Fundamentals of Artificial Intelligence
Chapter 06: Constraint Satisfaction Problems

Roberto Sebastiani

DISI, Universita di Trento, ltaly — roberto.sebastiani@unitn.it
https://disi.unitn.it/rseba/DIDATTICA/fai_2023/

Teaching assistants:
Mauro Dragoni, dragoni@fbk.eu, https://www.maurodragoni.com/teaching/fai/
Paolo Morettin, paolo.morettin@unitn.it, https://paoclomorettin.github.io/

M.S. Course “Artificial Intelligence Systems”, academic year 2023-2024

Last update: Friday 20th October, 2023, 15:55

Copyright notice: Most examples and images displayed in the slides of this course are taken from [Russell & Norwig, “Artificial Intelligence, a Modern Approach”, 3" d ed., Pearson],
including explicitly figures from the above-mentioned book, so that their copyright is detained by the authors. A few other material (text, figures, examples) is authored by (in alphabetical
order): Pieter Abbeel, Bonnie J. Dorr, Anca Dragan, Dan Klein, Nikita Kitaev, Tom Lenaerts, Michela Milano, Dana Nau, Maria Simi, who-detain its-copyright:

These slides cannot be displayed in public without the permission of the author. 1/66

roberto.sebastiani@unitn.it
https://disi.unitn.it/rseba/DIDATTICA/fai_2023/
dragoni@fbk.eu
https://www.maurodragoni.com/teaching/fai/
paolo.morettin@unitn.it
https://paolomorettin.github.io/

Outline

0 Constraint Satisfaction Problems (CSPs)

© sSearch with CSPs
@ Inference: Constraint Propagation
@ Backtracking Search
@ Interleaving Search and Inference
@ Chronological vs. Conflict-Drivem Backtracking

© Local Search with CSPs

e Exploiting Structure of CSPs

2/66

Outline

e Constraint Satisfaction Problems (CSPs)

3/66

Recall: State Representations [Ch. 02]

Representations of states and transitions

@ Three ways to represent states and transitions between them:

o atomic: a state is a black box with no internal structure

o factored: a state consists of a vector of attribute values

e structured: a state includes objects, each of which may have attributes of its own as well as
relationships to other objects

@ increasing expressive power and computational complexity
@ reality represented at different levels of abstraction

e

mlno.o.
OHU..OO

(a) Atomic (b) Factored (b) Structured

(©S. Russell & P. Norwig, AIMA)

Constraint Satisfaction Problems (CSPs): Generalities

Constraint Satisfaction Problems, CSPs (aka Constraint Satisfiability Problems)

@ Search problem so far: Atomic representation of states

@ black box with no internal structure
e goal test as set inclusion

5/66

Constraint Satisfaction Problems (CSPs): Generalities

Constraint Satisfaction Problems, CSPs (aka Constraint Satisfiability Problems)

@ Search problem so far: Atomic representation of states
@ black box with no internal structure
e goal test as set inclusion

@ Henceforth: use a Factored representation of states

o state is defined by a set of variables values from some domains
e goal test is a set of constraints specifying allowable combinations of values for subsets of
variables

@ a set of variable values is a goal iff the values verify all constraints

5/66

Constraint Satisfaction Problems (CSPs): Generalities

Constraint Satisfaction Problems, CSPs (aka Constraint Satisfiability Problems)

@ Search problem so far: Atomic representation of states

@ black box with no internal structure
e goal test as set inclusion

@ Henceforth: use a Factored representation of states

o state is defined by a set of variables values from some domains
e goal test is a set of constraints specifying allowable combinations of values for subsets of
variables

@ a set of variable values is a goal iff the values verify all constraints

@ CSP Search Algorithms

e take advantage of the structure of states

@ use general-purpose heuristics rather than problem-specific ones
e main idea: eliminate large portions of the search space all at once

@ identify variable/value combinations that violate the constraints

5/66

CSPs: Definitions

CSPs
@ A Constraint Satisfaction Problem is a tuple (X, D, C):

e aset of variables X £ {X;, ..., X,}

@ a set of (non-empty) domains D & {Dy, ..., Dy}, one for each X;
e aset of constraints C £ {Ci, ..., Cn}
@ specify allowable combinations of values for the variables in X

CSPs: Definitions

CSPs

@ A Constraint Satisfaction Problem is a tuple (X, D, C):

e aset of variables X £ {X;, ..., X,}

@ a set of (non-empty) domains D & {Dy, ..., Dy}, one for each X;
e aset of constraints C £ {Ci, ..., Cn}
@ specify allowable combinations of values for the variables in X

@ Each D; is a set of allowable values {v;, ..., vk} for variable X;

CSPs: Definitions

CSPs

@ A Constraint Satisfaction Problem is a tuple (X, D, C):

e aset of variables X £ {X;, ..., X,}

@ a set of (non-empty) domains D e {Dy, ..., Dy}, one for each X;
e aset of constraints C £ {Ci, ..., Cn}
@ specify allowable combinations of values for the variables in X
@ Each D; is a set of allowable values {v;, ..., v } for variable X;
@ Each C; is a pair (scope, rel)
@ scope is a tuple of variables that participate in the constraint
e rel is a relation defining the values that such variables can take

CSPs: Definitions

CSPs

@ A Constraint Satisfaction Problem is a tuple (X, D, C):

e aset of variables X £ {X;, ..., X,}

@ a set of (non-empty) domains D e {Dy, ..., Dy}, one for each X;
e aset of constraints C £ {Ci, ..., Cn}
@ specify allowable combinations of values for the variables in X
@ Each D; is a set of allowable values {v;, ..., v } for variable X;
@ Each C; is a pair (scope, rel)
@ scope is a tuple of variables that participate in the constraint
e rel is a relation defining the values that such variables can take

@ A relation is

e an explicit list of all tuples of values that satisfy the constraint (most often inconvenient), or

e an abstract relation supporting two operations:

@ test if a tuple is a member of the relation
@ enumerate the members of the relation

CSPs: Definitions

CSPs

@ A Constraint Satisfaction Problem is a tuple (X, D, C):

e aset of variables X £ {X;, ..., X,}

@ a set of (non-empty) domains D e {Dy, ..., Dy}, one for each X;
e aset of constraints C £ {Ci, ..., Cn}
@ specify allowable combinations of values for the variables in X
@ Each D; is a set of allowable values {v;, ..., v } for variable X;
@ Each C; is a pair (scope, rel)
@ scope is a tuple of variables that participate in the constraint
e rel is a relation defining the values that such variables can take

@ A relation is

e an explicit list of all tuples of values that satisfy the constraint (most often inconvenient), or

e an abstract relation supporting two operations:

@ test if a tuple is a member of the relation
@ enumerate the members of the relation

@ We need a language to express constraint relations!

CSPs: Definitions [cont.]

States, Assignments and Solutions

@ A state in a CSP is an assignment of values to some or all of the variables {X; = v, }; s.t
Xie Xand vy, € D;

7/66

CSPs: Definitions [cont.]

States, Assignments and Solutions
@ A state in a CSP is an assignment of values to some or all of the variables {X; = v, }; s.t
Xie Xand vy, € D;
@ An assignment is

e complete (aka total) if every variable is assigned a value
e incomplete (aka partial) if some variable is assigned a value

7166

CSPs: Definitions [cont.]

States, Assignments and Solutions
@ A state in a CSP is an assignment of values to some or all of the variables {X; = v, }; s.t
Xie Xand vy, € D;
@ An assignment is
e complete (aka total) if every variable is assigned a value
e incomplete (aka partial) if some variable is assigned a value
@ An assignment that does not violate any constraints in the CSP is called a consistent or
legal assignment

7166

CSPs: Definitions [cont.]

States, Assignments and Solutions
@ A state in a CSP is an assignment of values to some or all of the variables {X; = v, }; s.t
Xie Xand vy, € D;
@ An assignment is

e complete (aka total) if every variable is assigned a value
e incomplete (aka partial) if some variable is assigned a value

@ An assignment that does not violate any constraints in the CSP is called a consistent or
legal assignment

@ A solution to a CSP is a consistent and complete assignment

7166

CSPs: Definitions [cont.]

States, Assignments and Solutions

@ A state in a CSP is an assignment of values to some or all of the variables {X; = v, }; s.t
Xie Xand vy, € D;
@ An assignment is

e complete (aka total) if every variable is assigned a value
e incomplete (aka partial) if some variable is assigned a value

@ An assignment that does not violate any constraints in the CSP is called a consistent or
legal assignment

@ A solution to a CSP is a consistent and complete assignment
@ A CSP consists in finding one solution (or state there is none)

7166

CSPs: Definitions [cont.]

