
Fundamentals of Artificial Intelligence
Chapter 12: Knowledge Representation

Roberto Sebastiani
DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it

https://disi.unitn.it/rseba/DIDATTICA/fai_2023/

Teaching assistants:
Mauro Dragoni, dragoni@fbk.eu, https://www.maurodragoni.com/teaching/fai/
Paolo Morettin, paolo.morettin@unitn.it, https://paolomorettin.github.io/

M.S. Course “Artificial Intelligence Systems”, academic year 2023-2024
Last update: Thursday 30th November, 2023, 17:05

Copyright notice: Most examples and images displayed in the slides of this course are taken from [Russell & Norwig, “Artificial Intelligence, a Modern Approach”, 3rd ed., Pearson],
including explicitly figures from the above-mentioned book, so that their copyright is detained by the authors. A few other material (text, figures, examples) is authored by (in alphabetical

order): Pieter Abbeel, Bonnie J. Dorr, Anca Dragan, Dan Klein, Nikita Kitaev, Tom Lenaerts, Michela Milano, Dana Nau, Maria Simi, who detain its copyright.
These slides cannot be displayed in public without the permission of the author. 1 / 41

roberto.sebastiani@unitn.it
https://disi.unitn.it/rseba/DIDATTICA/fai_2023/
dragoni@fbk.eu
https://www.maurodragoni.com/teaching/fai/
paolo.morettin@unitn.it
https://paolomorettin.github.io/

Outline

1 Ontologies and Ontological Engineering

2 Categories and Objects

3 Reasoning about Knowledge

4 Reasoning about Categories
Semantic Networks (hints)
Description Logics

2 / 41

Outline

1 Ontologies and Ontological Engineering

2 Categories and Objects

3 Reasoning about Knowledge

4 Reasoning about Categories
Semantic Networks (hints)
Description Logics

3 / 41

Generalities

Q: What content do we put into an agent’s KB?
how do we organize such content?
how do we represent facts about the world?

A whole AI field: Knowledge Representation, KR
often combined with Automated Reasoning on KB

=⇒ Knowledge Representation & Reasoning, KRR

KR: use logics (e.g. FOL) to represent the most important aspects of the real world, such as:
action, space, time, knowledge, belief
Topics:

ontologies and ontological engineering
objects and categories, composite objects, measurements, ...
actions and change, events, temporal intervals, ...
reasoning about knowledge & beliefs
reasoning about categories
default reasoning
...

4 / 41

Generalities

Q: What content do we put into an agent’s KB?
how do we organize such content?
how do we represent facts about the world?

A whole AI field: Knowledge Representation, KR
often combined with Automated Reasoning on KB

=⇒ Knowledge Representation & Reasoning, KRR

KR: use logics (e.g. FOL) to represent the most important aspects of the real world, such as:
action, space, time, knowledge, belief
Topics:

ontologies and ontological engineering
objects and categories, composite objects, measurements, ...
actions and change, events, temporal intervals, ...
reasoning about knowledge & beliefs
reasoning about categories
default reasoning
...

4 / 41

Generalities

Q: What content do we put into an agent’s KB?
how do we organize such content?
how do we represent facts about the world?

A whole AI field: Knowledge Representation, KR
often combined with Automated Reasoning on KB

=⇒ Knowledge Representation & Reasoning, KRR

KR: use logics (e.g. FOL) to represent the most important aspects of the real world, such as:
action, space, time, knowledge, belief
Topics:

ontologies and ontological engineering
objects and categories, composite objects, measurements, ...
actions and change, events, temporal intervals, ...
reasoning about knowledge & beliefs
reasoning about categories
default reasoning
...

4 / 41

Generalities

Q: What content do we put into an agent’s KB?
how do we organize such content?
how do we represent facts about the world?

A whole AI field: Knowledge Representation, KR
often combined with Automated Reasoning on KB

=⇒ Knowledge Representation & Reasoning, KRR

KR: use logics (e.g. FOL) to represent the most important aspects of the real world, such as:
action, space, time, knowledge, belief
Topics:

ontologies and ontological engineering
objects and categories, composite objects, measurements, ...
actions and change, events, temporal intervals, ...
reasoning about knowledge & beliefs
reasoning about categories
default reasoning
...

4 / 41

Knowledge Engineering and Ontological Engineering

Knowledge Engineering

The activity to formalize a specific problem or task domain
Relevant questions to be addressed:

What are the relevant facts, objects, relations ... ?
Which is the right level of abstraction?
What are the queries to the KB (inferences)?

Ontological Engineering

The activity to build general-purpose ontologies
should be applicable in any special-purpose domain (with the addition of domain-specific axioms)
In non trivial domains, reasoning and problem solving could involve several areas of knowledge
simultaneously
=⇒ different areas of knowledge must be combined

Several attempts to build general-purpose ontologies
CYC, DBpedia, TextRunner, ...
not very successful so far

5 / 41

Knowledge Engineering and Ontological Engineering

Knowledge Engineering

The activity to formalize a specific problem or task domain
Relevant questions to be addressed:

What are the relevant facts, objects, relations ... ?
Which is the right level of abstraction?
What are the queries to the KB (inferences)?

Ontological Engineering

The activity to build general-purpose ontologies
should be applicable in any special-purpose domain (with the addition of domain-specific axioms)
In non trivial domains, reasoning and problem solving could involve several areas of knowledge
simultaneously
=⇒ different areas of knowledge must be combined

Several attempts to build general-purpose ontologies
CYC, DBpedia, TextRunner, ...
not very successful so far

5 / 41

Knowledge Engineering and Ontological Engineering

Knowledge Engineering

The activity to formalize a specific problem or task domain
Relevant questions to be addressed:

What are the relevant facts, objects, relations ... ?
Which is the right level of abstraction?
What are the queries to the KB (inferences)?

Ontological Engineering

The activity to build general-purpose ontologies
should be applicable in any special-purpose domain (with the addition of domain-specific axioms)
In non trivial domains, reasoning and problem solving could involve several areas of knowledge
simultaneously
=⇒ different areas of knowledge must be combined

Several attempts to build general-purpose ontologies
CYC, DBpedia, TextRunner, ...
not very successful so far

5 / 41

Knowledge Engineering and Ontological Engineering

Knowledge Engineering

The activity to formalize a specific problem or task domain
Relevant questions to be addressed:

What are the relevant facts, objects, relations ... ?
Which is the right level of abstraction?
What are the queries to the KB (inferences)?

Ontological Engineering

The activity to build general-purpose ontologies
should be applicable in any special-purpose domain (with the addition of domain-specific axioms)
In non trivial domains, reasoning and problem solving could involve several areas of knowledge
simultaneously
=⇒ different areas of knowledge must be combined

Several attempts to build general-purpose ontologies
CYC, DBpedia, TextRunner, ...
not very successful so far

5 / 41

Knowledge Engineering and Ontological Engineering

Knowledge Engineering

The activity to formalize a specific problem or task domain
Relevant questions to be addressed:

What are the relevant facts, objects, relations ... ?
Which is the right level of abstraction?
What are the queries to the KB (inferences)?

Ontological Engineering

The activity to build general-purpose ontologies
should be applicable in any special-purpose domain (with the addition of domain-specific axioms)
In non trivial domains, reasoning and problem solving could involve several areas of knowledge
simultaneously
=⇒ different areas of knowledge must be combined

Several attempts to build general-purpose ontologies
CYC, DBpedia, TextRunner, ...
not very successful so far

5 / 41

Outline

1 Ontologies and Ontological Engineering

2 Categories and Objects

3 Reasoning about Knowledge

4 Reasoning about Categories
Semantic Networks (hints)
Description Logics

6 / 41

Categories and Objects
Categories, Objects, Members and Subclasses

KR requires the organisation of objects into categories
interaction at the level of the object
reasoning at the level of categories
ex: typically we want to buy a basketball, rather than a particular basketball instance

Categories play a role in predictions about objects
agent infers the presence of certain objects from perceptual input
infers category from the perceived properties of the objects,
uses category information to make predictions about the objects

Categories can be represented in two ways by FOL
predicates (ex Basketball(x)): relations
reification of categories into objects (ex Basketballs): sets
=⇒ allows categories to be argument of predicates/functions

Membership of a category as set membership
ex: Member(b,Basketballs) (abbr. b ∈ Basketballs)

Subcategories (aka subclasses) are (strict) subsets
ex: Subset(Basketballs, Balls) (abbr. Basketballs ⊂ Balls)

7 / 41

Categories and Objects
Categories, Objects, Members and Subclasses

KR requires the organisation of objects into categories
interaction at the level of the object
reasoning at the level of categories
ex: typically we want to buy a basketball, rather than a particular basketball instance

Categories play a role in predictions about objects
agent infers the presence of certain objects from perceptual input
infers category from the perceived properties of the objects,
uses category information to make predictions about the objects

Categories can be represented in two ways by FOL
predicates (ex Basketball(x)): relations
reification of categories into objects (ex Basketballs): sets
=⇒ allows categories to be argument of predicates/functions

Membership of a category as set membership
ex: Member(b,Basketballs) (abbr. b ∈ Basketballs)

Subcategories (aka subclasses) are (strict) subsets
ex: Subset(Basketballs, Balls) (abbr. Basketballs ⊂ Balls)

7 / 41

Categories and Objects
Categories, Objects, Members and Subclasses

KR requires the organisation of objects into categories
interaction at the level of the object
reasoning at the level of categories
ex: typically we want to buy a basketball, rather than a particular basketball instance

Categories play a role in predictions about objects
agent infers the presence of certain objects from perceptual input
infers category from the perceived properties of the objects,
uses category information to make predictions about the objects

Categories can be represented in two ways by FOL
predicates (ex Basketball(x)): relations
reification of categories into objects (ex Basketballs): sets
=⇒ allows categories to be argument of predicates/functions

Membership of a category as set membership
ex: Member(b,Basketballs) (abbr. b ∈ Basketballs)

Subcategories (aka subclasses) are (strict) subsets
ex: Subset(Basketballs, Balls) (abbr. Basketballs ⊂ Balls)

7 / 41

Categories and Objects
Categories, Objects, Members and Subclasses

KR requires the organisation of objects into categories
interaction at the level of the object
reasoning at the level of categories
ex: typically we want to buy a basketball, rather than a particular basketball instance

Categories play a role in predictions about objects
agent infers the presence of certain objects from perceptual input
infers category from the perceived properties of the objects,
uses category information to make predictions about the objects

Categories can be represented in two ways by FOL
predicates (ex Basketball(x)): relations
reification of categories into objects (ex Basketballs): sets
=⇒ allows categories to be argument of predicates/functions

Membership of a category as set membership
ex: Member(b,Basketballs) (abbr. b ∈ Basketballs)

Subcategories (aka subclasses) are (strict) subsets
ex: Subset(Basketballs, Balls) (abbr. Basketballs ⊂ Balls)

7 / 41

Categories and Objects
Categories, Objects, Members and Subclasses

KR requires the organisation of objects into categories
interaction at the level of the object
reasoning at the level of categories
ex: typically we want to buy a basketball, rather than a particular basketball instance

Categories play a role in predictions about objects
agent infers the presence of certain objects from perceptual input
infers category from the perceived properties of the objects,
uses category information to make predictions about the objects

Categories can be represented in two ways by FOL
predicates (ex Basketball(x)): relations
reification of categories into objects (ex Basketballs): sets
=⇒ allows categories to be argument of predicates/functions

Membership of a category as set membership
ex: Member(b,Basketballs) (abbr. b ∈ Basketballs)

Subcategories (aka subclasses) are (strict) subsets
ex: Subset(Basketballs, Balls) (abbr. Basketballs ⊂ Balls)

7 / 41

Categories and Objects [cont.]

