Fundamentals of Artificial Intelligence Chapter 07: Logical Agents

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it https://disi.unitn.it/rseba/DIDATTICA/fai_2023/

Teaching assistants:
Mauro Dragoni, dragoni@fbk.eu, https://www.maurodragoni.com/teaching/fai/
Paolo Morettin, paolo.morettin@unitn.it, https://paolomorettin.github.io/

M.S. Course "Artificial Intelligence Systems", academic year 2023-2024

Last update: Monday $30^{\text {th }}$ October, 2023, 11:59

Outline

(9) Propositional Logic
(2) Propositional Reasoning

- Resolution
- DPLL
- Reasoning with Horn Formulas
- Local Search
(3) Agents Based on Knowledge Representation \& Reasoning
- Knowledge-Based Agents
- Example: the Wumpus World

4. Agents Based on Propositional Reasoning

- Propositional Logic Agents
- Example: the Wumpus World

Outline

(9) Propositional Logic
(2) Propositional Reasoning

- Resolution
- DPLL
- Reasoning with Horn Formulas
- Local Search
(3) Agents Based on Knowledge Representation \& Reasoning
- Knowledge-Based Agents
- Example: the Wumpus World
(4) Agents Based on Propositional Reasoning
- Propositional Logic Agents
- Example: the Wumpus World

Propositional Logic（aka Boolean Logic）

Basic Definitions and Notation

- Propositional formula (aka Boolean formula or sentence)
- T, \perp are formulas
- a propositional atom $A_{1}, A_{2}, A_{3}, \ldots$ is a formula;
- if φ_{1} and φ_{2} are formulas, then
$\neg \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \varphi_{1} \vee \varphi_{2}, \varphi_{1} \rightarrow \varphi_{2}, \varphi_{1} \leftarrow \varphi_{2}, \varphi_{1} \leftrightarrow \varphi_{2}, \varphi_{1} \oplus \varphi_{2}$
are formulas.
- Ex: $\left.\varphi \stackrel{\text { def }}{=}\left(\neg\left(A_{1} \rightarrow A_{2}\right)\right) \wedge\left(A_{3} \leftrightarrow\left(\neg A_{1} \oplus\left(A_{2} \vee \neg A_{4}\right)\right)\right)\right)$
- Atoms (φ) : the set $\left\{A_{1}, \ldots, A_{N}\right\}$ of atoms occurring in φ.
- Literal: a propositional atom A_{i} (positive literal) or its negation $\neg A_{i}$ (negative literal)
- Notation: if $I:=\neg A_{i}$, then $\neg I:=A_{i}$
- Clause: a disjunction of literals $\bigvee_{j} I_{j}\left(e . g .,\left(A_{1} \vee \neg A_{2} \vee A_{3} \vee \ldots\right)\right)$
- Cube: a conjunction of literals $\wedge_{j} I_{j}\left(\right.$ e.g., $\left.\left(A_{1} \wedge \neg A_{2} \wedge A_{3} \wedge \ldots\right)\right)$

Semantics of Boolean operators

Truth Table

α	β	$\neg \alpha$	$\alpha \wedge \beta$	$\alpha \vee \beta$	$\alpha \rightarrow \beta$	$\alpha \leftarrow \beta$	$\alpha \leftrightarrow \beta$	$\alpha \oplus \beta$
\perp	\perp	\top	\perp	\perp	\top	\top	\top	\perp
\perp	\top	\top	\perp	\top	\top	\perp	\perp	\top
\top	\perp	\perp	\perp	\top	\perp	\top	\perp	\top
\top	\top	\perp	\top	\top	\top	\top	\top	\perp

English Meaning of Boolean Operators

English	Logic
A and B	$A \wedge B$
A if $\mathrm{B} \mid \mathrm{A}$ when $\mathrm{B} \mid \mathrm{A}$ whenever B	$A \leftarrow B$
if A , then $\mathrm{B} \mid \mathrm{A}$ implies $\mathrm{B} \mid \mathrm{A}$ forces $\mathrm{B} \mid \mathrm{A}$ requires B	$A \rightarrow B$
A precisely when $\mathrm{B} \mid \mathrm{A}$ if and only if B	$A \leftrightarrow B$
A or B (or both) $\mid \mathrm{A}$ unless B	$A \vee B$ (logical or)
either A or B (but not both)	$A \oplus B$ (exclusive or)

Remark: Semantics of Implication " \rightarrow " (aka " \Rightarrow ", " \supset ")

The semantics of Implication " $\alpha \rightarrow \beta$ " may be counter-intuitive $\alpha \rightarrow \beta$: "the antecedent (aka premise) α implies the consequent (aka conclusion) $\beta^{\prime \prime}$ (aka "if α holds, then β holds"), but not vice versa

```
- does not require causation or relevance between \alpha and
    - ex: "5 is odd implies Tokyo is the capital of Japan" is true in p.l.
    (under the standard interpretation of "5", "odd", "Tokyo", "Japan")
    - relation between antecedent & consequent: they are both true
- is true whenever its antecedent is false
    - ex: " }5\mathrm{ is even imolies Sam is smart" is true
    (regardless the smartness of Sam)
    - ex: "5 is even implies Tokyo is in Italy" is true (!)
    - relation between antecedent & consequent: the former is false
- does not require temporal precedence of \alpha wrt
    - ex: "the grass is wet implies it must have rained" is true
    (the consequent precedes temporally the antecedent)
```


Remark: Semantics of Implication " \rightarrow " (aka " \Rightarrow ", " \supset ")

The semantics of Implication " $\alpha \rightarrow \beta$ " may be counter-intuitive

$\alpha \rightarrow \beta$: "the antecedent (aka premise) α implies the consequent (aka conclusion) $\beta^{\prime \prime}$ (aka "if α holds, then β holds"), but not vice versa

- does not require causation or relevance between α and β
- ex: " 5 is odd implies Tokyo is the capital of Japan" is true in p.l. (under the standard interpretation of " 5 ", "odd", "Tokyo", "Japan")
- relation between antecedent \& consequent: they are both true
- is true whenever its antecedent is false
- ex: " 5 is even implies Sam is smart" is true
(regardless the smartness of Sam)
- ex: " 5 is even implies Tokyo is in Italy" is true (!)
- relation between antecedent \& consequent: the former is false
- does not require temporal precedence of α wrt
- ex: "the arass is wet implies it must have rained" is true
(the consequent precedes temporally the antecedent)

Remark: Semantics of Implication " \rightarrow " (aka " \Rightarrow ", " \supset ")

The semantics of Implication " $\alpha \rightarrow \beta$ " may be counter-intuitive

$\alpha \rightarrow \beta$: "the antecedent (aka premise) α implies the consequent (aka conclusion) $\beta^{\prime \prime}$ (aka "if α holds, then β holds"), but not vice versa

- does not require causation or relevance between α and β
- ex: " 5 is odd implies Tokyo is the capital of Japan" is true in p.l. (under the standard interpretation of "5", "odd", "Tokyo", "Japan")
- relation between antecedent \& consequent: they are both true
- is true whenever its antecedent is false
- ex: " 5 is even implies Sam is smart" is true (regardless the smartness of Sam)
- ex: "5 is even implies Tokyo is in Italy" is true (!)
- relation between antecedent \& consequent: the former is false
- does not require temporal precedence of α wrt.
- ex: "the grass is wet implies it must have rained" is true (the consequent precedes temporally the antecedent)

Remark: Semantics of Implication " \rightarrow " (aka " \Rightarrow ", " \supset ")

The semantics of Implication " $\alpha \rightarrow \beta$ " may be counter-intuitive

$\alpha \rightarrow \beta$: "the antecedent (aka premise) α implies the consequent (aka conclusion) $\beta^{\prime \prime}$ (aka "if α holds, then β holds"), but not vice versa

- does not require causation or relevance between α and β
- ex: " 5 is odd implies Tokyo is the capital of Japan" is true in p.l. (under the standard interpretation of "5", "odd", "Tokyo", "Japan")
- relation between antecedent \& consequent: they are both true
- is true whenever its antecedent is false
- ex: " 5 is even implies Sam is smart" is true (regardless the smartness of Sam)
- ex: " 5 is even implies Tokyo is in Italy" is true (!)
- relation between antecedent \& consequent: the former is false
- does not require temporal precedence of α wrt. β
- ex: "the grass is wet implies it must have rained" is true (the consequent precedes temporally the antecedent)

Properties Boolean Operators

- $\wedge, \vee, \leftrightarrow$ and \oplus are commutative:

$$
\begin{array}{ll}
(\alpha \wedge \beta) & \Longleftrightarrow(\beta \wedge \alpha) \\
(\alpha \vee \beta) & \Longleftrightarrow(\beta \vee \alpha) \\
(\alpha \leftrightarrow \beta) & \Longleftrightarrow(\beta \leftrightarrow \alpha) \\
(\alpha \oplus \beta) & \Longleftrightarrow(\beta \oplus \alpha)
\end{array}
$$

- $\wedge, \vee, \leftrightarrow$ and \oplus are associative:

$$
\begin{array}{lll}
((\alpha \wedge \beta) \wedge \gamma) & \Longleftrightarrow(\alpha \wedge(\beta \wedge \gamma)) & \Longleftrightarrow(\alpha \wedge \beta \wedge \gamma) \\
((\alpha \vee \beta) \vee \gamma) & \Longleftrightarrow(\alpha \vee(\beta \vee \gamma)) & \Longleftrightarrow(\alpha \vee \beta \vee \gamma) \\
((\alpha \leftrightarrow \beta) \leftrightarrow \gamma) & \Longleftrightarrow(\alpha \leftrightarrow(\beta \leftrightarrow \gamma)) & \Longleftrightarrow(\alpha \leftrightarrow \beta \leftrightarrow \gamma) \\
((\alpha \oplus \beta) \oplus \gamma) & \Longleftrightarrow(\alpha \oplus(\beta \oplus \gamma)) & \Longleftrightarrow(\alpha \oplus \beta \oplus \gamma)
\end{array}
$$

$\bullet \rightarrow$, \leftarrow are neither commutative nor associative:

$$
\begin{array}{lll}
(\alpha \rightarrow \beta) & \Longleftrightarrow & \Longleftrightarrow \beta \rightarrow \alpha) \\
((\alpha \rightarrow \beta) \rightarrow \gamma) & \Longleftrightarrow & (\alpha \rightarrow(\beta \rightarrow \gamma))
\end{array}
$$

Equivalences with Boolean Operators

$$
\begin{aligned}
\neg \neg \alpha & \Longleftrightarrow \alpha \\
(\alpha \vee \beta) & \Longleftrightarrow \quad \neg(\neg \alpha \wedge \neg \beta) \\
\neg(\alpha \vee \beta) & \Longleftrightarrow(\neg \alpha \wedge \neg \beta) \\
(\alpha \wedge \beta) & \Longleftrightarrow \neg(\neg \alpha \vee \neg \beta) \\
\neg(\alpha \wedge \beta) & \Longleftrightarrow(\neg \alpha \vee \neg \beta) \\
(\alpha \rightarrow \beta) & \Longleftrightarrow(\neg \alpha \vee \beta) \\
\neg(\alpha \rightarrow \beta) & \Longleftrightarrow(\alpha \wedge \neg \beta) \\
(\alpha \leftarrow \beta) & \Longleftrightarrow(\alpha \vee \neg \beta) \\
\neg(\alpha \leftarrow \beta) & \Longleftrightarrow(\neg \alpha \wedge \beta) \\
(\alpha \leftrightarrow \beta) & \Longleftrightarrow((\alpha \rightarrow \beta) \wedge(\alpha \leftarrow \beta)) \\
\neg(\alpha \leftrightarrow \beta) & \Longleftrightarrow(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)) \\
& \Longleftrightarrow(\neg \alpha \leftrightarrow \beta) \\
& \Longleftrightarrow(\alpha \leftrightarrow \neg \beta) \\
(\alpha \oplus \beta) & \Longleftrightarrow((\alpha \vee \beta) \wedge(\neg \alpha \vee \neg \beta)) \\
& \Longleftrightarrow \neg(\alpha \leftrightarrow \beta)
\end{aligned}
$$

Equivalences with Boolean Operators

$\neg \neg \alpha$	$\Longleftrightarrow \alpha$
$(\alpha \vee \beta)$	$\Longleftrightarrow \neg(\neg \alpha \wedge \neg \beta)$
$\neg(\alpha \vee \beta)$	$\Longleftrightarrow(\neg \alpha \wedge \neg \beta)$
$(\alpha \wedge \beta)$	$\Longleftrightarrow \neg(\neg \alpha \vee \neg \beta)$
$\neg(\alpha \wedge \beta)$	$\Longleftrightarrow(\neg \alpha \vee \neg \beta)$
$(\alpha \rightarrow \beta)$	$\Longleftrightarrow(\neg \alpha \vee \beta)$
$\neg(\alpha \rightarrow \beta)$	$\Longleftrightarrow(\alpha \wedge \neg \beta)$
$(\alpha \leftarrow \beta)$	$\Longleftrightarrow(\alpha \vee \neg \beta)$
$\neg(\alpha \leftarrow \beta)$	$\Longleftrightarrow(\neg \alpha \wedge \beta)$
$(\alpha \leftrightarrow \beta)$	$\Longleftrightarrow(\alpha \rightarrow \beta) \wedge(\alpha \leftarrow \beta))$
$\neg(\alpha \leftrightarrow \beta)$	$\Longleftrightarrow(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta))$
$\neg(\neg \alpha \leftrightarrow \beta)$	
	$\Longleftrightarrow(\alpha \leftrightarrow \neg \beta)$
	$\Longleftrightarrow((\alpha \vee \beta) \wedge(\neg \alpha \vee \neg \beta))$
$(\alpha \oplus \beta)$	$\Longleftrightarrow \neg(\alpha \leftrightarrow \beta)$

Boolean logic can be expressed in terms of $\{\neg, \wedge\}$ (or $\{\neg, \vee\}$) only!

Exercises

(1) For every pair of formulas $\alpha \Longleftrightarrow \beta$ below, show that α and β can be rewritten into each other by applying the syntactic properties of the previous slide

- $\left(A_{1} \wedge A_{2}\right) \vee A_{3} \Longleftrightarrow\left(A_{1} \vee A_{3}\right) \wedge\left(A_{2} \vee A_{3}\right)$
- $\left(A_{1} \vee A_{2}\right) \wedge A_{3} \Longleftrightarrow\left(A_{1} \wedge A_{3}\right) \vee\left(A_{2} \wedge A_{3}\right)$
- $A_{1} \rightarrow\left(A_{2} \rightarrow\left(A_{3} \rightarrow A_{4}\right)\right) \Longleftrightarrow\left(A_{1} \wedge A_{2} \wedge A_{3}\right) \rightarrow A_{4}$
- $A_{1} \rightarrow\left(A_{2} \wedge A_{3}\right) \Longleftrightarrow\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{1} \rightarrow A_{3}\right)$
- $\left(A_{1} \vee A_{2}\right) \rightarrow A_{3} \Longleftrightarrow\left(A_{1} \rightarrow A_{3}\right) \wedge\left(A_{2} \rightarrow A_{3}\right)$
- $A_{1} \oplus A_{2} \Longleftrightarrow\left(A_{1} \vee A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2}\right)$
- $\neg A_{1} \leftrightarrow \neg A_{2} \Longleftrightarrow A_{1} \leftrightarrow A_{2}$
- $A_{1} \leftrightarrow A_{2} \leftrightarrow A_{3} \Longleftrightarrow A_{1} \oplus A_{2} \oplus A_{3}$

Tree \& DAG Representations of Formulas

- Formulas can be represented either as trees or as DAGS (Directed Acyclic Graphs)
- DAG representation can be up to exponentially smaller
- in particular, when \leftrightarrow 's are involved

Tree \& DAG Representations of Formulas

- Formulas can be represented either as trees or as DAGS (Directed Acyclic Graphs)
- DAG representation can be up to exponentially smaller
- in particular, when \leftrightarrow 's are involved

$$
\begin{aligned}
\left(A_{1} \leftrightarrow A_{2}\right) & \leftrightarrow\left(A_{3} \leftrightarrow A_{4}\right) \\
& \Downarrow \\
\left(\left(\left(A_{1} \leftrightarrow A_{2}\right)\right.\right. & \left.\rightarrow\left(A_{3} \leftrightarrow A_{4}\right)\right) \wedge \\
\left(\left(A_{3} \leftrightarrow A_{4}\right)\right. & \left.\left.\rightarrow\left(A_{1} \leftrightarrow A_{2}\right)\right)\right)
\end{aligned}
$$

Tree \& DAG Representations of Formulas

- Formulas can be represented either as trees or as DAGS (Directed Acyclic Graphs)
- DAG representation can be up to exponentially smaller
- in particular, when \leftrightarrow 's are involved

$$
\begin{gathered}
\left(A_{1} \leftrightarrow A_{2}\right) \leftrightarrow\left(A_{3} \leftrightarrow A_{4}\right) \\
\Downarrow \\
\left(\left(\left(A_{1} \leftrightarrow A_{2}\right) \rightarrow\left(A_{3} \leftrightarrow A_{4}\right)\right) \wedge\right. \\
\left.\left(\left(A_{3} \leftrightarrow A_{4}\right) \rightarrow\left(A_{1} \leftrightarrow A_{2}\right)\right)\right) \\
\Downarrow \\
\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{2} \rightarrow A_{1}\right)\right) \rightarrow\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{4} \rightarrow A_{3}\right)\right)\right) \wedge \\
\left(\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{4} \rightarrow A_{3}\right)\right) \rightarrow\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{2} \rightarrow A_{1}\right)\right)\right)\right)
\end{gathered}
$$

Tree \& DAG Representations of Formulas: Example

Basic Definitions and Notation [cont.]

- Total truth assignment μ for φ :
$\mu: \operatorname{Atoms}(\varphi) \longmapsto\{\top, \perp\}$.
- represents a possible world or a possible state of the world
- Partial Truth assignment μ for φ :
$\mu: \mathcal{A} \longmapsto\{T, \perp\}, \mathcal{A} \subset \operatorname{Atoms}(\varphi)$.
- represents 2^{k} total assignments, k is \# unassigned variables
- Notation: set and formula representations of an assignment
- μ can be represented as a set of literals:

$$
\text { EX: }\left\{\mu\left(A_{1}\right):=\top, \mu\left(A_{2}\right):=\perp\right\} \Longrightarrow\left\{A_{1}, \neg A_{2}\right\}
$$

- μ can be represented as a formula (cube):

$$
\operatorname{EX}:\left\{\mu\left(A_{1}\right):=\mathrm{T}, \mu\left(A_{2}\right):=\perp\right\} \Longrightarrow\left(A_{1} \wedge \neg A_{2}\right)
$$

Basic Definitions and Notation [cont.]