States, Assignments and Solutions

@ A state in a CSP is an assignment of values to some or all of the variables {X; = v, }; s.t
Xie Xand vy, € D;
@ An assignment is

e complete (aka total) if every variable is assigned a value
e incomplete (aka partial) if some variable is assigned a value

@ An assignment that does not violate any constraints in the CSP is called a consistent or
legal assignment

@ A solution to a CSP is a consistent and complete assignment
@ A CSP consists in finding one solution (or state there is none)

@ Constraint Optimization Problems (COPs):
CSPs requiring solutions that maximize/minimize an objective function

7166

Example: Sudoku

@ 81 Variables: (each square) Xj,

i=A .. lj=1.9

1 2 3
A 3
B9
C 1
D 8
El7
F 6
G 2
HI8
! 5

(©$S. Russell & P. Norwig, AIMA)

8/66

Example: Sudoku

@ 81 Variables: (each square) Xj,

i=A .. I j=1.9
@ Domain: {1,2,...,8,9}

1 2 3
A 3
B9

C 1
D 8
El7

F 6
G 2
HI8

! 5

(©$. Russell & P. Norwig, AIMA)

8/66

Example: Sudoku

@ 81 Variables: (each square) Xj
i=A .. j=1.9
@ Domain: {1,2,....8,9}
@ Constraints:
o AIIDiff(Xi1, ..., Xio) for each row i
o AlIDiff(Xa;, ..., Xj) for each column j
o AIlIDiff(Xa1, ..., Xas, Xg1..., Xc3) for each 3 x 3
square region
(alternatively, a long list of pairwise inequality
constraints: Xaq 75)(,4\27 Xai 75 XA3,)

1 2 3 4
A 3
B19 3
C 118
D 811
El7
F 617
G 216
HI8 2
! 5

(©$. Russell & P. Norwig, AIMA)

8/66

Example: Sudoku

1 2 3 4 5 6 7 8 9
e 81 Variables: (each square) X Al4]1813|9[2[1|6]|5]7
i=A .. j=1.9 Blole6| 713415181211
D in: {1,2,...,8,
° omam. {1,2,...,8,9} cl2lsT1lsl716l4] 93
@ Constraints:
o AIIDIff(Xi, .., Xio) for each row i DIS14(8]1[3]2]9]7]6
o AIIDiff(Xaj, ..., Xj) for each column j E
° A//Diff(XAj1,...,X]A37XB1...,X03) foreach 3 x 3 71219]151614f1]3|8
square region FI1[(3(6]17(9(8]2|4]|5
(alternatively, a long list of pairwise inequality GI13|71216(8[9|5]1114
constraints: X Xao, X, Xa3, ...
. A17é A2 ./‘\17é A3) . H 8 1 4 2 5 3 7 6 9
@ Solution: total value assignment satisfying all the
constraints: Xa1 = 4, Xao = 8, Xaz = 3, ... 1161951411 713|8]2

8/66

Example: Map-Coloring
@ Variables WA, NT, Q, NSW, V, SA, T

Northern
Termritory

Waestern
Australia

Queenstand

New South Wales

9

(©S. Russell & P. Norwig, AIMA)

Example: Map-Coloring

@ Variables WA, NT, Q, NSW, V, SA, T
@ Domain D; = {red, green, blue}, Vi

Waestern
Australia

Northern
Termritory

Queenstand

New South Wales

7

(©S. Russell & P. Norwig, AIMA)

9 /4

-

Example: Map-Coloring

@ Variables WA, NT, Q, NSW, V, SA, T
@ Domain D; = {red, green, blue}, Vi

@ Constraints: adjacent regions must have different colours

@ e.g. (explicit enumeration): (WA, NT) € {(red, greeny, (red, blue),}

or (implicit, if language allows it): WA # NT

Waestern
Australia

Northern
Termritory

Queenstand

South
Australa

New South Wales

Victoria

Tasmana

(©S. Russell & P. Norwig, AIMA)

9 /£

Example: Map-Coloring

@ Variables WA, NT, Q, NSW, V, SA, T
@ Domain D; = {red, green, blue}, Vi
@ Constraints: adjacent regions must have different colours
@ e.g. (explicit enumeration): (WA, NT) € {(red, greeny, (red, blue),}
or (implicit, if language allows it): WA # NT
@ A solution: {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

Tasm'ia

(©S. Russell & P. Norwig, AIMA)

9 /£

Constraint Graphs

@ Useful to visualize a CSP as a constraint graph (aka network)

e the nodes of the graph correspond to variables of the problem
@ an edge connects any two variables that participate in a constraint

10/66

Constraint Graphs

@ Useful to visualize a CSP as a constraint graph (aka network)

e the nodes of the graph correspond to variables of the problem
@ an edge connects any two variables that participate in a constraint

@ CSP algorithms use the graph structure to speed up search

10/66

Constraint Graphs

@ Useful to visualize a CSP as a constraint graph (aka network)

e the nodes of the graph correspond to variables of the problem
@ an edge connects any two variables that participate in a constraint
@ CSP algorithms use the graph structure to speed up search
e Ex: Tasmania is an independent subproblem!

Example: Map Coloring

(a): map; (b) constraint graph

New l |
South

Wales
Victoria

Tasmania @
(a)

(b)

Northern
Territory

Western
Australia
South
Australia

(©S. Russell & P. Norwig, AIMA)

v,
10766

Varieties of CSPs

@ Discrete variables
e Finite domains (ex: Booleans, bounded integers, lists of values)
@ domain size d = d" complete assignments (candidate solutions)
@ e.g. Boolean CSPs, incl. Boolean satisfiability (NP-complete)
@ possible to define constraints by enumerating all combinations (although unpractical)
e Infinite domains (ex: unbounded integers)
@ infinite domain size = infinite # of complete assignments
e.g. job scheduling: variables are start/end days for each job
need a constraint language (ex: StartJob; + 5 < StartJobs)
linear constraints =—> solvable (but NP-Hard)
non-linear constraints = undecidable (ex: x" + y" = z", n > 2)

11/66

Varieties of CSPs

@ Discrete variables
e Finite domains (ex: Booleans, bounded integers, lists of values)

domain size d = d” complete assignments (candidate solutions)
e.g. Boolean CSPs, incl. Boolean satisfiability (NP-complete)
possible to define constraints by enumerating all combinations (although unpractical)

e Infinite domains (ex: unbounded integers)

infinite domain size = infinite # of complete assignments

e.g. job scheduling: variables are start/end days for each job
need a constraint language (ex: StartJob; + 5 < StartJobs)
linear constraints =—> solvable (but NP-Hard)

non-linear constraints —> undecidable (ex: x" + y" = z", n > 2)

@ Continuous variables (ex: reals, rationals)
e linear constraints solvable in poly time by LP methods

@ non-linear constraints solvable (e.g. by Cylindrical Algebraic Decomposition) but dramatically hard)

11/66

Varieties of CSPs

@ Discrete variables
e Finite domains (ex: Booleans, bounded integers, lists of values)
@ domain size d = d" complete assignments (candidate solutions)
@ e.g. Boolean CSPs, incl. Boolean satisfiability (NP-complete)
@ possible to define constraints by enumerating all combinations (although unpractical)
e Infinite domains (ex: unbounded integers)
@ infinite domain size = infinite # of complete assignments
@ e.g. job scheduling: variables are start/end days for each job
@ need a constraint language (ex: StartJob; + 5 < StartJobs)
@ linear constraints = solvable (but NP-Hard)
@ non-linear constraints —> undecidable (ex: x" + y" = z", n > 2)

@ Continuous variables (ex: reals, rationals)

e linear constraints solvable in poly time by LP methods
@ non-linear constraints solvable (e.g. by Cylindrical Algebraic Decomposition) but dramatically hard)

The same problem may have distinct formulations as CSP! J

11/66

Example: N-Queens

Formulation #1
@ variables Xj, i,j = 1..N (there is a queen i position /, j)

@ domains: {0, 1} (false,true) . .

Ny

1
o

12/66

Example: N-Queens

Formulation #1
@ variables Xj, i,j = 1..N (there is a queen i position /, j)
@ domains: {0, 1} (false,true)
@ constraints (explicit):

° Vi,j,k <Xif:Xik> € {<070>7< >7<) >} (rOW

o Vi, j, k (Xj, Xg) € {(0,0),(1,0),(0,1)} (column)

o Vi, J, K (Xjj, Xitk,j+k) € {(0,0),(1,0),(0,1)} (upward diagonal)

o Vi, j, k (Xj, Xirk,j—x) € {(0,0),(1,0),(0,1)} (downward diagonal)

I.l
1
*

12/66

Example: N-Queens

Formulation #1
@ variables Xj, i,j = 1..N (there is a queen i position /, j)
@ domains: {0, 1} (false,true)
@ constraints (explicit):

° v”/:k <)(’17)(lk> S {<070>7< >7<) >} (rOW
o Vi, j, k (Xj, Xig) € {(0,0),(1,0),(0,1)} (column)
o Vi, J, K (Xij, Xik,jrk) € { ,0),(0,1)} (upward diagonal)

€ {(0,0), (1
o Vi, j, k (Xj, Xirkj—x) € {(0,0), (1,

@ explicit representation

0), (0,1)} (downward diagonal)

I.l
1
*

12/66

Example: N-Queens

Formulation #1
@ variables Xj, i,j = 1..N (there is a queen i position /, j)
@ domains: {0, 1} (false,true)
@ constraints (explicit):

° v”/:k <)(’17)(lk> S {<070>7< >7<) >} (rOW
o Vi, j, k (Xj, Xig) € {(0,0),(1,0),(0,1)} (column)
o Vi, J, K (Xij, Xik,jrk) € { ,0),(0,1)} (upward diagonal)

€ {(0,0), (1
o Vi, j, k (Xj, Xirkj—x) € {(0,0), (1,

@ explicit representation
@ very inefficient

0), (0,1)} (downward diagonal)

I.l
1
*

12/66

Example: N-Queens [cont.]

Formulation #2

@ variables Qx, k = 1..N (row)

@ domains: {1..N} (column position) Q]_ .
Q2 [
Q3| W

B
Qa4 .

(©S. Russell & P. Norwig, AIMA)

13/66

Example: N-Queens [cont.]

Formulation #2

@ variables Qx, k = 1..N (row)
@ domains: {1..N} (column position)

@ constraints (implicit): Nonthreatening(Qx, Qx):

@ none (row)

e Qi # Q; (column)

o Qi # Qj« + k (downward diagonal)
e Q # Qi«x — k (upward diagonal)

Q1 .

Q3
Qa4

Q2.
W

(©S. Russell & P. Norwig, AIMA)

13/66

Example: N-Queens [cont.]

Formulation #2

@ variables Qx, k = 1..N (row)
@ domains: {1..N} (column position)

@ constraints (implicit): Nonthreatening(Qx, Qx):

@ none (row)

e Qi # Q; (column)

o Qi # Qj« + k (downward diagonal)
e Q # Qi«x — k (upward diagonal)

@ implicit representation

Q1 .

Q2 .
Q3| W
Qa4

(©S. Russell & P. Norwig, AIMA)

13/66

Example: N-Queens [cont.]