Inheritance and Taxonomies
A subcategory inherits the properties of the category

ex:
if ∀x .(x ∈ Food → Edible(x)), Fruit ⊂ Food , Apples ⊂ Fruit
then ∀x .(x ∈ Apple → Edible(x))

A member inherits the properties of the category
if a ∈ Apples, then Edible(a)

Subclass relation organize categories into taxonomies
(aka taxonomic hierarchies)

ex: taxonomy of >10M living&extinct species
ex: Dewey Decimal System: taxonomy of all fields of knowledge

8 / 41

Categories and Objects [cont.]

Inheritance and Taxonomies
A subcategory inherits the properties of the category

ex:
if ∀x .(x ∈ Food → Edible(x)), Fruit ⊂ Food , Apples ⊂ Fruit
then ∀x .(x ∈ Apple → Edible(x))

A member inherits the properties of the category
if a ∈ Apples, then Edible(a)

Subclass relation organize categories into taxonomies
(aka taxonomic hierarchies)

ex: taxonomy of >10M living&extinct species
ex: Dewey Decimal System: taxonomy of all fields of knowledge

8 / 41

Categories and Objects [cont.]

Inheritance and Taxonomies
A subcategory inherits the properties of the category

ex:
if ∀x .(x ∈ Food → Edible(x)), Fruit ⊂ Food , Apples ⊂ Fruit
then ∀x .(x ∈ Apple → Edible(x))

A member inherits the properties of the category
if a ∈ Apples, then Edible(a)

Subclass relation organize categories into taxonomies
(aka taxonomic hierarchies)

ex: taxonomy of >10M living&extinct species
ex: Dewey Decimal System: taxonomy of all fields of knowledge

8 / 41

Categories and Objects [cont.]

FOL Reasoning about Categories

FOL allows to state facts about categories:
an object is a member of a category
BB9 ∈ Basketballs
a category is a subclass of another category
Basketballs ⊂ Balls
all members of a category have some properties
∀x .(x ∈ Basketballs → Spherical(x))
members of a category can be recognized by some properties
∀x .((Orange(x) ∧ Round(x) ∧ Diameter(x) = 9.5” ∧ x ∈ Balls)

→ x ∈ Basketballs)
category as a whole has some properties
Dogs ∈ DomesticatedSpecies

New categories can be defined by providing necessary and sufficient conditions for
membership

∀x .(x ∈ Bachelors ↔ (Unmarried(x) ∧ x ∈ Adults ∧ x ∈ Males))

9 / 41

Categories and Objects [cont.]

FOL Reasoning about Categories

FOL allows to state facts about categories:
an object is a member of a category
BB9 ∈ Basketballs
a category is a subclass of another category
Basketballs ⊂ Balls
all members of a category have some properties
∀x .(x ∈ Basketballs → Spherical(x))
members of a category can be recognized by some properties
∀x .((Orange(x) ∧ Round(x) ∧ Diameter(x) = 9.5” ∧ x ∈ Balls)

→ x ∈ Basketballs)
category as a whole has some properties
Dogs ∈ DomesticatedSpecies

New categories can be defined by providing necessary and sufficient conditions for
membership

∀x .(x ∈ Bachelors ↔ (Unmarried(x) ∧ x ∈ Adults ∧ x ∈ Males))

9 / 41

Categories and Objects [cont.]

FOL Reasoning about Categories

FOL allows to state facts about categories:
an object is a member of a category
BB9 ∈ Basketballs
a category is a subclass of another category
Basketballs ⊂ Balls
all members of a category have some properties
∀x .(x ∈ Basketballs → Spherical(x))
members of a category can be recognized by some properties
∀x .((Orange(x) ∧ Round(x) ∧ Diameter(x) = 9.5” ∧ x ∈ Balls)

→ x ∈ Basketballs)
category as a whole has some properties
Dogs ∈ DomesticatedSpecies

New categories can be defined by providing necessary and sufficient conditions for
membership

∀x .(x ∈ Bachelors ↔ (Unmarried(x) ∧ x ∈ Adults ∧ x ∈ Males))

9 / 41

Categories and Objects [cont.]

Derived relations
Two or more categories in a set s are disjoint iff they have no members in common

Disjoint(s) ↔ (∀c1c2. ((c1 ∈ s ∧ c2 ∈ s ∧ c1 ̸= c2)
→ Intersection(c1, c2) = ∅)

ex:
Disjoint({Animals,Vegetables}), Disjoint({Insects,Birds,Mammals,Reptiles}),

A set of categories s is an exhaustive decomposition of a category c iff all members of c are
covered by categories in s

ExaustiveDecomposition(s, c) ↔ ∀i.(i ∈c ↔ (∃c2.(c2∈s ∧ i ∈c2)))
ex: E .D.({Americans,Canadians,Mexicans},NorthAmericans)

A disjoint exhaustive decomposition is a partition
Partition(s, c) ↔ (Disjoint(s) ∧ ExhaustiveDecomposition(s, c))
ex: Partition({NorthernItalians,CentralItalians,SouthernItalians, InsularItalians}, Italians)

10 / 41

Categories and Objects [cont.]

Derived relations
Two or more categories in a set s are disjoint iff they have no members in common

Disjoint(s) ↔ (∀c1c2. ((c1 ∈ s ∧ c2 ∈ s ∧ c1 ̸= c2)
→ Intersection(c1, c2) = ∅)

ex:
Disjoint({Animals,Vegetables}), Disjoint({Insects,Birds,Mammals,Reptiles}),

A set of categories s is an exhaustive decomposition of a category c iff all members of c are
covered by categories in s

ExaustiveDecomposition(s, c) ↔ ∀i.(i ∈c ↔ (∃c2.(c2∈s ∧ i ∈c2)))
ex: E .D.({Americans,Canadians,Mexicans},NorthAmericans)

A disjoint exhaustive decomposition is a partition
Partition(s, c) ↔ (Disjoint(s) ∧ ExhaustiveDecomposition(s, c))
ex: Partition({NorthernItalians,CentralItalians,SouthernItalians, InsularItalians}, Italians)

10 / 41

Categories and Objects [cont.]

Derived relations
Two or more categories in a set s are disjoint iff they have no members in common

Disjoint(s) ↔ (∀c1c2. ((c1 ∈ s ∧ c2 ∈ s ∧ c1 ̸= c2)
→ Intersection(c1, c2) = ∅)

ex:
Disjoint({Animals,Vegetables}), Disjoint({Insects,Birds,Mammals,Reptiles}),

A set of categories s is an exhaustive decomposition of a category c iff all members of c are
covered by categories in s

ExaustiveDecomposition(s, c) ↔ ∀i.(i ∈c ↔ (∃c2.(c2∈s ∧ i ∈c2)))
ex: E .D.({Americans,Canadians,Mexicans},NorthAmericans)

A disjoint exhaustive decomposition is a partition
Partition(s, c) ↔ (Disjoint(s) ∧ ExhaustiveDecomposition(s, c))
ex: Partition({NorthernItalians,CentralItalians,SouthernItalians, InsularItalians}, Italians)

10 / 41

Digression: Natural Kinds

Many categories have no clear-cut definition (ex: chair, bush, ...)
Ex: tomatoes are sometimes green, red, yellow, black; they are mostly round

One useful solution: category “Typical(.)”, s.t. Typical(c) ⊆ c
=⇒ most knowledge about natural kinds will actually be about their typical instances

ex: ∀x .(x ∈ Typical(Tomatoes) → (Red(x) ∧ Round(x)))

=⇒ We can write down useful facts about categories without providing exact definitions

Note
Quine (1953) challenged the utility of the notion of strict definition.

Ex: “bachelor”: is the Pope a bachelor?
=⇒ technically yes, but misleading

11 / 41

Digression: Natural Kinds

Many categories have no clear-cut definition (ex: chair, bush, ...)
Ex: tomatoes are sometimes green, red, yellow, black; they are mostly round

One useful solution: category “Typical(.)”, s.t. Typical(c) ⊆ c
=⇒ most knowledge about natural kinds will actually be about their typical instances

ex: ∀x .(x ∈ Typical(Tomatoes) → (Red(x) ∧ Round(x)))

=⇒ We can write down useful facts about categories without providing exact definitions

Note
Quine (1953) challenged the utility of the notion of strict definition.

Ex: “bachelor”: is the Pope a bachelor?
=⇒ technically yes, but misleading

11 / 41

Digression: Natural Kinds

Many categories have no clear-cut definition (ex: chair, bush, ...)
Ex: tomatoes are sometimes green, red, yellow, black; they are mostly round

One useful solution: category “Typical(.)”, s.t. Typical(c) ⊆ c
=⇒ most knowledge about natural kinds will actually be about their typical instances

ex: ∀x .(x ∈ Typical(Tomatoes) → (Red(x) ∧ Round(x)))

=⇒ We can write down useful facts about categories without providing exact definitions

Note
Quine (1953) challenged the utility of the notion of strict definition.

Ex: “bachelor”: is the Pope a bachelor?
=⇒ technically yes, but misleading

11 / 41

Digression: Natural Kinds

Many categories have no clear-cut definition (ex: chair, bush, ...)
Ex: tomatoes are sometimes green, red, yellow, black; they are mostly round

One useful solution: category “Typical(.)”, s.t. Typical(c) ⊆ c
=⇒ most knowledge about natural kinds will actually be about their typical instances

ex: ∀x .(x ∈ Typical(Tomatoes) → (Red(x) ∧ Round(x)))

=⇒ We can write down useful facts about categories without providing exact definitions

Note
Quine (1953) challenged the utility of the notion of strict definition.