- A total truth assignment μ satisfies φ (μ is a model of $\varphi, \mu \models \varphi$):

$$
\begin{aligned}
& \mu \models A_{i} \Longleftrightarrow \mu\left(A_{i}\right)=\top \\
& \mu \models \neg \varphi \Longleftrightarrow \text { not } \mu \models \varphi \\
& \mu \models \alpha \wedge \beta \Longleftrightarrow \mu \models \alpha \text { and } \mu \models \beta \\
& \mu \models \alpha \vee \beta \Longleftrightarrow \mu \models \alpha \text { or } \mu \models \beta \\
& \mu \models \alpha \rightarrow \beta \Longleftrightarrow \text { if } \mu \models \alpha \text {, then } \mu \models \beta \\
& \mu \models \alpha \leftrightarrow \beta \Longleftrightarrow \mu \models \alpha \text { iff } \mu \models \beta \\
& \mu \models \alpha \oplus \beta \Longleftrightarrow \mu \models \alpha \text { iff not } \mu \models \beta
\end{aligned}
$$

- $M(\varphi) \stackrel{\text { def }}{=}\{\mu \mid \mu \models \varphi\}$ (the set of models of φ)
- A partial truth assignment μ satisfies φ iff all its total extensions satisfy φ - $\left(E x:\left\{A_{1}\right\} \mid=\left(A_{1} \vee A_{2}\right)\right)$ because $\left\{A_{1}, A_{2}\right\} \mid=\left(A_{1} \vee A_{2}\right)$ and $\left.\left\{A_{1}, \neg A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)\right)$
φ is satisfiable iff $\mu \models \varphi$ for some μ (i.e. $M(\varphi) \neq \emptyset$)
- α entails $\beta(\alpha=\beta)$ iff, for all $\mu \mathrm{s}, \mu=\alpha \Longrightarrow \mu=\beta$
(i.e., $M(\alpha) \subseteq M(\beta)$)
- os is valid $(\models()$ iff $\mu \triangleq \varphi$ forall μ s (i.e., $\mu \in M(\varphi)$ forall μ s)

Basic Definitions and Notation [cont.]

- A total truth assignment μ satisfies φ (μ is a model of $\varphi, \mu \models \varphi$):

$$
\begin{aligned}
& \mu \models A_{i} \Longleftrightarrow \mu\left(\boldsymbol{A}_{i}\right)=\top \\
& \mu \models \neg \varphi \Longleftrightarrow \text { not } \mu \models \varphi \\
& \mu \models \alpha \wedge \beta \Longleftrightarrow \mu \models \alpha \text { and } \mu \models \beta \\
& \mu \models \alpha \vee \beta \Longleftrightarrow \mu \models \alpha \text { or } \mu \models \beta \\
& \mu \models \alpha \rightarrow \beta \Longleftrightarrow \text { if } \mu \models \alpha \text {, then } \mu \models \beta \\
& \mu \models \alpha \leftrightarrow \beta \Longleftrightarrow \mu \models \alpha \text { iff } \mu \models \beta \\
& \mu \models \alpha \oplus \beta \Longleftrightarrow \mu \models \alpha \text { iff not } \mu \models \beta
\end{aligned}
$$

- $M(\varphi) \stackrel{\text { def }}{=}\{\mu \mid \mu \models \varphi\}$ (the set of models of φ)
- A partial truth assignment μ satisfies φ iff all its total extensions satisfy φ
- (Ex: $\left.\left\{A_{1}\right\} \models\left(A_{1} \vee A_{2}\right)\right)$ because $\left\{A_{1}, A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)$ and $\left.\left\{A_{1}, \neg A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)\right)$
- φ is satisfiable iff $\mu=\varphi$ for some μ (i.e. $M(\varphi) \neq \emptyset$)
- α entails $\beta(\alpha \models \beta)$ iff, for all μ s, $\mu \models \alpha \Longrightarrow \mu \models \beta$
(i.e., $M(\alpha) \subseteq M(\beta)$)
- φ is valid $(=\varphi)$ iff $\mu=\varphi$ forall μ s (i.e., $\mu \in M(\varphi)$ forall $\mu \mathrm{S}$)

Basic Definitions and Notation [cont.]

- A total truth assignment μ satisfies φ (μ is a model of $\varphi, \mu \models \varphi$):

$$
\begin{aligned}
& \mu \models A_{i} \Longleftrightarrow \mu\left(\boldsymbol{A}_{i}\right)=\top \\
& \mu \models \neg \varphi \Longleftrightarrow \text { not } \mu \models \varphi \\
& \mu \models \alpha \wedge \beta \Longleftrightarrow \mu \models \alpha \text { and } \mu \models \beta \\
& \mu \models \alpha \vee \beta \Longleftrightarrow \mu \models \alpha \text { or } \mu \models \beta \\
& \mu \models \alpha \rightarrow \beta \Longleftrightarrow \text { if } \mu \models \alpha \text {, then } \mu \models \beta \\
& \mu \models \alpha \leftrightarrow \beta \Longleftrightarrow \mu \models \alpha \text { iff } \mu \models \beta \\
& \mu \models \alpha \oplus \beta \Longleftrightarrow \mu \models \alpha \text { iff not } \mu \models \beta
\end{aligned}
$$

- $M(\varphi) \stackrel{\text { def }}{=}\{\mu \mid \mu \models \varphi\}$ (the set of models of φ)
- A partial truth assignment μ satisfies φ iff all its total extensions satisfy φ
- (Ex: $\left.\left\{A_{1}\right\} \models\left(A_{1} \vee A_{2}\right)\right)$ because $\left\{A_{1}, A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)$ and $\left.\left\{A_{1}, \neg A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)\right)$
- φ is satisfiable iff $\mu=\varphi$ for some μ (i.e. $M(\varphi) \neq \emptyset$)
(i.e., $M(\alpha) \subseteq M(\beta)$)

Basic Definitions and Notation [cont.]

- A total truth assignment μ satisfies φ (μ is a model of $\varphi, \mu \models \varphi$):

$$
\begin{aligned}
& \mu \models A_{i} \Longleftrightarrow \mu\left(\boldsymbol{A}_{i}\right)=\top \\
& \mu \models \neg \varphi \Longleftrightarrow \text { not } \mu \models \varphi \\
& \mu \models \alpha \wedge \beta \Longleftrightarrow \mu \models \alpha \text { and } \mu \models \beta \\
& \mu \models \alpha \vee \beta \Longleftrightarrow \mu \models \alpha \text { or } \mu \models \beta \\
& \mu \models \alpha \rightarrow \beta \Longleftrightarrow \text { if } \mu \models \alpha \text {, then } \mu \models \beta \\
& \mu \models \alpha \leftrightarrow \beta \Longleftrightarrow \mu \models \alpha \text { iff } \mu \models \beta \\
& \mu \models \alpha \oplus \beta \Longleftrightarrow \mu \models \alpha \text { iff not } \mu \models \beta
\end{aligned}
$$

- $M(\varphi) \stackrel{\text { def }}{=}\{\mu \mid \mu \models \varphi\}$ (the set of models of φ)
- A partial truth assignment μ satisfies φ iff all its total extensions satisfy φ
- (Ex: $\left.\left\{A_{1}\right\} \models\left(A_{1} \vee A_{2}\right)\right)$ because $\left\{A_{1}, A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)$ and $\left.\left\{A_{1}, \neg A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)\right)$
- φ is satisfiable iff $\mu \models \varphi$ for some μ (i.e. $M(\varphi) \neq \emptyset$)
- α entails $\beta(\alpha \models \beta)$ iff, for all $\mu \mathbf{s}, \mu \models \alpha \Longrightarrow \mu \models \beta$
(i.e., $M(\alpha) \subseteq M(\beta)$)

Basic Definitions and Notation [cont.]

- A total truth assignment μ satisfies φ (μ is a model of $\varphi, \mu \models \varphi$):

$$
\begin{aligned}
& \mu \models \boldsymbol{A}_{i} \Longleftrightarrow \mu\left(\boldsymbol{A}_{i}\right)=\top \\
& \mu \models \neg \varphi \Longleftrightarrow \text { not } \mu \models \varphi \\
& \mu \models \alpha \wedge \beta \Longleftrightarrow \mu \models \alpha \text { and } \mu \models \beta \\
& \mu \models \alpha \vee \beta \Longleftrightarrow \mu \models \alpha \text { or } \mu \models \beta \\
& \mu \models \alpha \rightarrow \beta \Longleftrightarrow \text { if } \mu \models \alpha \text {, then } \mu \models \beta \\
& \mu \models \alpha \leftrightarrow \beta \Longleftrightarrow \mu \models \alpha \text { iff } \mu \models \beta \\
& \mu \models \alpha \oplus \beta \Longleftrightarrow \mu \models \alpha \text { iff not } \mu \models \beta
\end{aligned}
$$

- $M(\varphi) \stackrel{\text { def }}{=}\{\mu \mid \mu \models \varphi\}$ (the set of models of φ)
- A partial truth assignment μ satisfies φ iff all its total extensions satisfy φ
- (Ex: $\left.\left\{A_{1}\right\} \models\left(A_{1} \vee A_{2}\right)\right)$ because $\left\{A_{1}, A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)$ and $\left.\left\{A_{1}, \neg A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)\right)$
- φ is satisfiable iff $\mu \models \varphi$ for some μ (i.e. $M(\varphi) \neq \emptyset$)
- α entails $\beta(\alpha \models \beta)$ iff, for all $\mu \mathbf{s}, \mu \models \alpha \Longrightarrow \mu \models \beta$
(i.e., $M(\alpha) \subseteq M(\beta)$)
- φ is valid $(\models \varphi)$ iff $\mu \models \varphi$ forall μ s (i.e., $\mu \in M(\varphi)$ forall $\mu \mathbf{s}$)

Properties \& Results

Property

φ is valid iff $\neg \varphi$ is unsatisfiable

```
Deduction Theorem
\alpha=\beta iff \alpha->\beta is valid ( }=\alpha->\beta
```

Corollary

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!

Properties \& Results

```
Property
\varphi \text { is valid iff } \neg \varphi \text { is unsatisfiable}
```


Deduction Theorem

$\alpha \models \beta$ iff $\alpha \rightarrow \beta$ is valid $(\models \alpha \rightarrow \beta)$

Corollary

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!

Properties \& Results

```
Property
\varphi \text { is valid iff } \neg \varphi \text { is unsatisfiable}
```


Deduction Theorem

$\alpha \models \beta$ iff $\alpha \rightarrow \beta$ is valid $(\models \alpha \rightarrow \beta)$

Corollary

$\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ is unsatisfiable

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!

Properties \& Results

```
Property
\varphi \text { is valid iff } \neg \varphi \text { is unsatisfiable}
```

```
Deduction Theorem
\alpha\models\beta iff \alpha->\beta is valid (\models\alpha->\beta)
```

Corollary
$\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ is unsatisfiable

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!

Equivalence and Equi-Satisfiability

- α and β are equivalent iff, for every $\mu, \mu \models \alpha$ iff $\mu \models \beta$
(i.e., if $M(\alpha)=M(\beta)$)
- α and β are equi-satisfiable iff exists μ_{1} s.t. $\mu_{1} \models \alpha$ iff exists μ_{2} s.t. $\mu_{2}=\beta$
(i.e., if $M(\alpha) \neq \emptyset$ iff $M(\beta) \neq \emptyset$)
- α, β equivalent
α, β equi-satisfiable
- EX: $A_{1} \vee A_{2}$ and $\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$ are equi-satisfiable, not equivalent. $\left\{\neg A_{1}, A_{2}, A_{3}\right\} \models\left(A_{1} \vee A_{2}\right)$, but $\left\{\neg A_{1}, A_{2}, A_{3}\right\} \not \vDash\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$
- Typically used when β is the result of applying some transformation T to $\alpha: \beta \stackrel{\text { dof }}{=} T(\alpha)$:
- T is validity-preserving [resp. satisfiability-preserving] iff
$T(\alpha)$ and α are equivalent [resp. equi-satisfiable]

Equivalence and Equi-Satisfiability

- α and β are equivalent iff, for every $\mu, \mu \models \alpha$ iff $\mu \models \beta$
(i.e., if $M(\alpha)=M(\beta)$)
- α and β are equi-satisfiable iff exists μ_{1} s.t. $\mu_{1} \models \alpha$ iff exists μ_{2} s.t. $\mu_{2} \models \beta$
(i.e., if $M(\alpha) \neq \emptyset$ iff $M(\beta) \neq \emptyset$)
- α, β equivalent

α, β equi-satisfiable

- EX: $A_{1} \vee A_{2}$ and $\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$ are equi-satisfiable, not equivalent.
- Typically used when β is the result of applying some transformation T to $\alpha: \beta \stackrel{\text { def }}{=} T(\alpha)$:
- T is validity-preserving [resp. satisfiability-preserving] iff
$T(\alpha)$ and α are equivalent [resp. equi-satisfiable]

Equivalence and Equi-Satisfiability

- α and β are equivalent iff, for every $\mu, \mu \models \alpha$ iff $\mu \models \beta$
(i.e., if $M(\alpha)=M(\beta)$)
- α and β are equi-satisfiable iff exists μ_{1} s.t. $\mu_{1} \models \alpha$ iff exists μ_{2} s.t. $\mu_{2} \models \beta$
(i.e., if $M(\alpha) \neq \emptyset$ iff $M(\beta) \neq \emptyset$)
- α, β equivalent
$\Downarrow \not \forall$
α, β equi-satisfiable
- EX: $A_{1} \vee A_{2}$ and $\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$ are equi-satisfiable, not equivalent.
- Typically used when β is the result of applying some transformation T to α : $\beta \stackrel{\text { def }}{=} T(\alpha)$:
- T is validity-preserving [resp. satisfiability-preserving] iff
$T(\alpha)$ and α are equivalent [resp. equi-satisfiable]

Equivalence and Equi-Satisfiability

- α and β are equivalent iff, for every $\mu, \mu \models \alpha$ iff $\mu \models \beta$
(i.e., if $M(\alpha)=M(\beta)$)
- α and β are equi-satisfiable iff exists μ_{1} s.t. $\mu_{1} \models \alpha$ iff exists μ_{2} s.t. $\mu_{2} \models \beta$
(i.e., if $M(\alpha) \neq \emptyset$ iff $M(\beta) \neq \emptyset$)
- α, β equivalent
$\Downarrow \not \approx$
α, β equi-satisfiable
- EX: $A_{1} \vee A_{2}$ and $\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$ are equi-satisfiable, not equivalent. $\left\{\neg A_{1}, A_{2}, A_{3}\right\} \models\left(A_{1} \vee A_{2}\right)$, but $\left\{\neg A_{1}, A_{2}, A_{3}\right\} \not \models\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$
- Typically used when β is the result of applying some transformation T to $\alpha: \beta \stackrel{\text { def }}{=} T(\alpha)$:
- T is validity-preserving [resp. satisfiability-preserving] iff
$T(\alpha)$ and α are equivalent [resp. equi-satisfiable]

Equivalence and Equi-Satisfiability

- α and β are equivalent iff, for every $\mu, \mu \models \alpha$ iff $\mu \models \beta$
(i.e., if $M(\alpha)=M(\beta)$)
- α and β are equi-satisfiable iff exists μ_{1} s.t. $\mu_{1} \models \alpha$ iff exists μ_{2} s.t. $\mu_{2} \models \beta$
(i.e., if $M(\alpha) \neq \emptyset$ iff $M(\beta) \neq \emptyset$)
- α, β equivalent
$\Downarrow \not \approx$
α, β equi-satisfiable
- EX: $A_{1} \vee A_{2}$ and $\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$ are equi-satisfiable, not equivalent. $\left\{\neg A_{1}, A_{2}, A_{3}\right\} \models\left(A_{1} \vee A_{2}\right)$, but $\left\{\neg A_{1}, A_{2}, A_{3}\right\} \not \models\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$
- Typically used when β is the result of applying some transformation T to α : $\beta \stackrel{\text { def }}{=} T(\alpha)$:
- T is validity-preserving [resp. satisfiability-preserving] iff $T(\alpha)$ and α are equivalent [resp. equi-satisfiable]

Complexity

- For N variables, there are up to 2^{N} truth assignments to be checked.
- The problem of deciding the satisfiability of a propositional formula is NP-complete
\Longrightarrow The most important logical problems (validity, inference, entailment, equivalence, ...) can be straightforwardly reduced to (un)satisfiability, and are thus (co)NP-complete.
\Downarrow
No existing worst-case-polynomial algorithm.

Conjunctive Normal Form (CNF)

- φ is in Conjunctive normal form iff it is a conjunction of disjunctions of literals:

- the disjunctions of literals $\bigvee_{j_{i}=1}^{K_{i}} l_{i j}$ are called clauses
- Easier to handle: list of lists of literals.
\Longrightarrow no reasoning on the recursive structure of the formula

Classic CNF Conversion $\operatorname{CNF}(\varphi)$

- Every φ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:
(ii) pushing down negations recursively:

(iii) applying recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \Longrightarrow(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$
- Resulting formula worst-case exponential:
- ex: $\| C N F\left(V_{i=1}^{N}\left(l_{11} \wedge l_{i 2}\right)\|=\|\left(I_{11} \vee l_{21} \vee \ldots \vee I_{N 1}\right) \wedge\left(l_{12} \vee l_{21} \vee \ldots \vee I_{N 1}\right) \wedge \ldots \wedge\left(l_{12} \vee l_{22} \vee \ldots \vee I_{N 2}\right) \|=2^{N}\right.$
- $\operatorname{Atoms}(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi)$
- $\operatorname{CNF}(\varphi)$ is equivalent to $\varphi: M(\operatorname{CNF}(\varphi))=M(\varphi)$
- Rarely used in practice.

Classic CNF Conversion CNF (φ)

- Every φ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:

$$
\begin{aligned}
\alpha \rightarrow \beta & \Longrightarrow \neg \alpha \vee \beta \\
\alpha \leftrightarrow \beta & \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
\end{aligned}
$$

(ii) pushing down negations recursively:
(iii) applying recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \Longrightarrow(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$

- Resulting formula worst-case exponential:
- $\operatorname{Atoms}(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi)$
- $\operatorname{CNF}(\varphi)$ is equivalent to $\varphi: M(\operatorname{CNF}(\varphi))=M(\varphi)$
- Rarely used in practice.

Classic CNF Conversion CNF (φ)

- Every φ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:

$$
\alpha \rightarrow \beta \quad \Longrightarrow \quad \neg \alpha \vee \beta
$$

$$
\alpha \leftrightarrow \beta \quad \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
$$

(ii) pushing down negations recursively:

$$
\begin{array}{ll}
\neg(\alpha \wedge \beta) & \Longrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \Longrightarrow \neg \alpha \wedge \neg \beta \\
\neg \neg \alpha & \Longrightarrow \alpha
\end{array}
$$

(iii) applying recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \Longrightarrow(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$

- Resulting formula worst-case exponential:
- $\operatorname{Atoms}(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi$
- $\operatorname{CNF}(\varphi)$ is equivalent to $\varphi: M(\operatorname{CNF}(\varphi))=M(\varphi)$
- Rarely used in practice.