Formulation #2

@ variables Qx, k = 1..N (row)
@ domains: {1..N} (column position)

@ constraints (implicit): Nonthreatening(Qx, Qx):

@ none (row)
@ Qi # Q (column)
o Qi # Qj« + k (downward diagonal)
e Q # Qi«x — k (upward diagonal)
@ implicit representation
@ much more efficient

Qi [N

Q2 (W8
Q3| W
Qa4

(©S. Russell & P. Norwig, AIMA)

13/66

Varieties of Constraints

@ Unary constraints: involve one single variable
e ex: (SA # green)

14/66

Varieties of Constraints

@ Unary constraints: involve one single variable
e ex: (SA # green)

@ Binary constraints: involve pairs of variables
o ex: (SA+# WA)

Varieties of Constraints

@ Unary constraints: involve one single variable
o ex: (SA # green)

@ Binary constraints: involve pairs of variables
o ex: (SA # WA)

@ Higher-order constraints: involve > 3 variables

@ ex: cryptarithmetic column constraints
@ can be represented by constraint hypergraphs (hypernodes represent n-ary constraints, squares
in cryptarithmetic example)

7
14/66

Varieties of Constraints

@ Unary constraints: involve one single variable
o ex: (SA # green)

@ Binary constraints: involve pairs of variables
o ex: (SA # WA)

@ Higher-order constraints: involve > 3 variables

@ ex: cryptarithmetic column constraints
@ can be represented by constraint hypergraphs (hypernodes represent n-ary constraints, squares
in cryptarithmetic example)

@ Global constraints: involve an arbitrary number of variables
o ex: AlIDiff(Xi, ..., Xk)
e note: maximum domain size > k, otherwise AlIDiff() unsatisfiable
e compact, specialized routines for handling them

7
14/66

Varieties of Constraints

@ Unary constraints: involve one single variable
o ex: (SA # green)

Binary constraints: involve pairs of variables
o ex: (SA # WA)

Higher-order constraints: involve > 3 variables

@ ex: cryptarithmetic column constraints
@ can be represented by constraint hypergraphs (hypernodes represent n-ary constraints, squares
in cryptarithmetic example)

Global constraints: involve an arbitrary number of variables
o ex: AlIDiff(Xi, ..., Xk)
e note: maximum domain size > k, otherwise AlIDiff() unsatisfiable
e compact, specialized routines for handling them

Preference constraints (aka soft constraints): describe preferences between/among
solutions

e ex: “I'd rather WA in red than in blue or green”

e can often be encoded as costs/rewards for variables/constraints:
— solved by cost-optimization search techniques (Constraint Optimization Problems (COPs))

= = =

7
14/66

Example:

Cryptarithmetic Puzzle

T WO
+ T WO

FOUR

Example: Cryptarithmetic Puzzle

@ Variables: F, T, U, W, R, O, plus Cy, Co, C3 (carry)

T WO
+ T WO
FOUR

(©S. Russell & P. Norwig, AIMA)

Example: Cryptarithmetic Puzzle

@ Variables: F, T, U, W, R, O, plus Cy, Co, C3 (carry)
@ Domains: F, T,U,W,R, 0 € {0,1,...,9}; Cy,Co,C3 € {0,1}

T WO
+ T WO
FOUR

(©S. Russell & P. Norwig, AIMA)

Example: Cryptarithmetic Puzzle

@ Variables: F, T, U, W, R, O, plus Cy, Co, C3 (carry)
@ Domains: F, T,U,W,R, 0 € {0,1,...,9}; Cy,Co,C3 € {0,1}
O+0=R+10-C;

) WHW+C=U+10-Co
@ Constraints: T+T+Co=10-C3+0
F=Cs,F#0,T#0

T WO
+ T WO
FOUR

(©S. Russell & P. Norwig, AIMA)

15/66

Example: Cryptarithmetic Puzzle

@ Variables: F, T, U, W, R, O, plus Cy, Co, C3 (carry)

@ Domains: F, T,U,W,R, 0 € {0,1,...,9}; Cy,Co,C3 € {0,1}
O+0=R+10-C;
W+W+C=U+10-C;
T+T+C,=10-C5+ O
F=C3,F#£0,T#0

@ (one) solution: {F=1,T=7,U=2,W=1,R=8,0=4} (714+714=1428)

@ Constraints:

T WO
+ T WO
FOUR

(©S. Russell & P. Norwig, AIMA)

Example: Job-Shop Scheduling

@ Scheduling the assembling of a car requires several tasks
e ex: installing axles, installing wheels, tightening nuts, put on hubcap, inspect

16/66

Example: Job-Shop Scheduling

@ Scheduling the assembling of a car requires several tasks
e ex: installing axles, installing wheels, tightening nuts, put on hubcap, inspect

@ Variables X; (for each task t): starting times of the tasks

16/66

Example: Job-Shop Scheduling

@ Scheduling the assembling of a car requires several tasks
e ex: installing axles, installing wheels, tightening nuts, put on hubcap, inspect

@ Variables X; (for each task t): starting times of the tasks
@ Domain: (bounded) integers (time units)

16/66

Example: Job-Shop Scheduling

@ Scheduling the assembling of a car requires several tasks
e ex: installing axles, installing wheels, tightening nuts, put on hubcap, inspect
@ Variables X; (for each task t): starting times of the tasks
@ Domain: (bounded) integers (time units)
@ Constraints:
e Precedence: (X7 + durationt < X7/) (task T precedes task T’)
@ durationt constant value (ex: (Xaxea + 10 < Xaxien))

e Alternative precedence (combine arithmetic and logic):
(X1 + durationt < Xt) or (X7 + durationr: < Xr)

16/66

Remark

@ k-ary constraints can be transformed into sets of binary constraints
e hint: add enough auxiliary variables (see ex. 6.6 in AIMA book)

— often CSP solvers work with binary constraints only

17/66

Remark

@ k-ary constraints can be transformed into sets of binary constraints
e hint: add enough auxiliary variables (see ex. 6.6 in AIMA book)
— often CSP solvers work with binary constraints only

@ In the rest of this chapter (unless specified otherwise) we assume we have only binary
constraints in the CSP

17/66

Remark

@ k-ary constraints can be transformed into sets of binary constraints
e hint: add enough auxiliary variables (see ex. 6.6 in AIMA book)

— often CSP solvers work with binary constraints only

@ In the rest of this chapter (unless specified otherwise) we assume we have only binary
constraints in the CSP

@ We call neighbours two variables sharing a binary constraint

17/66

Real-World CSPs

@ Task-Assignment problems

e Ex: who teaches which class?
@ Timetabling problems

e Ex: which class is offered when and where?
@ Hardware configuration

e Ex: which component is placed where? with which connections?
@ Transportation scheduling

e Ex: which van goes where?
@ Factory scheduling

e Ex: which machine/worker takes which task? in which order?
o ..

Real-World CSPs

@ Task-Assignment problems

e Ex: who teaches which class?
@ Timetabling problems

e Ex: which class is offered when and where?
@ Hardware configuration

e Ex: which component is placed where? with which connections?
@ Transportation scheduling

e Ex: which van goes where?
@ Factory scheduling

e Ex: which machine/worker takes which task? in which order?
o ..

Remarks
@ many real-world problems involve real/rational-valued variables
@ many real-world problems involve combinatorics and logic
@ many real-world problems require optimization

Outline

© sSearch with CSPs

19/66

Search & Constraint Propagation with CSPs

@ In state-space search, an algorithm can only search
e move from complete state to complete state

20/66

Search & Constraint Propagation with CSPs

@ In state-space search, an algorithm can only search
e move from complete state to complete state
@ A CSPs interleaves search with constraint propagation:

20/66

Search & Constraint Propagation with CSPs

@ In state-space search, an algorithm can only search
e move from complete state to complete state
@ A CSPs interleaves search with constraint propagation:
@ search: pick a new variable assignment (and backtrack when needed)

@ does not move from complete state to complete state,
@ rather, builds a complete state by progressively extending partial ones

20/66

Search & Constraint Propagation with CSPs

@ In state-space search, an algorithm can only search
e move from complete state to complete state
@ A CSPs interleaves search with constraint propagation:
e search: pick a new variable assignment (and backtrack when needed)
@ does not move from complete state to complete state,
@ rather, builds a complete state by progressively extending partial ones
e constraint propagation (aka inference):
@ use the constraints to reduce the set of legal candidate values for a variable
@ forces next variable assignment when candidate values are reduced to one
@ forces backtracking when candidate values are reduced to zero

20/66

Search & Constraint Propagation with CSPs

@ In state-space search, an algorithm can only search
e move from complete state to complete state
@ A CSPs interleaves search with constraint propagation:
e search: pick a new variable assignment (and backtrack when needed)
@ does not move from complete state to complete state,
@ rather, builds a complete state by progressively extending partial ones
e constraint propagation (aka inference):
@ use the constraints to reduce the set of legal candidate values for a variable
@ forces next variable assignment when candidate values are reduced to one
@ forces backtracking when candidate values are reduced to zero
@ Constraint propagation can either:

@ be interleaved with search
e be performed as a preprocessing step

20/66

Outline

@ search with CSPs
@ Inference: Constraint Propagation

21/66

Constraint Propagation

@ Use the constraints to reduce the set of legal candidate values for variables

22/66

Constraint Propagation

@ Use the constraints to reduce the set of legal candidate values for variables
@ Intuition: preserve and propagate local consistency

e enforcing local consistency in each part of the constraint graph
— inconsistent values eliminated throughout the graph

22/66

Constraint Propagation

@ Use the constraints to reduce the set of legal candidate values for variables
@ Intuition: preserve and propagate local consistency
e enforcing local consistency in each part of the constraint graph
— inconsistent values eliminated throughout the graph
@ Different types of local consistency:

@ node consistency (aka 1-consistency)
e arc consistency (aka 2-consistency)
e path consistency (aka 3-consistency)
e k-consistency k > 1

22/66

Node Consistency (aka 1-Consistency)

@ X is node-consistent if all the values in the variable’s domain satisfy its unary constraints

23/66

Node Consistency (aka 1-Consistency)

