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Automated Planning (aka “Planning”)

Automated Planning

Synthesize a sequence of actions (plan) to be performed by an agent leading from an initial state
of the world to a set of target states (goal)

Planning is both:
an application per se
a common activity in many applications
(e.g. design & manufacturing, scheduling, robotics,...)

Similar to problem-solving agents (Ch.03), with factored/structured representation of states
“Classical” Planning (this chapter):
fully observable, deterministic, static environments with single agents
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Automated Planning [cont.]

Automated Planning

Given:
an initial state
a set of actions you can perform
a (set of) state(s) to achieve (goal)

Find:
a plan: a partially- or totally-ordered set of actions needed to achieve the goal from the initial state
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Decidability and Complexity

PlanSAT: the question of whether there exists any plan that solves a planning problem
decidable for classical planning
with function symbols, the number of states becomes infinite
=⇒ undecidable
in PSPACE

harder than NP, no polynomial-size witness (e.g., Tower of Hanoi)

Bounded PlanSAT: the question of whether there exists any plan of a given length k or less
can be used for optimal-length plan
decidable for classical planning
decidable even in the presence of function symbols
in PSPACE, NP for many problems of interest
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A Language for Planning: PDDL

Planning Domain Definition Language (PDDL)

A state is a conjunction of fluents: ground, function-less atoms
ex: Poor ∧ Unknown, At(Truck1,Melbourne) ∧ At(Truck2,Sydney)
ex of non-fluents: At(x , y) (non ground), ¬Poor (negated), At(Father(Fred),Sydney) (not
function-less)
closed-world assumption: all non-mentioned fluents are false
unique-name assumption: distinct names refer to distinct objects

Actions are described by a set of action schemata
concise description: describe which fluent change

=⇒ the other fluents implicitly maintain their values

Action Schema: consists in action name, a list of variables in the schema, the precondition,
the effect (aka postcondition)

precondition and effect are conjunctions of literals
(positive or negated atomic sentences)
lifted representation: variables implicitly universally quantified

Can be instantiated into (ground) actions
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PDDL: Example

Action schema:
Action(Fly(p, from, to),

PRECOND : Plane(p) ∧ Airport(from) ∧ Airport(to) ∧ At(p, from)
EFFECT : ¬At(p, from) ∧ At(p, to))

Action instantiation:
Action(Fly(P1,SFO, JFK ),

PRECOND : Plane(P1) ∧ Airport(SFO) ∧ Airport(JFK ) ∧ At(P1,SFO)
EFFECT : ¬At(P1,SFO) ∧ At(P1, JFK ))
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A Language for Planning: PDDL [cont.]

Precondition: must hold to ensure the action can be executed
defines the states in which the action can be executed
action is applicable in state s if the preconditions are satisfied by s

Effect: represent the effects of the action on the world
defines the result of executing the action

Add list (ADD(a)): (the fluents in) the positive literals in the action’s effects
ex: {At(p, to)}

Delete list (DEL(a)): (the fluents in) the negative literals in the action’s effects
ex: {At(p, from)}

Result of action a in state s: RESULT(s,a)def
= (s\DEL(a) ∪ ADD(a))

start from s
remove the fluents that appear as negative literals in effect
add the fluents that appear as positive literals in effect
ex: Fly(P1,SFO, JFK ) =⇒ remove At(P1,SFO), add At(P1, JFK )
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PDDL: Example [cont.]

Action schema:
Action(Fly(p, from, to),

PRECOND : Plane(p) ∧ Airport(from) ∧ Airport(to) ∧ At(p, from)
EFFECT : ¬At(p, from) ∧ At(p, to))

Action instantiation:
Action(Fly(P1,SFO, JFK ),

PRECOND : Plane(P1) ∧ Airport(SFO) ∧ Airport(JFK ) ∧ At(P1,SFO)
EFFECT : ¬At(P1,SFO) ∧ At(P1, JFK ))

s : At(P1,SFO) ∧ Plane(P1) ∧ Airport(SFO) ∧ Airport(JFK ) ∧ ...

=⇒ s′ : At(P1, JFK ) ∧ Plane(P1) ∧ Airport(SFO) ∧ Airport(JFK ) ∧ ...

Sometimes we want to propositionalize a PDDL problem:
replace each action schema with a set of ground actions.

Ex: ...At_P1_SFO ∧ Plane_P1 ∧ Airport_SFO ∧ Airport_JFK )...
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A Language for Planning: PDDL [cont.]