Classic CNF Conversion CNF (φ)

- Every φ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:

$$
\begin{aligned}
& \alpha \rightarrow \beta \quad \Longrightarrow \quad \neg \alpha \vee \beta \\
& \alpha \leftrightarrow \beta \quad \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
\end{aligned}
$$

(ii) pushing down negations recursively:

$$
\begin{array}{ll}
\neg(\alpha \wedge \beta) & \Longrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \Longrightarrow \neg \alpha \wedge \neg \beta \\
\neg \neg \alpha & \Longrightarrow \alpha
\end{array}
$$

(iii) applying recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \Longrightarrow(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$

- Resulting formula worst-case exponential:

- ex: $\| C N F\left(V_{i=1}^{N}\left(l_{11} \wedge I_{i 2}\right)\|=\|\left(I_{11} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge\left(l_{12} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge \ldots \wedge\left(I_{12} \vee I_{22} \vee \ldots \vee I_{N 2}\right) \|=2^{N}\right.$
- $\operatorname{Atoms}(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi)$
- $\operatorname{CNF}(\varphi)$ is equivalent to $\varphi: M(\operatorname{CNF}(\varphi))=M(\varphi)$
- Rarely used in practice.

Classic CNF Conversion $\operatorname{CNF}(\varphi)$

- Every φ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:

$$
\begin{array}{ll}
\alpha \rightarrow \beta & \Longrightarrow \neg \alpha \vee \beta \\
\alpha \leftrightarrow \beta & \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
\end{array}
$$

(ii) pushing down negations recursively:

$$
\begin{aligned}
\neg(\alpha \wedge \beta) & \Longrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \Longrightarrow \neg \alpha \wedge \neg \beta \\
\neg \neg \alpha & \Longrightarrow \alpha
\end{aligned}
$$

(iii) applying recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \quad \Longrightarrow \quad(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$

- Resulting formula worst-case exponential:
- ex: $\| \operatorname{CNF}\left(\bigvee_{i=1}^{N}\left(l_{11} \wedge l_{i 2}\right)\|=\|\left(l_{11} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge\left(I_{12} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge \ldots \wedge\left(I_{12} \vee I_{22} \vee \ldots \vee I_{N 2}\right) \|=2^{N}\right.$
- Atoms $(\operatorname{CNF}(\varphi))=$ Atoms
- $\operatorname{CNF}(\varphi)$ is equivalent to $\varphi: M(\operatorname{CNF}(\varphi))=M(\varphi)$
- Rarely used in practice.

Classic CNF Conversion CNF (φ)

- Every φ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:

$$
\begin{aligned}
& \alpha \rightarrow \beta \quad \Longrightarrow \quad \neg \alpha \vee \beta \\
& \alpha \leftrightarrow \beta \quad \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
\end{aligned}
$$

(ii) pushing down negations recursively:

$$
\begin{aligned}
\neg(\alpha \wedge \beta) & \Longrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \Longrightarrow \neg \alpha \wedge \neg \beta \\
\neg \neg \alpha & \Longrightarrow \alpha
\end{aligned}
$$

(iii) applying recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \quad \Longrightarrow \quad(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$

- Resulting formula worst-case exponential:
- ex: $\| C N F\left(\bigvee_{i=1}^{N}\left(l_{i 1} \wedge l_{i 2}\right)\|=\|\left(l_{11} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge\left(I_{12} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge \ldots \wedge\left(I_{12} \vee I_{22} \vee \ldots \vee I_{N 2}\right) \|=2^{N}\right.$
- $\operatorname{Atoms}(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi)$
- $\operatorname{CNF}(\varphi)$ is equivalent to $\varphi: M(\operatorname{CNF}(\varphi))=M(\varphi)$
- Rarely used in practice.

Classic CNF Conversion CNF (φ)

- Every φ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:

$$
\begin{aligned}
& \alpha \rightarrow \beta \quad \Longrightarrow \quad \neg \alpha \vee \beta \\
& \alpha \leftrightarrow \beta \quad \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
\end{aligned}
$$

(ii) pushing down negations recursively:

$$
\begin{array}{ll}
\neg(\alpha \wedge \beta) & \Longrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \Longrightarrow \neg \alpha \wedge \neg \beta \\
\neg \neg \alpha & \Longrightarrow \alpha
\end{array}
$$

(iii) applying recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \quad \Longrightarrow \quad(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$

- Resulting formula worst-case exponential:
- ex: $\| C N F\left(\bigvee_{i=1}^{N}\left(l_{i 1} \wedge l_{i 2}\right)\|=\|\left(l_{11} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge\left(I_{12} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge \ldots \wedge\left(I_{12} \vee I_{22} \vee \ldots \vee I_{N 2}\right) \|=2^{N}\right.$
- $\operatorname{Atoms}(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi)$
- $\operatorname{CNF}(\varphi)$ is equivalent to $\varphi: M(\operatorname{CNF}(\varphi))=M(\varphi)$
- Rarely used in practice.

Classic CNF Conversion CNF (φ)

- Every φ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:

$$
\begin{aligned}
& \alpha \rightarrow \beta \quad \Longrightarrow \quad \neg \alpha \vee \beta \\
& \alpha \leftrightarrow \beta \quad \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
\end{aligned}
$$

(ii) pushing down negations recursively:

$$
\begin{aligned}
\neg(\alpha \wedge \beta) & \Longrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \Longrightarrow \neg \alpha \wedge \neg \beta \\
\neg \neg \alpha & \Longrightarrow \alpha
\end{aligned}
$$

(iii) applying recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \quad \Longrightarrow \quad(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$

- Resulting formula worst-case exponential:
- ex: $\| C N F\left(\bigvee_{i=1}^{N}\left(l_{i 1} \wedge l_{i 2}\right)\|=\|\left(l_{11} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge\left(I_{12} \vee I_{21} \vee \ldots \vee I_{N 1}\right) \wedge \ldots \wedge\left(I_{12} \vee I_{22} \vee \ldots \vee I_{N 2}\right) \|=2^{N}\right.$
- $\operatorname{Atoms}(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi)$
- $\operatorname{CNF}(\varphi)$ is equivalent to $\varphi: M(\operatorname{CNF}(\varphi))=M(\varphi)$
- Rarely used in practice.

Labeling CNF conversion $C N F_{\text {label }}(\varphi)$

Labeling CNF conversion $C N F_{\text {label }}(\varphi)$ (aka Tseitin's conversion)

- Every φ can be reduced into CNF by, e.g., applying recursively bottom-up the rules:
$\varphi \Longrightarrow \varphi\left[\left(l_{i} \vee l_{j}\right) \mid B\right] \wedge \operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \vee l_{j}\right)\right)$
$\varphi \Longrightarrow \varphi\left[\left(I_{i} \wedge I_{j}\right) \mid B\right] \wedge \operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \wedge I_{j}\right)\right)$
$\varphi \Longrightarrow \varphi\left[\left(I_{i} \leftrightarrow I_{j}\right) \mid B\right] \wedge \operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \leftrightarrow l_{j}\right)\right)$
l_{i}, l_{j} being literals and B being a "new" variable.
- Worst-case linear!
- $\operatorname{Atoms}\left(\operatorname{CNF}_{\text {label }}(\varphi)\right) \supseteq \operatorname{Atoms}(\varphi)$
- $\operatorname{CNF}_{\text {label }}(\varphi)$ is equi-satisfiable w.r.t. φ $M(\operatorname{CNF}(\varphi)) \neq \emptyset$ iff $M(\varphi) \neq \emptyset$
- Much more used than classic conversion in practice.

Labeling CNF conversion $C N F_{\text {label }}(\varphi)$

Labeling CNF conversion $C N F_{\text {label }}(\varphi)$ (aka Tseitin's conversion)

- Every φ can be reduced into CNF by, e.g., applying recursively bottom-up the rules:
$\varphi \Longrightarrow \varphi\left[\left(l_{i} \vee l_{j}\right) \mid B\right] \wedge C N F\left(B \leftrightarrow\left(l_{i} \vee l_{j}\right)\right)$
$\varphi \Longrightarrow \varphi\left[\left(l_{i} \wedge l_{j}\right) \mid B\right] \wedge \operatorname{CNF}\left(B \leftrightarrow\left(l_{i} \wedge l_{j}\right)\right)$
$\varphi \Longrightarrow \varphi\left[\left(l_{i} \leftrightarrow l_{j}\right) \mid B\right] \wedge C N F\left(B \leftrightarrow\left(l_{i} \leftrightarrow l_{j}\right)\right)$
I_{i}, l_{j} being literals and B being a "new" variable.
- Worst-case linear!
- $\operatorname{Atoms}\left(\operatorname{CNF}_{\text {label }}(\varphi)\right) \supseteq \operatorname{Atoms}(\varphi)$
- CNF $_{\text {label }}(\varphi)$ is equi-satisfiable w.r.t. φ : $M(\operatorname{CNF}(\varphi)) \neq \emptyset$ iff $M(\varphi) \neq \emptyset$
- Much more used than classic conversion in practice.

Labeling CNF conversion $C N F_{\text {label }}(\varphi)$ (cont.)

$\operatorname{CNF}\left(B \leftrightarrow\left(l_{i} \vee l_{j}\right)\right)$	\Longleftrightarrow	$\begin{aligned} & \left(\neg B \vee I_{i} \vee I_{j}\right) \wedge \\ & \left(B \vee \neg I_{i}\right) \wedge \\ & \left(B \vee \neg I_{j}\right) \end{aligned}$
$\operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \wedge l_{j}\right)\right)$	\Longleftrightarrow	$\begin{aligned} & \left(\neg B \vee l_{i}\right) \wedge \\ & \left(\neg B \vee l_{j}\right) \wedge \\ & \left(B \vee \neg l_{i} \neg l_{j}\right) \end{aligned}$
$\operatorname{CNF}\left(B \leftrightarrow\left(l_{i} \leftrightarrow l_{j}\right)\right)$		$\begin{aligned} & \left(\neg B \vee \neg I_{i} \vee I_{j}\right) \wedge \\ & \left(\neg B \vee I_{i} \vee \neg I_{j}\right) \wedge \\ & \left(B \vee I_{i} \vee I_{j}\right) \wedge \\ & \left(B \vee \neg I_{i} \vee \neg I_{j}\right) \\ & \hline \end{aligned}$

Labeling CNF Conversion $C N F_{\text {label }}$ - Example

Outline

(1) Propositional Logic

2 Propositional Reasoning

- Resolution
- DPLL
- Reasoning with Horn Formulas
- Local Search
(3) Agents Based on Knowledge Representation \& Reasoning
- Knowledge-Based Agents
- Example: the Wumpus World
(4) Agents Based on Propositional Reasoning
- Propositional Logic Agents
- Example: the Wumpus World

Propositional Reasoning: Generalities

- Automated Reasoning in Propositional Logic fundamental task
- Al, formal verification, circuit synthesis, operational research,....
- Important in $\mathrm{Al}: K B=\alpha$: entail fact α from some knowledge base $K B$ (aka Model Checking: $M(K B) \subseteq M(\alpha)$)
- typically ||KB||
- sometimes $K B$ set of variable implications $\left(A_{1} \wedge \ldots \wedge A_{k}\right) \rightarrow B$
- All propositional reasoning tasks reduced to satisfiability (SAT)
- $K B \models \alpha \Longrightarrow \operatorname{SAT}(K B \wedge \neg \alpha)=$ false
- input formula CNF-ized and fed to a SAT solver
- Current SAT solvers dramatically efficient:
- handle industrial problems with $10^{6}-10^{7}$ variables \& clauses!
- used as backend engines in a variety of systems (not only AI)

Propositional Reasoning: Generalities

- Automated Reasoning in Propositional Logic fundamental task
- AI, formal verification, circuit synthesis, operational research,....
- Important in AI: $K B=\alpha$: entail fact α from some knowledge base $K B$ (aka Model Checking: $M(K B) \subseteq M(\alpha)$)
- typically $|\mid K B \|$
- sometimes $K B$ set of variable implications $\left(A_{1} \wedge \ldots \wedge A_{k}\right) \rightarrow B$
- All propositional reasoning tasks reduced to satisfiability (SAT)
- $K B=\alpha \Longrightarrow \operatorname{SAT}(K B \wedge \neg \alpha)=$ false
- input formula CNF-ized and fed to a SAT solver
- Current SAT solvers dramatically efficient:
- handle industrial problems with $10^{6}-10^{7}$ variables \& clauses!
- used as backend engines in a variety of systems (not only AI)

Propositional Reasoning: Generalities

- Automated Reasoning in Propositional Logic fundamental task
- AI, formal verification, circuit synthesis, operational research,....
- Important in AI: $K B \models \alpha$: entail fact α from some knowledge base $K B$ (aka Model Checking: $M(K B) \subseteq M(\alpha)$)
- typically $\|K B\| \gg\|\alpha\|$
- sometimes $K B$ set of variable implications $\left(A_{1} \wedge \ldots \wedge A_{k}\right) \rightarrow B$
- All propositional reasoning tasks reduced to satisfiability (SAT)
- $K B \models \alpha \Longrightarrow \operatorname{SAT}(K B \wedge \neg \alpha)=$ false
- input formula CNF-ized and fed to a SAT solver
- Current SAT solvers dramatically efficient:
- handle industrial problems with $10^{6}-10^{7}$ variables \& clauses!
- used as backend engines in a variety of systems (not only AI)

Propositional Reasoning: Generalities

- Automated Reasoning in Propositional Logic fundamental task
- Al, formal verification, circuit synthesis, operational research,....
- Important in AI: $K B \models \alpha$: entail fact α from some knowledge base $K B$ (aka Model Checking: $M(K B) \subseteq M(\alpha)$)
- typically $\|K B\| \gg\|\alpha\|$
- sometimes $K B$ set of variable implications $\left(A_{1} \wedge \ldots \wedge A_{k}\right) \rightarrow B$
- All propositional reasoning tasks reduced to satisfiability (SAT)
- $K B \models \alpha \Longrightarrow \operatorname{SAT}(K B \wedge \neg \alpha)$ = false
- input formula CNF-ized and fed to a SAT solver
- handle industrial problems with $10^{6}-10^{7}$ variables \& clauses!
- used as backend engines in a variety of systems (not only AI)

Propositional Reasoning: Generalities

- Automated Reasoning in Propositional Logic fundamental task
- Al, formal verification, circuit synthesis, operational research,....
- Important in AI: $K B \models \alpha$: entail fact α from some knowledge base $K B$ (aka Model Checking: $M(K B) \subseteq M(\alpha)$)
- typically $\|K B\| \gg\|\alpha\|$
- sometimes $K B$ set of variable implications $\left(A_{1} \wedge \ldots \wedge A_{k}\right) \rightarrow B$
- All propositional reasoning tasks reduced to satisfiability (SAT)
- $K B \models \alpha \Longrightarrow \operatorname{SAT}(K B \wedge \neg \alpha)$ = false
- input formula CNF-ized and fed to a SAT solver
- Current SAT solvers dramatically efficient:
- handle industrial problems with $10^{6}-10^{7}$ variables \& clauses!
- used as backend engines in a variety of systems (not only AI)

Outline

(1) Propositional Logic

2 Propositional Reasoning

- Resolution
- DPLL
- Reasoning with Horn Formulas
- Local Search
(3) Agents Based on Knowledge Representation \& Reasoning
- Knowledge-Based Agents
- Example: the Wumpus World

4 Agents Based on Propositional Reasoning

- Propositional Logic Agents
- Example: the Wumpus World

The Resolution Rule

- Resolution: deduction of a new clause from a pair of clauses with exactly one incompatible variable (resolvent):

- Ex:

- Noie: many standard inference rules subcases of resolution: (recall that $\alpha \rightarrow \beta \Longleftrightarrow \neg \alpha \vee \beta$)

The Resolution Rule

- Resolution: deduction of a new clause from a pair of clauses with exactly one incompatible variable (resolvent):

- Ex: $\frac{(A \vee B \vee C \vee D \vee E) \quad(A \vee B \vee \neg C \vee F)}{(A \vee B \vee D \vee E \vee F)}$
- Note: many standard inference rules subcases of resolution: (recall that $\alpha \rightarrow \beta \Longleftrightarrow \neg \alpha \vee \beta$)

The Resolution Rule

- Resolution: deduction of a new clause from a pair of clauses with exactly one incompatible variable (resolvent):

- Ex: $\frac{(A \vee B \vee C \vee D \vee E) \quad(A \vee B \vee \neg C \vee F)}{(A \vee B \vee D \vee E \vee F)}$
- Note: many standard inference rules subcases of resolution: (recall that $\alpha \rightarrow \beta \Longleftrightarrow \neg \alpha \vee \beta$)

$$
\frac{A \rightarrow B \quad B \rightarrow C}{A \rightarrow C} \text { (trans.) } \frac{A \quad A \rightarrow B}{B} \text { (m. ponens) } \frac{\neg B \quad A \rightarrow B}{\neg A} \text { (m. tollens) }
$$

Basic Propositional Inference: Resolution

- Assume input formula in CNF
- if not, apply Tseitin CNF-ization first
$\Longrightarrow \varphi$ is represented as a set of clauses
- Search for a refutation of φ (is φ unsatisfiable?)
- recall: $\alpha=\beta$ iff $\alpha \wedge \neg \beta$ unsatisfiable
- Basic idea: apply iteratively the resolutic n rule to pairs of clauses with a conflicting literal, producing novel clauses, until either
- a false clause is generated, or
- the resolution rule is no more applicable
- Correct: if returns an empty clause, then φ unsat $(\alpha=\beta)$
- Complete: if φ unsat $(\alpha \models \beta)$, then it returns an empty clause
- Time-inefficient
- Very Memory-inefficient (exponential in memory)
- Many different strategies

Basic Propositional Inference: Resolution

- Assume input formula in CNF
- if not, apply Tseitin CNF-ization first
$\Longrightarrow \varphi$ is represented as a set of clauses
- Search for a refutation of φ (is φ unsatisfiable?)
- recall: $\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ unsatisfiable
- Basic idea: apply iteratively the resolution rule to pairs of clauses with a conflicting literal, producing novel clauses, until either
- a false clause is generated, or
- the resolution rule is no more applicable
- Correct: if returns an empty clause, then φ unsat $(\alpha \models \beta)$
- Complete: if φ unsat $(\alpha=\beta)$, then it returns an empty clause
- Time-inefficient
- Very Memory-inefficient (exponential in memory)
- Many different strategies