Ex: “bachelor”: is the Pope a bachelor?
=⇒ technically yes, but misleading

11 / 41

Physical Composition

PartOf (., .) relation: One object may be part of another
PartOf (Bucharest ,Romania)
PartOf (Romania,EasternEurope)
PartOf (EasternEurope,Europe)

PartOf (., .) is reflexive and transitive:
∀x .PartOf (x , x)
∀x , y , z.((PartOf (x , y) ∧ PartOf (y , z)) → PartOf (x , z))

=⇒ PartOf (Bucharest ,Europe)

Categories of composite objects are often characterized by structural relations among parts.
Ex: Biped

(© S. Russell & P. Norwig, AIMA)

Other concepts & relations: PartPartition, BunchOf...
12 / 41

Physical Composition

PartOf (., .) relation: One object may be part of another
PartOf (Bucharest ,Romania)
PartOf (Romania,EasternEurope)
PartOf (EasternEurope,Europe)

PartOf (., .) is reflexive and transitive:
∀x .PartOf (x , x)
∀x , y , z.((PartOf (x , y) ∧ PartOf (y , z)) → PartOf (x , z))

=⇒ PartOf (Bucharest ,Europe)

Categories of composite objects are often characterized by structural relations among parts.
Ex: Biped

(© S. Russell & P. Norwig, AIMA)

Other concepts & relations: PartPartition, BunchOf...
12 / 41

Physical Composition

PartOf (., .) relation: One object may be part of another
PartOf (Bucharest ,Romania)
PartOf (Romania,EasternEurope)
PartOf (EasternEurope,Europe)

PartOf (., .) is reflexive and transitive:
∀x .PartOf (x , x)
∀x , y , z.((PartOf (x , y) ∧ PartOf (y , z)) → PartOf (x , z))

=⇒ PartOf (Bucharest ,Europe)

Categories of composite objects are often characterized by structural relations among parts.
Ex: Biped

(© S. Russell & P. Norwig, AIMA)

Other concepts & relations: PartPartition, BunchOf...
12 / 41

Physical Composition

PartOf (., .) relation: One object may be part of another
PartOf (Bucharest ,Romania)
PartOf (Romania,EasternEurope)
PartOf (EasternEurope,Europe)

PartOf (., .) is reflexive and transitive:
∀x .PartOf (x , x)
∀x , y , z.((PartOf (x , y) ∧ PartOf (y , z)) → PartOf (x , z))

=⇒ PartOf (Bucharest ,Europe)

Categories of composite objects are often characterized by structural relations among parts.
Ex: Biped

(© S. Russell & P. Norwig, AIMA)

Other concepts & relations: PartPartition, BunchOf...
12 / 41

Measurements

Quantitative Measurements
Objects may have “quantitative” properties

e.g. height, mass, cost, ...

Values that we assign to these properties are measures
Can be represented by unit functions

ex Length(L1) = Inches(1.5) ∧ Inches(1.5) = Centimeters(3.81)

Conversion between units:
∀i. Centimeters(2.54 × i) = Inches(i)

Measures can be used to describe objects:
ex: Diameter(Basketball12) = Inches(9.5)
ex: ListPrice(Basketball12) = $(19)
ex: ∀d .(d ∈ Days → Duration(d) = Hours(24))

13 / 41

Measurements

Quantitative Measurements
Objects may have “quantitative” properties

e.g. height, mass, cost, ...

Values that we assign to these properties are measures
Can be represented by unit functions

ex Length(L1) = Inches(1.5) ∧ Inches(1.5) = Centimeters(3.81)

Conversion between units:
∀i. Centimeters(2.54 × i) = Inches(i)

Measures can be used to describe objects:
ex: Diameter(Basketball12) = Inches(9.5)
ex: ListPrice(Basketball12) = $(19)
ex: ∀d .(d ∈ Days → Duration(d) = Hours(24))

13 / 41

Measurements

Quantitative Measurements
Objects may have “quantitative” properties

e.g. height, mass, cost, ...

Values that we assign to these properties are measures
Can be represented by unit functions

ex Length(L1) = Inches(1.5) ∧ Inches(1.5) = Centimeters(3.81)

Conversion between units:
∀i. Centimeters(2.54 × i) = Inches(i)

Measures can be used to describe objects:
ex: Diameter(Basketball12) = Inches(9.5)
ex: ListPrice(Basketball12) = $(19)
ex: ∀d .(d ∈ Days → Duration(d) = Hours(24))

13 / 41

Measurements

Quantitative Measurements
Objects may have “quantitative” properties

e.g. height, mass, cost, ...

Values that we assign to these properties are measures
Can be represented by unit functions

ex Length(L1) = Inches(1.5) ∧ Inches(1.5) = Centimeters(3.81)

Conversion between units:
∀i. Centimeters(2.54 × i) = Inches(i)

Measures can be used to describe objects:
ex: Diameter(Basketball12) = Inches(9.5)
ex: ListPrice(Basketball12) = $(19)
ex: ∀d .(d ∈ Days → Duration(d) = Hours(24))

13 / 41

Measurements

Quantitative Measurements
Objects may have “quantitative” properties

e.g. height, mass, cost, ...

Values that we assign to these properties are measures
Can be represented by unit functions

ex Length(L1) = Inches(1.5) ∧ Inches(1.5) = Centimeters(3.81)

Conversion between units:
∀i. Centimeters(2.54 × i) = Inches(i)

Measures can be used to describe objects:
ex: Diameter(Basketball12) = Inches(9.5)
ex: ListPrice(Basketball12) = $(19)
ex: ∀d .(d ∈ Days → Duration(d) = Hours(24))

13 / 41

Measurements [cont.]

Qualitative Measurements
Some measures have no scale

ex: beauty, deliciousness, difficulty,...

Most important aspect of measures: they are orderable
Ex: Deliciousness(SacherTorte) > Deliciousness(BrussellSprout)
Ex: Beauty(PaulNewmann) > Beauty(MartyFeldman)
Ex: Difficulty(Prove_P ̸=NP) > Difficulty(SolvePuzzle)

Allow for reasoning by exploiting transitivity of monotonicity:
∀e1e2.((e1∈Exercises ∧ e2∈Exercises∧ Wrote(Norvig, e1) ∧ Wrote(Russell, e2))

→ Difficulty(e1) > Difficulty(e2))
∀e1e2.((e1∈Exercises ∧ e2∈Exercises ∧ Difficulty(e1) > Difficulty(e2))

→ ExpectedScore(e1) < ExpectedScore(e2))
∀e1e2.(ExpectedScore(e1)<ExpectedScore(e2) → Pick(e1, e2)=e2

Then: (Wrote(Norvig,E1) ∧ Wrote(Russell,E2)) |= Pick(E1,E2)=E2

Qualitative physics: a subfield of AI that investigates how to reason about physical systems
without numerical computations

14 / 41

Measurements [cont.]

Qualitative Measurements
Some measures have no scale

ex: beauty, deliciousness, difficulty,...

Most important aspect of measures: they are orderable
Ex: Deliciousness(SacherTorte) > Deliciousness(BrussellSprout)
Ex: Beauty(PaulNewmann) > Beauty(MartyFeldman)
Ex: Difficulty(Prove_P ̸=NP) > Difficulty(SolvePuzzle)

Allow for reasoning by exploiting transitivity of monotonicity:
∀e1e2.((e1∈Exercises ∧ e2∈Exercises∧ Wrote(Norvig, e1) ∧ Wrote(Russell, e2))

→ Difficulty(e1) > Difficulty(e2))
∀e1e2.((e1∈Exercises ∧ e2∈Exercises ∧ Difficulty(e1) > Difficulty(e2))

→ ExpectedScore(e1) < ExpectedScore(e2))
∀e1e2.(ExpectedScore(e1)<ExpectedScore(e2) → Pick(e1, e2)=e2

Then: (Wrote(Norvig,E1) ∧ Wrote(Russell,E2)) |= Pick(E1,E2)=E2

Qualitative physics: a subfield of AI that investigates how to reason about physical systems
without numerical computations

14 / 41

Measurements [cont.]

Qualitative Measurements
Some measures have no scale

ex: beauty, deliciousness, difficulty,...

Most important aspect of measures: they are orderable
Ex: Deliciousness(SacherTorte) > Deliciousness(BrussellSprout)
Ex: Beauty(PaulNewmann) > Beauty(MartyFeldman)
Ex: Difficulty(Prove_P ̸=NP) > Difficulty(SolvePuzzle)

Allow for reasoning by exploiting transitivity of monotonicity:
∀e1e2.((e1∈Exercises ∧ e2∈Exercises∧ Wrote(Norvig, e1) ∧ Wrote(Russell, e2))

→ Difficulty(e1) > Difficulty(e2))
∀e1e2.((e1∈Exercises ∧ e2∈Exercises ∧ Difficulty(e1) > Difficulty(e2))

→ ExpectedScore(e1) < ExpectedScore(e2))
∀e1e2.(ExpectedScore(e1)<ExpectedScore(e2) → Pick(e1, e2)=e2

Then: (Wrote(Norvig,E1) ∧ Wrote(Russell,E2)) |= Pick(E1,E2)=E2

Qualitative physics: a subfield of AI that investigates how to reason about physical systems
without numerical computations

14 / 41

Objects vs Stuff

There are countable objects
e,g, apples, holes, theorems, ...

... and mass objects, aka stuff or substances
e.g. butter, water, energy, ...

=⇒ Intuitive meaning “an amount/quantity of...”
ex: b ∈ butter : “b is an amount/quantity of butter”

Any part of stuff is still stuff:
ex: ∀b, p.((b ∈ Butter ∧ PartOf (p, b)) → p ∈ Butter)

Can define sub-categories, which are stuff
ex: UnsaltedButter ⊂ Butter

Stuff has a number of intrinsic properties, shared by its subparts
e.g., color, fat content, density ...
ex: ∀b.(b ∈ Butter → MeltingPoint(b,Centigrade(30)))

Stuff has no extrinsic properties
e.g., weight, length, shape, ...

15 / 41

Objects vs Stuff

There are countable objects
e,g, apples, holes, theorems, ...

... and mass objects, aka stuff or substances
e.g. butter, water, energy, ...

=⇒ Intuitive meaning “an amount/quantity of...”
ex: b ∈ butter : “b is an amount/quantity of butter”

Any part of stuff is still stuff:
ex: ∀b, p.((b ∈ Butter ∧ PartOf (p, b)) → p ∈ Butter)

Can define sub-categories, which are stuff
ex: UnsaltedButter ⊂ Butter

Stuff has a number of intrinsic properties, shared by its subparts
e.g., color, fat content, density ...
ex: ∀b.(b ∈ Butter → MeltingPoint(b,Centigrade(30)))

Stuff has no extrinsic properties
e.g., weight, length, shape, ...

15 / 41

Objects vs Stuff

There are countable objects
e,g, apples, holes, theorems, ...

... and mass objects, aka stuff or substances
e.g. butter, water, energy, ...

=⇒ Intuitive meaning “an amount/quantity of...”
ex: b ∈ butter : “b is an amount/quantity of butter”

Any part of stuff is still stuff:
ex: ∀b, p.((b ∈ Butter ∧ PartOf (p, b)) → p ∈ Butter)

Can define sub-categories, which are stuff
ex: UnsaltedButter ⊂ Butter

Stuff has a number of intrinsic properties, shared by its subparts
e.g., color, fat content, density ...
ex: ∀b.(b ∈ Butter → MeltingPoint(b,Centigrade(30)))

Stuff has no extrinsic properties
e.g., weight, length, shape, ...

15 / 41

Objects vs Stuff

There are countable objects
e,g, apples, holes, theorems, ...

... and mass objects, aka stuff or substances
e.g. butter, water, energy, ...

=⇒ Intuitive meaning “an amount/quantity of...”
ex: b ∈ butter : “b is an amount/quantity of butter”

Any part of stuff is still stuff:
ex: ∀b, p.((b ∈ Butter ∧ PartOf (p, b)) → p ∈ Butter)

Can define sub-categories, which are stuff
ex: UnsaltedButter ⊂ Butter

Stuff has a number of intrinsic properties, shared by its subparts
e.g., color, fat content, density ...
ex: ∀b.(b ∈ Butter → MeltingPoint(b,Centigrade(30)))

Stuff has no extrinsic properties
e.g., weight, length, shape, ...

15 / 41

Objects vs Stuff

There are countable objects
e,g, apples, holes, theorems, ...

... and mass objects, aka stuff or substances
e.g. butter, water, energy, ...