Time in PDDL
Fluents do not explicitly refer to time
Times and states are implicit in the action schemata:

the precondition always refers to time t
the effect to time t+1.

PDDL Problem
A set of action schemata defines a planning domain
PDDL problem: a planning domain, an initial state and a goal

the initial state is a conjunction of ground atoms (positive literals)
closed-world assumption: any not-mentioned atoms are false

the goal is a conjunction of literals (positive or negative)
may contain variables, which are implicitly existentially quantified
a goal g may represent a set of states (the set of states entailing g)

Ex: goal: At(p,SFO) ∧ Plane(p):
variable “p” implicitly means “for some plane p”
the state Plane(Plane1) ∧ At(Plane1,SFO) ∧ ... entails g
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A Language for Planning: PDDL [cont.]

Planning as a search problem

All components of a search problem
an initial state
an ACTIONS function
a RESULT function
and a goal test
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Example: Air Cargo Transport

(© S. Russell & P. Norwig, AIMA)

One solution: [Load(C1,P1,SFO),Fly(P1,SFO, JFK ),Unload(C1,P1, JFK ),
Load(C2,P2, JFK ),Fly(P2, JFK ,SFO),Unload(C2,P2,SFO)]
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Example: Spare Tire Problem

(© S. Russell & P. Norwig, AIMA)

(We assume that the car is parked in a particularly bad neighborhood, so that the effect of leaving it
overnight is that the tires disappear.)

One solution: [Remove(Flat ,Axle),Remove(Spare,Trunk),PutOn(Spare,Axle)]
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Example: Blocks World

(© S. Russell & P. Norwig, AIMA)

One solution: [MoveToTable(C,A),Move(B,Table,C),Move(A,Table,B)]
17 / 64
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Two Main Approaches

(a) Forward search (aka progression search)
start in the initial state
use actions to search forward for a goal
state

(b) Backward search (aka regression search)
start from goals
use reverse actions to search forward for
the initial state

(© S. Russell & P. Norwig, AIMA)
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Forward Search
Forward search (aka progression search)

choose actions whose preconditions are satisfied
add positive effects, delete negative

Goal test: does the state satisfy the goal?
Step cost: each action costs 1

=⇒ We can use any of the search algorithms from Ch. 03, 04
need keeping track of the actions used to reach the goal

Breadth-first and best-first
Sound: if they return a plan, then the plan is a solution
Complete: if a problem has a solution, then they will return one
Require exponential memory wrt. solution length! =⇒ unpractical

Depth-first search and greedy search
Sound
Not complete

may enter in infinite loops
(classical planning only): made complete by loop-checking

Require linear memory wrt. solution length
21 / 64
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Branching Factor of Forward Search

Planning problems can have huge state spaces
Forward search can have a very large branching factor

ex: pickup(a1), pickup(a2), ..., pickup(a500)

=⇒ Forward-search can waste time trying lots of irrelevant actions
=⇒ Need a good heuristic to guide the search

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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Backward Search (aka Regression or Relevant-States)

Predecessor (sub)goal g’ of ground goal g via ground action a:
Pos(g′)

def
= (Pos(g) \ Add(a)) ∪ Pos(Precond(a))

Neg(g′)
def
= (Neg(g) \ Del(a)) ∪ Neg(Precond(a))

Note: Both g and g′ represent many states
irrelevant ground atoms unassigned

Consider the goal At(C1,SFO) ∧ At(C2, JFK )

Consider the ground action:
Action(Unload(C1,P1,SFO),

PRECOND : In(C1,P1) ∧ At(P1,SFO) ∧ Cargo(C1) ∧ Plane(P1) ∧ Airport(SFO)
EFFECT : At(C1,SFO) ∧ ¬In(C1,P1))

This produces the sub-goal g′:
In(C1,P1) ∧ At(P1,SFO) ∧ Cargo(C1) ∧ Plane(P1) ∧ Airport(SFO) ∧ At(C2, JFK )

Both g′ and g represent many states
e.g. truth value of In(C3,P2) irrelevant
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Backward Search [cont.]