Basic Propositional Inference: Resolution

- Assume input formula in CNF
- if not, apply Tseitin CNF-ization first
$\Longrightarrow \varphi$ is represented as a set of clauses
- Search for a refutation of φ (is φ unsatisfiable?)
- recall: $\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ unsatisfiable
- Basic idea: apply iteratively the resolution rule to pairs of clauses with a conflicting literal, producing novel clauses, until either
- a false clause is generated, or
- the resolution rule is no more applicable
- Correct: if returns an empty clause, then φ unsat $(\alpha=\beta)$
- Complete: if φ unsat $(\alpha \models \beta)$, then it returns an empty clause
- Time-inefficient
- Very Memory-inefficient (exponential in memory)
- Many different strategies

Basic Propositional Inference: Resolution

- Assume input formula in CNF
- if not, apply Tseitin CNF-ization first
$\Longrightarrow \varphi$ is represented as a set of clauses
- Search for a refutation of φ (is φ unsatisfiable?)
- recall: $\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ unsatisfiable
- Basic idea: apply iteratively the resolution rule to pairs of clauses with a conflicting literal, producing novel clauses, until either
- a false clause is generated, or
- the resolution rule is no more applicable
- Correct: if returns an empty clause, then φ unsat ($\alpha \models \beta$)
- Complete: if φ unsat $(\alpha=\beta)$, then it returns an empty clause
- Time-inefficient
- Very Memory-inefficient (exponential in memory)
- Many different strategies

Basic Propositional Inference: Resolution

- Assume input formula in CNF
- if not, apply Tseitin CNF-ization first
$\Longrightarrow \varphi$ is represented as a set of clauses
- Search for a refutation of φ (is φ unsatisfiable?)
- recall: $\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ unsatisfiable
- Basic idea: apply iteratively the resolution rule to pairs of clauses with a conflicting literal, producing novel clauses, until either
- a false clause is generated, or
- the resolution rule is no more applicable
- Correct: if returns an empty clause, then φ unsat ($\alpha \models \beta$)
- Complete: if φ unsat ($\alpha \models \beta$), then it returns an empty clause
- Time-inefficient
- Very Memory-inefficient (exponential in memory)
- Manv different strategies

Basic Propositional Inference: Resolution

- Assume input formula in CNF
- if not, apply Tseitin CNF-ization first
$\Longrightarrow \varphi$ is represented as a set of clauses
- Search for a refutation of φ (is φ unsatisfiable?)
- recall: $\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ unsatisfiable
- Basic idea: apply iteratively the resolution rule to pairs of clauses with a conflicting literal, producing novel clauses, until either
- a false clause is generated, or
- the resolution rule is no more applicable
- Correct: if returns an empty clause, then φ unsat ($\alpha \models \beta$)
- Complete: if φ unsat ($\alpha \models \beta$), then it returns an empty clause
- Time-inefficient
- Very Memory-inefficient (exponential in memory)
- Many different strategies

Basic Propositional Inference: Resolution

- Assume input formula in CNF
- if not, apply Tseitin CNF-ization first
$\Longrightarrow \varphi$ is represented as a set of clauses
- Search for a refutation of φ (is φ unsatisfiable?)
- recall: $\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ unsatisfiable
- Basic idea: apply iteratively the resolution rule to pairs of clauses with a conflicting literal, producing novel clauses, until either
- a false clause is generated, or
- the resolution rule is no more applicable
- Correct: if returns an empty clause, then φ unsat ($\alpha \models \beta$)
- Complete: if φ unsat ($\alpha \models \beta$), then it returns an empty clause
- Time-inefficient
- Very Memory-inefficient (exponential in memory)
- Many different strategies

Basic Propositional Inference: Resolution

- Assume input formula in CNF
- if not, apply Tseitin CNF-ization first
$\Longrightarrow \varphi$ is represented as a set of clauses
- Search for a refutation of φ (is φ unsatisfiable?)
- recall: $\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ unsatisfiable
- Basic idea: apply iteratively the resolution rule to pairs of clauses with a conflicting literal, producing novel clauses, until either
- a false clause is generated, or
- the resolution rule is no more applicable
- Correct: if returns an empty clause, then φ unsat ($\alpha \models \beta$)
- Complete: if φ unsat ($\alpha \models \beta$), then it returns an empty clause
- Time-inefficient
- Very Memory-inefficient (exponential in memory)
- Many different strategies

Very-Basic PL-Resolution Procedure

function PL-RESOLUTION $(K B, \alpha)$ returns true or false
inputs: $K B$, the knowledge base, a sentence in propositional logic α, the query, a sentence in propositional logic
clauses \leftarrow the set of clauses in the CNF representation of $K B \wedge \neg \alpha$ new $\leftarrow\}$

loop do

for each pair of clauses C_{i}, C_{j} in clauses do
resolvents $\leftarrow \mathrm{PL}-\operatorname{RESOLVE}\left(C_{i}, C_{j}\right)$
if resolvents contains the empty clause then return true
new \leftarrow new \cup resolvents
if new \subseteq clauses then return false
clauses \leftarrow clauses \cup new

Improvements: Subsumption \& Unit Propagation

General "set" notation (Γ clause set):

$$
\frac{\Gamma, \phi_{1}, . . \phi_{n}}{\Gamma, \phi_{1}^{\prime}, . . \phi_{n^{\prime}}^{\prime}} \quad\left(\text { e.g., } \quad \frac{\Gamma, C_{1} \vee p, C_{2} \vee \neg p}{\Gamma, C_{1} \vee p, C_{2} \vee \neg p, C_{1} \vee C_{2},}\right.
$$

- Removal of valid clauses:
- Clause Subsumption (C clause):
- Unit Resolution:
- Unit Subsumption:

- Unit Propagation = Unit Resolution + Unit Subsumption

Improvements: Subsumption \& Unit Propagation

General "set" notation (Γ clause set):

$$
\frac{\Gamma, \phi_{1}, . . \phi_{n}}{\Gamma, \phi_{1}^{\prime}, . . \phi_{n^{\prime}}^{\prime}} \quad\left(\text { e.g., } \quad \frac{\Gamma, C_{1} \vee p, C_{2} \vee \neg p}{\Gamma, C_{1} \vee p, C_{2} \vee \neg p, C_{1} \vee C_{2},}\right.
$$

- Removal of valid clauses:

$$
\frac{\Gamma \wedge(p \vee \neg p \vee C)}{\Gamma}
$$

- Clause Subsumption (C clause):

- Unit Resolution:

- Unit Subsumption:

- Unit Propagation = Unit Resolution + Unit Subsumption

Improvements: Subsumption \& Unit Propagation

General "set" notation (Γ clause set):

$$
\frac{\Gamma, \phi_{1}, . . \phi_{n}}{\Gamma, \phi_{1}^{\prime}, . . \phi_{n^{\prime}}^{\prime}} \quad\left(\text { e.g., } \quad \frac{\Gamma, C_{1} \vee p, C_{2} \vee \neg p}{\Gamma, C_{1} \vee p, C_{2} \vee \neg p, C_{1} \vee C_{2}}\right.
$$

- Removal of valid clauses:

$$
\frac{\Gamma \wedge(p \vee \neg p \vee C)}{\Gamma}
$$

- Clause Subsumption (C clause):
$\frac{\Gamma \wedge C \wedge\left(C \vee \vee_{i} l_{i}\right)}{\Gamma \wedge(C)}$
- Unit Resolution:

- Unit Subsumption:

- Unit Propagation = Unit Resolution + Unit Subsumption

Improvements: Subsumption \& Unit Propagation

General "set" notation (Γ clause set):

$$
\frac{\Gamma, \phi_{1}, . . \phi_{n}}{\Gamma, \phi_{1}^{\prime}, . . \phi_{n^{\prime}}^{\prime}} \quad\left(\text { e.g., } \quad \frac{\Gamma, C_{1} \vee p, C_{2} \vee \neg p}{\Gamma, C_{1} \vee p, C_{2} \vee \neg p, C_{1} \vee C_{2}}\right.
$$

- Removal of valid clauses:

$$
\frac{\Gamma \wedge(p \vee \neg p \vee C)}{\Gamma}
$$

- Clause Subsumption (C clause):

$$
\frac{\Gamma \wedge C \wedge\left(C \vee \bigvee_{i} l_{i}\right)}{\Gamma \wedge(C)}
$$

- Unit Resolution:

$$
\frac{\Gamma \wedge(I) \wedge\left(\neg / \vee \bigvee_{i} l_{i}\right)}{\Gamma \wedge(I) \wedge\left(\bigvee_{i} l_{i}\right)}
$$

- Unit Subsumption:

- Unit Propagation = Unit Resolution + Unit Subsumption

Improvements: Subsumption \& Unit Propagation

General "set" notation (Г clause set):

$$
\frac{\Gamma, \phi_{1}, . . \phi_{n}}{\Gamma, \phi_{1}^{\prime}, . . \phi_{n^{\prime}}^{\prime}} \quad\left(\text { e.g., } \quad \frac{\Gamma, C_{1} \vee p, C_{2} \vee \neg p}{\Gamma, C_{1} \vee p, C_{2} \vee \neg p, C_{1} \vee C_{2}}\right.
$$

- Removal of valid clauses:

$$
\frac{\Gamma \wedge(p \vee \neg p \vee C)}{\Gamma}
$$

- Clause Subsumption (C clause): $\quad \Gamma \wedge C \wedge\left(C \vee \bigvee_{i} I_{i}\right)$ $\Gamma \wedge(C)$
- Unit Resolution:

$$
\frac{\Gamma \wedge(I) \wedge\left(\neg I \vee \bigvee_{i} l_{i}\right)}{\Gamma \wedge(I) \wedge\left(\bigvee_{i} l_{i}\right)}
$$

- Unit Subsumption:

$$
\frac{\Gamma \wedge(I) \wedge\left(I \vee \bigvee_{i} l_{i}\right)}{\Gamma \wedge(I)}
$$

- Unit Propagation = Unit Resolution + Unit Subsumption

Improvements: Subsumption \& Unit Propagation

General "set" notation (Г clause set):

$$
\frac{\Gamma, \phi_{1}, . . \phi_{n}}{\Gamma, \phi_{1}^{\prime}, . . \phi_{n^{\prime}}^{\prime}} \quad\left(\text { e.g., } \quad \frac{\Gamma, C_{1} \vee p, C_{2} \vee \neg p}{\Gamma, C_{1} \vee p, C_{2} \vee \neg p, C_{1} \vee C_{2}}\right.
$$

- Removal of valid clauses:

$$
\frac{\Gamma \wedge(p \vee \neg p \vee C)}{\Gamma}
$$

- Clause Subsumption (C clause): $\quad \Gamma \wedge C \wedge\left(C \vee \bigvee_{i} I_{i}\right)$ $\Gamma \wedge(C)$
- Unit Resolution:

$$
\frac{\Gamma \wedge(I) \wedge\left(\neg I \vee \bigvee_{i} l_{i}\right)}{\Gamma \wedge(I) \wedge\left(\bigvee_{i} l_{i}\right)}
$$

- Unit Subsumption:

$$
\frac{\Gamma \wedge(I) \wedge\left(I \vee \bigvee_{i} l_{i}\right)}{\Gamma \wedge(I)}
$$

- Unit Propagation = Unit Resolution + Unit Subsumption

Improvements: Subsumption \& Unit Propagation

General "set" notation (Γ clause set):

$$
\frac{\Gamma, \phi_{1}, . . \phi_{n}}{\Gamma, \phi_{1}^{\prime}, . . \phi_{n^{\prime}}^{\prime}} \quad\left(\text { e.g., } \quad \frac{\Gamma, C_{1} \vee p, C_{2} \vee \neg p}{\Gamma, C_{1} \vee p, C_{2} \vee \neg p, C_{1} \vee C_{2}}\right.
$$

- Removal of valid clauses:

$$
\frac{\Gamma \wedge(p \vee \neg p \vee C)}{\Gamma}
$$

- Clause Subsumption (C clause):

$$
\frac{\Gamma \wedge C \wedge\left(C \vee \vee_{i} l_{i}\right)}{\Gamma \wedge(C)}
$$

- Unit Resolution:

$$
\frac{\Gamma \wedge(I) \wedge\left(\neg I \vee \bigvee_{i} l_{i}\right)}{\Gamma \wedge(I) \wedge\left(\bigvee_{i} l_{i}\right)}
$$

- Unit Subsumption:

$$
\frac{\Gamma \wedge(I) \wedge\left(I \vee \bigvee_{i} I_{i}\right)}{\Gamma \wedge(I)}
$$

- Unit Propagation $=$ Unit Resolution + Unit Subsumption
"Deterministic" rule: applied before other "non-deterministic" rules!

Remark

What happens with more than 1 resolvent?

- Common mistake: the following is not a correct application of the resolution rule:

$$
\frac{\Gamma,\left(C_{1} \vee I_{1} \vee I_{2}\right),\left(C_{2} \vee \neg I_{1} \vee \neg I_{2}\right)}{\Gamma,\left(C_{1} \vee I_{1} \vee I_{2}\right),\left(C_{2} \vee \neg I_{1} \vee \neg I_{2}\right),\left(C_{1} \vee C_{2}\right)}
$$

- Rather, a correct application would be:

\ldots but $\left(C_{1} \vee I_{2} \vee C_{2} \vee \vee \neg I_{2}\right)$ is valid and should be removed
no clause is produced

Remark

What happens with more than 1 resolvent?

- Common mistake: the following is not a correct application of the resolution rule:

$$
\frac{\Gamma,\left(C_{1} \vee I_{1} \vee I_{2}\right),\left(C_{2} \vee \neg I_{1} \vee \neg I_{2}\right)}{\Gamma,\left(C_{1} \vee I_{1} \vee I_{2}\right),\left(C_{2} \vee \neg I_{1} \vee \neg I_{2}\right),\left(C_{1} \vee C_{2}\right)}
$$

- Rather, a correct application would be:

$$
\frac{\Gamma,\left(C_{1} \vee I_{1} \vee I_{2}\right),\left(C_{2} \vee \neg I_{1} \vee \neg I_{2}\right)}{\Gamma,\left(C_{1} \vee I_{1} \vee I_{2}\right),\left(C_{2} \vee \neg I_{1} \vee \neg I_{2}\right),\left(C_{1} \vee I_{2} \vee C_{2} \vee \neg I_{2}\right)}
$$

Remark

What happens with more than 1 resolvent?

- Common mistake: the following is not a correct application of the resolution rule:

$$
\frac{\Gamma,\left(C_{1} \vee I_{1} \vee I_{2}\right),\left(C_{2} \vee \neg I_{1} \vee \neg I_{2}\right)}{\Gamma,\left(C_{1} \vee I_{1} \vee I_{2}\right),\left(C_{2} \vee \neg I_{1} \vee \neg I_{2}\right),\left(C_{1} \vee C_{2}\right)}
$$

- Rather, a correct application would be:

$$
\frac{\Gamma,\left(C_{1} \vee I_{1} \vee I_{2}\right),\left(C_{2} \vee \neg I_{1} \vee \neg I_{2}\right)}{\Gamma,\left(C_{1} \vee I_{1} \vee I_{2}\right),\left(C_{2} \vee \neg I_{1} \vee \neg I_{2}\right),\left(C_{1} \vee I_{2} \vee C_{2} \vee \neg I_{2}\right)}
$$

\ldots but $\left(C_{1} \vee I_{2} \vee C_{2} \vee \vee \neg I_{2}\right)$ is valid and should be removed

Remark

What happens with more than 1 resolvent?

- Common mistake: the following is not a correct application of the resolution rule:

$$
\frac{\Gamma,\left(C_{1} \vee I_{1} \vee I_{2}\right),\left(C_{2} \vee \neg I_{1} \vee \neg I_{2}\right)}{\Gamma,\left(C_{1} \vee I_{1} \vee I_{2}\right),\left(C_{2} \vee \neg I_{1} \vee \neg I_{2}\right),\left(C_{1} \vee C_{2}\right)}
$$

- Rather, a correct application would be:

$$
\frac{\Gamma,\left(C_{1} \vee I_{1} \vee I_{2}\right),\left(C_{2} \vee \neg I_{1} \vee \neg I_{2}\right)}{\Gamma,\left(C_{1} \vee I_{1} \vee I_{2}\right),\left(C_{2} \vee \neg I_{1} \vee \neg I_{2}\right),}
$$

... but ($C_{1} \vee I_{2} \vee C_{2} \vee \vee \neg I_{2}$) is valid and should be removed \Longrightarrow no clause is produced

Resolution: example

Given the following set of propositional clauses Γ :
$\left.\begin{array}{l}\left(\begin{array}{ll}A \vee & D \vee \neg F) \\ (\neg C \vee & E\end{array}\right) \\ (A) \\ (B \vee \\ (\neg G) \\ (\neg E \vee \neg) \\ (\neg A \vee \neg B \vee \\ (B) \\ (\neg B \vee \neg C \vee\end{array}\right)$

Produce a PL-resolution proof that Γ is unsatisfiable.
Solution:
$[(A),(\neg A \vee \neg B \vee C)] \Longrightarrow(\neg B \vee$
$[(B),(\neg B \vee C)] \Longrightarrow(C) ;$
$[(C),(\neg C \vee E)] \Longrightarrow(E) ;$
$[(E),(\neg E \vee \neg)] \Longrightarrow(F) ;$
$[(B),(\neg B \vee \neg F \vee G)] \Longrightarrow(\neg F \vee$
$[(F),(\neg F \vee G)] \Longrightarrow(G) ;$
$[(\neg G),(G)] \Longrightarrow() ;$
Hint: resolve always unit clauses first!

Resolution: example

Given the following set of propositional clauses Γ :
$\left.\begin{array}{l}\left(\begin{array}{ll}A \vee & D \vee \neg F) \\ (\neg C \vee & E) \\ (A) & \\ (B \vee & E \vee \neg G) \\ (\neg G) & \\ (\neg E \vee & F) \\ (\neg A \vee \neg B \vee & C) \\ (B) & \\ (\neg B \vee \neg C \vee & D\end{array}\right) \\ (\neg B \vee \neg F \vee\end{array}\right)$

Produce a PL-resolution proof that Γ is unsatisfiable.
Solution:
$[(A),(\neg A \vee \neg B \vee C)] \Longrightarrow(\neg B \vee \quad C)$;
$[(B),(\neg B \vee C)] \Longrightarrow(C)$;
$[(C),(\neg C \vee E)] \Longrightarrow(E)$;
$[(E),(\neg E \vee F)] \Longrightarrow(F)$;
$[(B),(\neg B \vee \neg F \vee G)] \Longrightarrow(\neg F \vee G)$;
$[(F),(\neg F \vee G)] \Longrightarrow(G)$;
$[(\neg G),(G)] \Longrightarrow() ;$
Hint: resolve always unit clauses first!

