!, and
(c) Lois may or may not have seen the weather report, Superman has not:
((ﬁKLoisR A jKLor’sﬁR) V (KLoisR Vv KLoisﬁR)) A (_‘KSup.R A _‘KSup._‘R)
KLois(KSupermanl \ KSuperman_‘ / )

(self-loop arrows not reported)

(©S. Russell & P. Norwig, AIMA)

= v = =
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Accessibility relations: Ksyperman (S0lid arrows) and Kj.;s (dotted arrows).

@ Legenda:
e R: “the weather report says tomorrow will rain”
o |: “Superman’s secret identity is Clark Kent.”
o Ex: Kiois(Kciark! V Kciark—1): “Lois Knows that Clark Knows if he is Superman or not.”

@ Superman knows his own identity: Ksyperman! vV Ksuperman—1!, and
(c) Superman has not:
(ﬁKsup.R A —|K3up'—|R)
KLO/S(KSupermanl \ KSuperman_‘ / )

(self-loop arrows not reported)

(©S. Russell & P. Norwig, AIMA)

- = = = >y
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Exercise

Consider the previous example.
@ For each scenario (a), (b) and (c) define doubly-nested knowledge in terms of
(=] Krois[ =] KLois[ =]/,
[ﬁ]KLois[ﬁ]KLois[ﬁ]R;
[ﬁ] KSupA [ﬁ] KSup. [ﬁ] I,
[_‘] KSup< [_‘] KSup- [ﬁ] R
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Exercise

Consider (normal) modal logics (i.e., axioms K, T, 4 and 5 hold).
Let IsRed(Pen), IsOnTable(Pen) be possible facts, let Mary, John be agents and let Kiary , Kjonn
denote the modal operators “Mary knows that...” and “John knows that...” respectively.
For each of the following facts, say if it is true or false.
@ If Kyary—IsRed(Pen) holds, then —Kjy,, IsRed(Pen) holds
@ If =Kar IsRed(Pen) holds, then Kyar,—IsRed(Pen) holds

@ If KjonnlsRed(Pen) and IsRed(Pen) «+» IsOnTable(Pen) hold, then K on,IsOnTable(Pen)
holds

@ If KyarylsRed(Pen) and Kuyary (IsRed(Pen) — KjonnlsRed(Pen)) hold, then
Kwary KsonnIsRed(Pen)) holds
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Exercise

@ Why does the third logician answers “Yes”?
@ Formalize and solve the problem by means of modal logic (K+T+4+5)

THREE LOGICIANS WALK INTO A BAR...

DOES EVERYONE spikedmath.com
WANT BEER? [ I DON'T KNow. |
¢ ©90(lg ©

= .

»
oV

(Courtesy of Maria Simi, UniP1)




Outline

e Reasoning about Categories
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Outline

e Reasoning about Categories
@ Semantic Networks (hints)
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Reasoning Systems for Categories

Q. How to organize and reason with categories?
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Reasoning Systems for Categories

Q. How to organize and reason with categories?
@ Semantic Networks
e allow to visualize knowledge bases
o efficient algorithms for category membership inference
o limited expressivity
@ many variants

@ Description Logics (DLs)

e formal language for constructing and combining category definitions
o (relatively) efficient algorithms to decide subset and superset relationships between categories
e many DLs

@ up to very high expressivity

@ up to very high complexity (e.g., DOUBLY-EXPTIME)
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Semantic Networks

@ Allow for representing individual objects, categories of objects, and relations among objects
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Semantic Networks

@ Allow for representing individual objects, categories of objects, and relations among objects
@ A Semantic Network is a graph where:

@ nodes, with a label, correspond to concepts
@ arcs, labelled and directed, correspond to binary relations between concepts (aka roles)

@ Two kinds of nodes:

e Generic concepts, corresponding to categories/classes
e Individual concepts, corresponding to individuals

@ Two special relations are always present, with different names

o IS-A, aka SubsetOf/SubclassOf (subclass)
o InstanceOf aka MemberOf (membership)

@ Inheritance detection straightforward
@ Ability to represent default values for categories

@ Limited expressive power: cannot represent negation, disjunction, nested function symbols,
existential quantification
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Semantic Networks: Example

@ Notice

SubsetOf

SubsetOf SubsetOf
Female Male
Persons Persons

MemberOf MemberOf

SisterOf @ Legs

(©S. Russell & P. Norwig, AIMA) y
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Semantic Networks: Example

@ Notice

e “HasMother” is a relation between persons (individuals) (categories do not have mothers)
e “HasMother” (double-boxed notation) means
Vx.(x € Persons — [Vy.(HasMother(x, y) — y € FemalePersons)])

SubsetOf

HasMother

Craons ==
SubsetOf SubsetOf
Male
Persons
MemberOf MemberOf
SisterOf
Mary

(95 Russoll2 P Nonwig, AMA) |
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Semantic Networks: Example

@ Notice

e “HasMother” is a relation between persons (individuals) (categories do not have mothers)
e “HasMother” (double-boxed notation) means
Vx.(x € Persons — [Vy.(HasMother(x, y) — y € FemalePersons)])
e “Legs” is a property of single persons (individuals)
o “Legs” (single-boxed notation) means:

Vx.(x € Persons — Legs(x,2))

Sulnu‘Of

HasMother

( : h [O/

MemberOf MemberOf
SisterOf
Mary

(©S. Russell & P. Norwig, AIMA)

Y
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Inheritance in Semantic Networks

@ Inheritance conveniently implemented as
link traversal

] IS-A

H IS-A

I INST-OF

(Courtesy of Maria Simi, UniPI)

NLegs

4D
Color .
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link traversal

Q. How many legs has Clyde?

] IS-A

NLegs
Cotamnat 4D

IS-A
I INST-OF

(Courtesy of Maria Simi, UniPI)




Inheritance in Semantic Networks

@ Inheritance conveniently implemented as
link traversal

Q. How many legs has Clyde?

— follow the INST-OF/IS-A chain until find the
property NLegs

I IS-A

NLegs
Cotamnat 4D

IS-A
I INST-OF

(Courtesy of Maria Simi, UniPI)




Inheritance with Exceptions

The presence of exceptions does not create any problem with S.N.