Idea: deal with partially un-instantiated actions and states
avoid unnecessary instantiations

=⇒ no need to produce a goal for every possible instantiation

use the most general unifier =⇒ compute weakest precondition
standardize action schemata first (rename vars into fresh ones)

Consider the goal At(C1,SFO) ∧ At(C2, JFK )

Consider the partially-instantiated action:
Action(Unload(C1, p′,SFO),

PRECOND : In(C1, p′) ∧ At(p′,SFO) ∧ Cargo(C1) ∧ Plane(p′) ∧ Airport(SFO)
EFFECT : At(C1,SFO) ∧ ¬In(C1, p′))

This produces the sub-goal g′:
In(C1,p′) ∧ At(p′,SFO) ∧ Cargo(C1) ∧ Plane(p′) ∧ Airport(SFO) ∧ At(C2, JFK )

Represents states with all possible planes
=⇒ no need to produce a subgoal for every plane P1,P2,P3, ...
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Backward Search [cont.]

Which action to choose?
Relevant action: could be the last step in a plan for goal g

at least one of the action’s effects (positive or negative) must unify with an element of the goal

(see AIMA book for formal definition)
Consistent action: must not undo desired literals of the goal

inconsistent actions are also non-relevant

Ex: consider the goal At(C1,SFO) ∧ At(C2, JFK )

Action(Unload(C1, p′,SFO), ...) is relevant (previous example)
Action(Unload(C3, p′,SFO), ...) is not relevant
Action(Load(C2, p′, JFK ), ...) is not consistent =⇒ is not relevant

+ B.S. typically keeps the branching factor lower than F.S.
- B.S. reasons with state sets
=⇒ makes it harder to come up with good heuristics
Most planners work with forward search plus heuristics
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Action(Load(C2, p′, JFK ), ...) is not consistent =⇒ is not relevant

+ B.S. typically keeps the branching factor lower than F.S.
- B.S. reasons with state sets
=⇒ makes it harder to come up with good heuristics
Most planners work with forward search plus heuristics
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Heuristics for (Forward-Search) Planning

A∗ for Planning

Recall: A∗ is a best-first algorithm which
uses an evaluation function f(s) = g(s) + h(s),
g(s): (exact) cost to reach s
h(s): admissible (optimistic) heuristics
(never overestimates the distance to the goal)

A technique for admissible heuristics: problem relaxation
=⇒ h(s): the exact cost of a solution to the relaxed problem

Forms of problem relaxation exploiting problem structure
Add arcs to the search graph =⇒ make it easier to search

ignore-preconditions heuristics
ignore-delete-lists heuristics

Clustering nodes (aka state abstraction) =⇒ reduce search space
ignore less-relevant fluents
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Ignore (some) Preconditions Heuristics

Ignore all preconditions drops all preconditions from actions
every action is applicable in any state
any single goal literal can be satisfied in one step
(or there is no solution)
fast, but over-optimistic

Ignore some selected (less relevant) preconditions
relevance based on heuristics or domain-depended criteria
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Ignore-Preconditions Heuristics: Example

Sliding tiles
Action(Slide(t , s1, s2),

PRECOND : Tile(t) ∧ Blank(s2) ∧ On(t , s1) ∧ Adjacent(s1, s2)
EFFECT : On(t , s2) ∧ Blank(s1) ∧ ¬On(t , s1) ∧ ¬Blank(s2))

Remove the preconditions Blank(s2) ∧ Adjacent(s1, s2)

=⇒ we get the number-of-misplaced-tiles heuristics

Remove the precondition Blank(s2)

=⇒ we get the Manhattan-distance heuristics

(Courtesy of Maria Simi, UniPI)
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Ignore Delete-list Heuristics

Assumption: goals & preconditions contain only positive literals
reasonable in many domains

Idea: Remove the delete lists from all actions
No action will ever undo the effect of actions,

=⇒ there is a monotonic progress towards the goal

Still NP-hard to find the optimal solution of the relaxed problem
can be approximated in polynomial time, with hill-climbing

Can be very effective for some problems
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Ignore Delete-list Heuristics: Example (Hoffmann’05)

Planning state spaces with ignore-delete-lists heuristic
height above the bottom plane is the heuristic score of a state
states on the bottom plane are goals

=⇒ No local minima, non dead-ends, non backtracking
=⇒ Search for the goal is straightforward for hill-climbing

(© S. Russell & P. Norwig, AIMA)
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State Abstractions

Many-to-one mapping from states in the ground/original representation of the problem to a
more abstract representation

drastically reduces the number of states

Common strategy: ignore some (less-relevant) fluents
drop k fluents =⇒ reduce search space by 2k factors
relevance based on (heuristic) evaluation or domain knowledge