@ X is node-consistent if all the values in the variable’s domain satisfy its unary constraints
@ A CSP is node-consistent if every variable is node-consistent

23/66

Node Consistency (aka 1-Consistency)

@ X; is node-consistent if all the values in the variable’s domain satisfy its unary constraints
@ A CSP is node-consistent if every variable is node-consistent
@ Node-consistency propagation:

remove all values from the domain D; of X; which violate unary constraints on X;

e ex: if the constraint WA # green is added to map-coloring problem
then WA domain {red, green, blue} is reduced to {red, blue}

e ex: if the constraint WA = green is added to map-coloring problem
then WA domain {red, green, blue} is reduced to {green}

23/66

Node Consistency (aka 1-Consistency)

@ X; is node-consistent if all the values in the variable’s domain satisfy its unary constraints
@ A CSP is node-consistent if every variable is node-consistent
@ Node-consistency propagation:

remove all values from the domain D; of X; which violate unary constraints on X;

e ex: if the constraint WA # green is added to map-coloring problem
then WA domain {red, green, blue} is reduced to {red, blue}

e ex: if the constraint WA = green is added to map-coloring problem
then WA domain {red, green, blue} is reduced to {green}

@ Unary constraints can be removed a priori by node consistency propagation

23/66

Arc Consistency (aka 2-Consistency)

@ X is arc-consistent wrt. X iff for every value d; of X; in D; exists a value d; for X; in D; which
satisfy all binary constraints on (X, Xj)

Arc Consistency (aka 2-Consistency)

@ X is arc-consistent wrt. X iff for every value d; of X; in D; exists a value d; for X; in D; which
satisfy all binary constraints on (X, Xj)

@ A CSP is arc-consistent if every variable is arc consistent with every other variable

Arc Consistency (aka 2-Consistency)

@ X is arc-consistent wrt. X iff for every value d; of X; in D; exists a value d; for X; in D; which
satisfy all binary constraints on (X, Xj)

@ A CSP is arc-consistent if every variable is arc consistent with every other variable

@ Forward Checking: remove values from unassigned variables which are not arc consistent
with assigned variables

e i.e., remove values which are non consistent with the assigned values of neighbour variables
— ensure arcs from assigned to unassigned variables are arc consistent
e Limitation: If X loses a value, neighbors of X are not rechecked

24.4¢

Arc Consistency (aka 2-Consistency)

@ X is arc-consistent wrt. X iff for every value d; of X; in D; exists a value d; for X; in D; which
satisfy all binary constraints on (X, Xj)

@ A CSP is arc-consistent if every variable is arc consistent with every other variable

@ Forward Checking: remove values from unassigned variables which are not arc consistent
with assigned variables

e i.e., remove values which are non consistent with the assigned values of neighbour variables
— ensure arcs from assigned to unassigned variables are arc consistent
e Limitation: If X loses a value, neighbors of X are not rechecked

@ Arc-consistency propagation: remove all values from the domains of every variable which
are not arc-consistent with these of some other variables
e |dea: If X loses a value, neighbors of X are rechecked
— ensure all arcs are arc consistent!

24.4¢

Arc Consistency (aka 2-Consistency)

@ X is arc-consistent wrt. X iff for every value d; of X; in D; exists a value d; for X; in D; which
satisfy all binary constraints on (X, Xj)

@ A CSP is arc-consistent if every variable is arc consistent with every other variable

@ Forward Checking: remove values from unassigned variables which are not arc consistent
with assigned variables

e i.e., remove values which are non consistent with the assigned values of neighbour variables
— ensure arcs from assigned to unassigned variables are arc consistent
e Limitation: If X loses a value, neighbors of X are not rechecked

@ Arc-consistency propagation: remove all values from the domains of every variable which
are not arc-consistent with these of some other variables
e |dea: If X loses a value, neighbors of X are rechecked
— ensure all arcs are arc consistent!
@ A well-known algorithm: AC-3
— every arc is arc-consistent, or some variable domain is empty
e complexity: O(|C| - |D|°) worst-case
e AC-4is O(|C| - |D|?) worst-case, but worse than AC-3 on average

24.4¢

Arc Consistency (aka 2-Consistency)

@ X is arc-consistent wrt. X iff for every value d; of X; in D; exists a value d; for X; in D; which
satisfy all binary constraints on (X, Xj)
@ A CSP is arc-consistent if every variable is arc consistent with every other variable

@ Forward Checking: remove values from unassigned variables which are not arc consistent
with assigned variables
e i.e., remove values which are non consistent with the assigned values of neighbour variables
— ensure arcs from assigned to unassigned variables are arc consistent
e Limitation: If X loses a value, neighbors of X are not rechecked
@ Arc-consistency propagation: remove all values from the domains of every variable which
are not arc-consistent with these of some other variables
e |dea: If X loses a value, neighbors of X are rechecked
— ensure all arcs are arc consistent!
@ A well-known algorithm: AC-3
— every arc is arc-consistent, or some variable domain is empty
e complexity: O(|C| - |D|°) worst-case
e AC-4is O(|C| - |D|?) worst-case, but worse than AC-3 on average
— Can be interleaved with search or used as a preprocessing step

24.4¢

Forward Checking

@ Simplest form of propagation
@ Idea: propagate information from assigned to unassigned variables

@ pick (novel) variable assignment
e update remaining legal values for unassigned variables

WA NT Q NSW)" SA
NT‘ CEC IR I I IrEeiren
A R (] PE[ErE/EeE[EeE] " H]

= [| HimWe EjESE]

(©S. Russell & P. Norwig, AIMA)

25 /&

Forward Checking

@ Simplest form of propagation
@ Idea: propagate information from assigned to unassigned variables

@ pick (novel) variable assignment
e update remaining legal values for unassigned variables

@ Does not provide early detection for all failures

WA NT Q NSW)" SA
NT‘ CEC IR I I IrEeiren
A R (] PE[ErE/EeE[EeE] " H]

= [| HimWe EjESE]

(©S. Russell & P. Norwig, AIMA)

25 /&

Forward Checking

@ Simplest form of propagation
@ Idea: propagate information from assigned to unassigned variables

@ pick (novel) variable assignment
e update remaining legal values for unassigned variables

@ Does not provide early detection for all failures

WA NT Q NSW)" SA
NT‘ CEC IR I I IrEeiren
A R (] PE[ErE/EeE[EeE] " H]

= [| HimWe EjESE]

(©S. Russell & P. Norwig, AIMA)

25 /&

Forward Checking

@ Simplest form of propagation
@ Idea: propagate information from assigned to unassigned variables

@ pick (novel) variable assignment
e update remaining legal values for unassigned variables

@ Does not provide early detection for all failures

@ Can we conclude anything?

WA NT Q NSW)" SA
NT‘ CEC IR I I IrEeiren
A R (] PE[ErE/EeE[EeE] " H]

= [| HimWe EjESE]

(©S. Russell & P. Norwig, AIMA)

25 /&

Forward Checking

@ Simplest form of propagation
@ Idea: propagate information from assigned to unassigned variables

@ pick (novel) variable assignment
e update remaining legal values for unassigned variables

@ Does not provide early detection for all failures

@ Can we conclude anything?
@ NT and SA cannot both be blue!

WA NT Q NSW)" SA
NT‘ CEC IR I I IrEeiren
A R (] PE[ErE/EeE[EeE] " H]

= [| HimWe EjESE]

(©S. Russell & P. Norwig, AIMA)

25 /&

Forward Checking

@ Simplest form of propagation
@ Idea: propagate information from assigned to unassigned variables

@ pick (novel) variable assignment
e update remaining legal values for unassigned variables

@ Does not provide early detection for all failures

@ Can we conclude anything?
@ NT and SA cannot both be blue!

@ Why didn’'t we detect this inconsistency yet?

WA NT Q NSW)" SA
NT‘ CEC IR I I IrEeiren
A Faw (] sejEeE/EeE[EeE] oE]

= [| HimWe EjESE]

(©S. Russell & P. Norwig, AIMA)

25 /4

Forward Checking

@ Simplest form of propagation
@ Idea: propagate information from assigned to unassigned variables

@ pick (novel) variable assignment
e update remaining legal values for unassigned variables

@ Does not provide early detection for all failures

@ Limitation: If X loses a value, neighbors of X are not rechecked!
e ex: SA single value is incompatible with NT single value

@ Can we conclude anything?
@ NT and SA cannot both be blue!

@ Why didn’'t we detect this inconsistency yet?

WA NT Q NSW)" SA
NT‘ CEC IR I I IrEeiren
A Faw (] sejEeE/EeE[EeE] oE]

= [| HimWe EjESE]

(©S. Russell & P. Norwig, AIMA)

25 /4

Forward Checking Example: Sudoku

(consider AlIDiff() as a set of binary constraints)
Apply forward checking:

@ What about E6?

o o o >

m

Forward Checking Example: Sudoku

(consider AlIDiff() as a set of binary constraints)
Apply forward checking:
@ What about E6?

e forward checking on column 6:
drop 2,3,5,6,8,9 —> Domain(E6)={1,4,7}

o o o >

m

Forward Checking Example: Sudoku

(consider AlIDiff() as a set of binary constraints)
Apply forward checking:
@ What about E6?

o forward checking on column 6:

drop 2,3,5,6,8,9 —> Domain(E6)={1,4,7}

e forward checking on square:

drop 1,7 = Domain(E6)={4}

(will be assigned to 4 at next search step,

but does not trigger other propagations)

o o o >

m

N

26

Forward Checking Example: Sudoku

(consider AlIDiff() as a set of binary constraints)
Apply forward checking:
@ What about E6?

o forward checking on column 6:

drop 2,3,5,6,8,9 —> Domain(E6)={1,4,7}

e forward checking on square:

drop 1,7 = Domain(E6)={4}

(will be assigned to 4 at next search step,

but does not trigger other propagations)

@ What about 16?