=⇒ Intuitive meaning “an amount/quantity of...”
ex: b ∈ butter : “b is an amount/quantity of butter”

Any part of stuff is still stuff:
ex: ∀b, p.((b ∈ Butter ∧ PartOf (p, b)) → p ∈ Butter)

Can define sub-categories, which are stuff
ex: UnsaltedButter ⊂ Butter

Stuff has a number of intrinsic properties, shared by its subparts
e.g., color, fat content, density ...
ex: ∀b.(b ∈ Butter → MeltingPoint(b,Centigrade(30)))

Stuff has no extrinsic properties
e.g., weight, length, shape, ...

15 / 41

Objects vs Stuff

There are countable objects
e,g, apples, holes, theorems, ...

... and mass objects, aka stuff or substances
e.g. butter, water, energy, ...

=⇒ Intuitive meaning “an amount/quantity of...”
ex: b ∈ butter : “b is an amount/quantity of butter”

Any part of stuff is still stuff:
ex: ∀b, p.((b ∈ Butter ∧ PartOf (p, b)) → p ∈ Butter)

Can define sub-categories, which are stuff
ex: UnsaltedButter ⊂ Butter

Stuff has a number of intrinsic properties, shared by its subparts
e.g., color, fat content, density ...
ex: ∀b.(b ∈ Butter → MeltingPoint(b,Centigrade(30)))

Stuff has no extrinsic properties
e.g., weight, length, shape, ...

15 / 41

Outline

1 Ontologies and Ontological Engineering

2 Categories and Objects

3 Reasoning about Knowledge

4 Reasoning about Categories
Semantic Networks (hints)
Description Logics

16 / 41

Agents’ Attitudes

Intelligence is intrinsically social: agents need to negotiate and coordinate with other agents
In multi-agents scenarios, to predict what other agents will do, we need methods to model
mental states of other agents

representations of other agents’ knowledge (and beliefs, goals)

Agent’s Propositional attitudes: Knows, Believes, Wants,...
ex “Lois Knows that Superman can fly”

Problem
Propositional attitudes do not behave as regular predicates

issue: Referential opacity vs. referential transparency

17 / 41

Agents’ Attitudes

Intelligence is intrinsically social: agents need to negotiate and coordinate with other agents
In multi-agents scenarios, to predict what other agents will do, we need methods to model
mental states of other agents

representations of other agents’ knowledge (and beliefs, goals)

Agent’s Propositional attitudes: Knows, Believes, Wants,...
ex “Lois Knows that Superman can fly”

Problem
Propositional attitudes do not behave as regular predicates

issue: Referential opacity vs. referential transparency

17 / 41

Agents’ Attitudes

Intelligence is intrinsically social: agents need to negotiate and coordinate with other agents
In multi-agents scenarios, to predict what other agents will do, we need methods to model
mental states of other agents

representations of other agents’ knowledge (and beliefs, goals)

Agent’s Propositional attitudes: Knows, Believes, Wants,...
ex “Lois Knows that Superman can fly”

Problem
Propositional attitudes do not behave as regular predicates

issue: Referential opacity vs. referential transparency

17 / 41

Agents’ Attitudes

Intelligence is intrinsically social: agents need to negotiate and coordinate with other agents
In multi-agents scenarios, to predict what other agents will do, we need methods to model
mental states of other agents

representations of other agents’ knowledge (and beliefs, goals)

Agent’s Propositional attitudes: Knows, Believes, Wants,...
ex “Lois Knows that Superman can fly”

Problem
Propositional attitudes do not behave as regular predicates

issue: Referential opacity vs. referential transparency

17 / 41

Referential opacity vs. Referential transparency

Consider the assertion “Lois knows that Superman can fly”
Consider the FOL formalization: Knows(Lois,CanFly(Superman))
Minor Problem: CanFly(Superman) is a formula
=⇒ cannot occur as argument of a predicate
=⇒ must apply reification =⇒ make it a term

Major Problem (Referential Transparency of FOL):
since Superman is Clark Kent (but Lois doesn’t know it!), FOL allows to conclude “Lois knows
that Clark Kent can fly”:
Superman=Clark ∧ Knows(Lois,CanFly(Superman))
|=FOL Knows(Lois,CanFly(Clark))

=⇒ Wrong inference! (Lois doesn’t know Clark Kent can fly!)

Hint: FOL predicates transparent to equality reasoning:
t = s ∧ P(s, ...) |=FOL P(t , ...)

Need a logic which is opaque to equality reasoning (aka Referential Opacity):
Modal Logics

18 / 41

Referential opacity vs. Referential transparency

Consider the assertion “Lois knows that Superman can fly”
Consider the FOL formalization: Knows(Lois,CanFly(Superman))
Minor Problem: CanFly(Superman) is a formula
=⇒ cannot occur as argument of a predicate
=⇒ must apply reification =⇒ make it a term

Major Problem (Referential Transparency of FOL):
since Superman is Clark Kent (but Lois doesn’t know it!), FOL allows to conclude “Lois knows
that Clark Kent can fly”:
Superman=Clark ∧ Knows(Lois,CanFly(Superman))
|=FOL Knows(Lois,CanFly(Clark))

=⇒ Wrong inference! (Lois doesn’t know Clark Kent can fly!)

Hint: FOL predicates transparent to equality reasoning:
t = s ∧ P(s, ...) |=FOL P(t , ...)

Need a logic which is opaque to equality reasoning (aka Referential Opacity):
Modal Logics

18 / 41

Referential opacity vs. Referential transparency

Consider the assertion “Lois knows that Superman can fly”
Consider the FOL formalization: Knows(Lois,CanFly(Superman))
Minor Problem: CanFly(Superman) is a formula
=⇒ cannot occur as argument of a predicate
=⇒ must apply reification =⇒ make it a term

Major Problem (Referential Transparency of FOL):
since Superman is Clark Kent (but Lois doesn’t know it!), FOL allows to conclude “Lois knows
that Clark Kent can fly”:
Superman=Clark ∧ Knows(Lois,CanFly(Superman))
|=FOL Knows(Lois,CanFly(Clark))

=⇒ Wrong inference! (Lois doesn’t know Clark Kent can fly!)

Hint: FOL predicates transparent to equality reasoning:
t = s ∧ P(s, ...) |=FOL P(t , ...)

Need a logic which is opaque to equality reasoning (aka Referential Opacity):
Modal Logics

18 / 41

Referential opacity vs. Referential transparency

Consider the assertion “Lois knows that Superman can fly”
Consider the FOL formalization: Knows(Lois,CanFly(Superman))
Minor Problem: CanFly(Superman) is a formula
=⇒ cannot occur as argument of a predicate
=⇒ must apply reification =⇒ make it a term

Major Problem (Referential Transparency of FOL):
since Superman is Clark Kent (but Lois doesn’t know it!), FOL allows to conclude “Lois knows
that Clark Kent can fly”:
Superman=Clark ∧ Knows(Lois,CanFly(Superman))
|=FOL Knows(Lois,CanFly(Clark))

=⇒ Wrong inference! (Lois doesn’t know Clark Kent can fly!)

Hint: FOL predicates transparent to equality reasoning:
t = s ∧ P(s, ...) |=FOL P(t , ...)

Need a logic which is opaque to equality reasoning (aka Referential Opacity):
Modal Logics

18 / 41

Referential opacity vs. Referential transparency

Consider the assertion “Lois knows that Superman can fly”
Consider the FOL formalization: Knows(Lois,CanFly(Superman))
Minor Problem: CanFly(Superman) is a formula
=⇒ cannot occur as argument of a predicate
=⇒ must apply reification =⇒ make it a term

Major Problem (Referential Transparency of FOL):
since Superman is Clark Kent (but Lois doesn’t know it!), FOL allows to conclude “Lois knows
that Clark Kent can fly”:
Superman=Clark ∧ Knows(Lois,CanFly(Superman))
|=FOL Knows(Lois,CanFly(Clark))

=⇒ Wrong inference! (Lois doesn’t know Clark Kent can fly!)

Hint: FOL predicates transparent to equality reasoning:
t = s ∧ P(s, ...) |=FOL P(t , ...)

Need a logic which is opaque to equality reasoning (aka Referential Opacity):
Modal Logics

18 / 41

Modal Logics
Modal logics include special modal operators that take formulas (not terms!) as arguments

“A knows P” is represented with KAP (P formula, not term!)
ex: “Lois knows that Superman can fly”: KLoisCanFly(Superman)
ex: “Lois knows Clark Kent knows if he is Superman or not”:
KLois(KClark Identity(Superman,Clark) ∨ KClark¬Identity(Superman,Clark))

Properties in all modal logics:
KA(P ∧ Q) ⇐⇒ KAP ∧ KAQ
KAP ∨ KAQ |= KA(P ∨ Q), but KA(P ∨ Q) ̸|= KAP ∨ KAQ (e.g. KA(P ∨ ¬P) ̸|= KAP ∨ KA¬P)

The following axiom holds in all (normal) modal logics:
K : (KAϕ ∧ KA(ϕ→ ψ) → KAψ (distribution axiom): “A is able to perform propositional inference”

The following axioms hold in some (normal) modal logics:
T : KAφ→ φ (knowledge axiom): “A knows only true facts”
4 : KAφ→ KAKAφ (positive-introspection axiom): “If A knows fact φ, then [s]he knows [s]he knows it”
5 : ¬KAφ→ KA¬KAφ (negative-introspection axiom):
“If A doesn’t know φ, then [s]he knows [s]he doesn’t know it”

Referential Opacity: Superman=Clark ∧ KLoisCanFly(Superman) ̸|= KLoisCanFly(Clark)

Reasoning in (propositional) Modal logics is NP-hard (most often even PSPACE-hard)

19 / 41

Modal Logics
Modal logics include special modal operators that take formulas (not terms!) as arguments

“A knows P” is represented with KAP (P formula, not term!)
ex: “Lois knows that Superman can fly”: KLoisCanFly(Superman)
ex: “Lois knows Clark Kent knows if he is Superman or not”:
KLois(KClark Identity(Superman,Clark) ∨ KClark¬Identity(Superman,Clark))

Properties in all modal logics:
KA(P ∧ Q) ⇐⇒ KAP ∧ KAQ
KAP ∨ KAQ |= KA(P ∨ Q), but KA(P ∨ Q) ̸|= KAP ∨ KAQ (e.g. KA(P ∨ ¬P) ̸|= KAP ∨ KA¬P)

The following axiom holds in all (normal) modal logics:
K : (KAϕ ∧ KA(ϕ→ ψ) → KAψ (distribution axiom): “A is able to perform propositional inference”

The following axioms hold in some (normal) modal logics:
T : KAφ→ φ (knowledge axiom): “A knows only true facts”
4 : KAφ→ KAKAφ (positive-introspection axiom): “If A knows fact φ, then [s]he knows [s]he knows it”
5 : ¬KAφ→ KA¬KAφ (negative-introspection axiom):
“If A doesn’t know φ, then [s]he knows [s]he doesn’t know it”

Referential Opacity: Superman=Clark ∧ KLoisCanFly(Superman) ̸|= KLoisCanFly(Clark)

Reasoning in (propositional) Modal logics is NP-hard (most often even PSPACE-hard)

19 / 41

Modal Logics
Modal logics include special modal operators that take formulas (not terms!) as arguments

“A knows P” is represented with KAP (P formula, not term!)
ex: “Lois knows that Superman can fly”: KLoisCanFly(Superman)
ex: “Lois knows Clark Kent knows if he is Superman or not”:
KLois(KClark Identity(Superman,Clark) ∨ KClark¬Identity(Superman,Clark))