Air cargo problem: 10 airports, 50 planes, 200 pieces of cargo
=⇒ 1050 · (50 + 10)200 ≈ 10405 states (*)

Consider particular problem in that domain
all packages are at 5 airports
all packages at a given airport have the same destination

Abstraction: drop all “At” fluents except for these involving one plane and one package at
each of the the 5 airports
=⇒ 105 · (5 + 10)5 ≈ 1011 states (*)

abstract solution shorter than ground solutions =⇒ admissible
abstract solution easy to extend: add Load and Unload actions

(*) wrong in AIMA III Ed, corrected in later editions
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Other Strategies for Planning

Other strategies to define heuristics

Problem decomposition
“divide & conquer” problem into subproblem
solve subproblems independently

Using a data structure called “planning graph” (next section)
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Generalities

Planning Graph

A data structure which is a rich source of information:
can be used to give better heuristic estimates h(s)
can drive an algorithm called Graphplan

A polynomial-size over-approximation to the (exponential) search tree
can be constructed very quickly

- cannot answer definitively if goal g is reachable from initial state
+ may discover that the goal is not reachable
+ can estimate the most-optimistic step # to reach g

=⇒ it can be used to derive an admissible heuristic h(s)
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Planning Graph: Definition

A directed graph, built forward and organized into levels
level S0: contain each ground fluent that holds in the initial state
level A0: contains each ground action with preconditions inS0 (i.e. applicable in S0)
...
level Ai : contains all ground actions with preconditions in Si
level Si+1: all the effects of all the actions in Ai

each Si may contain both Pj and ¬Pj

until SN = SN−1 (“leveled off”).
Contains persistence actions (aka maintenance actions, no-ops)

say that a literal l persists if no action negates it

Mutual exclusion links (mutex) connect
incompatible pairs of actions
incompatible pairs of literals

Deals with ground states and actions only
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Planning Graph: Example

(© S. Russell & P. Norwig, AIMA)
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Mutex Computation
Two actions at the same action-level have a mutex relation if

Inconsistent effects: an effect of one negates an effect of the other
Interference: one deletes a precondition of the other
Inconsistent preconditions (aka competing needs): they have mutually exclusive preconditions

Otherwise they don’t interfere with each other
=⇒ both may appear in a solution plan

Two literals at the same state-level have a mutex relation if
inconsistent support: one is the negation of the other
all ways of achieving them (including no-ops) are pairwise mutex

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons) 39 / 64
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Mutex Computation: Example

Two actions at the same action-level have a mutex relation if
Inconsistent effects: an effect of one negates an effect of the other
ex: persistence of Have(Cake), Eat(Cake) have competing effects
ex: Bake(Cake), Eat(Cake) have competing effects
Interference: one deletes a precondition of the other
ex: Eat(Cake) interferes with the persistence of Have(Cake)
Inconsistent preconditions (aka competing needs): they have mutually exclusive preconditions
ex: Bake(Cake) and Eat(Cake)

(© S. Russell & P. Norwig, AIMA)
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Mutex Computation: Example [cont.]

Two literals at the same state-level have a mutex relation if
inconsistent support: one is the negation of the other
ex.: Have(Cake), ¬Have(Cake)
all ways of achieving them are pairwise mutex
ex.: (S1): Have(Cake) in mutex with Eaten(Cake)
because persistence of Have(Cake), Eat(Cake) are mutex

(© S. Russell & P. Norwig, AIMA)
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Building of the Planning Graph

Create initial layer S0:
1 insert into S0 all literals in the initial state

Repeat for increasing values of i = 0,1,2, ...:
Create action layer Ai :

1 for each action schema, for each way to unify its preconditions to non-mutually exclusive literals in
Si , enter an action node into Ai

2 for every literal in Si , enter a no-op action node into Ai
3 add mutexes between the newly-constructed action nodes

Create state layer Si+1:
1 for each action node a in Ai ,

add to Si+1 the fluents in his Add list, linking them to a
add to Si+1 the negated fluents in his Del list, linking them to a

2 for every "no-op" action node a in Ai ,
add the corresponding literal to Si+1
link it to a

3 add mutexes between literal nodes in Si+1

... until Si+1 = Si (aka “graph leveled off”) or bound reached (if any)
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2 for every literal in Si , enter a no-op action node into Ai
3 add mutexes between the newly-constructed action nodes