o o o >

m

N

26

Forward Checking Example: Sudoku

(consider AlIDiff() as a set of binary constraints)
Apply forward checking:
@ What about E6?
o forward checking on column 6:
drop 2,3,5,6,8,9 —> Domain(E6)={1,4,7}
e forward checking on square:
drop 1,7 = Domain(E6)={4}
(will be assigned to 4 at next search step,
but does not trigger other propagations)
@ What about 167

e forward checking on column 6:
drop 2,3,5,6,8,9 = Domain(16)={1,4,7}

o o o >

m

N

26

Forward Checking Example: Sudoku

(consider AlIDiff() as a set of binary constraints)
Apply forward checking:
@ What about E6?

o forward checking on column 6:

drop 2,3,5,6,8,9 —> Domain(E6)={1,4,7}

e forward checking on square:

drop 1,7 = Domain(E6)={4}

(will be assigned to 4 at next search step,

but does not trigger other propagations)

@ What about 167
e forward checking on column 6:
drop 2,3,5,6,8,9 —> Domain(16)={1,4,7}
e forward checking on square:
drop 1 = Domain(16)={4, 7}

o o o >

m

(o)

26

Forward Checking Example: Sudoku

(consider AlIDiff() as a set of binary constraints)
Apply forward checking:
@ What about E6?
o forward checking on column 6:
drop 2,3,5,6,8,9 —> Domain(E6)={1,4,7}
e forward checking on square:
drop 1,7 = Domain(E6)={4}
(will be assigned to 4 at next search step,
but does not trigger other propagations)
@ What about 167
e forward checking on column 6:
drop 2,3,5,6,8,9 —> Domain(16)={1,4,7}
e forward checking on square:
drop 1 = Domain(16)={4, 7}

@ What about A67?

o o o >

m

(o)

26

Forward Checking Example: Sudoku

(consider AlIDiff() as a set of binary constraints)
Apply forward checking:
@ What about E6?
o forward checking on column 6:
drop 2,3,5,6,8,9 —> Domain(E6)={1,4,7}
e forward checking on square:
drop 1,7 = Domain(E6)={4}
(will be assigned to 4 at next search step,
but does not trigger other propagations)
@ What about 167
e forward checking on column 6: F 6|7 gl>
drop 2,3,5,6,8,9 —> Domain(16)={1,4,7}
e forward checking on square: G 2
drop 1 = Domain(16)={4, 7}
@ What about A67?

e forward checking on column 6: I 5 1 3
drop 2,3,5,6,8,9 = Domain(A6)={1,4,7} ;

o O W >
[—
c0
(@)
N

m
~
o]

(@)
O
(¥}

S.|Russ

26166

Forward Checking Example: Sudoku

(consider AlIDiff() as a set of binary constraints)
Apply forward checking:
@ What about E67?
e forward checking on column 6:
drop 2,3,5,6,8,9 —> Domain(E6)={1,4,7}
e forward checking on square:
drop 1,7 = Domain(E6)={4}
(will be assigned to 4 at next search step,
but does not trigger other propagations)
@ What about 167
e forward checking on column 6:
drop 2,3,5,6,8,9 —> Domain(16)={1,4,7}
e forward checking on square:
drop 1 = Domain(16)={4, 7}
@ What about A67?
e forward checking on column 6:
drop 2,3,5,6,8,9 = Domain(A6)={1,4,7}
@ Next decisions: assign E6 = 4

o o o >

m

(o)

Wl Po]la|wn

26

Russ

The Arc-Consistency Propagation Algorithm AC-3

function AC-3(csp) returns false if an inconsistency is found and true otherwise
inputs: csp, a binary CSP with components (X, D, C)
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(X, X;) < REMOVE-FIRST(queue)
if REVISE(csp’ Xi7 X]) then / makes Xi arc-consistent wrt. Xj
if size of D; = 0 then return false
for each X; in X; NEIGHBORS - { X} do
add (X, X;)to queue
return true

function REVISE(csp, X;, X;) returns true iff we revise the domain of X;
revised < false
for each z in D; do
if no value y in D; allows (z,y) to satisfy the constraint between X; and X; then
delete = from D;
revised «— true
return revised

(©S. Russell & P. Norwig, AIMA)

note: “queue” is LIFO = revises first the neighbours of revised vars

Arc-Consistency Propagation AC-3: Example

@ Idea: If X loses a value, neighbors of X need to be rechecked
@ Ex:
o Revise(SA,NSW) — Dg, unchanged

SR S 5=

NT Q NSW v SA T
H[mmwEe EEsE] EH[EEHE]|

~—

(©S. Russell & P. Norwig, AIMA)

Arc-Consistency Propagation AC-3: Example

@ Idea: If X loses a value, neighbors of X need to be rechecked
@ Ex:

o Revise(SA,NSW) — Dg, unchanged
o ...
o Revise(NSW,SA) = Dysw revised

| ‘ SN SSE S S

SA
NSW WA NT Q NSW v

SA

T

v 1 (1IN 1

(©S. Russell & P. Norwig, AIMA)

Arc-Consistency Propagation AC-3: Example

@ Idea: If X loses a value, neighbors of X need to be rechecked
@ Ex:
Revise(SA,NSW) — Dg, unchanged

Revise(NSW,SA) —> Dysw revised

o
("]
o
o Revise(V,NSW) —> Dy revised

Ho—4o—48

(] wjeewe ExEE] SESN]

~—

NT*

SA
NSW

¢

v

(©S. Russell & P. Norwig, AIMA)

Arc-Consistency Propagation AC-3: Example

@ Idea: If X loses a value, neighbors of X need to be rechecked
@ Ex:
Revise(SA,NSW) — Dg, unchanged

Revise(NSW,SA) —> Dysw revised
Revise(V,NSW) —> Dy revised

Revise(SANT) —s Dsy revised
@ Empty domain!

S SSEN 5=

WA NT Q NSW v
| Himw . im

SA

(©S. Russell & P. Norwig, AIMA)

Arc-Consistency Propagation AC-3: Example

@ Idea: If X loses a value, neighbors of X need to be rechecked
@ Ex:
Revise(SA,NSW) — Dg, unchanged

Revise(NSW,SA) —> Dysw revised
Revise(V,NSW) —> Dy revised

Revise(SANT) —s Dsy revised
@ Empty domain!
— Arc-consistency propagation detects failure earlier than forward checking

PN s BN
SA
\NJ’SW |] H|mw . ol | | f |

(©S. Russell & P. Norwig, AIMA)

Remark

Notice the differences between:
(@) an assigned variable X;, with value v;, and
(b) an unassigned variable X; whose domain is reduced to a singleton {v;}:
@ With (b) X; is not (yet) assigned the value v;
(although it will be likely assigned soon the value v; by next search steps)

29/66

Remark

Notice the differences between:
(@) an assigned variable X;, with value v;, and
(b) an unassigned variable X; whose domain is reduced to a singleton {v;}:

@ With (b) X; is not (yet) assigned the value v;
(although it will be likely assigned soon the value v; by next search steps)

@ With Forward Checking, (a) forces checking the domain of X;’s unassigned neighbours wrt.
X, whereas (b) does not

29/66

Remark

Notice the differences between:
(@) an assigned variable X;, with value v;, and
(b) an unassigned variable X; whose domain is reduced to a singleton {v;}:

@ With (b) X; is not (yet) assigned the value v;
(although it will be likely assigned soon the value v; by next search steps)

@ With Forward Checking, (a) forces checking the domain of X;’s unassigned neighbours wrt.
X, whereas (b) does not

@ With ARC-Consistency Propagation, both (a) and (b) force checking the domain of Xj’s
unassigned neighbours wrt. X;

29/66

Arc-consistency Propagation AC-3 Example: Sudoku [cont.]

Apply arc-consistency propagation:

@ What about E6? 1 2 3 4 5 6 7

>
(98]
\S)
(o)

Bl19 3 5

C 118 6]4
D 811 219
El7

F 617 812
G 216 915
HT 8 2 3

30/6

Arc-consistency Propagation AC-3 Example: Sudoku [cont.]

Apply arc-consistency propagation:

@ What about E6? 1 2 3 4 5 6 7
@ arc-consistency propagation on column 6: A 3 7 6
drop 2,3,5,6,8,9 —> Domain(E6)={1,4,7}
B9 3 S
C 118 6]4
D 811 219
El7
F 6]7 812
G 216 915
HI8 2 3

30/6

Arc-consistency Propagation AC-3 Example: Sudoku [cont.]

Apply arc-consistency propagation:
@ What about E67?
@ arc-consistency propagation on column 6:
drop 2,3,5,6,8,9 —> Domain(E6)={1,4,7}
@ arc-consistency propagation on square:
drop 1,7 = Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)

m O O W >»

n

I o©

@)

30/f

66

Arc-consistency Propagation AC-3 Example: Sudoku [cont.]

Apply arc-consistency propagation:
@ What about E67?
@ arc-consistency propagation on column 6:
drop 2,3,5,6,8,9 —> Domain(E6)={1,4,7}
@ arc-consistency propagation on square:
drop 1,7 = Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)

@ What about 16?

m O O W >»

n

I o©

@)

30/f

66

Arc-consistency Propagation AC-3 Example: Sudoku [cont.]

Apply arc-consistency propagation:
@ What about E6?
@ arc-consistency propagation on column 6:
drop 2,3,5,6,8,9 = Domain(E6)={1,4,7}
@ arc-consistency propagation on square:
drop 1,7 = Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)
@ What about 167

@ arc-consistency propagation on column 6:
drop 2,3,4,5,6,8,9 — Domain(16)={1,7}

m O O W >»

n

I o©

@)

30/f

66

Arc-consistency Propagation AC-3 Example: Sudoku [cont.]

Apply arc-consistency propagation:
@ What about E67?
@ arc-consistency propagation on column 6:
drop 2,3,5,6,8,9 —> Domain(E6)={1,4,7}
@ arc-consistency propagation on square:
drop 1,7 = Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)
@ What about 167
@ arc-consistency propagation on column 6:
drop 2,3,4,5,6,8,9 — Domain(16)={1,7}
@ arc-consistency propagation on square:
drop 1 = Domain(16)={7}

m O O W >»

n

I o©

@)

30/f

66

Arc-consistency Propagation AC-3 Example: Sudoku [cont.]