Properties in all modal logics:
KA(P ∧ Q) ⇐⇒ KAP ∧ KAQ
KAP ∨ KAQ |= KA(P ∨ Q), but KA(P ∨ Q) ̸|= KAP ∨ KAQ (e.g. KA(P ∨ ¬P) ̸|= KAP ∨ KA¬P)

The following axiom holds in all (normal) modal logics:
K : (KAϕ ∧ KA(ϕ→ ψ) → KAψ (distribution axiom): “A is able to perform propositional inference”

The following axioms hold in some (normal) modal logics:
T : KAφ→ φ (knowledge axiom): “A knows only true facts”
4 : KAφ→ KAKAφ (positive-introspection axiom): “If A knows fact φ, then [s]he knows [s]he knows it”
5 : ¬KAφ→ KA¬KAφ (negative-introspection axiom):
“If A doesn’t know φ, then [s]he knows [s]he doesn’t know it”

Referential Opacity: Superman=Clark ∧ KLoisCanFly(Superman) ̸|= KLoisCanFly(Clark)

Reasoning in (propositional) Modal logics is NP-hard (most often even PSPACE-hard)

19 / 41

Modal Logics
Modal logics include special modal operators that take formulas (not terms!) as arguments

“A knows P” is represented with KAP (P formula, not term!)
ex: “Lois knows that Superman can fly”: KLoisCanFly(Superman)
ex: “Lois knows Clark Kent knows if he is Superman or not”:
KLois(KClark Identity(Superman,Clark) ∨ KClark¬Identity(Superman,Clark))

Properties in all modal logics:
KA(P ∧ Q) ⇐⇒ KAP ∧ KAQ
KAP ∨ KAQ |= KA(P ∨ Q), but KA(P ∨ Q) ̸|= KAP ∨ KAQ (e.g. KA(P ∨ ¬P) ̸|= KAP ∨ KA¬P)

The following axiom holds in all (normal) modal logics:
K : (KAϕ ∧ KA(ϕ→ ψ) → KAψ (distribution axiom): “A is able to perform propositional inference”

The following axioms hold in some (normal) modal logics:
T : KAφ→ φ (knowledge axiom): “A knows only true facts”
4 : KAφ→ KAKAφ (positive-introspection axiom): “If A knows fact φ, then [s]he knows [s]he knows it”
5 : ¬KAφ→ KA¬KAφ (negative-introspection axiom):
“If A doesn’t know φ, then [s]he knows [s]he doesn’t know it”

Referential Opacity: Superman=Clark ∧ KLoisCanFly(Superman) ̸|= KLoisCanFly(Clark)

Reasoning in (propositional) Modal logics is NP-hard (most often even PSPACE-hard)

19 / 41

Modal Logics
Modal logics include special modal operators that take formulas (not terms!) as arguments

“A knows P” is represented with KAP (P formula, not term!)
ex: “Lois knows that Superman can fly”: KLoisCanFly(Superman)
ex: “Lois knows Clark Kent knows if he is Superman or not”:
KLois(KClark Identity(Superman,Clark) ∨ KClark¬Identity(Superman,Clark))

Properties in all modal logics:
KA(P ∧ Q) ⇐⇒ KAP ∧ KAQ
KAP ∨ KAQ |= KA(P ∨ Q), but KA(P ∨ Q) ̸|= KAP ∨ KAQ (e.g. KA(P ∨ ¬P) ̸|= KAP ∨ KA¬P)

The following axiom holds in all (normal) modal logics:
K : (KAϕ ∧ KA(ϕ→ ψ) → KAψ (distribution axiom): “A is able to perform propositional inference”

The following axioms hold in some (normal) modal logics:
T : KAφ→ φ (knowledge axiom): “A knows only true facts”
4 : KAφ→ KAKAφ (positive-introspection axiom): “If A knows fact φ, then [s]he knows [s]he knows it”
5 : ¬KAφ→ KA¬KAφ (negative-introspection axiom):
“If A doesn’t know φ, then [s]he knows [s]he doesn’t know it”

Referential Opacity: Superman=Clark ∧ KLoisCanFly(Superman) ̸|= KLoisCanFly(Clark)

Reasoning in (propositional) Modal logics is NP-hard (most often even PSPACE-hard)

19 / 41

Modal Logics
Modal logics include special modal operators that take formulas (not terms!) as arguments

“A knows P” is represented with KAP (P formula, not term!)
ex: “Lois knows that Superman can fly”: KLoisCanFly(Superman)
ex: “Lois knows Clark Kent knows if he is Superman or not”:
KLois(KClark Identity(Superman,Clark) ∨ KClark¬Identity(Superman,Clark))

Properties in all modal logics:
KA(P ∧ Q) ⇐⇒ KAP ∧ KAQ
KAP ∨ KAQ |= KA(P ∨ Q), but KA(P ∨ Q) ̸|= KAP ∨ KAQ (e.g. KA(P ∨ ¬P) ̸|= KAP ∨ KA¬P)

The following axiom holds in all (normal) modal logics:
K : (KAϕ ∧ KA(ϕ→ ψ) → KAψ (distribution axiom): “A is able to perform propositional inference”

The following axioms hold in some (normal) modal logics:
T : KAφ→ φ (knowledge axiom): “A knows only true facts”
4 : KAφ→ KAKAφ (positive-introspection axiom): “If A knows fact φ, then [s]he knows [s]he knows it”
5 : ¬KAφ→ KA¬KAφ (negative-introspection axiom):
“If A doesn’t know φ, then [s]he knows [s]he doesn’t know it”

Referential Opacity: Superman=Clark ∧ KLoisCanFly(Superman) ̸|= KLoisCanFly(Clark)

Reasoning in (propositional) Modal logics is NP-hard (most often even PSPACE-hard)

19 / 41

Modal Logics
Modal logics include special modal operators that take formulas (not terms!) as arguments

“A knows P” is represented with KAP (P formula, not term!)
ex: “Lois knows that Superman can fly”: KLoisCanFly(Superman)
ex: “Lois knows Clark Kent knows if he is Superman or not”:
KLois(KClark Identity(Superman,Clark) ∨ KClark¬Identity(Superman,Clark))

Properties in all modal logics:
KA(P ∧ Q) ⇐⇒ KAP ∧ KAQ
KAP ∨ KAQ |= KA(P ∨ Q), but KA(P ∨ Q) ̸|= KAP ∨ KAQ (e.g. KA(P ∨ ¬P) ̸|= KAP ∨ KA¬P)

The following axiom holds in all (normal) modal logics:
K : (KAϕ ∧ KA(ϕ→ ψ) → KAψ (distribution axiom): “A is able to perform propositional inference”

The following axioms hold in some (normal) modal logics:
T : KAφ→ φ (knowledge axiom): “A knows only true facts”
4 : KAφ→ KAKAφ (positive-introspection axiom): “If A knows fact φ, then [s]he knows [s]he knows it”
5 : ¬KAφ→ KA¬KAφ (negative-introspection axiom):
“If A doesn’t know φ, then [s]he knows [s]he doesn’t know it”

Referential Opacity: Superman=Clark ∧ KLoisCanFly(Superman) ̸|= KLoisCanFly(Clark)

Reasoning in (propositional) Modal logics is NP-hard (most often even PSPACE-hard)

19 / 41

Modal Logics
Modal logics include special modal operators that take formulas (not terms!) as arguments

“A knows P” is represented with KAP (P formula, not term!)
ex: “Lois knows that Superman can fly”: KLoisCanFly(Superman)
ex: “Lois knows Clark Kent knows if he is Superman or not”:
KLois(KClark Identity(Superman,Clark) ∨ KClark¬Identity(Superman,Clark))

Properties in all modal logics:
KA(P ∧ Q) ⇐⇒ KAP ∧ KAQ
KAP ∨ KAQ |= KA(P ∨ Q), but KA(P ∨ Q) ̸|= KAP ∨ KAQ (e.g. KA(P ∨ ¬P) ̸|= KAP ∨ KA¬P)

The following axiom holds in all (normal) modal logics:
K : (KAϕ ∧ KA(ϕ→ ψ) → KAψ (distribution axiom): “A is able to perform propositional inference”

The following axioms hold in some (normal) modal logics:
T : KAφ→ φ (knowledge axiom): “A knows only true facts”
4 : KAφ→ KAKAφ (positive-introspection axiom): “If A knows fact φ, then [s]he knows [s]he knows it”
5 : ¬KAφ→ KA¬KAφ (negative-introspection axiom):
“If A doesn’t know φ, then [s]he knows [s]he doesn’t know it”

Referential Opacity: Superman=Clark ∧ KLoisCanFly(Superman) ̸|= KLoisCanFly(Clark)

Reasoning in (propositional) Modal logics is NP-hard (most often even PSPACE-hard)

19 / 41

Semantics of Modal Logics
A model (Kripke model) is a collection of possible world states wi (aka worlds, states)

possible states are connected in a graph by accessibility relations
one relation for each distinct modal operator KA

w1 is accessible from w0 wrt. KA if everything which holds in w1 is consistent with what A
knows in w0 (written “Acc(KA,w0,w1)” or “w0

KA7−→ w1”)
=⇒ KAφ holds in wo iff φ holds in every state wi accessible from w0

the more is known in w0, the less states are accessible from w0

remark: two possible states may differ also for what an agent knows there

Different modal logics differ by different properties of Acc(KA, ...)

T : KAφ→ φ holds iff Acc(KA, ...) reflexive: w
KA7−→ w

4 : KAφ→ KAKAφ holds iff Acc(KA, ...) transitive: w0
KA7−→ w1 and w1

KA7−→ w2 =⇒ w0
KA7−→ w2

5 : ¬KAφ→ KA¬KAφ holds iff Acc(KA, ...) euclidean: w0
KA7−→ w1 and w0

KA7−→ w2 =⇒ w1
KA7−→ w2

4: transitiveT: reflexive 5: euclidean

w2

w1

w0
w w0

w1

w2

20 / 41

Semantics of Modal Logics
A model (Kripke model) is a collection of possible world states wi (aka worlds, states)

possible states are connected in a graph by accessibility relations
one relation for each distinct modal operator KA

w1 is accessible from w0 wrt. KA if everything which holds in w1 is consistent with what A
knows in w0 (written “Acc(KA,w0,w1)” or “w0

KA7−→ w1”)
=⇒ KAφ holds in wo iff φ holds in every state wi accessible from w0

the more is known in w0, the less states are accessible from w0

remark: two possible states may differ also for what an agent knows there

Different modal logics differ by different properties of Acc(KA, ...)

T : KAφ→ φ holds iff Acc(KA, ...) reflexive: w
KA7−→ w

4 : KAφ→ KAKAφ holds iff Acc(KA, ...) transitive: w0
KA7−→ w1 and w1

KA7−→ w2 =⇒ w0
KA7−→ w2

5 : ¬KAφ→ KA¬KAφ holds iff Acc(KA, ...) euclidean: w0
KA7−→ w1 and w0

KA7−→ w2 =⇒ w1
KA7−→ w2

4: transitiveT: reflexive 5: euclidean

w2

w1

w0
w w0

w1

w2

20 / 41

Semantics of Modal Logics
A model (Kripke model) is a collection of possible world states wi (aka worlds, states)

possible states are connected in a graph by accessibility relations
one relation for each distinct modal operator KA

w1 is accessible from w0 wrt. KA if everything which holds in w1 is consistent with what A
knows in w0 (written “Acc(KA,w0,w1)” or “w0

KA7−→ w1”)
=⇒ KAφ holds in wo iff φ holds in every state wi accessible from w0

the more is known in w0, the less states are accessible from w0

remark: two possible states may differ also for what an agent knows there

Different modal logics differ by different properties of Acc(KA, ...)