Create state layer Si+1:
1 for each action node a in Ai ,

add to Si+1 the fluents in his Add list, linking them to a
add to Si+1 the negated fluents in his Del list, linking them to a

2 for every "no-op" action node a in Ai ,
add the corresponding literal to Si+1
link it to a

3 add mutexes between literal nodes in Si+1

... until Si+1 = Si (aka “graph leveled off”) or bound reached (if any)
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Planning Graphs: Properties

Literals and actions increase monotonically and are finite
=⇒ we eventually reach a level where they stabilize
Mutexes decrease monotonically (and cannot become less than zero)
=⇒ they too eventually must level off

=⇒ When we reach this stable state, if one of the goal literals is missing or is mutex with another
goal literal, then it will remain so
=⇒ we can stop
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Planning Graphs: Complexity

A planning graph is polynomial in the size of the problem:
a graph with n levels, a actions, l literals, has size O(n(a + l)2)
time complexity is also O(n(a + l)2)

=⇒ The process of constructing the planning graph is very fast
does not require choosing among actions
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Planning Graphs for Heuristic Estimation

Information provided by Planning Graphs

Each level Si represents a set of possible belief states
two literals connected by a mutex belong to different belief state

A literal not appearing in the final level of the graph cannot be achieved by any plan
=⇒ if a goal literal is not in the final level, the problem is unsolvable

The level Sj a literal l appears first is never greater than the level it can be achieved in a plan
j is called the level cost of literal l

the level cost of a literal gi in the graph constructed starting from state s, is an estimate of
the cost to achieve it from s (i.e. h(g))

this estimate is admissible
ex: from s0 Have(cake) has cost 0 and Eaten(cake) has cost 1

Planning graph admits several actions per level
=⇒ inaccurate estimate

Serialization: enforcing only one action per level (adding mutex)
=⇒ better estimate
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Planning Graphs for Heuristic Estimation [cont.]

Estimating the heuristic cost of a conjunction of goal literals

Max-level heuristic: the maximum level cost of the sub-goals
admissible

Level-sum heuristic: the sum of the level costs of the goals
inadmissible only if goals are independent,
it may work well in practice

Set-level heuristic: the level at which all goal literals appear together, without pairwise
mutexes

admissible, more accurate
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The Graphplan Algorithm
A strategy for extracting a plan from the planning graph
Repeatedly adds a level to a planning graph (EXPAND-GRAPH)
If all the goal literals occur in last level and are non-mutex

search for a plan that solves the problem (EXTRACT-SOLUTION)
if that fails, expand another level and try again (and add ⟨goal, level⟩ as nogood)

If graph and nogoods have both leveled off then return failure
Depends on EXPAND-GRAPH & EXTRACT-SOLUTION

(© S. Russell & P. Norwig, AIMA)
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[Recall] Example: Spare Tire Problem

(© S. Russell & P. Norwig, AIMA)

(We assume that the car is parked in a particularly bad neighborhood, so that the effect of leaving it
overnight is that the tires disappear.)

One solution: [Remove(Flat ,Axle),Remove(Spare,Trunk),PutOn(Spare,Axle)]
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Graphplan: Example
Spare Tire problem

Initial plan 5 literals from initial state and the Closed-World-Assumption literals (S0).
fixed literals (e.g. Tire(Flat)) ignored here
irrelevant literals ignored here

Goal At(Spare,Axle) not present in S0

=⇒ no need to call EXTRACT-SOLUTION

Graph and nogoods not leveled off =⇒ invoke EXPAND-GRAPH

(© S. Russell & P. Norwig, AIMA) (inter-fluent mutexes omitted for readability) 51 / 64



Graphplan: Example [cont.]
Spare Tire problem

Invoke EXPAND-GRAPH

add actions A0, persistence actions and mutexes
add fluents S1 and mutexes

Goal At(Spare,Axle) not present in S1

=⇒ no need to call EXTRACT-SOLUTION

Graph and nogoods not leveled off =⇒ invoke EXPAND-GRAPH

(© S. Russell & P. Norwig, AIMA) (inter-fluent mutexes omitted for readability) 52 / 64



Graphplan: Example [cont.]
Spare Tire problem

Invoke EXPAND-GRAPH

add actions A1, persistence actions and mutexes
add fluents S2 and mutexes

Goal At(Spare,Axle) present in S2

call EXTRACT-SOLUTION

Solution found!