Apply arc-consistency propagation:
@ What about E67?
@ arc-consistency propagation on column 6:
drop 2,3,5,6,8,9 —> Domain(E6)={1,4,7}
@ arc-consistency propagation on square:
drop 1,7 = Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)
@ What about 167
@ arc-consistency propagation on column 6:
drop 2,3,4,5,6,8,9 — Domain(16)={1,7}
@ arc-consistency propagation on square:
drop 1 = Domain(16)={7}

@ What about A6?

m O O W >»

n

I o©

@)

30/f

66

Arc-consistency Propagation AC-3 Example: Sudoku [cont.]

Apply arc-consistency propagation:
@ What about E67?
@ arc-consistency propagation on column 6:
drop 2,3,5,6,8,9 —> Domain(E6)={1,4,7}
@ arc-consistency propagation on square:
drop 1,7 = Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)
@ What about 167
@ arc-consistency propagation on column 6:
drop 2,3,4,5,6,8,9 = Domain(l6)={1, 7}
@ arc-consistency propagation on square:
drop 1 = Domain(16)={7}
@ What about A6?

@ arc-consistency propagation on column 6:
drop 2,3,4,5,6,7,8,9 = Domain(A6)={1}

m O O W >»

n

I o©

@)

Russ

30/f

66

Arc-consistency Propagation AC-3 Example: Sudoku [cont.]

Apply arc-consistency propagation:
@ What about E67?
@ arc-consistency propagation on column 6:
drop 2,3,5,6,8,9 —> Domain(E6)={1,4,7}
@ arc-consistency propagation on square:
drop 1,7 = Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)
@ What about 167
@ arc-consistency propagation on column 6:
drop 2,3,4,5,6,8,9 = Domain(l6)={1, 7}
@ arc-consistency propagation on square:
drop 1 = Domain(16)={7}
@ What about A6?
@ arc-consistency propagation on column 6:
drop 2,3,4,5,6,7,8,9 = Domain(A6) {1}
@ Next decisions: assign E6=4, 16=7, A6=1,.

m O O W >»

n

I o©

@)

N w|olo|Plo]la|un]|=]o

Russ

30/f

66

Arc-consistency Propagation AC-3 Example:

Apply arc-consistency propagation:
@ What about E6?
@ arc-consistency propagation on column 6:
drop 2,3,5,6,8,9 —> Domain(E6)={1,4,7}
@ arc-consistency propagation on square:
drop 1,7 = Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)
@ What about 167
@ arc-consistency propagation on column 6:
drop 2,3,4,5,6,8,9 — Domain(16)={1,7}
@ arc-consistency propagation on square:
drop 1 = Domain(16)={7}
@ What about A6?
@ arc-consistency propagation on column 6:
drop 2,3,4,5,6,7,8,9 = Domain(A6) {1}
@ Next decisions: assign E6=4, 16=7, A6=1,.

@ Exercise: show that AC-3 solves the whole puzzle

m o O W >»

n

I o

Sudoku [cont.]

1 2 3 4 5 6 7 8 9
4181319211657
916[7]13]14[5]8]2]1
2|5[1]8[{7]6]4]9]3
S514[8]1]13[2]19]7(6
71219]15]6[4]1]3(8
113]1617]19]8]2]4]5
3171216]18[9]5]|1][4
811]14]12|5|3]7]6(9
6]19[5]14]1[7]3]8[2

30/f

66

Path Consistency & K-Consistency

Path Consistency

A two-variable set { X, X;} is path-consistent wrt. a third variable X, if,
for every assignment {X; = a, X; = b} consistent with the constraints on { X, Xj},
there is an assignment to X, that satisfies the constraints on {X;, X;,} and { Xy, X;}.

Path Consistency & K-Consistency

Path Consistency

A two-variable set {X;, X;} is path-consistent wrt. a third variable X, if,

for every assignment {X; = a, X; = b} consistent with the constraints on { X, Xj},
there is an assignment to Xj, that satisfies the constraints on {Xj, X} and { X, X;}.

K-Consistency
@ A CSP is k-consistent iff for any set of k — 1 variables and for any consistent assignment to
those variables, a consistent value can always be assigned to any other k-th variable

e 1-consistency is node consistency
@ 2-consistency is arc consistency
e 3-consistency is path consistency

31/66

Path Consistency & K-Consistency

Path Consistency
A two-variable set {X;, X;} is path-consistent wrt. a third variable X, if,
for every assignment {X; = a, X; = b} consistent with the constraints on {X;, X},
there is an assignment to Xj, that satisfies the constraints on {Xj, X} and { X, X;}.
v

K-Consistency
@ A CSP is k-consistent iff for any set of k — 1 variables and for any consistent assignment to
those variables, a consistent value can always be assigned to any other k-th variable

e 1-consistency is node consistency
@ 2-consistency is arc consistency
e 3-consistency is path consistency

@ Algorithm for 3-consistency available: PC-2
o generalization of AC-3

31/66

Path Consistency & K-Consistency

Path Consistency
A two-variable set {X;, X;} is path-consistent wrt. a third variable X, if,
for every assignment {X; = a, X; = b} consistent with the constraints on {X;, X},
there is an assignment to Xj, that satisfies the constraints on {Xj, X} and { X, X;}.
v

K-Consistency
@ A CSP is k-consistent iff for any set of k — 1 variables and for any consistent assignment to
those variables, a consistent value can always be assigned to any other k-th variable

e 1-consistency is node consistency
@ 2-consistency is arc consistency
e 3-consistency is path consistency

@ Algorithm for 3-consistency available: PC-2
o generalization of AC-3
@ Time and space complexity grow exponentially with k)

31/66

Arc vs. Path Consistency

@ Can we say anything about X1?

32/66

Arc vs. Path Consistency

@ Can we say anything about X1?

We can drop red & blue from D1 0 X1
= Infers the assignment C1=green
X2 %3

32/66

Arc vs. Path Consistency

@ Can we say anything about X1?
We can drop red & blue from D1
= Infers the assignment C1=green
@ Can arc-consistency propagation reveal it?

32/66

Arc vs. Path Consistency

@ Can we say anything about X1?
We can drop red & blue from D1
= Infers the assignment C1=green

@ Can arc-consistency propagation reveal it?
NO!

32/66

Arc vs. Path Consistency

@ Can we say anything about X1?
We can drop red & blue from D1
= Infers the assignment C1=green

@ Can arc-consistency propagation reveal it?
NO!

@ Can path-consistency propagation reveal it?

32/66

Arc vs. Path Consistency

@ Can we say anything about X1?
We can drop red & blue from D1
= Infers the assignment C1=green

@ Can arc-consistency propagation reveal it?
NO!

@ Can path-consistency propagation reveal it?
YES!

32/66

Arc vs. Path Consistency [cont.]

@ Can we say anything? o X1

33/66

Arc vs. Path Consistency [cont.]

@ Can we say anything? -
The triplet is inconsistent o

33/66

Arc vs. Path Consistency [cont.]

@ Can we say anything? .
The triplet is inconsistent o
@ Can arc-consistency propagation reveal it? -
X2 %3

33/66

Arc vs. Path Consistency [cont.]

@ Can we say anything?
The triplet is inconsistent

@ Can arc-consistency propagation reveal it?
NO!

33/66

Arc vs. Path Consistency [cont.]

@ Can we say anything?
The triplet is inconsistent

@ Can arc-consistency propagation reveal it?
NO!

@ Can path-consistency propagation reveal it?

33/66

Arc vs. Path Consistency [cont.]

@ Can we say anything?
The triplet is inconsistent

@ Can arc-consistency propagation reveal it?
NO!

@ Can path-consistency propagation reveal it?
YES!

33/66

Outline

@ search with CSPs

@ Backtracking Search

34/66

Backtracking Search: Generalities

Backtracking Search

@ Basic uninformed algorithm for solving CSPs
@ Idea 1: Pick one variable at a time
e variable assignments are commutative = fix an ordering
e ex: {WA = red, NT = green} same as {NT = green, WA = red}
— can consider assignments to a single variable at each step
@ reasons on partial assignments

35/66

Backtracking Search: Generalities

Backtracking Search

@ Basic uninformed algorithm for solving CSPs
@ Idea 1: Pick one variable at a time
e variable assignments are commutative = fix an ordering
e ex: {WA = red, NT = green} same as {NT = green, WA = red}
— can consider assignments to a single variable at each step
@ reasons on partial assignments

@ |dea 2: Check constraints as long as you proceed

@ pick only values which do not conflict with previous assignments
@ requires some computation to check the constraints
— “incremental goal test”
@ can detect if a partial assignments violate a goal
= early detection of inconsistencies = pruning

35/66

Backtracking Search: Generalities

Backtracking Search

@ Basic uninformed algorithm for solving CSPs
@ Idea 1: Pick one variable at a time
e variable assignments are commutative = fix an ordering
e ex: {WA = red, NT = green} same as {NT = green, WA = red}
— can consider assignments to a single variable at each step
@ reasons on partial assignments
@ |dea 2: Check constraints as long as you proceed
@ pick only values which do not conflict with previous assignments
@ requires some computation to check the constraints
— “incremental goal test”
@ can detect if a partial assignments violate a goal
= early detection of inconsistencies = pruning

@ Backtracking search: DFS with the two above improvements

35/66

Backtracking Search: Example

(Part of) Search Tree for Map-Coloring

Backtracking Search Algorithm

function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK (csp,{ })

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment
var < SELECT-UNASSIGNED-VARIABLE(csp, assignment)
for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
if value is consistent with assignment then
add {var = value} to assignment
inferences < INFERENCE(csp, var, assignment)
if inferences # failure then
add inferences to csp
result «<— BACKTRACK(csp, assignment)
if result # failure then return result
remove inferences from csp
remove {var = value} from assignment
return failure

(©S. Russell & P. Norwig, AIMA)

37/66

Backtracking Search Algorithm [cont.]