T : KAφ→ φ holds iff Acc(KA, ...) reflexive: w
KA7−→ w

4 : KAφ→ KAKAφ holds iff Acc(KA, ...) transitive: w0
KA7−→ w1 and w1

KA7−→ w2 =⇒ w0
KA7−→ w2

5 : ¬KAφ→ KA¬KAφ holds iff Acc(KA, ...) euclidean: w0
KA7−→ w1 and w0

KA7−→ w2 =⇒ w1
KA7−→ w2

4: transitiveT: reflexive 5: euclidean

w2

w1

w0
w w0

w1

w2
20 / 41

Semantics of Modal Logics: Some Remarks

Assume the knowledge of A is correct: T : KAφ → φ (“Everything which A knows holds”)
̸|= φ → KAφ: A does not know everything which holds!
The less states are accessible, the more precise is the knowledge of A

uncertainty on some information makes accessible states different
=⇒ A does not know the state [s]he is
complete knowledge: current state is the only successor of itself
=⇒ A knows exactly the state [s]he is

w

w1

w0

wn

...
.

Complete knowledgeUncertainty

Notice the difference:
KA¬P: agent A knows that P does not hold (in all accessible states P is false)
¬KAP: agent A does not know if P holds (in some accessible states P is false)

=⇒ KA¬P |= ¬KAP, but ¬KAP ̸|= KA¬P

21 / 41

Semantics of Modal Logics: Some Remarks

Assume the knowledge of A is correct: T : KAφ → φ (“Everything which A knows holds”)
̸|= φ → KAφ: A does not know everything which holds!
The less states are accessible, the more precise is the knowledge of A

uncertainty on some information makes accessible states different
=⇒ A does not know the state [s]he is
complete knowledge: current state is the only successor of itself
=⇒ A knows exactly the state [s]he is

w

w1

w0

wn

...
.

Complete knowledgeUncertainty

Notice the difference:
KA¬P: agent A knows that P does not hold (in all accessible states P is false)
¬KAP: agent A does not know if P holds (in some accessible states P is false)

=⇒ KA¬P |= ¬KAP, but ¬KAP ̸|= KA¬P

21 / 41

Semantics of Modal Logics: Some Remarks

Assume the knowledge of A is correct: T : KAφ → φ (“Everything which A knows holds”)
̸|= φ → KAφ: A does not know everything which holds!
The less states are accessible, the more precise is the knowledge of A

uncertainty on some information makes accessible states different
=⇒ A does not know the state [s]he is
complete knowledge: current state is the only successor of itself
=⇒ A knows exactly the state [s]he is

w

w1

w0

wn

...
.

Complete knowledgeUncertainty

Notice the difference:
KA¬P: agent A knows that P does not hold (in all accessible states P is false)
¬KAP: agent A does not know if P holds (in some accessible states P is false)

=⇒ KA¬P |= ¬KAP, but ¬KAP ̸|= KA¬P

21 / 41

Semantics of Modal Logics: Some Remarks

Assume the knowledge of A is correct: T : KAφ → φ (“Everything which A knows holds”)
̸|= φ → KAφ: A does not know everything which holds!
The less states are accessible, the more precise is the knowledge of A

uncertainty on some information makes accessible states different
=⇒ A does not know the state [s]he is
complete knowledge: current state is the only successor of itself
=⇒ A knows exactly the state [s]he is

w

w1

w0

wn

...
.

Complete knowledgeUncertainty

Notice the difference:
KA¬P: agent A knows that P does not hold (in all accessible states P is false)
¬KAP: agent A does not know if P holds (in some accessible states P is false)

=⇒ KA¬P |= ¬KAP, but ¬KAP ̸|= KA¬P

21 / 41

Semantics of Modal Logics: Example

Accessibility relations: KSuperman (solid arrows) and KLois (dotted arrows).

Legenda:
R: “the weather report says tomorrow will rain”
I: “Superman’s secret identity is Clark Kent.”
Ex: KLois(KClark I ∨ KClark¬I): “Lois Knows that Clark Knows if he is Superman or not.”

Superman knows his own identity: KSupermanI ∨ KSuperman¬I, and
(a) neither Superman nor Lois has seen the weather report, she knows Superman knows if he is Clark
(¬KLoisR ∧ ¬KLois¬R) ∧ (¬KSupermanR ∧ ¬KSuperman¬R)∧ KLois(KSupermanI ∨ KSuperman¬I)

(self-loop arrows not reported)
(© S. Russell & P. Norwig, AIMA)

22 / 41

Semantics of Modal Logics: Example

Accessibility relations: KSuperman (solid arrows) and KLois (dotted arrows).

Legenda:
R: “the weather report says tomorrow will rain”
I: “Superman’s secret identity is Clark Kent.”
Ex: KLois(KClark I ∨ KClark¬I): “Lois Knows that Clark Knows if he is Superman or not.”

Superman knows his own identity: KSupermanI ∨ KSuperman¬I, and
(b) Lois has seen the weather report, Superman has not, but he knows that Lois has seen it
(KLoisR ∨ KLois¬R)∧(¬KSupermanR ∧ ¬KSuperman¬R)
KLois(KSupermanI ∨ KSuperman¬I)∧KSuperman(KLoisR ∨ KLois¬R)

(self-loop arrows not reported)
(© S. Russell & P. Norwig, AIMA)

22 / 41

Semantics of Modal Logics: Example
Accessibility relations: KSuperman (solid arrows) and KLois (dotted arrows).

Legenda:
R: “the weather report says tomorrow will rain”
I: “Superman’s secret identity is Clark Kent.”
Ex: KLois(KClark I ∨ KClark¬I): “Lois Knows that Clark Knows if he is Superman or not.”

Superman knows his own identity: KSupermanI ∨ KSuperman¬I, and
(c) Lois may or may not have seen the weather report, Superman has not:
((¬KLoisR ∧ ¬KLois¬R) ∨ (KLoisR ∨ KLois¬R)) ∧ (¬KSup.R ∧ ¬KSup.¬R)
KLois(KSupermanI ∨ KSuperman¬I)

(self-loop arrows not reported)
(© S. Russell & P. Norwig, AIMA)

22 / 41

Semantics of Modal Logics: Example
Accessibility relations: KSuperman (solid arrows) and KLois (dotted arrows).

Legenda:
R: “the weather report says tomorrow will rain”
I: “Superman’s secret identity is Clark Kent.”
Ex: KLois(KClark I ∨ KClark¬I): “Lois Knows that Clark Knows if he is Superman or not.”

Superman knows his own identity: KSupermanI ∨ KSuperman¬I, and
(c) Lois may or may not have seen the weather report, Superman has not:
((¬KLoisR ∧ ¬KLois¬R) ∨ (KLoisR ∨ KLois¬R)) ∧ (¬KSup.R ∧ ¬KSup.¬R)
KLois(KSupermanI ∨ KSuperman¬I)

(self-loop arrows not reported)
(© S. Russell & P. Norwig, AIMA)

22 / 41

Exercise

Consider the previous example.
For each scenario (a), (b) and (c) define doubly-nested knowledge in terms of

[¬]KLois[¬]KLois[¬]I,
[¬]KLois[¬]KLois[¬]R,
[¬]KSup.[¬]KSup.[¬]I,
[¬]KSup.[¬]KSup.[¬]R

23 / 41

Exercise

Consider (normal) modal logics (i.e., axioms K, T, 4 and 5 hold).
Let IsRed(Pen), IsOnTable(Pen) be possible facts, let Mary , John be agents and let KMary ,KJohn
denote the modal operators “Mary knows that...” and “John knows that...” respectively.
For each of the following facts, say if it is true or false.

If KMary¬IsRed(Pen) holds, then ¬KMary IsRed(Pen) holds
If ¬KMary IsRed(Pen) holds, then KMary¬IsRed(Pen) holds
If KJohnIsRed(Pen) and IsRed(Pen) ↔ IsOnTable(Pen) hold, then KJohnIsOnTable(Pen)
holds
If KMary IsRed(Pen) and KMary (IsRed(Pen) → KJohnIsRed(Pen)) hold, then
KMary KJohnIsRed(Pen)) holds

24 / 41

Exercise

Why does the third logician answers “Yes”?
Formalize and solve the problem by means of modal logic (K+T+4+5)

(Courtesy of Maria Simi, UniPI)

25 / 41

Outline

1 Ontologies and Ontological Engineering

2 Categories and Objects

3 Reasoning about Knowledge

4 Reasoning about Categories
Semantic Networks (hints)
Description Logics

26 / 41

Outline

1 Ontologies and Ontological Engineering

2 Categories and Objects

3 Reasoning about Knowledge

4 Reasoning about Categories
Semantic Networks (hints)
Description Logics

27 / 41

Reasoning Systems for Categories

Q. How to organize and reason with categories?
Semantic Networks

allow to visualize knowledge bases
efficient algorithms for category membership inference
limited expressivity
many variants

Description Logics (DLs)
formal language for constructing and combining category definitions
(relatively) efficient algorithms to decide subset and superset relationships between categories
many DLs

up to very high expressivity
up to very high complexity (e.g., DOUBLY-EXPTIME)

28 / 41

Reasoning Systems for Categories

Q. How to organize and reason with categories?
Semantic Networks

allow to visualize knowledge bases
efficient algorithms for category membership inference
limited expressivity
many variants

Description Logics (DLs)
formal language for constructing and combining category definitions
(relatively) efficient algorithms to decide subset and superset relationships between categories
many DLs

up to very high expressivity
up to very high complexity (e.g., DOUBLY-EXPTIME)

28 / 41

Reasoning Systems for Categories

Q. How to organize and reason with categories?
Semantic Networks

allow to visualize knowledge bases
efficient algorithms for category membership inference
limited expressivity
many variants

Description Logics (DLs)
formal language for constructing and combining category definitions
(relatively) efficient algorithms to decide subset and superset relationships between categories
many DLs

up to very high expressivity
up to very high complexity (e.g., DOUBLY-EXPTIME)

28 / 41

Semantic Networks

Allow for representing individual objects, categories of objects, and relations among objects
A Semantic Network is a graph where:

nodes, with a label, correspond to concepts
arcs, labelled and directed, correspond to binary relations between concepts (aka roles)

Two kinds of nodes:
Generic concepts, corresponding to categories/classes
Individual concepts, corresponding to individuals

Two special relations are always present, with different names
IS-A, aka SubsetOf/SubclassOf (subclass)
InstanceOf aka MemberOf (membership)

Inheritance detection straightforward
Ability to represent default values for categories
Limited expressive power: cannot represent negation, disjunction, nested function symbols,
existential quantification

29 / 41

Semantic Networks

Allow for representing individual objects, categories of objects, and relations among objects
A Semantic Network is a graph where:

nodes, with a label, correspond to concepts
arcs, labelled and directed, correspond to binary relations between concepts (aka roles)