(© S. Russell & P. Norwig, AIMA) (inter-fluent mutexes omitted for readability)
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Exercise

Consider the following variant of the Spare Tire problem:
add At(Flat ,Trunk) to the goal
Write the (non-serialized) planning graph
Extract a plan from the graph
Do the same with the serialized planning graph
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The Graphplan Algorithm [cont.]

Graphplan “family” of algorithms, depending on approach used in EXTRACT-SOLUTION(...)

About EXTRACT-SOLUTION(...)

Can be formulated as an (incremental) SAT problem
one proposition for each ground action and fluent
clauses represent preconditions, effects, no-ops and mutexes

Can be formulated as a backward search problem
Planning problem restricted to planning graph

mutexes found by EXPAND-GRAPH prune paths in the search tree
=⇒ much faster than unrestricted planning

(if P.G. not serialized) may produce partial order plans
=⇒ may be later serialized into a total-order plan
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Partial-Order Plans

Partial-Order vs. Total-Order Plans
Total-order plans: strictly linear sequences of actions

disregards the fact that some action are mutually independent

Partial-order plans: set of precedence constraints between action pairs
form a directed acyclic graph
longest path to goal may be much shorter than total-order plan
easily converted into (possibly many) distinct total-order plans
(any possible interleaving of independent actions)
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Partial-Order Plans: Example

Socks & Shoes Examples

(Courtesy of Michela Milano, UniBO)
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Termination of Graphplan

Theorem: If the graph and the no-goods have both leveled off, and no solution is found we
can safely terminate with failure
Intuition (proof sketch):

Literals and actions increase monotonically and are finite
=⇒ we eventually reach a level where they stabilize
Mutexes and no-goods decrease monotonically (and cannot become less than zero)
=⇒ they too eventually must level off

=⇒ When we reach this stable state, if one of the goal literals is missing or is mutex with another goal
literal, then it will remain so
=⇒ we can stop
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Exercise

Socks & Shoes example:
1 Formalize the Socks & Shoes example in PDDL
2 Write the non-serialized planning graph
3 Compute the level cost for every fluent
4 Choose some states, compute h(s) using the three heuristics
5 Extract a plan from the graph in (2)
6 Compare h(s) with the level they occur in the plan
7 Write the serialized planning graph
8 Repeat steps (3)-(6) with the serialized graph

Do same steps (1)-(8) for the Air Cargo Transport example
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Planning as SAT Solving
Encode bounded planning problem into a propositional formula

=⇒ Solve it by (incremental) calls to a SAT solver
A model for the formula (if any) is a plan of length t
Many variants in the encoding
Extremely efficient with many problems of interest

(© S. Russell & P. Norwig, AIMA)
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Planning as SAT Solving [cont.]

TRANSLATE-TO-SAT(INIT,TRANSITION, GOAL, T):
ground fluents & actions at each step are propositionalized

ex: ⟨At(P1,SFO), 3⟩ =⇒ At_P1_SFO_3
ex: ⟨Fly(P1,SFO, JFK ), 3⟩ =⇒ Fly_P1_SFO_JFK _3

returns propositional formula: Init0 ∧ (
∧t−1

i=1 Transitioni,i+1) ∧ Goal t

Init0 and Goal t : conjunctions of literals at step 0 and t resp.
ex: Init0: At_P1_SFO_0 ∧ At_P2_JFK _0
ex: Goal3: At_P1_JFK _3 ∧ At_P2_SFO_3

Transitioni,i+1: encodes transition from steps i to i + 1
Actions: Actioni → (Precond i ∧ Effectsi+1)
ex: Fly_P1_SFO_JFK _2 → (At_P1_SFO_2 ∧ At_P1_JFK _3)
No-Ops: for each fluent F and step i :

F i+1 ↔
∨
k

ActionCausingF i
k ∨ (F i ∧

∧
j

¬ActionCausingNotF i
j )

Mutex constraints: ¬Actioni
1 ∨ ¬Actioni

2
ex: ¬Fly_P1_SFO_JFK _2 ∨ ¬Fly_P1_SFO_Newark_2
If serialized: add mutex between each pair of actions at each step
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Exercise

Consider the socks & shoes example
Translate it into SAT for t=0,1,2

non serialized
no need to propositionalize: treat ground atoms as propositions
no need to CNF-ize here (human beings don’t like CNFs)

Find a model for the formula
Convert it back to a plan
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