@ General-purpose algorithm for generic CSPs

38/66

Backtracking Search Algorithm [cont.]

@ General-purpose algorithm for generic CSPs
@ The representation of CSPs is standardized
— no need to provide a domain-specific initial state, action function, transition model, or goal test

38/66

Backtracking Search Algorithm [cont.]

@ General-purpose algorithm for generic CSPs
@ The representation of CSPs is standardized
— no need to provide a domain-specific initial state, action function, transition model, or goal test
@ BACKTRACKING-SEARCH() keeps a single representation of a state
e alters such representation rather than creating new ones

38/66

Backtracking Search Algorithm [cont.]

@ General-purpose algorithm for generic CSPs
@ The representation of CSPs is standardized
— no need to provide a domain-specific initial state, action function, transition model, or goal test
@ BACKTRACKING-SEARCH() keeps a single representation of a state
e alters such representation rather than creating new ones
@ We can add some sophistication to the unspecified functions:

38/66

Backtracking Search Algorithm [cont.]

@ General-purpose algorithm for generic CSPs
@ The representation of CSPs is standardized
— no need to provide a domain-specific initial state, action function, transition model, or goal test
@ BACKTRACKING-SEARCH() keeps a single representation of a state
e alters such representation rather than creating new ones
@ We can add some sophistication to the unspecified functions:
@ SELECT-UNASSIGNED-VARIABLE(...): which variable should be assigned next?

38/66

Backtracking Search Algorithm [cont.]

@ General-purpose algorithm for generic CSPs
@ The representation of CSPs is standardized
— no need to provide a domain-specific initial state, action function, transition model, or goal test
@ BACKTRACKING-SEARCH() keeps a single representation of a state
e alters such representation rather than creating new ones
@ We can add some sophistication to the unspecified functions:

@ SELECT-UNASSIGNED-VARIABLE(...): which variable should be assigned next?
@ ORDER-DOMAIN-VALUES(...): in which order should its values be tried?

38/66

Backtracking Search Algorithm [cont.]

@ General-purpose algorithm for generic CSPs
@ The representation of CSPs is standardized
— no need to provide a domain-specific initial state, action function, transition model, or goal test
@ BACKTRACKING-SEARCH() keeps a single representation of a state
e alters such representation rather than creating new ones
@ We can add some sophistication to the unspecified functions:

@ SELECT-UNASSIGNED-VARIABLE(...): which variable should be assigned next?
@ ORDER-DOMAIN-VALUES(...): in which order should its values be tried?
@ INFERENCE(...): what inferences should be performed at each step?

38/66

Backtracking Search Algorithm [cont.]

@ General-purpose algorithm for generic CSPs
@ The representation of CSPs is standardized
— no need to provide a domain-specific initial state, action function, transition model, or goal test

@ BACKTRACKING-SEARCH() keeps a single representation of a state

e alters such representation rather than creating new ones
@ We can add some sophistication to the unspecified functions:

@ SELECT-UNASSIGNED-VARIABLE(...): which variable should be assigned next?

@ ORDER-DOMAIN-VALUES(...): in which order should its values be tried?

@ INFERENCE(...): what inferences should be performed at each step?
@ We can also wonder: when an assignment violates a constraint:

e where should we backtrack s.t. to avoid usuless search?
e how can we avoid repeating the same failure in the future?

38/66

Variable-Selection Heuristics

Minimum Remaining Values (MRV) heuristic
@ Aka most constrained variable or fail-first heuristic

39/66

Variable-Selection Heuristics

Minimum Remaining Values (MRV) heuristic

@ Aka most constrained variable or fail-first heuristic
@ MRV: Choose the variable with the fewest legal values
—> pick a variable that is most likely to cause a failure soon

39/66

Variable-Selection Heuristics

Minimum Remaining Values (MRV) heuristic

@ Aka most constrained variable or fail-first heuristic

@ MRV: Choose the variable with the fewest legal values
—> pick a variable that is most likely to cause a failure soon

@ If X has no legal values left, MRV heuristic selects X

— failure detected immediately
e avoid pointless search through other variables

39/66

Variable-Selection Heuristics

Minimum Remaining Values (MRV) heuristic

@ Aka most constrained variable or fail-first heuristic

@ MRV: Choose the variable with the fewest legal values
—> pick a variable that is most likely to cause a failure soon

@ If X has no legal values left, MRV heuristic selects X

— failure detected immediately
e avoid pointless search through other variables

@ (Otherwise) If X has one legal value left, MRV selects X

—> performs deterministic choices first!
@ postpones nondeterministic steps as much as possible

39/66

Variable-Selection Heuristics

Minimum Remaining Values (MRV) heuristic

@ Aka most constrained variable or fail-first heuristic

@ MRV: Choose the variable with the fewest legal values
—> pick a variable that is most likely to cause a failure soon

@ If X has no legal values left, MRV heuristic selects X

— failure detected immediately
e avoid pointless search through other variables

@ (Otherwise) If X has one legal value left, MRV selects X

—> performs deterministic choices first!
@ postpones nondeterministic steps as much as possible

@ Pick (WA = red), (NT = green) = (SA = blue) (deterministic)

e

66

Variable-Selection Heuristics

Minimum Remaining Values (MRV) heuristic

@ Aka most constrained variable or fail-first heuristic

@ MRV: Choose the variable with the fewest legal values
—> pick a variable that is most likely to cause a failure soon

@ If X has no legal values left, MRV heuristic selects X

— failure detected immediately
e avoid pointless search through other variables

@ (Otherwise) If X has one legal value left, MRV selects X

—> performs deterministic choices first!
@ postpones nondeterministic steps as much as possible

@ Pick (WA = red), (NT = green) = (SA = blue) (deterministic)

e

66

Variable-Selection Heuristics

Minimum Remaining Values (MRV) heuristic

@ Aka most constrained variable or fail-first heuristic

@ MRV: Choose the variable with the fewest legal values
—> pick a variable that is most likely to cause a failure soon

@ If X has no legal values left, MRV heuristic selects X

— failure detected immediately
e avoid pointless search through other variables

(Otherwise) If X has one legal value left, MRV selects X

—> performs deterministic choices first!
@ postpones nondeterministic steps as much as possible

Pick (WA = red), (NT = green) —> (SA = blue) (deterministic)

e

66

Variable-Selection Heuristics [cont.]

Degree heuristic
@ Pick the variable that is involved in the largest number of constraints on other unassigned
variables

— attempts to reduce the branching factor on future choices
— favourishes future deterministic choices

40/66

Variable-Selection Heuristics [cont.]

Degree heuristic
@ Pick the variable that is involved in the largest number of constraints on other unassigned
variables

— attempts to reduce the branching factor on future choices
— favourishes future deterministic choices

@ Used as tie-breaker in combination with MRV
e apply MRYV; if ties, apply DH to these variables

40/66

Variable-Selection Heuristics [cont.]

Degree heuristic
@ Pick the variable that is involved in the largest number of constraints on other unassigned
variables

— attempts to reduce the branching factor on future choices
— favourishes future deterministic choices

@ Used as tie-breaker in combination with MRV
e apply MRYV; if ties, apply DH to these variables

40/66

Variable-Selection Heuristics [cont.]

Degree heuristic
@ Pick the variable that is involved in the largest number of constraints on other unassigned
variables

— attempts to reduce the branching factor on future choices
— favourishes future deterministic choices

@ Used as tie-breaker in combination with MRV
e apply MRYV; if ties, apply DH to these variables

Example: MRV+DH
@ Pick (SA = blue), (NT = green)—> (Q = red) (deterministic)

L

(©S. Russell & P. Norwig, AIMA)

40/

Variable-Selection Heuristics [cont.]

Degree heuristic
@ Pick the variable that is involved in the largest number of constraints on other unassigned
variables

— attempts to reduce the branching factor on future choices
— favourishes future deterministic choices

@ Used as tie-breaker in combination with MRV
e apply MRYV; if ties, apply DH to these variables

Example: MRV+DH
@ Pick (SA = blue), (NT = green)—> (Q = red) (deterministic)

L

(©S. Russell & P. Norwig, AIMA)

40/

Variable-Selection Heuristics [cont.]

Degree heuristic
@ Pick the variable that is involved in the largest number of constraints on other unassigned
variables

— attempts to reduce the branching factor on future choices
— favourishes future deterministic choices

@ Used as tie-breaker in combination with MRV
e apply MRYV; if ties, apply DH to these variables

Example: MRV+DH
@ Pick (SA = blue), (NT = green)—> (Q = red) (deterministic)
@ Next? (NSW=green)... (deterministic MRV+DH),

L

(©S. Russell & P. Norwig, AIMA)

40/

Value Selection Heuristics

Least Constraining Value (LCS) heuristic

@ Pick the value that rules out the fewest choices for the neighboring variables
= tries maximum flexibility for subsequent variable assignments

41/66

Value Selection Heuristics

Least Constraining Value (LCS) heuristic
@ Pick the value that rules out the fewest choices for the neighboring variables
— tries maximum flexibility for subsequent variable assignments
@ Look for the most likely values first
—> improve chances of finding solutions earlier

41/66

Value Selection Heuristics

Least Constraining Value (LCS) heuristic
@ Pick the value that rules out the fewest choices for the neighboring variables
— tries maximum flexibility for subsequent variable assignments
@ Look for the most likely values first
—> improve chances of finding solutions earlier
@ Ex: MRV+DH+LCS allow for solving 1000-queens

41/66

Value Selection Heuristics

Least Constraining Value (LCS) heuristic
@ Pick the value that rules out the fewest choices for the neighboring variables
— tries maximum flexibility for subsequent variable assignments
@ Look for the most likely values first
—> improve chances of finding solutions earlier
@ Ex: MRV+DH+LCS allow for solving 1000-queens

LCS
@ Pick (SA = red), (NT = green) = (Q = red) (preferred)

. % Allows 1 value for SA
o4
. ‘ Allows 0 values for SA

(©S. Russell & P. Norwig, AIMA)