Two kinds of nodes:
Generic concepts, corresponding to categories/classes
Individual concepts, corresponding to individuals

Two special relations are always present, with different names
IS-A, aka SubsetOf/SubclassOf (subclass)
InstanceOf aka MemberOf (membership)

Inheritance detection straightforward
Ability to represent default values for categories
Limited expressive power: cannot represent negation, disjunction, nested function symbols,
existential quantification

29 / 41

Semantic Networks

Allow for representing individual objects, categories of objects, and relations among objects
A Semantic Network is a graph where:

nodes, with a label, correspond to concepts
arcs, labelled and directed, correspond to binary relations between concepts (aka roles)

Two kinds of nodes:
Generic concepts, corresponding to categories/classes
Individual concepts, corresponding to individuals

Two special relations are always present, with different names
IS-A, aka SubsetOf/SubclassOf (subclass)
InstanceOf aka MemberOf (membership)

Inheritance detection straightforward
Ability to represent default values for categories
Limited expressive power: cannot represent negation, disjunction, nested function symbols,
existential quantification

29 / 41

Semantic Networks

Allow for representing individual objects, categories of objects, and relations among objects
A Semantic Network is a graph where:

nodes, with a label, correspond to concepts
arcs, labelled and directed, correspond to binary relations between concepts (aka roles)

Two kinds of nodes:
Generic concepts, corresponding to categories/classes
Individual concepts, corresponding to individuals

Two special relations are always present, with different names
IS-A, aka SubsetOf/SubclassOf (subclass)
InstanceOf aka MemberOf (membership)

Inheritance detection straightforward
Ability to represent default values for categories
Limited expressive power: cannot represent negation, disjunction, nested function symbols,
existential quantification

29 / 41

Semantic Networks

Allow for representing individual objects, categories of objects, and relations among objects
A Semantic Network is a graph where:

nodes, with a label, correspond to concepts
arcs, labelled and directed, correspond to binary relations between concepts (aka roles)

Two kinds of nodes:
Generic concepts, corresponding to categories/classes
Individual concepts, corresponding to individuals

Two special relations are always present, with different names
IS-A, aka SubsetOf/SubclassOf (subclass)
InstanceOf aka MemberOf (membership)

Inheritance detection straightforward
Ability to represent default values for categories
Limited expressive power: cannot represent negation, disjunction, nested function symbols,
existential quantification

29 / 41

Semantic Networks

Allow for representing individual objects, categories of objects, and relations among objects
A Semantic Network is a graph where:

nodes, with a label, correspond to concepts
arcs, labelled and directed, correspond to binary relations between concepts (aka roles)

Two kinds of nodes:
Generic concepts, corresponding to categories/classes
Individual concepts, corresponding to individuals

Two special relations are always present, with different names
IS-A, aka SubsetOf/SubclassOf (subclass)
InstanceOf aka MemberOf (membership)

Inheritance detection straightforward
Ability to represent default values for categories
Limited expressive power: cannot represent negation, disjunction, nested function symbols,
existential quantification

29 / 41

Semantic Networks

Allow for representing individual objects, categories of objects, and relations among objects
A Semantic Network is a graph where:

nodes, with a label, correspond to concepts
arcs, labelled and directed, correspond to binary relations between concepts (aka roles)

Two kinds of nodes:
Generic concepts, corresponding to categories/classes
Individual concepts, corresponding to individuals

Two special relations are always present, with different names
IS-A, aka SubsetOf/SubclassOf (subclass)
InstanceOf aka MemberOf (membership)

Inheritance detection straightforward
Ability to represent default values for categories
Limited expressive power: cannot represent negation, disjunction, nested function symbols,
existential quantification

29 / 41

Semantic Networks: Example
Notice

“HasMother” is a relation between persons (individuals) (categories do not have mothers)
“HasMother” (double-boxed notation) means
∀x .(x ∈Persons → [∀y .(HasMother(x , y) → y ∈FemalePersons)])
“Legs” is a property of single persons (individuals)
“Legs” (single-boxed notation) means:
∀x .(x ∈ Persons → Legs(x , 2))

(© S. Russell & P. Norwig, AIMA)

30 / 41

Semantic Networks: Example
Notice

“HasMother” is a relation between persons (individuals) (categories do not have mothers)
“HasMother” (double-boxed notation) means
∀x .(x ∈Persons → [∀y .(HasMother(x , y) → y ∈FemalePersons)])
“Legs” is a property of single persons (individuals)
“Legs” (single-boxed notation) means:
∀x .(x ∈ Persons → Legs(x , 2))

(© S. Russell & P. Norwig, AIMA)

30 / 41

Semantic Networks: Example
Notice

“HasMother” is a relation between persons (individuals) (categories do not have mothers)
“HasMother” (double-boxed notation) means
∀x .(x ∈Persons → [∀y .(HasMother(x , y) → y ∈FemalePersons)])
“Legs” is a property of single persons (individuals)
“Legs” (single-boxed notation) means:
∀x .(x ∈ Persons → Legs(x , 2))

(© S. Russell & P. Norwig, AIMA)

30 / 41

Inheritance in Semantic Networks

Inheritance conveniently implemented as
link traversal

Q. How many legs has Clyde?
=⇒ follow the INST-OF/IS-A chain until find the

property NLegs

(Courtesy of Maria Simi, UniPI)

31 / 41

Inheritance in Semantic Networks

Inheritance conveniently implemented as
link traversal

Q. How many legs has Clyde?
=⇒ follow the INST-OF/IS-A chain until find the

property NLegs

(Courtesy of Maria Simi, UniPI)

31 / 41

Inheritance in Semantic Networks

Inheritance conveniently implemented as
link traversal

Q. How many legs has Clyde?
=⇒ follow the INST-OF/IS-A chain until find the

property NLegs

(Courtesy of Maria Simi, UniPI)

31 / 41

Inheritance with Exceptions

The presence of exceptions does not create any problem with S.N.

How many legs has Pat?
Just take the most specific information: the
first that is found going up the hierarchy

=⇒ ability to represent default values for
categories

(Courtesy of Maria Simi, UniPI)

32 / 41

Inheritance with Exceptions

The presence of exceptions does not create any problem with S.N.

How many legs has Pat?
Just take the most specific information: the
first that is found going up the hierarchy

=⇒ ability to represent default values for
categories

(Courtesy of Maria Simi, UniPI)

32 / 41

Inheritance with Exceptions

The presence of exceptions does not create any problem with S.N.

How many legs has Pat?
Just take the most specific information: the
first that is found going up the hierarchy

=⇒ ability to represent default values for
categories

(Courtesy of Maria Simi, UniPI)

32 / 41

Encoding N-Ary Relations

Semantic networks allow only binary relations
Q. How to represent n-ary relations?

=⇒ Reify the proposition as an event belonging to an appropriate event category
ex “Fly17” for Fly(Shankar ,NewYork ,NewDelhi,Yesterday)

(© S. Russell & P. Norwig, AIMA)

33 / 41

Encoding N-Ary Relations

Semantic networks allow only binary relations
Q. How to represent n-ary relations?

=⇒ Reify the proposition as an event belonging to an appropriate event category
ex “Fly17” for Fly(Shankar ,NewYork ,NewDelhi,Yesterday)

(© S. Russell & P. Norwig, AIMA)

33 / 41

Encoding N-Ary Relations

Semantic networks allow only binary relations
Q. How to represent n-ary relations?

=⇒ Reify the proposition as an event belonging to an appropriate event category
ex “Fly17” for Fly(Shankar ,NewYork ,NewDelhi,Yesterday)

(© S. Russell & P. Norwig, AIMA)

33 / 41

Outline

1 Ontologies and Ontological Engineering

2 Categories and Objects

3 Reasoning about Knowledge

4 Reasoning about Categories
Semantic Networks (hints)
Description Logics

34 / 41

Description Logics

Designed to describe definitions and properties about categories
Principal inference tasks:

Subsumption: check if one category is a subset (sub-category) of another
Classification: check whether an object belongs to a category
Consistency: check if category membership criteria are satisfiable

Defaults and exceptions are lost

35 / 41

Description Logics

Designed to describe definitions and properties about categories
Principal inference tasks:

Subsumption: check if one category is a subset (sub-category) of another
Classification: check whether an object belongs to a category
Consistency: check if category membership criteria are satisfiable

Defaults and exceptions are lost

35 / 41

Description Logics

Designed to describe definitions and properties about categories
Principal inference tasks:

Subsumption: check if one category is a subset (sub-category) of another
Classification: check whether an object belongs to a category
Consistency: check if category membership criteria are satisfiable

Defaults and exceptions are lost

35 / 41

Concepts, Roles, Individuals

Concepts, corresponding to unary relations
⊤,⊥: universal and empty concepts
atomic concepts: ex: Female,Male,Article, Journalist ,...
operators for the construction of complex concepts:
and (⊓), or (⊔), not (¬), all (∀), some (∃), atleast (≥ n), atmost (≤ n), ...
ex: mothers (i.e., women who have children) of at least three female children:
Woman ⊓ ∃hasChildren.Person ⊓ ≥3 hasChild .Female
ex: articles that have authors and whose authors are all journalists:
Article ⊓ ∃hasAuthor .⊤ ⊓ ∀hasAuthor .Journalist

Roles corresponding to binary relations
ex: hasAuthor, hasChild
can be combined with operators for constructing complex roles
hasChildren ≡ hasSon ⊔ hasDaughter

Individuals (used in assertions only)
ex: Mary, John

36 / 41

Concepts, Roles, Individuals

Concepts, corresponding to unary relations
⊤,⊥: universal and empty concepts
atomic concepts: ex: Female,Male,Article, Journalist ,...
operators for the construction of complex concepts:
and (⊓), or (⊔), not (¬), all (∀), some (∃), atleast (≥ n), atmost (≤ n), ...
ex: mothers (i.e., women who have children) of at least three female children:
Woman ⊓ ∃hasChildren.Person ⊓ ≥3 hasChild .Female
ex: articles that have authors and whose authors are all journalists:
Article ⊓ ∃hasAuthor .⊤ ⊓ ∀hasAuthor .Journalist

Roles corresponding to binary relations
ex: hasAuthor, hasChild
can be combined with operators for constructing complex roles
hasChildren ≡ hasSon ⊔ hasDaughter

Individuals (used in assertions only)
ex: Mary, John

36 / 41

Concepts, Roles, Individuals

Concepts, corresponding to unary relations
⊤,⊥: universal and empty concepts
atomic concepts: ex: Female,Male,Article, Journalist ,...
operators for the construction of complex concepts:
and (⊓), or (⊔), not (¬), all (∀), some (∃), atleast (≥ n), atmost (≤ n), ...
ex: mothers (i.e., women who have children) of at least three female children:
Woman ⊓ ∃hasChildren.Person ⊓ ≥3 hasChild .Female
ex: articles that have authors and whose authors are all journalists:
Article ⊓ ∃hasAuthor .⊤ ⊓ ∀hasAuthor .Journalist

Roles corresponding to binary relations
ex: hasAuthor, hasChild
can be combined with operators for constructing complex roles
hasChildren ≡ hasSon ⊔ hasDaughter