Outline

(1) Propositional Logic

2 Propositional Reasoning

- Resolution
- DPLL
- Reasoning with Horn Formulas
- Local Search
(3) Agents Based on Knowledge Representation \& Reasoning
- Knowledge-Based Agents
- Example: the Wumpus World
(4) Agents Based on Propositional Reasoning
- Propositional Logic Agents
- Example: the Wumpus World

The Davis-Putnam-Longemann-Loveland Procedure

- Tries to build an assignment μ satisfying φ
- At each step assians a truth value to (all instánces of) one atom
- Performs deterministic choices (mostly unit-propagation) first
- The grandfather of the most efficient SAT solvers
- Correct and complete
- Much more efficient than PL-Resolution
- Requires polynomial space

The Davis-Putnam-Longemann-Loveland Procedure

- Tries to build an assignment μ satisfying φ
- At each step assigns a truth value to (all instances of) one atom
- Performs deterministic choices (mostly unit-propagation) first
- The grandfather of the most efficient SAT solvers
- Correct and complete
- Much more efficient than PL-Resolution
- Requires polynomial space

The Davis-Putnam-Longemann-Loveland Procedure

- Tries to build an assignment μ satisfying φ
- At each step assigns a truth value to (all instances of) one atom
- Performs deterministic choices (mostly unit-propagation) first
- The grandfather of the most efficient SAT solvers
- Correct and complete
- Much more efficient than PL-Resolution
- Requires polynomial space

The Davis-Putnam-Longemann-Loveland Procedure

- Tries to build an assignment μ satisfying φ
- At each step assigns a truth value to (all instances of) one atom
- Performs deterministic choices (mostly unit-propagation) first
- The grandfather of the most efficient SAT solvers
- Correct and complete
- Much more efficient than PL-Resolution
- Requires polynomial space

The Davis-Putnam-Longemann-Loveland Procedure

- Tries to build an assignment μ satisfying φ
- At each step assigns a truth value to (all instances of) one atom
- Performs deterministic choices (mostly unit-propagation) first
- The grandfather of the most efficient SAT solvers
- Correct and complete
- Much more efficient than PL-Resolution
- Requires nolvnomial snace

The Davis-Putnam-Longemann-Loveland Procedure

- Tries to build an assignment μ satisfying φ
- At each step assigns a truth value to (all instances of) one atom
- Performs deterministic choices (mostly unit-propagation) first
- The grandfather of the most efficient SAT solvers
- Correct and complete
- Much more efficient than PL-Resolution
- Requires polynomial space

The Davis-Putnam-Longemann-Loveland Procedure

- Tries to build an assignment μ satisfying φ
- At each step assigns a truth value to (all instances of) one atom
- Performs deterministic choices (mostly unit-propagation) first
- The grandfather of the most efficient SAT solvers
- Correct and complete
- Much more efficient than PL-Resolution
- Requires polynomial space

The Davis-Putnam-Longemann-Loveland Procedure

- Tries to build an assignment μ satisfying φ
- At each step assigns a truth value to (all instances of) one atom
- Performs deterministic choices (mostly unit-propagation) first
- The grandfather of the most efficient SAT solvers
- Correct and complete
- Much more efficient than PL-Resolution
- Requires polynomial space

The DPLL Procedure [cont.]

```
function DPLL-SATISFIABLE?(s) returns true or false
    inputs: s, a sentence in propositional logic
    clauses }\leftarrow\mathrm{ the set of clauses in the CNF representation of s
    symbols }\leftarrow\mathrm{ a list of the proposition symbols in s
    return DPLL(clauses, symbols, { })
function DPLL(clauses, symbols, model) returns true or false
    if every clause in clauses is true in model then return true
    if some clause in clauses is false in model then return false
    P, value \leftarrow FIND-PURE-SYMBOL(symbols, clauses, model)
    if P}\mathrm{ is non-null then return DPLL(clauses, symbols - P, model }\cup{P=value}
    P,value}\leftarrowFIND-UNIT-CLAUSE(clauses, model)
    if P}\mathrm{ is non-null then return DPLL(clauses, symbols - P, model }\cup{P=value}
    P}\leftarrow\textrm{FIRST}(\mathrm{ symbols); rest }\leftarrow\textrm{REST}(\mathrm{ symbols)
    return DPLL(clauses, rest, model \cup{P=true}) or
            DPLL(clauses,rest, model \cup{P=false }))
```


The DPLL Procedure [cont.]

```
function DPLL-SATISFIABLE?(s) returns true or false
    inputs: s, a sentence in propositional logic
    clauses }\leftarrow\mathrm{ the set of clauses in the CNF representation of s
    symbols }\leftarrow\mathrm{ a list of the proposition symbols in s
    return DPLL(clauses, symbols, { })
function DPLL(clauses, symbols, model) returns true or false
    if every clause in clauses is true in model then return true
    if some clause in clauses is false in model then return false
```



```
    if P}\mathrm{ is non-null then return DPLL(clauses, symbols - P,model }\cup{P=vatue}
    P,value}\leftarrowFIND-UNIT-CLAUSE(clauses, model)
    if P}\mathrm{ is non-null then return DPLL(clauses, symbols - P,model }\cup{P=value}
    P}\leftarrow\textrm{FIRST}(\mathrm{ symbols); rest }\leftarrow\textrm{REST}(\mathrm{ symbols)
    return DPLL(clauses, rest, model \cup{P=true}) or
            DPLL(clauses,rest, model \cup{P=false }))
```

Pure-Symbol Rule out of date, no more used in modern solvers.

DPLL: Example

DPLL search tree

$$
\varphi=\left(A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right) \wedge\left(\neg A_{1} \vee A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2}\right)
$$

DPLL - example

DPLL (without pure-literal rule)
Here "choose-literal" selects variable in alphabetic order, selecting true first.

$(\neg C$)	\wedge
(B	\checkmark A	$\vee C) \wedge$
(\neg A	\checkmark D) \wedge
(\neg E	$\checkmark \neg A$	$\vee F) \wedge$
(\neg E	$\checkmark \neg F$	$\vee \neg A) \wedge$
G	$\checkmark \neg A$	$\vee E) \wedge$
(E	$\vee \neg G$	$\vee \neg A) \wedge$
(A	$\checkmark \mathrm{H}$	$\checkmark C) \wedge$
$(\neg$)	$\vee \neg 1$	\checkmark A) \wedge
(1	\checkmark L	$\checkmark M) \wedge$
$(\neg L$	$\checkmark C$	$\vee \neg$) \wedge
A	$\checkmark \neg L$	$\vee M) \wedge$
L	$\checkmark N$	$\checkmark \neg$) \wedge
	$\vee L$	$\checkmark \neg$)

[^0]
DPLL - example

DPLL (without pure-literal rule)
Here "choose-literal" selects variable in alphabetic order, selecting true first.

$(\neg C$)	\wedge
B	A	$\vee C) \wedge$
A	D) \wedge
$\stackrel{\square}{ }$	$\vee \neg A$	$\vee F) \wedge$
(\neg E	$\checkmark \neg F$	$\vee \neg A) \wedge$
G	$\vee \neg A$	$\vee E) \wedge$
E	$\vee \neg G$	$\vee \neg A) \wedge$
A	$\checkmark \mathrm{H}$	\checkmark C) \wedge
$\left(\neg{ }^{\text {H }}\right.$	$\vee \neg 1$	\checkmark A) \wedge
(1	$\vee L$	$\vee M) \wedge$
L	$\checkmark \mathrm{C}$	$\vee \neg M) \wedge$
A	$\checkmark \neg L$	$\vee M) \wedge$
,	$\checkmark N$	$\vee \neg H) \wedge$
		$\checkmark \neg$)

[^1]
DPLL - example

DPLL (without pure-literal rule)
Here "choose-literal" selects variable in alphabetic order, selecting true first.

$(\neg C$)	\wedge
(B	\checkmark A	$\vee C) \wedge$
$(\neg A$	$\vee D$)^
(\neg E	$\checkmark \neg A$	$\vee F) \wedge$
(\neg E	$\checkmark \neg F$	$\vee \neg A) \wedge$
(G	$\checkmark \neg A$	$\vee E) \wedge$
(E	$\vee \neg G$	$\checkmark \neg A) \wedge$
A	$\checkmark \mathrm{H}$	$\checkmark C) \wedge$
$(\neg$ H	$\vee \neg 1$	\checkmark A) \wedge
$(1$	\checkmark L	$\checkmark M) \wedge$
$(\neg L$	$\checkmark C$	$\vee \neg M) \wedge$
(A	$\checkmark \neg L$	$\checkmark \mathrm{M}) \wedge$
(L	$\checkmark N$	$\vee \neg$) \wedge
(1	\checkmark L	$\checkmark \neg N$)

\Longrightarrow UNSAT

[^2]
DPLL - example

DPLL (without pure-literal rule)

Here "choose-literal" selects variable in alphabetic order, selecting true first.

$(\neg C$)	\wedge
B	$\vee A$	$\vee C) \wedge$
$(\neg A$	$\vee D$	$) \wedge$
$(\neg E$	$\vee \neg A$	$\vee F) \wedge$
$(\neg E$	$\vee \neg F$	$\vee \neg A) \wedge$
G	$\vee \neg A$	$\vee E) \wedge$
E	$\vee \neg G$	$\vee \neg A) \wedge$
A	$\vee H$	\vee C) \wedge
$(\neg H$	$\checkmark \neg I$	$\vee A) \wedge$
(I	$\vee L$	$\vee M) \wedge$
$(\neg L$	$\vee C$	$\vee \neg M) \wedge$
A	$\vee \neg L$	$\vee M) \wedge$
L	$\vee N$	$\vee \neg H) \wedge$
I	$\vee L$	$\vee \neg N$)

Remark: "choose-literal" selects only variables which still occur in the formula, after simplification. E.g., in the leftmost branch, after assigning $\neg C, A, \quad D$, it does not select B because the clause ($B \vee A \vee C$) has been simplified into true, and as such is no more part of the formula, so that B does not occur in the formula anymore.

Modern CDCL SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

Can handle industrial problems with $10^{6}-10^{7}$ variables and clauses!

Modern CDCL SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

Can handle industrial problems with $10^{6}-10^{7}$ variables and clauses!

Modern CDCL SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

Modern CDCL SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

Modern CDCL SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

```
Can handle industrial problems with \(10^{6}-10^{7}\) variables and clauses!
```


Modern CDCL SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

```
Can handle industrial problems with \(10^{6}-10^{7}\) variables and clauses!
```


Modern CDCL SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

```
Can handle industrial problems with \(10^{6}-10^{7}\) variables and clauses!
```


Modern CDCL SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

Modern CDCL SAT Solvers

- Non-recursive, stack-based implementations
- Based on Conflict-Driven Clause-Learning (CDCL) schema
- inspired to conflict-driven backjumping and learning in CSPs
- learns implied clauses as nogoods
- Random restarts
- abandon the current search tree and restart on top level
- previously-learned clauses maintained
- Smart literal selection heuristics (ex: VSIDS)
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses
- Smart preprocessing/inprocessing technique to simplify formulas
- Smart indexing techniques (e.g. 2-watched literals)
- efficiently do/undo assignments and reveal unit clauses
- Allow Incremental Calls (stack-based interface)
- allow for reusing previous search on "similar" problems

Can handle industrial problems with $10^{6}-10^{7}$ variables and clauses!

Outline

(1) Propositional Logic

2 Propositional Reasoning

- Resolution
- DPLL
- Reasoning with Horn Formulas
- Local Search
(3) Agents Based on Knowledge Representation \& Reasoning
- Knowledge-Based Agents
- Example: the Wumpus World

4 Agents Based on Propositional Reasoning

- Propositional Logic Agents
- Example: the Wumpus World

Horn Formulas

- A Horn clause is a clause containing at most one positive literal
- a definite clause is a clause containing exactly one positive literal
- a goal clause is a clause containing no positive literal
- A Horn formula is a conjunction/set of Horn clauses
- Ex:
definite
definite
goal
definite
- Intuition: implications between positive Boolean variables:
- Often allow to represent knowledge-base entailment $K B \models \alpha$:
- knowledge base KB written as sets of definite clauses ex: In11; ($-\ln 11 \mathrm{~V} \rightarrow$ MoveFrom11To12 $\mathrm{V} \ln 12$)
- goal $\neg \alpha$ as a goal clause ex: $\neg \ln 12$

Horn Formulas

- A Horn clause is a clause containing at most one positive literal
- a definite clause is a clause containing exactly one positive literal
- a goal clause is a clause containing no positive literal
- A Horn formula is a conjunction/set of Horn clauses
- Intuition: implications between positive Boolean variables:
- Often allow to represent knowledge-base entailment $K B \models \alpha$:
- knowledge base KB written as sets of definite clauses ex: $\operatorname{In} 11 ;(-\ln 11 \mathrm{~V} \rightarrow M o v e F r o m 11 T 012 \mathrm{~V} \operatorname{In} 12)$
- goal $\neg \alpha$ as a goal clause
ex: $\neg \ln 12$

Horn Formulas

- A Horn clause is a clause containing at most one positive literal
- a definite clause is a clause containing exactly one positive literal
- a goal clause is a clause containing no positive literal
- A Horn formula is a conjunction/set of Horn clauses
- Ex:
$A_{1} \vee \neg A_{2} \quad / /$ definite

Ex: $\quad A_{2} \vee \neg A_{3} \vee \neg A_{4} \quad / /$ definite
$\neg A_{5} \vee \neg A_{3} \vee \neg A_{4} \quad / /$ goal
$A_{3} \quad / /$ definite

- Intuition: implications between positive Boolean variables:
- Often allow to represent knowledge-base entailment $K B \models \alpha$:
- knowledge base KB written as sets of definite clauses

- goal $\neg \alpha$ as a goal clause
ex: $\neg \ln 12$

Horn Formulas

- A Horn clause is a clause containing at most one positive literal
- a definite clause is a clause containing exactly one positive literal
- a goal clause is a clause containing no positive literal
- A Horn formula is a conjunction/set of Horn clauses
- Ex:
$A_{1} \vee \neg A_{2} \quad / /$ definite
$A_{2} \vee \neg A_{3} \vee \neg A_{4} \quad / /$ definite
$\neg A_{5} \vee \neg A_{3} \vee \neg A_{4} \quad / /$ goal
$A_{3} \quad / /$ definite
- Intuition: implications between positive Boolean variables:

$$
\begin{array}{rll}
A_{2} & \rightarrow & A_{1} \\
\left(A_{3} \wedge A_{4}\right) & \rightarrow & A_{2} \\
\left(A_{5} \wedge A_{3} \wedge A_{4}\right) & \rightarrow & \perp \\
& A_{3}
\end{array}
$$

- Often allow to represent knowledge-base entailment $K B \models \alpha$:
- knowledge base KB written as sets of definite clauses
ex: In11; ($\neg \ln 11 \mathrm{~V} \neg$ MoveFrom11To12 $\mathrm{V} \operatorname{In} 12)$;
- goal $\neg \alpha$ as a goal clause
ex: $\neg \ln 12$

Horn Formulas

- A Horn clause is a clause containing at most one positive literal
- a definite clause is a clause containing exactly one positive literal
- a goal clause is a clause containing no positive literal
- A Horn formula is a conjunction/set of Horn clauses
- Ex: $\quad A_{2} \vee \neg A_{3} \vee \neg A_{4} \quad / /$ definite
$\neg A_{5} \vee \neg A_{3} \vee \neg A_{4} \quad / /$ goal
$A_{3} \quad / /$ definite
- Intuition: implications between positive Boolean variables:

$$
\begin{array}{rll}
A_{2} & \rightarrow & A_{1} \\
\left(A_{3} \wedge A_{4}\right) & \rightarrow & A_{2} \\
\left(A_{5} \wedge A_{3} \wedge A_{4}\right) & \rightarrow & \perp \\
& A_{3}
\end{array}
$$

- Often allow to represent knowledge-base entailment $K B \models \alpha$:
- knowledge base KB written as sets of definite clauses ex: In11; ($\neg \operatorname{In} 11 \vee \neg$ MoveFrom11To12 $\vee \operatorname{In} 12$);
- goal $\neg \alpha$ as a goal clause ex: $\neg \ln 12$

Tractability of Horn Formulas

Property

Checking the satisfiability of Horn formulas requires polynomial time：
－Hint：
－Alternatively：run DPLL／CDCL，selecting negative literals first

Tractability of Horn Formulas

Property

Checking the satisfiability of Horn formulas requires polynomial time:

- Hint:
(1) Eliminate unit clauses by propagating their value;

2 If an empty clause is generated, return unsat
(3) Otherwise, every clause contains at least one negative literal

Assign all variables to 1 ; return the assignment

- Alternatively: run DPLL/CDCL, selecting negative literals first

Tractability of Horn Formulas

Property

Checking the satisfiability of Horn formulas requires polynomial time:

- Hint:
(1) Eliminate unit clauses by propagating their value;
(2) If an empty clause is generated, return unsat
(3) Otherwise, every clause contains at least one negative literal Assign all variables to \perp; return the assignment
- Alternatively: run DPLL/CDCL, selecting negative literals first

Tractability of Horn Formulas

Property

Checking the satisfiability of Horn formulas requires polynomial time:

- Hint:
(1) Eliminate unit clauses by propagating their value;
(2) If an empty clause is generated, return unsat
(8) Otherwise, every clause contains at least one negative literal Assign all variables to \perp; return the assignment
- Alternatively: run DPLL/CDCL, selecting negative literals first

Tractability of Horn Formulas

Property

Checking the satisfiability of Horn formulas requires polynomial time:

- Hint:
(1) Eliminate unit clauses by propagating their value;
(2) If an empty clause is generated, return unsat
(3) Otherwise, every clause contains at least one negative literal

Assign all variables to \perp; return the assignment

- Alternatively: run DPLL/CDCL, selecting negative literals first

Tractability of Horn Formulas

Property

Checking the satisfiability of Horn formulas requires polynomial time:

- Hint:
(1) Eliminate unit clauses by propagating their value;
(2) If an empty clause is generated, return unsat
(3) Otherwise, every clause contains at least one negative literal
\Longrightarrow Assign all variables to \perp; return the assignment
- Alternatively: run DPLL/CDCL, selecting negative literals first

Tractability of Horn Formulas

Property

Checking the satisfiability of Horn formulas requires polynomial time:

- Hint:
(1) Eliminate unit clauses by propagating their value;
(2) If an empty clause is generated, return unsat
(3) Otherwise, every clause contains at least one negative literal
\Longrightarrow Assign all variables to \perp; return the assignment
- Alternatively: run DPLL/CDCL, selecting negative literals first

A simple polynomial procedure for Horn-SAT

```
function Horn_SAT(formula \varphi, assignment & \mu) {
    Unit_Propagate(\varphi, \mu);
    if ( }\varphi==\perp\mathrm{ )
        then return UNSAT;
    else {
```



```
        return SAT;
} }
function Unit_Propagate(formula & \varphi, assignment & \mu)
    while ( }\varphi\not=\textrm{T}\mathrm{ and }\varphi\not=\perp\mathrm{ and {a unit clause (I) occurs in }\varphi})\mathrm{ do {
        \varphi=\operatorname{assign}(\varphi,l);
        \mu:= \mu\cup{I};
} }
```