I 1S-A
NLegs
@ How many legs has Pat? @ o
H IS-A

] INST-OF

(Courtesy of Maria Simi, UniPI)
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Inheritance with Exceptions

The presence of exceptions does not create any problem with S.N.

I 1S-A

NLegs
@ How many legs has Pat? @ o

@ Just take the most specific information: the

first that is found going up the hierarchy 1S4
¢ NLegs 3
] INST-OF

(Courtesy of Maria Simi, UniPI)
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Inheritance with Exceptions

The presence of exceptions does not create any problem with S.N.

I 1S-A

NLegs
@ How many legs has Pat? @ o

@ Just take the most specific information: the ISA
first that is found going up the hierarchy H

— ability to represent default values for %

categories
] INST-OF

(Courtesy of Maria Simi, UniPI)
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Encoding N-Ary Relations

@ Semantic networks allow only binary relations

(©S. Russell & P. Norwig, AIMA)
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Encoding N-Ary Relations

@ Semantic networks allow only binary relations
Q. How to represent n-ary relations?

(©S. Russell & P. Norwig, AIMA)
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Encoding N-Ary Relations

@ Semantic networks allow only binary relations
Q. How to represent n-ary relations?
— Reify the proposition as an event belonging to an appropriate event category
e ex “Fly7” for Fly(Shankar, NewYork, NewDelhi, Yesterday)

MemberOf

(©S. Russell & P. Norwig, AIMA)

SNl

33/41



Outline

e Reasoning about Categories

@ Description Logics
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o Classification: check whether an object belongs to a category
e Consistency: check if category membership criteria are satisfiable
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Description Logics

@ Designed to describe definitions and properties about categories
@ Principal inference tasks:

e Subsumption: check if one category is a subset (sub-category) of another
o Classification: check whether an object belongs to a category
e Consistency: check if category membership criteria are satisfiable

@ Defaults and exceptions are lost
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Concepts, Roles, Individuals

@ Concepts, corresponding to unary relations
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Concepts, Roles, Individuals

@ Concepts, corresponding to unary relations

T, L: universal and empty concepts

atomic concepts: ex: Female, Male, Article, Journalist,...

operators for the construction of complex concepts:

and (1), or (L), not (), all (V), some (3), atleast (> n), atmost (< n), ...

ex: mothers (i.e., women who have children) of at least three female children:

Woman 1 3hasChildren.Person 1 >3 hasChild.Female
ex: articles that have authors and whose authors are all journalists:
Article M 3hasAuthor. T M YhasAuthor.Journalist

@ Roles corresponding to binary relations

ex: hasAuthor, hasChild
can be combined with operators for constructing complex roles
hasChildren = hasSon || hasDaughter

@ Individuals (used in assertions only)
e ex: Mary, John
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T-Boxes and A-Boxes

@ Terminologies (T-Boxes): sets of
@ concepts definitions (Cy = Cy)
ex: Father = Man 1 3hasChild.Person
@ or concept generalizations (C; C Cy)
ex: Woman C Person
@ Assertions (A-Boxes): assert
@ individuals as concept members i : C,
where i is an individual and C is a concept
ex: mary : Person, john : Father
e individual pairs as relation members (i, ) : R,
where i,j are individuals and R is a relation
ex: (john, mary) : hasChild
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T-Box: Example (Logic ALCN)

Woman = Person[1Female
Man = Person[1—Woman
Mother = Woman @1 3hasChild.Person
Father = Man M1 3hasChild.Person
Parent = Father | Mother
Grandmother = Mother M 3hasChild. Parent
MotherWithManyChildren = Mother M 2 3 hasChild .Person
MotherWithoutDaughter = Mother M YhasChild.— Woman
Wife = Woman 1 3hasHusband. Man

ot C
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Reasoning Services for DLs

@ Design and management of ontologies

e consistency checking of concepts, creation of hierarchies
@ Ontology integration

@ Relations between concepts of different ontologies

e Consistency of integrated hierarchies
@ Queries

Determine whether facts are consistent wrt ontologies
Determine if individuals are instances of concepts

Retrieve individuals satisfying a query (concept)

Verify if a concept is more general than another (subsumption)

39/41



Querying a DL Ontology: Example

All the children of John are females. Mary is a child of John.
Tim is a friend of professor Blake. Prove that Mary is a female.

o AE {john : VhasChild.female, (john, mary) : hasChild,
(blake, tim) : hasFriend, blake : professor}

@ Query: mary : female (or: is A M mary : —female unsatisfiable?)
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All the children of John are females. Mary is a child of John.
Tim is a friend of professor Blake. Prove that Mary is a female.

o AE {john : VhasChild.female, (john, mary) : hasChild,
(blake, tim) : hasFriend, blake : professor}

@ Query: mary : female (or: is A M mary : —female unsatisfiable?)
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Exercise

Given:
@ a set of basic concepts: {Person, Male, Doctor, Engineer}
@ a set of relations: {hasChild}
with their obvious meaning. Write a 7-box in ALCN defining the following concepts
(a) Female, Man, Woman (with their standard meaning)
(b) femaleDoctorWithoutChildren: female doctor with no children
(c) fatherOfFemaleDoctor: father of at least two female doctors
(d) motherOfDoctorsOrEngineers: woman whose children are all engineers or 2 doctors

anon-exclusive or.
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