Individuals (used in assertions only)
ex: Mary, John

36 / 41

Concepts, Roles, Individuals

Concepts, corresponding to unary relations
⊤,⊥: universal and empty concepts
atomic concepts: ex: Female,Male,Article, Journalist ,...
operators for the construction of complex concepts:
and (⊓), or (⊔), not (¬), all (∀), some (∃), atleast (≥ n), atmost (≤ n), ...
ex: mothers (i.e., women who have children) of at least three female children:
Woman ⊓ ∃hasChildren.Person ⊓ ≥3 hasChild .Female
ex: articles that have authors and whose authors are all journalists:
Article ⊓ ∃hasAuthor .⊤ ⊓ ∀hasAuthor .Journalist

Roles corresponding to binary relations
ex: hasAuthor, hasChild
can be combined with operators for constructing complex roles
hasChildren ≡ hasSon ⊔ hasDaughter

Individuals (used in assertions only)
ex: Mary, John

36 / 41

Concepts, Roles, Individuals

Concepts, corresponding to unary relations
⊤,⊥: universal and empty concepts
atomic concepts: ex: Female,Male,Article, Journalist ,...
operators for the construction of complex concepts:
and (⊓), or (⊔), not (¬), all (∀), some (∃), atleast (≥ n), atmost (≤ n), ...
ex: mothers (i.e., women who have children) of at least three female children:
Woman ⊓ ∃hasChildren.Person ⊓ ≥3 hasChild .Female
ex: articles that have authors and whose authors are all journalists:
Article ⊓ ∃hasAuthor .⊤ ⊓ ∀hasAuthor .Journalist

Roles corresponding to binary relations
ex: hasAuthor, hasChild
can be combined with operators for constructing complex roles
hasChildren ≡ hasSon ⊔ hasDaughter

Individuals (used in assertions only)
ex: Mary, John

36 / 41

Concepts, Roles, Individuals

Concepts, corresponding to unary relations
⊤,⊥: universal and empty concepts
atomic concepts: ex: Female,Male,Article, Journalist ,...
operators for the construction of complex concepts:
and (⊓), or (⊔), not (¬), all (∀), some (∃), atleast (≥ n), atmost (≤ n), ...
ex: mothers (i.e., women who have children) of at least three female children:
Woman ⊓ ∃hasChildren.Person ⊓ ≥3 hasChild .Female
ex: articles that have authors and whose authors are all journalists:
Article ⊓ ∃hasAuthor .⊤ ⊓ ∀hasAuthor .Journalist

Roles corresponding to binary relations
ex: hasAuthor, hasChild
can be combined with operators for constructing complex roles
hasChildren ≡ hasSon ⊔ hasDaughter

Individuals (used in assertions only)
ex: Mary, John

36 / 41

Concepts, Roles, Individuals

Concepts, corresponding to unary relations
⊤,⊥: universal and empty concepts
atomic concepts: ex: Female,Male,Article, Journalist ,...
operators for the construction of complex concepts:
and (⊓), or (⊔), not (¬), all (∀), some (∃), atleast (≥ n), atmost (≤ n), ...
ex: mothers (i.e., women who have children) of at least three female children:
Woman ⊓ ∃hasChildren.Person ⊓ ≥3 hasChild .Female
ex: articles that have authors and whose authors are all journalists:
Article ⊓ ∃hasAuthor .⊤ ⊓ ∀hasAuthor .Journalist

Roles corresponding to binary relations
ex: hasAuthor, hasChild
can be combined with operators for constructing complex roles
hasChildren ≡ hasSon ⊔ hasDaughter

Individuals (used in assertions only)
ex: Mary, John

36 / 41

Concepts, Roles, Individuals

Concepts, corresponding to unary relations
⊤,⊥: universal and empty concepts
atomic concepts: ex: Female,Male,Article, Journalist ,...
operators for the construction of complex concepts:
and (⊓), or (⊔), not (¬), all (∀), some (∃), atleast (≥ n), atmost (≤ n), ...
ex: mothers (i.e., women who have children) of at least three female children:
Woman ⊓ ∃hasChildren.Person ⊓ ≥3 hasChild .Female
ex: articles that have authors and whose authors are all journalists:
Article ⊓ ∃hasAuthor .⊤ ⊓ ∀hasAuthor .Journalist

Roles corresponding to binary relations
ex: hasAuthor, hasChild
can be combined with operators for constructing complex roles
hasChildren ≡ hasSon ⊔ hasDaughter

Individuals (used in assertions only)
ex: Mary, John

36 / 41

Concepts, Roles, Individuals

Concepts, corresponding to unary relations
⊤,⊥: universal and empty concepts
atomic concepts: ex: Female,Male,Article, Journalist ,...
operators for the construction of complex concepts:
and (⊓), or (⊔), not (¬), all (∀), some (∃), atleast (≥ n), atmost (≤ n), ...
ex: mothers (i.e., women who have children) of at least three female children:
Woman ⊓ ∃hasChildren.Person ⊓ ≥3 hasChild .Female
ex: articles that have authors and whose authors are all journalists:
Article ⊓ ∃hasAuthor .⊤ ⊓ ∀hasAuthor .Journalist

Roles corresponding to binary relations
ex: hasAuthor, hasChild
can be combined with operators for constructing complex roles
hasChildren ≡ hasSon ⊔ hasDaughter

Individuals (used in assertions only)
ex: Mary, John

36 / 41

T-Boxes and A-Boxes

Terminologies (T-Boxes): sets of
concepts definitions (C1 ≡ C2)
ex: Father ≡ Man ⊓ ∃hasChild .Person
or concept generalizations (C1 ⊑ C2)
ex: Woman ⊑ Person

Assertions (A-Boxes): assert
individuals as concept members i : C,
where i is an individual and C is a concept
ex: mary : Person, john : Father
individual pairs as relation members ⟨i, j⟩ : R,
where i,j are individuals and R is a relation
ex: ⟨john,mary⟩ : hasChild

37 / 41

T-Boxes and A-Boxes

Terminologies (T-Boxes): sets of
concepts definitions (C1 ≡ C2)
ex: Father ≡ Man ⊓ ∃hasChild .Person
or concept generalizations (C1 ⊑ C2)
ex: Woman ⊑ Person

Assertions (A-Boxes): assert
individuals as concept members i : C,
where i is an individual and C is a concept
ex: mary : Person, john : Father
individual pairs as relation members ⟨i, j⟩ : R,
where i,j are individuals and R is a relation
ex: ⟨john,mary⟩ : hasChild

37 / 41

T-Boxes and A-Boxes

Terminologies (T-Boxes): sets of
concepts definitions (C1 ≡ C2)
ex: Father ≡ Man ⊓ ∃hasChild .Person
or concept generalizations (C1 ⊑ C2)
ex: Woman ⊑ Person

Assertions (A-Boxes): assert
individuals as concept members i : C,
where i is an individual and C is a concept
ex: mary : Person, john : Father
individual pairs as relation members ⟨i, j⟩ : R,
where i,j are individuals and R is a relation
ex: ⟨john,mary⟩ : hasChild

37 / 41

T-Boxes and A-Boxes

Terminologies (T-Boxes): sets of
concepts definitions (C1 ≡ C2)
ex: Father ≡ Man ⊓ ∃hasChild .Person
or concept generalizations (C1 ⊑ C2)
ex: Woman ⊑ Person

Assertions (A-Boxes): assert
individuals as concept members i : C,
where i is an individual and C is a concept
ex: mary : Person, john : Father
individual pairs as relation members ⟨i, j⟩ : R,
where i,j are individuals and R is a relation
ex: ⟨john,mary⟩ : hasChild

37 / 41

T-Boxes and A-Boxes

Terminologies (T-Boxes): sets of
concepts definitions (C1 ≡ C2)
ex: Father ≡ Man ⊓ ∃hasChild .Person
or concept generalizations (C1 ⊑ C2)
ex: Woman ⊑ Person

Assertions (A-Boxes): assert
individuals as concept members i : C,
where i is an individual and C is a concept
ex: mary : Person, john : Father
individual pairs as relation members ⟨i, j⟩ : R,
where i,j are individuals and R is a relation
ex: ⟨john,mary⟩ : hasChild

37 / 41

T-Boxes and A-Boxes

Terminologies (T-Boxes): sets of
concepts definitions (C1 ≡ C2)
ex: Father ≡ Man ⊓ ∃hasChild .Person
or concept generalizations (C1 ⊑ C2)
ex: Woman ⊑ Person

Assertions (A-Boxes): assert
individuals as concept members i : C,
where i is an individual and C is a concept
ex: mary : Person, john : Father
individual pairs as relation members ⟨i, j⟩ : R,
where i,j are individuals and R is a relation
ex: ⟨john,mary⟩ : hasChild

37 / 41

T-Box: Example (Logic ALCN)

(Courtesy of Maria Simi, UniPI)

38 / 41

Reasoning Services for DLs

Design and management of ontologies
consistency checking of concepts, creation of hierarchies

Ontology integration
Relations between concepts of different ontologies
Consistency of integrated hierarchies

Queries
Determine whether facts are consistent wrt ontologies
Determine if individuals are instances of concepts
Retrieve individuals satisfying a query (concept)
Verify if a concept is more general than another (subsumption)

39 / 41

Reasoning Services for DLs

Design and management of ontologies
consistency checking of concepts, creation of hierarchies

Ontology integration
Relations between concepts of different ontologies
Consistency of integrated hierarchies

Queries
Determine whether facts are consistent wrt ontologies
Determine if individuals are instances of concepts
Retrieve individuals satisfying a query (concept)
Verify if a concept is more general than another (subsumption)

39 / 41

Reasoning Services for DLs

Design and management of ontologies
consistency checking of concepts, creation of hierarchies

Ontology integration
Relations between concepts of different ontologies
Consistency of integrated hierarchies

Queries
Determine whether facts are consistent wrt ontologies
Determine if individuals are instances of concepts
Retrieve individuals satisfying a query (concept)
Verify if a concept is more general than another (subsumption)

39 / 41

Querying a DL Ontology: Example

All the children of John are females. Mary is a child of John.
Tim is a friend of professor Blake. Prove that Mary is a female.

A def
= {john : ∀hasChild .female, (john,mary) : hasChild ,

(blake, tim) : hasFriend ,blake : professor}
Query: mary : female (or: is A ⊓ mary : ¬female unsatisfiable?)
Yes

40 / 41

Querying a DL Ontology: Example

All the children of John are females. Mary is a child of John.
Tim is a friend of professor Blake. Prove that Mary is a female.

A def
= {john : ∀hasChild .female, (john,mary) : hasChild ,

(blake, tim) : hasFriend ,blake : professor}
Query: mary : female (or: is A ⊓ mary : ¬female unsatisfiable?)
Yes

40 / 41

Exercise

Given:
a set of basic concepts: {Person,Male,Doctor,Engineer}
a set of relations: {hasChild}

with their obvious meaning. Write a T -box in ALCN defining the following concepts
(a) Female, Man, Woman (with their standard meaning)
(b) femaleDoctorWithoutChildren: female doctor with no children
(c) fatherOfFemaleDoctor: father of at least two female doctors
(d) motherOfDoctorsOrEngineers: woman whose children are all engineers or a doctors

anon-exclusive or.

41 / 41

	Ontologies and Ontological Engineering
	Categories and Objects
	Reasoning about Knowledge
	Reasoning about Categories
	Semantic Networks (hints)
	Description Logics