Example

$$
\begin{array}{rcc}
\neg A_{1} & \vee A_{2} & \vee \neg A_{3} \\
A_{1} & \vee \neg A_{3} & \vee \neg A_{4} \\
\neg A_{2} & \vee \neg A_{4} & \\
A_{3} & \vee \neg A_{4} & \\
A_{4} & &
\end{array}
$$

Example

$$
\mu:=\left\{A_{4}:=\top\right\}
$$

Example

$$
\mu:=\left\{A_{4}:=\top, A_{3}:=\top\right\}
$$

Example

$$
\begin{array}{rll}
\neg A_{1} & \vee & A_{2} \\
A_{1} & \vee \neg A_{3} & \vee \neg A_{3} \\
\neg A_{2} & \vee \neg A_{4} & \\
A_{3} & \vee \neg A_{4} & \\
A_{4} & &
\end{array}
$$

$$
\mu:=\left\{A_{4}:=\top, A_{3}:=\top, A_{2}:=\perp\right\}
$$

Example

$$
\mu:=\left\{A_{4}:=\top, A_{3}:=\top, A_{2}:=\perp, A_{1}:=\top\right\} \Longrightarrow \text { UNSAT }
$$

Example 2

$$
\begin{array}{lll}
A_{1} & \vee \neg A_{2} & \\
A_{2} & \vee \neg A_{5} & \vee \neg A_{4} \\
A_{4} & \vee \neg A_{3} & \\
A_{3} & &
\end{array}
$$

Example 2

$$
\begin{array}{llll}
& A_{1} \vee \neg A_{2} \\
& A_{2} \vee \neg A_{5} \quad \vee \neg A_{4} \\
& A_{4} \vee \neg A_{3} \\
& A_{3} & \\
& &
\end{array}
$$

Example 2

$$
\begin{array}{llll}
& A_{1} & \vee \neg A_{2} \\
& A_{2} & \vee \neg A_{5} \quad \vee \neg A_{4} \\
& A_{4} & \vee \neg A_{3} \\
& A_{3} &
\end{array}
$$

Example 2

$$
\begin{array}{lll}
& A_{1} & \vee \neg A_{2} \\
& A_{2} & \vee \neg A_{5} \quad \vee \neg A_{4} \\
& A_{4} & \vee \neg A_{3} \\
& A_{3} &
\end{array}
$$

Outline

(1) Propositional Logic

2 Propositional Reasoning

- Resolution
- DPLL
- Reasoning with Horn Formulas
- Local Search
(3) Agents Based on Knowledge Representation \& Reasoning
- Knowledge-Based Agents
- Example: the Wumpus World

4 Agents Based on Propositional Reasoning

- Propositional Logic Agents
- Example: the Wumpus World

Local Search with SAT

- Similar to Local Search for CSPs
- Input: set of clauses
- Use total truth assignments
- allow states with unsatisfied clauses
- "neighbour states" differ for one variable truth value
- steps: reassign variable truth values
- Cost: \# of unsatisfied clauses
- Stochastic local search [see Ch. 4] applies to SAT as well
- random walk, simulated annealing, GAs, taboo search,
- The WalkSAT stochastic local search
- Clause selection: randomly select an unsatisfied clause C
- Variable selection:
prob. p: flip variable from C at random
prob. 1-p: flip variable from C causing a minimum number of unsat clauses
- Note: can detect only satisfiability, not unsatisfiability
- Many variants

Local Search with SAT

- Similar to Local Search for CSPs
- Input: set of clauses
- Use total truth assignments
- allow states with unsatisfied clauses
- "neighbour states" differ for one variable truth value
- steps: reassign variable truth values
- Cost: \# of unsatisfied clauses
- Stochastic local search [see Ch. 4] applies to SAT as well
- random walk, simulated annealing, GAs, taboo search,
- The WalkSAT stochastic local search
- Clause selection: randomly select an unsatisfied clause C
- Variable selection:
prob. p: flip variable from C at random
prob. 1-p: flip variable from C causing a min imum number of unsat clauses
- Note: can detect only satisfiability, not unsatisfiability
- Many variants

Local Search with SAT

- Similar to Local Search for CSPs
- Input: set of clauses
- Use total truth assignments
- allow states with unsatisfied clauses
- "neighbour states" differ for one variable truth value
- steps: reassign variable truth values
- Cost: \# of unsatisfied clauses
- Stochastic local search [see Ch. 4] applies to SAT as well
- random walk, simulated annealing, GAs, taboo search,
- The WalkSAT stochastic local search
- Clause selection: randomly select an unsatisfied clause C
- Variable selection:
prob. p: flip variable from C at random
prob. 1-p: flip variable from C causing a minimum number of unsat clauses
- Note: can detect only satisfiability, not unsatisfiability
- Many variants

Local Search with SAT

- Similar to Local Search for CSPs
- Input: set of clauses
- Use total truth assignments
- allow states with unsatisfied clauses
- "neighbour states" differ for one variable truth value
- steps: reassign variable truth values
- Cost: \# of unsatisfied clauses
- Stochastic local search [see Ch. 4] applies to SAT as well
- random walk, simulated annealing, GAs, taboo search,
- The WalkSAT stochastic local search
- Clause selection: randomly select an unsatisfied clause C
- Variable selection:
prob. p: flip variable from C at random
prob. 1-p: flip variable from C causing a minimum number of unsat clauses
- Note: can detect only satisfiability, not unsatisfiability
- Many variants

Local Search with SAT

- Similar to Local Search for CSPs
- Input: set of clauses
- Use total truth assignments
- allow states with unsatisfied clauses
- "neighbour states" differ for one variable truth value
- steps: reassign variable truth values
- Cost: \# of unsatisfied clauses
- Stochastic local search [see Ch. 4] applies to SAT as well
- random walk, simulated annealing, GAs, taboo search, ...
- The WalkSAT stochastic local search
- Clause selection: randomly select an unsatisfied clause C
- Variable selection:
prob. p: flip variable from C at random
prob. 1-p: flip variable from C causing a minimum number of unsat clauses
- Note: can detect only satisfiability, not unsatisfiability
- Many variants

Local Search with SAT

- Similar to Local Search for CSPs
- Input: set of clauses
- Use total truth assignments
- allow states with unsatisfied clauses
- "neighbour states" differ for one variable truth value
- steps: reassign variable truth values
- Cost: \# of unsatisfied clauses
- Stochastic local search [see Ch. 4] applies to SAT as well
- random walk, simulated annealing, GAs, taboo search, ...
- The WalkSAT stochastic local search
- Clause selection: randomly select an unsatisfied clause C
- Variable selection:
prob. p: flip variable from C at random
prob. 1-p: flip variable from C causing a minimum number of unsat clauses
- Note: can detect only satisfiability, not unsatisfiability
- Many variants

Local Search with SAT

- Similar to Local Search for CSPs
- Input: set of clauses
- Use total truth assignments
- allow states with unsatisfied clauses
- "neighbour states" differ for one variable truth value
- steps: reassign variable truth values
- Cost: \# of unsatisfied clauses
- Stochastic local search [see Ch. 4] applies to SAT as well
- random walk, simulated annealing, GAs, taboo search, ...
- The WalkSAT stochastic local search
- Clause selection: randomly select an unsatisfied clause C
- Variable selection:
prob. p: flip variable from C at random
prob. 1-p: flip variable from C causing a minimum number of unsat clauses
- Note: can detect only satisfiability, not unsatisfiability
- Many variants

Local Search with SAT

- Similar to Local Search for CSPs
- Input: set of clauses
- Use total truth assignments
- allow states with unsatisfied clauses
- "neighbour states" differ for one variable truth value
- steps: reassign variable truth values
- Cost: \# of unsatisfied clauses
- Stochastic local search [see Ch. 4] applies to SAT as well
- random walk, simulated annealing, GAs, taboo search, ...
- The WalkSAT stochastic local search
- Clause selection: randomly select an unsatisfied clause C
- Variable selection:
prob. p: flip variable from C at random
prob. 1-p: flip variable from C causing a minimum number of unsat clauses
- Note: can detect only satisfiability, not unsatisfiability
- Many variants

The WalkSAT Procedure

function WALKSAT(clauses, p, max_flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a "random walk" move, typically around 0.5 max_flips, number of flips allowed before giving up
model \leftarrow a random assignment of true/false to the symbols in clauses
for $i=1$ to max_flips do $^{\text {dit }}$
if model satisfies clauses then return model
clause \leftarrow a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure

Outline

(4) Propositional Logic
(2) Propositional Peasoning

- Resolution
- DPLL
- Reasoning with Horn Formulas
- Local Search
(3) Agents Based on Knowledge Representation \& Reasoning
- Knowledge-Based Agents
- Example: the Wumpus World

4 Agents Based on Propositional Reasoning

- Propositional Logic Agents
- Example: the Wumpus World

Outline

(4) Propositional Logic
(2) Propositional Peasoning

- Resolution
- DPLL
- Reasoning with Horn Formulas
- Local Search
(3) Agents Based on Knowledge Representation \& Reasoning
- Knowledge-Based Agents
- Example: the Wumpus World

4 Agents Based on Propositional Reasoning

- Propositional Logic Agents
- Example: the Wumpus World'

A Quote

You can think about deep learning as equivalent to ... our visual cortex or auditory cortex. But, of course, true intelligence is a lot more than just that, you have to recombine it into higher-level thinking and symbolic reasoning, a lot of the things classical AI tried to deal with in the 80s.

We would like to build up to this symbolic level of reasoning - maths, language, and logic. So that's a big part of our work.

Knowledge Representation and Reasoning

- Knowledge Representation \& Reasoning (KR\&R): the field of AI dedicated to representing knowledge of the world in a form a computer system can utilize to solve complex tasks
- The class of systems/agents that derive from this approach are called knowledge based (KB) systems/agents
- A KB agent maintains a knowledge base (KB) of facts
- represent the agent's representation of the world
- expressed in a formal language (e.g. propositional logic)
- collection of domain-specific facts believed by the agent
- initially contains the background knowledge
- KB queries and updates via logical entailment, performed by an inference engine
- Inference engine allows for inferring actions and new knowledge
- domain-independent algorithms, can answer any question

Inference engine	domain-independent algorithms
Knowledge base	

Knowledge Representation and Reasoning

- Knowledge Representation \& Reasoning (KR\&R): the field of AI dedicated to representing knowledge of the world in a form a computer system can utilize to solve complex tasks
- The class of systems/agents that derive from this approach are called knowledge based (KB) systems/agents
- A KB agent maintains a knowledge base (KB) of facts
- represent the agent's representation of the world
- expressed in a formal language (e.g. propositional logic)
- collection of domain-specific facts believed by the agent
- initially contains the background knowledge
- KB queries and updates via logical entailment, performed by an inference engine
- Inference engine allows for inferring actions and new knowledge
- domain-independent algorithms, can answer any question

Knowledge Representation and Reasoning

- Knowledge Representation \& Reasoning (KR\&R): the field of AI dedicated to representing knowledge of the world in a form a computer system can utilize to solve complex tasks
- The class of systems/agents that derive from this approach are called knowledge based (KB) systems/agents
- A KB agent maintains a knowledge base (KB) of facts
- represent the agent's representation of the world
- expressed in a formal language (e.g. propositional logic)
- collection of domain-specific facts believed by the agent
- initially contains the background knowledge
- KB queries and updates via logical entailment, performed by an inference engine
- Inference engine allows for inferring actions and new knowledge
- domain-independent algorithms, can answer any question

Reasoning

- Reasoning: formal manipulation of the symbols representing a collection of beliefs to produce representations of new ones
- Logical entailment $(K B=\alpha)$ is the fundamental operation
- Ex:
- Other forms of reasoning (last part of this course)
- Probablistic reasoning
- Other forms of reasoning (not addressed in this course)
- Abductive reasoning (aka diagnosis): given $K B$ and β, conjecture hypotheses α s.t $(K B \wedge \alpha)=\beta$
- Abductive reasoning: from a set of observation find a general rule

Reasoning

- Reasoning: formal manipulation of the symbols representing a collection of beliefs to produce representations of new ones
- Logical entailment $(K B \models \alpha)$ is the fundamental operation
- Ex:
- (KB acquired fact): "Patient x is allergic to medication m"
- (KB general rule): "Anybody allergic to m is also allergic to m '."
- (KB general rule): "If x is allergic to m ', do not prescribe m ' for x."
- (query)
- (answer) No (because patient x is allergic to medication m')
- Other forms of reasoning (last part of this course)
- Probablistic reasoning
- Other forms of reasoning (not addressed in this course)
- Abductive reasoning (aka diagnosis): given $K B$ and β, conjecture hypotheses α s.t ($K B$
- Abductive reasoning: from a set of observation find a general rule

Reasoning

- Reasoning: formal manipulation of the symbols representing a collection of beliefs to produce representations of new ones
- Logical entailment $(K B \models \alpha)$ is the fundamental operation
- Ex:
- (KB acquired fact): "Patient x is allergic to medication m"
- (KB general rule): "Anybody allergic to m is also allergic to m '."
- (KB general rule): "If x is allergic to m ', do not prescribe m ' for x."
- (query): "Prescribe m' for x?"
- (answer) No (because patient x is allergic to medication m')
- Other forms of reasoning (last part of this course)
- Probablistic reasoning
- Other forms of reasoning (not addressed in this course)
- Abductive reasoning (aka diagnosis): given $K B$ and β, conjecture hypotheses α s.t (KB
- Abductive reasoning: from a set of observation find a general rule

Reasoning

- Reasoning: formal manipulation of the symbols representing a collection of beliefs to produce representations of new ones
- Logical entailment $(K B \models \alpha)$ is the fundamental operation
- Ex:
- (KB acquired fact): "Patient x is allergic to medication m"
- (KB general rule): "Anybody allergic to m is also allergic to m '."
- (KB general rule): "If x is allergic to m ', do not prescribe m ' for x."
- (query): "Prescribe m' for x?"
- (answer) No (because patient x is allergic to medication m^{\prime})
- Other forms of reasoning (last part of this course)
- Probablistic reasoning
- Other forms of reasoning (not addressed in this course)
- Abductive reasoning (aka diagnosis): given $K B$ and β, conjecture hypotheses α s.t (KB
- Abductive reasoning: from a set of observation find a general rule

Reasoning

- Reasoning: formal manipulation of the symbols representing a collection of beliefs to produce representations of new ones
- Logical entailment $(K B \models \alpha)$ is the fundamental operation
- Ex:
- (KB acquired fact): "Patient x is allergic to medication m "
- (KB general rule): "Anybody allergic to m is also allergic to m '."
- (KB general rule): "If x is allergic to m ', do not prescribe m ' for x."
- (query): "Prescribe m' for x?"
- (answer) No (because patient x is allergic to medication m^{\prime})
- Other forms of reasoning (last part of this course)
- Probablistic reasoning
- Other forms of reasoning (not addressed in this course)
- Abductive reasoning (aka diagnosis): given $K B$ and β, conjecture hypotheses α s.t ($K B$
- Abductive reasoning: from a set of observation find a general rule

Reasoning

- Reasoning: formal manipulation of the symbols representing a collection of beliefs to produce representations of new ones
- Logical entailment ($K B \models \alpha$) is the fundamental operation
- Ex:
- (KB acquired fact): "Patient x is allergic to medication m "
- (KB general rule): "Anybody allergic to m is also allergic to m '."
- (KB general rule): "If x is allergic to m ', do not prescribe m ' for x."
- (query): "Prescribe m' for x?"
- (answer) No (because patient x is allergic to medication m^{\prime})
- Other forms of reasoning (last part of this course)
- Probablistic reasoning
- Other forms of reasoning (not addressed in this course)
- Abductive reasoning (aka diagnosis): given $K B$ and β, conjecture hypotheses α s.t $(K B \wedge \alpha) \vDash \beta$
- Abductive reasoning: from a set of observation find a general rule

Knowledge-Based Agents (aka Logic Agents)

- Logic agents: combine domain knowledge with current percepts to infer hidden aspects of current state prior to selecting actions
- Crucial in partially observable environments
- KB Agent must be able to:
- represent states and actions
- incorporate new percepts
- update internal representation of the world
- deduce hidden properties of the world
- deduce appropriate actions
- Agents can be described at different levels
- knowledge level (declarative approach): behaviour completely described by the sentences stored in the KB
- implementation level (procedural approach): behaviour described as program code
- Declarative approach to building an agent (or other system):
- Tell the KB what it needs to know (update KB)
- Ask what to do (answers should follow logically from KB \& query)

Knowledge-Based Agents (aka Logic Agents)

- Logic agents: combine domain knowledge with current percepts to infer hidden aspects of current state prior to selecting actions
- Crucial in partially observable environments
- KB Agent must be able to:
- represent states and actions
- incorporate new percepts
- update internal representation of the world
- deduce hidden properties of the world
- deduce appropriate actions
- Agents can be described at different levels
- knowledge level (declarative approach):
behaviour completely described by the sentences stored in the KB
- implementation level (procedural approach): behaviour described as program code
- Declarative approach to building an agent (or other system):
- Tell the KB what it needs to know (update KB)
- Ask what to do (answers should follow logically from KB \& query)

Knowledge-Based Agents (aka Logic Agents)

- Logic agents: combine domain knowledge with current percepts to infer hidden aspects of current state prior to selecting actions
- Crucial in partially observable environments
- KB Agent must be able to:
- represent states and actions
- incorporate new percepts
- update internal representation of the world
- deduce hidden properties of the world
- deduce appropriate actions
- Agents can be described at different levels
- knowledge level (declarative approach):
behaviour completely described by the sentences stored in the KB
- implementation level (procedural approach): behaviour described as program code
- Declarative approach to building an agent (or other system):
- Tell the KB what it needs to know (update KB)
- Ask what to do (answers should follow logically from KB \& query)

Knowledge-Based Agents (aka Logic Agents)

- Logic agents: combine domain knowledge with current percepts to infer hidden aspects of current state prior to selecting actions
- Crucial in partially observable environments
- KB Agent must be able to:
- represent states and actions
- incorporate new percepts
- update internal representation of the world
- deduce hidden properties of the world
- deduce appropriate actions
- Agents can be described at different levels
- knowledge level (declarative approach):
behaviour completely described by the sentences stored in the KB
- implementation level (procedural approach): behaviour described as program code
- Declarative approach to building an agent (or other system):
- Tell the KB what it needs to know (update KB)
- Ask what to do (answers should follow logically from KB \& query)

Knowledge-Based Agent: General Schema

- Given a percept, the agent
- Tells the KB of the percept at time step t
- ASKs the KB for the best action to do at time step t
- Tells the KB that it has in fact taken that action
- Details hidden in three functions:

Make-Percept-Sentence, Make-Action-Query, Make-Action-Sentence

- construct logic sentences
- implement the interface between sensors/actuators and KRR core
- Tell and Ask may require complex logical inference
function KB-AGENT(percept) returns an action
persistent: $K B$, a knowledge base
t, a counter, initially 0 , indicating time
TEll(KB, MAKE-Percept-SEntence(percept, t))
action $\leftarrow \operatorname{AsK}(K B, \operatorname{MAKE}-A C T I O N-Q U E R Y(t))$
TEll(KB, MAKE-Action-SEntence (action, t))
$t \leftarrow t+1$
return action

Knowledge-Based Agent: General Schema

- Given a percept, the agent
- Tells the KB of the percept at time step t
- ASKs the KB for the best action to do at time step t
- Tells the KB that it has in fact taken that action
- Details hidden in three functions:

Make-Percept-Sentence, Make-Action-Query, Make-Action-Sentence

- construct logic sentences
- implement the interface between sensors/actuators and KRR core
- Tell and Ask may require complex logical inference

```
function KB-AGENT( percept) returns an action
    persistent: }KB\mathrm{ , a knowledge base
            t \text { , a counter, initially 0, indicating time}
    TEll(KB,MAKE-PERCEPT-SENTENCE(percept,t))
    action }\leftarrow\operatorname{ASK}(KB,MAKE-ACTION-QUERY(t)
    TEll(KB,MAKE-ACTION-SENTENCE(action, }t\mathrm{ ))
    t\leftarrowt+1
    return action
```


Knowledge-Based Agent: General Schema

- Given a percept, the agent
- Tells the KB of the percept at time step t
- ASKs the KB for the best action to do at time step t
- Tells the KB that it has in fact taken that action
- Details hidden in three functions:

Make-Percept-Sentence, Make-Action-Query, Make-Action-Sentence

- construct logic sentences
- implement the interface between sensors/actuators and KRR core
- Tell and Ask may require complex logical inference
function KB-AGENT (percept) returns an action
persistent: $K B$, a knowledge base
t, a counter, initially 0 , indicating time
Tell($K B$, Make-Percept-Sentence $($ percept,$t)$)
action $\leftarrow \operatorname{AsK}(K B$, MAKE-ACtion-QUERY $(t))$
Tell($K B$, Make-Action-Sentence (action, t))
$t \leftarrow t+1$
return action

Outline

(4) Propositional Logic
(2) Propositional Peasoning

- Resolution
- DPLL
- Reasoning with Horn Formulas
- Local Search
(3) Agents Based on Knowledge Representation \& Reasoning
- Knowledge-Based Agents
- Example: the Wumpus World
(4) Agents Based on Propositional Reasoning
- Propositional Logic Agents
- Example: the Wumpus World

Example: The Wumpus World

Task Environment: PEAS Description

Performance measure:

- gold: +1000, death: -1000
- step: -1 , using the arrow: -10

Environment:

- squares adjacent to Wumpus are stenchy
- squares adjacent to pit are breezy
- glitter iff gold is in the same square
- shooting kills Wumpus if you are facing it
- shooting uses up the only arrow
- grabbing picks up gold if in same square
- releasing drops the gold in same square

```
Actuators:
- Left turn, Right turn, Forward, Grab, Release, Shoot
```


Sensors:

One possible configuration:

[^3][^4]
Example: The Wumpus World

Task Environment: PEAS Description

Performance measure:

- gold: +1000, death: -1000
- step: -1 , using the arrow: -10

Environment:

- squares adjacent to Wumpus are stenchy
- squares adjacent to pit are breezy
- glitter iff gold is in the same square
- shooting kills Wumpus if you are facing it
- shooting uses up the only arrow
- grabbing picks up gold if in same square
- releasing drops the gold in same square
- Left turn, Right turn, Forward, Grab, Release, Shoot

Sensors:

One possible configuration:

Example: The Wumpus World

Task Environment: PEAS Description

Performance measure:

- gold: +1000, death: -1000
- step: -1 , using the arrow: -10

Environment:

- squares adjacent to Wumpus are stenchy
- squares adjacent to pit are breezy
- glitter iff gold is in the same square
- shooting kills Wumpus if you are facing it
- shooting uses up the only arrow
- grabbing picks up gold if in same square
- releasing drops the gold in same square

Actuators:

- Left turn, Right turn, Forward, Grab, Release, Shoot Sensors:

One possible configuration:

Example: The Wumpus World

Task Environment: PEAS Description

Performance measure:

- gold: +1000, death: -1000
- step: -1 , using the arrow: -10

Environment:

- squares adjacent to Wumpus are stenchy
- squares adjacent to pit are breezy
- glitter iff gold is in the same square
- shooting kills Wumpus if you are facing it
- shooting uses up the only arrow
- grabbing picks up gold if in same square
- releasing drops the gold in same square

Actuators:

- Left turn, Right turn, Forward, Grab, Release, Shoot Sensors:
- Stench, Breeze, Glitter, Bump, Scream

One possible configuration:

[^5]
Wumpus World: Characterization

- Fully Observable?
- Deterministic?
- Episodic?
- Static?
- Discrete?
- Single-agent?

Wumpus World: Characterization

- Fully Observable? No: only local perception
- Deterministic?
- Episodic?
- Static?

Discrete?

- Single-agent?

Wumpus World: Characterization

- Fully Observable? No: only local perception
- Deterministic?
- Episodic?
- Static?
- Discrete?
- Single-agent?

Wumpus World: Characterization

- Fully Observable? No: only local perception
- Deterministic? Yes: outcomes exactly specified
- Episodic?
- Static?
- Discrete?
- Single-agent?

Wumpus World: Characterization

- Fully Observable? No: only local perception
- Deterministic? Yes: outcomes exactly specified
- Episodic?
- Static?
- Discrete?
- Single-agent?

Wumpus World: Characterization

- Fully Observable? No: only local perception
- Deterministic? Yes: outcomes exactly specified
- Episodic? No: actions can have long-term consequences
- Static?
- Discrete?
- Single-agent?

Wumpus World: Characterization

- Fully Observable? No: only local perception
- Deterministic? Yes: outcomes exactly specified
- Episodic? No: actions can have long-term consequences
- Static?
- Discrete?
- Single-aqent?

Wumpus World: Characterization

- Fully Observable? No: only local perception
- Deterministic? Yes: outcomes exactly specified
- Episodic? No: actions can have long-term consequences
- Static? Yes: Wumpus and Pits do not move
- Discrete?
- Single-agent?

Wumpus World: Characterization

- Fully Observable? No: only local perception
- Deterministic? Yes: outcomes exactly specified
- Episodic? No: actions can have long-term consequences
- Static? Yes: Wumpus and Pits do not move
- Discrete?
- Single-agent?

Wumpus World: Characterization

- Fully Observable? No: only local perception
- Deterministic? Yes: outcomes exactly specified
- Episodic? No: actions can have long-term consequences
- Static? Yes: Wumpus and Pits do not move
- Discrete?
- Single-agent?

Wumpus World: Characterization

- Fully Observable? No: only local perception
- Deterministic? Yes: outcomes exactly specified
- Episodic? No: actions can have long-term consequences
- Static? Yes: Wumpus and Pits do not move
- Discrete? Yes
- Single-agent?

Wumpus World: Characterization

- Fully Observable? No: only local perception
- Deterministic? Yes: outcomes exactly specified
- Episodic? No: actions can have long-term consequences
- Static? Yes: Wumpus and Pits do not move
- Discrete? Yes
- Single-agent? Yes (Wumpus is essentially a natural feature)

Wumpus World: Characterization

- Fully Observable? No: only local perception
- Deterministic? Yes: outcomes exactly specified
- Episodic? No: actions can have long-term consequences
- Static? Yes: Wumpus and Pits do not move
- Discrete? Yes
- Single-agent? Yes (Wumpus is essentially a natural feature)

Example: Exploring the Wumpus World

- The KB initially contains the rules of the environment.
- Agent is initially in 1,1
- Percepts: no stench, no breeze
$\Longrightarrow[1,2]$ and $[2,1]$ OK

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: Pit; BGS: bag of gold

Example: Exploring the Wumpus World

- Agent moves to $[2,1]$
- perceives a breeze
- perceives no stench

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: Pit; BGS: bag of gold

Example: Exploring the Wumpus World

- Agent moves to $[2,1]$
- perceives a breeze
\Longrightarrow Pit in [3,1] or [2,2]
- perceives no stench
\Longrightarrow no Wumpus in [3,1], [2,2]

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: Pit; BGS: bag of gold

Example: Exploring the Wumpus World

- Agent moves to [1,1]-[1,2]
- perceives no breeze
pit in $[3,1]$
- perceives a stench

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: Pit; BGS: bag of gold

Example: Exploring the Wumpus World

- Agent moves to [1,1]-[1,2]
- perceives no breeze
\Longrightarrow no Pit in [1,3], [2,2]
$\Longrightarrow[2,2]$ OK
\Longrightarrow pit in $[3,1]$
- perceives a stench
\Longrightarrow Wumpus in $[2,2]$-of $[1,3]$!

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: Pit; BGS: bag of gold

Example: Exploring the Wumpus World

- Agent moves to $[2,2]$
- perceives no breeze
- perceives no stench

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: Pit; BGS: bag of gold

Example: Exploring the Wumpus World

- Agent moves to $[2,2]$
- perceives no breeze
\Longrightarrow no pit in [3,2], [2,3]
- perceives no stench
\Longrightarrow no Wumpus in [3,2], [2,3]
$\Longrightarrow[3,2]$ and $[2,3]$ OK

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: Pit; BGS: bag of gold

Example: Exploring the Wumpus World

- Agent moves to $[2,3]$
- perceives a glitter
\Longrightarrow bag of gold!

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: Pit; BGS: bag of gold

Example 2: Exploring the Wumpus World [see Ch 13]

Alternative scenario: apply coercion

- Feel stench in $[1,1]$

Wumpus $[1,2]$ or $[2,1]$
\Rightarrow Cannot move

- Apply coercion: shoot ahead

Example 2: Exploring the Wumpus World [see Ch 13]

Alternative scenario: apply coercion

- Feel stench in $[1,1]$

Wumpus [1,2] or [2,1]
\rightarrow Cannot move

- Apply coercion: shoot ahead

Example 2: Exploring the Wumpus World [see Ch 13]

Alternative scenario: apply coercion

- Feel stench in $[1,1]$
\Longrightarrow Wumpus [1,2] or [2,1]
- Apply coercion: shoot ahead

Example 2: Exploring the Wumpus World [see Ch 13]

Alternative scenario: apply coercion

- Feel stench in $[1,1]$
\Longrightarrow Wumpus [1,2] or [2,1]
\Longrightarrow Cannot move

Example 2: Exploring the Wumpus World [see Ch 13]

Alternative scenario: apply coercion

- Feel stench in $[1,1]$
\Longrightarrow Wumpus [1,2] or [2,1]
\Longrightarrow Cannot move
- Apply coercion: shoot ahead
- Wumpus was there
\Longrightarrow Wumpus dead
\Longrightarrow Safe
- Wumpus wasn't there

Example 2: Exploring the Wumpus World [see Ch 13]

Alternative scenario: apply coercion

- Feel stench in $[1,1]$
\Longrightarrow Wumpus [1,2] or [2,1]
\Longrightarrow Cannot move
- Apply coercion: shoot ahead
- Wumpus was there
\Longrightarrow Wumpus dead
\Longrightarrow Safe
- Wumpus wasn't there
\Longrightarrow Safe

Example 2: Exploring the Wumpus World [see Ch 13]

Alternative scenario: apply coercion

- Feel stench in $[1,1]$
\Longrightarrow Wumpus [1,2] or [2,1]
\Longrightarrow Cannot move
- Apply coercion: shoot ahead
- Wumpus was there
\Longrightarrow Wumpus dead
\Longrightarrow Safe
- Wumpus wasn't there
\Longrightarrow Safe

Example 3: Exploring the Wumpus World [see Ch. 13]
Alternative scenario: probabilistic solution (hints)

Example 3: Exploring the Wumpus World [see Ch. 13]

Alternative scenario: probabilistic solution (hints)

- Feel breeze in $[1,2]$ and $[2,1]$

```
pit in [1,3] or [2,2] or [3,1]
no 100% safe action
- Probability analvsis [see Ch 13] (assuming
pits uniformly distributed)
P(pit }\in[2,2])=0.8
P(pit }\in[1,3])=0.3
P(pit }\in[3,1])=0.3
better choose [1,3] or [3,1]
```


Example 3: Exploring the Wumpus World [see Ch. 13]

Alternative scenario: probabilistic solution (hints)

- Feel breeze in $[1,2]$ and $[2,1]$
\Longrightarrow pit in $[1,3]$ or $[2,2]$ or $[3,1]$
- Probability analysis [see Ch 13] (assuming pits uniformly distributed)

better choose $[1,3]$ or $[3,1]$

Example 3: Exploring the Wumpus World [see Ch. 13]

Alternative scenario: probabilistic solution (hints)

- Feel breeze in $[1,2]$ and $[2,1]$
\Longrightarrow pit in [1,3] or [2,2] or [3,1]
\Longrightarrow no 100% safe action
- Probability analysis [see Ch 13] (assuming pits uniformly distributed)
$P($ pit $\in[2,2])=0.86$
$P($ pit $\in[1,3])=0.31$
$P($ pit $\in[3,1])=0.31$
better choose $[1,3]$ or $[3,1]$

Example 3: Exploring the Wumpus World [see Ch. 13]

Alternative scenario: probabilistic solution (hints)

- Feel breeze in $[1,2]$ and $[2,1]$
\Longrightarrow pit in [1,3] or [2,2] or [3,1]
\Longrightarrow no 100% safe action
- Probability analysis [see Ch 13] (assuming pits uniformly distributed):
$P($ pit $\in[2,2])=0.86$
$P($ pit $\in[1,3])=0.31$
$P($ pit $\in[3,1])=0.31$

Example 3: Exploring the Wumpus World [see Ch. 13]

Alternative scenario: probabilistic solution (hints)

- Feel breeze in $[1,2]$ and $[2,1]$
\Longrightarrow pit in [1,3] or [2,2] or [3,1]
\Longrightarrow no 100% safe action
- Probability analysis [see Ch 13] (assuming pits uniformly distributed):
$P($ pit $\in[2,2])=0.86$
$P($ pit $\in[1,3])=0.31$
$P($ pit $\in[3,1])=0.31$
\Longrightarrow better choose $[1,3]$ or $[3,1]$

Outline

(4) Propositional Logic
(2) Propositional Peasoning

- Resolution
- DPLL
- Reasoning with Horn Formulas
- Local Search

3 Agents Based on Knowledge Representation \& Reasoning

- Knowledge-Based Agents
- Example: the Wumpus World

4 Agents Based on Propositional Reasoning

- Propositional Logic Agents
- Example: the Wumpus World

Outline

(1) Propositional Logic
(2) Propositional Peasoning

- Resolution
- DPLL
- Reasoning with Horn Formulas
- Local Search

3 Agents Based on Knowledge Representation \& Reasoning

- Knowledge-Based Agents
- Example: the Wumpus World

4 Agents Based on Propositional Reasoning

- Propositional Logic Agents
- Example: the Wumpus World

Propositional Logic Agents

- Kind of Logic agents
- Language: propositional logic, first-order logic,
- represent KB as set of propositional formulas
- percepts and actions are (collections of) propositional atoms
- in practice: sets of clauses
- Perform propositional logic inference
- model checking, entailment
- in practice: incremental calls to a SAT solver

Propositional Logic Agents

- Kind of Logic agents
- Language: propositional logic, first-order logic,
- represent KB as set of propositional formulas
- percepts and actions are (collections of) propositional atoms
- in practice: sets of clauses
- Perform propositional logic inference
- model checking, entailment
- in practice: incremental calls to a SAT solver

Propositional Logic Agents

- Kind of Logic agents
- Language: propositional logic, first-order logic, ...
- represent KB as set of propositional formulas
- percepts and actions are (collections of) propositional atoms
- in practice: sets of clauses
- Perform propositional logic inference
- model checking, entailment
- in practice: incremental calls to a SAT solver

Propositional Logic Agents

- Kind of Logic agents
- Language: propositional logic, first-order logic, ...
- represent KB as set of propositional formulas
- percepts and actions are (collections of) propositional atoms
- in practice: sets of clauses
- Perform propositional logic inference
- model checking, entailment
- in practice: incremental calls to a SAT solver

Representation vs. World

Reasoning process (propositional entailment) sound
\Longrightarrow if KB is true in the real world, then any sentence α derived from KB by a sound inference procedure is also true in the real world

- sentences are configurations of the agent
- reasoning constructs new configurations from old ones

Representation vs. World

Reasoning process (propositional entailment) sound
\Longrightarrow if KB is true in the real world, then any sentence α derived from KB by a sound inference procedure is also true in the real world

- sentences are configurations of the agent
- reasoning constructs new configurations from old ones

Representation vs. World

Reasoning process (propositional entailment) sound
\Longrightarrow if KB is true in the real world, then any sentence α derived from KB by a sound inference procedure is also true in the real world

- sentences are configurations of the agent
- reasoning constructs new configurations from old ones
the new configurations represent aspects of the world that actually follow from the aspects that the old configurations represent

Representation vs. World

Reasoning process (propositional entailment) sound
\Longrightarrow if KB is true in the real world, then any sentence α derived from KB by a sound inference procedure is also true in the real world

- sentences are configurations of the agent
- reasoning constructs new configurations from old ones
\Longrightarrow the new configurations represent aspects of the world that actually follow from the aspects that the old configurations represent

Reasoning as Entailment

Scenario in Wumpus World

Consider pits (and breezes) only:

- initial: $\neg P_{[1,1]}$

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: bag of gold

Reasoning as Entailment

Scenario in Wumpus World

Consider pits (and breezes) only:

- initial: $\neg P_{[1,1]}$
- after detecting nothing in $[1,1]: \neg B_{[1,1]}$
- move to $[2,1]$, detect breeze:

- 3 variables:

8 possible models

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: bag of gold

Reasoning as Entailment

Scenario in Wumpus World

Consider pits (and breezes) only:

- initial: $\neg P_{[1,1]}$
- after detecting nothing in $[1,1]: \neg B_{[1,1]}$
- move to $[2,1]$, detect breeze: $B_{[2,1]}$
- 3 variables:

8 possible models

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: bag of gold

Reasoning as Entailment

Scenario in Wumpus World

Consider pits (and breezes) only:

- initial: $\neg P_{[1,1]}$
- after detecting nothing in [1,1]: $\neg B_{[1,1]}$
- move to $[2,1]$, detect breeze: $B_{[2,1]}$

Q: are there pits in [1,2], $[2,1],[3,1]$?

- 3 variables:

8 possible models

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: bag of gold

Reasoning as Entailment

Scenario in Wumpus World

Consider pits (and breezes) only:

- initial: $\neg P_{[1,1]}$
- after detecting nothing in [1,1]: $\neg B_{[1,1]}$
- move to $[2,1]$, detect breeze: $B_{[2,1]}$

Q: are there pits in [1,2], $[2,1],[3,1]$?

- 3 variables: $P_{[1,2]}, P_{[2,1]}, P_{[3,1]}$, $\Longrightarrow 8$ possible models

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: bag of gold

Reasoning as Entailment

Scenario in Wumpus World

Consider pits (and breezes) only:

- initial: $\neg P_{[1,1]}$
- after detecting nothing in [1,1]: $\neg B_{[1,1]}$
- move to $[2,1]$, detect breeze: $B_{[2,1]}$

Q: are there pits in [1,2], $[2,1],[3,1]$?

- 3 variables: $P_{[1,2]}, P_{[2,1]}, P_{[3,1]}$, $\Longrightarrow 8$ possible models
- Query $\alpha_{1}: K B \models \neg P_{[1,2]}$?
- Query α_{2} : $K B \models \neg P_{[2,1]}$?
- Query $\alpha_{3}: K B \models \neg P_{[3,1]}$?

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: bag of gold

Reasoning as Entailment [cont.]

8 possible models

Reasoning as Entailment [cont.]

KB: Wumpus World rules + observations $\Longrightarrow 3$ models

Reasoning as Entailment [cont.]

Query $\alpha_{1}: \neg P_{[1,2]} \Longrightarrow K B \models \alpha_{1}$ (i.e $M(K B) \subseteq M\left(\alpha_{1}\right)$)

Reasoning as Entailment [cont.]
Query $\alpha_{2}: \neg P_{[2,2]} \Longrightarrow K B \not \vDash \alpha_{2}$ (i.e $M(K B) \nsubseteq M\left(\alpha_{2}\right)$)

Reasoning as Entailment [cont.]

In practice: $\operatorname{DPLL}\left(\operatorname{CNF}\left(K B \wedge \neg \alpha_{2}\right)\right)=$ sat

Outline

(4) Propositional Logic
(2) Propositional Peasoning

- Resolution
- DPLL
- Reasoning with Horn Formulas
- Local Search
(3) Agents Based on Knowledge Representation \& Reasoning
- Knowledge-Based Agents
- Example: the Wumpus World

4 Agents Based on Propositional Reasoning

- Propositional Logic Agents
- Example: the Wumpus World

Example: Exploring the Wumpus World

KB initially contains (the CNFized versions of) the following formulas, $\forall i, j \in[1 . .4]$:

- breeze iff pit in neighbours
- stench iff Wumpus in neighbours
- safe iff no Wumpus and no pit there $O K_{[i, j]} \leftrightarrow\left(\neg W_{[i, j]} \wedge \neg P_{[i, j]}\right)$
- glitter iff pile of gold there
$G_{[i, j]} \leftrightarrow B G S_{[i,}$
- in $[1,1]$ no Wumpus and no pit \Longrightarrow safe
(implicit: $P_{[i, j]}, W_{[i, j]}, P_{[i, j]}$ false if $i, j \notin[1 . .4]$)

A: Agent; B: Breeze; G: Glitter; S: Stench OK: safe square; W: Wumpus; P: pit; BGS: bag of gold

Example: Exploring the Wumpus World

KB initially contains (the CNFized versions of) the following formulas, $\forall i, j \in[1 . .4]$:

- breeze iff pit in neighbours

$$
B_{[i, j]} \leftrightarrow\left(P_{[i, j-1]} \vee P_{[i+1, j]} \vee P_{[i, j+1]} \vee P_{[i-1, j]}\right)
$$

- stench iff Wumpus in neighbours
- safe iff no Wumpus and no pit there $O K_{[i, j]} \leftrightarrow\left(\neg W_{[i, j]} \wedge \neg P_{[i, j]}\right)$
- glitter iff pile of gold there
- in $[1,1]$ no Wumpus and no pit \Longrightarrow safe
(implicit: $P_{[i, j]}, W_{[i, j]}, P_{[i, j]}$ false if $i, j \notin[1 . .4]$)

A: Agent; B: Breeze; G: Glitter; S: Stench OK: safe square; W: Wumpus; P: pit; BGS: bag of gold

Example: Exploring the Wumpus World

KB initially contains (the CNFized versions of) the following formulas, $\forall i, j \in[1 . .4]$:

- breeze iff pit in neighbours

$$
B_{[i, j]} \leftrightarrow\left(P_{[i, j-1]} \vee P_{[i+1, j]} \vee P_{[i, j+1]} \vee P_{[i-1, j]}\right)
$$

- stench iff Wumpus in neighbours

$$
S_{[i, j]} \leftrightarrow\left(W_{[i, j-1]} \vee W_{[i+1, j]} \vee W_{[i, j+1]} \vee W_{[i-1, j]}\right)
$$

- safe iff no Wumpus and no pit there OK
- glitter iff pile of gold there
- in $[1,1]$ no Wumpus and no pit \Longrightarrow safe
(implicit: $P_{[i, j]}, W_{[i, j]}, P_{[i, j]}$ false if $i, j \notin[1 . .4]$)

A: Agent; B: Breeze; G: Glitter; S: Stench OK: safe square; W: Wumpus; P: pit; BGS: bag of gold

Example: Exploring the Wumpus World

KB initially contains (the CNFized versions of) the following formulas, $\forall i, j \in[1 . .4]$:

- breeze iff pit in neighbours

$$
B_{[i, j]} \leftrightarrow\left(P_{[i, j-1]} \vee P_{[i+1, j]} \vee P_{[i, j+1]} \vee P_{[i-1, j]}\right)
$$

- stench iff Wumpus in neighbours

$$
S_{[i, j]} \leftrightarrow\left(W_{[i, j-1]} \vee W_{[i+1, j]} \vee W_{[i, j+1]} \vee W_{[i-1, j]}\right)
$$

- safe iff no Wumpus and no pit there $O K_{[i,]]} \leftrightarrow\left(\neg W_{[i, j]} \wedge \neg P_{[i,]}\right)$
- glitter iff pile of gold there
- in $[1,1]$ no Wumpus and no pit \Longrightarrow safe
(implicit: $P_{[i, j]}, W_{[i, j]}, P_{[i, j]}$ false if $i, j \notin[1 . .4]$)

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: bag of gold

Example: Exploring the Wumpus World

KB initially contains (the CNFized versions of) the following formulas, $\forall i, j \in[1 . .4]$:

- breeze iff pit in neighbours

$$
B_{[i, j]} \leftrightarrow\left(P_{[i, j-1]} \vee P_{[i+1, j]} \vee P_{[i, j+1]} \vee P_{[i-1, j]}\right)
$$

- stench iff Wumpus in neighbours

$$
S_{[i, j]} \leftrightarrow\left(W_{[i, j-1]} \vee W_{[i+1, j]} \vee W_{[i, j+1]} \vee W_{[i-1, j]}\right)
$$

- safe iff no Wumpus and no pit there $O K_{[i,]]} \leftrightarrow\left(\neg W_{[i, j]} \wedge \neg P_{[i,]}\right)$
- glitter iff pile of gold there
$G_{[i, j]} \leftrightarrow B G S_{[i, j]}$
- in $[1,1]$ no Wumpus and no pit \Longrightarrow safe
(implicit: $P_{[i, j]}, W_{[i, j]}, P_{[i, j]}$ false if $i, j \notin[1 . .4]$)

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: bag of gold

Example: Exploring the Wumpus World

KB initially contains (the CNFized versions of) the following formulas, $\forall i, j \in[1 . .4]$:

- breeze iff pit in neighbours

$$
B_{[i, j]} \leftrightarrow\left(P_{[i, j-1]} \vee P_{[i+1, j]} \vee P_{[i, j+1]} \vee P_{[i-1, j]}\right)
$$

- stench iff Wumpus in neighbours

$$
S_{[i, j]} \leftrightarrow\left(W_{[i, j-1]} \vee W_{[i+1, j]} \vee W_{[i, j+1]} \vee W_{[i-1, j]}\right)
$$

- safe iff no Wumpus and no pit there $O K_{[i,]]} \leftrightarrow\left(\neg W_{[i, j]} \wedge \neg P_{[i,]}\right)$
- glitter iff pile of gold there

$$
G_{[i, j]} \leftrightarrow B G S_{[i, j]}
$$

- in $[1,1]$ no Wumpus and no pit \Longrightarrow safe
$\neg P_{[1,1]}, \neg W_{[1,1]}, O K_{[1,1]}$
(implicit: $P_{[i, j]}, W_{[i, j]}, P_{[i, j]}$ false if $i, j \notin[1 . .4]$)

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: bag of gold

Example: Exploring the Wumpus World

- KB initially contains:

$$
\begin{aligned}
& \neg P_{[1,1]}, \neg W_{[1,1]}, O K_{[1,1]} \\
& B_{[1,1]} \leftrightarrow\left(P_{[1,2]} \vee P_{[2,1]}\right) \\
& S_{[1,1]} \leftrightarrow\left(W_{[1,2]} \vee W_{[2,1]}\right) \\
& O K_{[1,2]} \leftrightarrow\left(\neg W_{[1,2]} \wedge \neg P_{[1,2]}\right) \\
& O K_{[2,1]} \leftrightarrow\left(\neg W_{[2,1]} \wedge \neg P_{[2,1]}\right)
\end{aligned}
$$

- Agent is initially in 1,1
- Percepts (no stench, no breeze): $\neg S_{[1,1]}, \neg B_{[1,1]}$ $\Longrightarrow \neg W_{[1,2]}, \neg W_{[2,1]}, \neg P_{[1,2]}, \neg P_{[2,1]}$ $\Longrightarrow O K_{[1,2]}, O K_{[2,1]}([1,2] \&[2,1] \mathrm{OK})$
- Add all them to KB

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: glitter, bag of gold

Example: Exploring the Wumpus World

- KB initially contains:

$$
\begin{aligned}
& \neg P_{[1,1]}, \neg W_{[1,1]}, O K_{[1,1]} \\
& B_{[2,1]} \leftrightarrow\left(P_{[1,1]} \vee P_{[2,2]} \vee P_{[3,1]}\right) \\
& S_{[2,1]} \leftrightarrow\left(W_{[1,1]} \vee W_{[2,2]} \vee W_{[3,1]}\right)
\end{aligned}
$$

- Agent moves to $[2,1]$
- perceives a breeze: $B_{[2,1]}$
- perceives no stench $\neg S_{[2,1]}$
(no Wumpus in [3,1], [2,2])
- Add all them to KB

A: Agent; B: Breeze; G: Glitter; S: Stench OK: safe square; W: Wumpus; P: pit; BGS: glitter, bag of gold

Example: Exploring the Wumpus World

- KB initially contains:

$$
\begin{aligned}
& \neg P_{[1,1]}, \neg W_{[1,1]}, O K_{[1,1]} \\
& B_{[2,1]} \leftrightarrow\left(P_{[1,1]} \vee P_{[2,2]} \vee P_{[3,1]}\right) \\
& S_{[2,1]} \leftrightarrow\left(W_{[1,1]} \vee W_{[2,2]} \vee W_{[3,1]}\right)
\end{aligned}
$$

- Agent moves to $[2,1]$
- perceives a breeze: $B_{[2,1]}$
$\Longrightarrow\left(P_{[3,1]} \vee P_{[2,2]}\right)$ (pit in $[3,1]$ or $\left.[2,2]\right)$
- perceives no stench $\neg S_{[2,1]}$
$\Longrightarrow \neg W_{[3,1]}, \neg W_{[2,2]}$
(no Wumpus in [3,1], [2,2])
- Add all them to KB

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: glitter, bag of gold

Example: Exploring the Wumpus World

- KB initially contains:

$$
\begin{aligned}
& \neg P_{[1,1]}, \neg W_{[1,1]}, O K_{[1,1]} \\
& \left(P_{[3,1]} \vee P_{[2,2]}\right), \neg W_{[3,1]}, \neg W_{[2,2]} \\
& B_{[1,2]} \leftrightarrow\left(P_{[1,1]} \vee P_{[2,2]} \vee P_{[1,3]}\right) \\
& S_{[1,2]} \leftrightarrow\left(W_{[1,1]} \vee W_{[2,2]} \vee W_{[1,3]}\right) \\
& O K_{[2,2]} \leftrightarrow\left(\neg W_{[2,2]} \wedge \neg P_{[2,2]}\right)
\end{aligned}
$$

- Agent moves to [1,1]-[1,2]
- perceives no breeze: $\neg B_{[1,2]}$

- perceives a stench: $S_{[1,2]}$
$W_{[1,3]}$ (Wumpus in [1,3]!)

A: Agent; B: Breeze; G: Glitter; S: Stench OK: safe square; W: Wumpus; P: pit; BGS: glitter, bag of gold

Example: Exploring the Wumpus World

- KB initially contains:

$$
\begin{aligned}
& \neg P_{[1,1]}, \neg W_{[1,1]}, O K_{[1,1]} \\
& \left(P_{[3,1]} \vee P_{[2,2]}, \neg W_{[3,1]}, \neg W_{[2,2]}\right. \\
& B_{[1,2]} \leftrightarrow\left(P_{[1,1]} \vee P_{[2,2]} \vee P_{[1,3]}\right) \\
& S_{[1,2]} \leftrightarrow\left(W_{[1,1]} \vee W_{[2,2]} \vee W_{[1,3]}\right) \\
& O K_{[2,2]} \leftrightarrow\left(\neg W_{[2,2]} \wedge \neg P_{[2,2]}\right)
\end{aligned}
$$

- Agent moves to [1,1]-[1,2]
- perceives no breeze: $\neg B_{[1,2]}$
$\Longrightarrow \neg P_{[2,2]}, \neg P_{[1,3]}$ (no pit in [2,2], [1,3])
$\Longrightarrow P_{[3,1]}$ (pit in $\left.[3,1]\right)$
- perceives a stench: $S_{[1,2]}$
$\Longrightarrow W_{[1,3]}$ (Wumpus in [1,3]!)
$\Longrightarrow O K_{[2,2]}([2,2] O K)$
- Add all them to KB

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: glitter, bag of gold

Example: Exploring the Wumpus World

- KB initially contains:

$$
\begin{aligned}
& B_{[2,2]} \leftrightarrow\left(P_{[2,1]} \vee P_{[3,2]} \vee P_{[2,3]} \vee P_{[1,2]}\right) \\
& S_{[2,2]} \leftrightarrow\left(W_{[2,1]} \vee W_{[3,2]} \vee W_{[2,3]} \vee W_{[1,2]}\right) \\
& O K_{[3,2]} \leftrightarrow\left(\neg W_{[3,2]} \wedge \neg P_{[3,2]}\right) \\
& O K_{[2,3]} \leftrightarrow\left(\neg W_{[2,3]} \wedge \neg P_{[2,3]}\right)
\end{aligned}
$$

- Agent moves to $[2,2]$
- perceives no breeze: $\neg B_{[2,2]}$
(no pit in [3,2], [2,3])
- perceives no stench: $\neg S_{[2,2]}$
(no Wumpus in [3,2], [2,3])
([3,2] and $[2,3]$ OK)
- Add all them to KB

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: glitter, bag of gold

Example: Exploring the Wumpus World

- KB initially contains:

$$
\begin{aligned}
& B_{[2,2]} \leftrightarrow\left(P_{[2,1]} \vee P_{[3,2]} \vee P_{[2,3]} \vee P_{[1,2]}\right) \\
& S_{[2,2]} \leftrightarrow\left(W_{[2,1]} \vee W_{[3,2]} \vee W_{[2,3]} \vee W_{[1,2]}\right) \\
& O K_{[3,2]} \leftrightarrow\left(\neg W_{[3,2]} \wedge \neg P_{[3,2]}\right) \\
& O K_{[2,3]} \leftrightarrow\left(\neg W_{[2,3]} \wedge \neg P_{[2,3]}\right)
\end{aligned}
$$

- Agent moves to $[2,2]$
- perceives no breeze: $\neg B_{[2,2]}$
$\Longrightarrow \neg P_{[3,2]}, \neg P_{[2,3]}$ (no pit in [3,2], [2,3])
- perceives no stench: $\neg S_{[2,2]}$
$\Longrightarrow \neg W_{[3,2]}, \neg W_{[3,2]}$ (no Wumpus in [3,2], [2,3])
$\Longrightarrow O K_{[3,2]}, O K_{[2,3]},([3,2]$ and $[2,3] \mathrm{OK})$
- Add all them to KB

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: glitter, bag of gold

Example: Exploring the Wumpus World

- KB initially contains:

$$
G_{[2,3]} \leftrightarrow B G S_{[2,3]}
$$

- Agent moves to $[2,3]$
- perceives a glitter: $G_{[2,3]}$
$\Longrightarrow B G S_{[2,3]}$ (bag of gold!)
- Add it them to KB

A: Agent; B: Breeze; G: Glitter; S: Stench
OK: safe square; W: Wumpus; P: pit; BGS: glitter, bag of gold

Exercise

Consider the previous example.

- Convert all formulas from KB into CNF
(2) Execute all steps in the example as resolution calls
(0) Execute all steps in the example as DPLL calls

Exercise

Consider the previous example.
(1) Convert all formulas from KB into CNF
(3) Execute all steps in the example as resolution calls
(3) Execute all steps in the example as DPLL calls

Exercise

Consider the previous example.

- Convert all formulas from KB into CNF
(2) Execute all steps in the example as resolution calls
- Execute all steps in the example as DPLL calls

Exercise

Consider the previous example.

- Convert all formulas from KB into CNF
(2) Execute all steps in the example as resolution calls
(3) Execute all steps in the example as DPLL calls

[^0]: Remark: "choose-literal" selects only variables which still occur in the formula, after simplification. E.g., in the leftmost branch, after assianing $\neg C . A$. D, it does not select B because the clause ($B \vee A \vee C$) has been simplified into true, and as such is no more part of the formula, so that B does not occur in the formula anymore.

[^1]: Remark: "choose-literal" selects only variables which still occur in the formula, after simplification. E.g., in the leftmost branch, after assianing $\neg C . A$. D, it does not select B because the clause ($B \vee A \vee C$) has been simplified into true, and as such is no more part of the formula, so that B does not occur in the formula anymore.

[^2]: Remark: "choose-literal" selects only variables which still occur in the formula, after simplification. E.g., in the leftmost branch, after assigning $\neg C, ~ A$. D, it does not select B because the clause ($B \vee A \vee C$) has been simplified into true, and as such is no more part of the formula, so that B does not occur in the formula anymore.

[^3]: - Stench, Breeze, Glitter, Bump, Scream

[^4]: (C) S. Russell \& P. Norwig, AIMA)

[^5]: (© S. Russell \& P. Norwig, AIMA)