41

Value Selection Heuristics

Least Constraining Value (LCS) heuristic
@ Pick the value that rules out the fewest choices for the neighboring variables
— tries maximum flexibility for subsequent variable assignments
@ Look for the most likely values first
—> improve chances of finding solutions earlier
@ Ex: MRV+DH+LCS allow for solving 1000-queens

LCS
@ Pick (SA = red), (NT = green) = (Q = red) (preferred)

@ Next?
. % Allows 1 value for SA
o4
. ‘ Allows 0 values for SA

(©S. Russell & P. Norwig, AIMA)

41

Value Selection Heuristics

Least Constraining Value (LCS) heuristic
@ Pick the value that rules out the fewest choices for the neighboring variables
— tries maximum flexibility for subsequent variable assignments
@ Look for the most likely values first
—> improve chances of finding solutions earlier
@ Ex: MRV+DH+LCS allow for solving 1000-queens

LCS
@ Pick (SA = red), (NT = green) = (Q = red) (preferred)

@ Next? (SA=blue)
.% Allows 1 value for SA

Ro— 4 Yg—

(©S. Russell & P. Norwig, AIMA)

41

Outline

@ search with CSPs

@ Interleaving Search and Inference

42/66

Interleaving search and inference

Interleaving search and inference:

@ After each choice, infer new domain reductions on other variables
e detect inconsistencies earlier
@ reduce search spaces
e may produce unary domains (deterministic steps)
— returned as assignments (“inferences”)

43/66

Interleaving search and inference

Interleaving search and inference:

@ After each choice, infer new domain reductions on other variables
e detect inconsistencies earlier
@ reduce search spaces
e may produce unary domains (deterministic steps)
— returned as assignments (“inferences”)

@ Tradeoff between effectiveness and efficiency

43/66

Interleaving search and inference

Interleaving search and inference:

@ After each choice, infer new domain reductions on other variables
@ detect inconsistencies earlier
@ reduce search spaces

e may produce unary domains (deterministic steps)
— returned as assignments (“inferences”)
@ Tradeoff between effectiveness and efficiency
@ Forward checking
e cheap
@ ensures arc consistency of (assigned, unassigned) variable pairs only

43/66

Interleaving search and inference

Interleaving search and inference:

@ After each choice, infer new domain reductions on other variables
@ detect inconsistencies earlier
@ reduce search spaces

e may produce unary domains (deterministic steps)
— returned as assignments (“inferences”)

@ Tradeoff between effectiveness and efficiency
@ Forward checking

e cheap

@ ensures arc consistency of (assigned, unassigned) variable pairs only
@ AC-3

@ more expensive

@ ensure arc consistency of all variable pairs
e strategy (MAC):

o after X; is assigned, start AC-3 with only the arcs (X;, X;) s.t. X; unassigned neighbour variables of X;
— much more effective than forward checking, more expensive

43/66

Backtracking with Forward Checking: Example

4-Queens (columns)

X1 X2
1 2 3 4 {1,2,3,4} {1,2,3,4}
1
2
3
* X3 X4
{1,2,3,4} {1,2,3,4}

44/66

Backtracking with Forward Checking: Example

4-Queens (columns)

X1 X2
{1,2,3,4} {1,2,3,4}

X3 X4
{1,2,3,4} {1,2,3,4}

(© B.J.Dorr U.Md & Tom Lenaert ts, IRIDIA)

44/66

Backtracking with Forward Checking: Example

4-Queens (columns)

X1 X2
{1,2,3,4} {. .34}

X3 X4
{ .2, 4} {.23 }

(© B.J.Dorr U.Md & Tom Lenaert ts, IRIDIA)

44/66

Backtracking with Forward Checking: Example

4-Queens (columns)

X1 X2
{1,2,3,4} {., .34}

X3 X4
{ .2, 4} { .23, }

(© B.J.Dorr U.Md & Tom Lenaert ts, IRIDIA)

44/66

Backtracking with Forward Checking: Example

4-Queens (columns)

X1 X2
{1,2,3,4} {. .34}

X3 X4
{...1} { .23 1}

(© B.J.Dorr U.Md & Tom Lenaert ts, IRIDIA)

44/66

Backtracking with Forward Checking: Example

4-Queens (columns)

X1 X2
12 3 4 {.2.3.4} {1,2,3,4}
1
2
3
) X3 X4
{1,2,3,4} {1,2,3,4}
...(after trying X2 = 4, X3 = 2, failing and backtracking) assign X1 =2 ...

44/66

Backtracking with Forward Checking: Example

4-Queens (columns)

X1 X2
12 3 4 {.2.34} {,.,.4}
1
2
3
4 X3 X4
1, 3, ¥ {1 ,3.4)

44/66

Backtracking with Forward Checking: Example

4-Queens (columns)

X1 X2
{ .2.3.4} {.. .4}

X3 X4
{1: :31 } {1’ ’3’4}

(© B.J.Dorr U.Md & Tom Lenaert ts, IRIDIA)

44/66

Backtracking with Forward Checking: Example

4-Queens (columns)

X1 X2
{ .2,3,4} {.. .4}

X3 X4
{1, , .} {1, .3, }

(© B.J.Dorr U.Md & Tom Lenaert ts, IRIDIA)

44/66

Backtracking with Forward Checking: Example

4-Queens (columns)

X1 X2
{ .,2.3,4} {.., .4}

X3 X4
{1, , ., } {1, .3, }

(© B.J.Dorr U.Md & Tom Lenaert ts, IRIDIA)

44/66

Backtracking with Forward Checking: Example

4-Queens (columns)

X1 X2
{ .2.3,4} {.. .4}

X3 X4
{1, ., .} {..3}

(© B.J.Dorr U.Md & Tom Lenaert ts, IRIDIA)

44/66

Backtracking with Forward Checking: Example

4-Queens (columns)

X1 X2
{ .2,3.4} {.. .4}

X3 X4
{L, ., .} {.,.3 1}

(© B.J.Dorr U.Md & Tom Lenaert ts, IRIDIA)

44/66

Outline

© sSearch with CSPs

@ Chronological vs. Conflict-Drivem Backtracking

45/66

Standard Chronological Backtracking

@ When a branch fails (empty domain for variable X;):
@ back up to the preceding variable which still has some untried value
@ forward-propagated assignments and rightmost choices are skipped
@ try a different value for it

=

/I\
Sl SSR oS

/\

C\Qﬁ: L o8
CF% *r

(©S. Russell & P. Norwig, AIMA)

46 /6

Standard Chronological Backtracking

@ When a branch fails (empty domain for variable X;):
@ back up to the preceding variable which still has some untried value
@ forward-propagated assignments and rightmost choices are skipped
@ try a different value for it

@ Problem: lots of search wasted!

=

/I\
Sl SSR oS

/\

C\Qﬁ: L o8
CF% *r

(©S. Russell & P. Norwig, AIMA)

46 /6

Standard Chronological Backtracking: Example

Assume variable selection order: WA,NSW,T,NT,Q,V,SA
step assignment [domain]

(1) pick WA=r [rbo]
(2) pick NSW=r [rbg] NT

@ failed branch: Eig gﬁl;ﬁ ICT: :r g {ZZ?] WA Q
6) = aQ=b [oA, INsW
(6) pick V=b [b, d]
(7)) = SA={} [M

Standard Chronological Backtracking: Example

Assume variable selection order: WA,NSW,T,NT,Q,V,SA
step assignment [domain]

(1) pick WA=r [rbo]
(2) pick NSW=r [rbg]
_ (3) pick T=r [rbg]
o failed branch: (4) pick NT =g [bg]
(5) = Q=b [£]
(6) pick V=b [b, d]
(7)) = SA={} [

@ backtrack to (5

~

, pick V = g = (7) again

WA

NT Q
SA NSW
V
T

Standard Chronological Backtracking: Example
Assume variable selection order: WA,NSW,T,NT,Q,V,SA

step assignment [domain]

(1) pick WA=r [rbg]
(2) pick NSW =r [rbg]

i (3) pick T=r [rbg]

o failed branch: (4) pick NT =g [bg]

(5) = Q=b [b]
(6) pick V=b [b, 9]
7 = SsA={

@ backtrack to (5
@ backtrack to (3

- -

, pick V = g = (7) again

WA NT Q
SA NSW

V
T

, pick NT = b L Q= g = same subtree (6), with values switched

47466

Standard Chronological Backtracking: Example

Assume variable selection order: WA,NSW,T,NT,Q,V,SA
step assignment [domain]

(1) pick WA=r [rbg]
(2) pick NSW=r [rbg] NT

@ failed branch: Ei% gﬁi ICT: :r g {ZZ?] WA Q
(5) = o=b [oA, [Nsw
(6) pick V=b [b, d]
7)) = SsA={ 1 M T

@ backtrack to (5

@ backtrack to (3
@ backtrack to (2

, pick V = g = (7) again
, pick NT = b L Q= g = same subtree (6), with values switched
, pick T = b =—> same subtree (4)...

~ ~— ~—

47466

Standard Chronological Backtracking: Example

Assume variable selection order: WA,NSW,T,NT,Q,V,SA
step assignment [domain]

(1) pick WA=r [rbg]
(2) pick NSW=r [rbg] NT

@ failed branch: Ei% gﬁi ICT: :r g {trf;?] WA Q
(5) = o=b [oA, [Nsw
(6) pick V=b [b, d]
7)) = SsA={ 1 M T

@ backtrack to (5), pick V = g = (7) again
, pick NT = b L Q= g = same subtree (6), with values switched
, pick T = b =—> same subtree (4)...
, pick T = g =—> same subtree (4)...

@ backtrack to (2

(5)
@ backtrack to (3)
@)
@ backtrack to (2)

47466

Standard Chronological Backtracking: Example
Assume variable selection order: WA,NSW,T,NT,Q,V,SA

(1)
(2)
. . ()
@ failed branch: (4) pick
(5)
(6)
)

step assignment [domain]
pick WA=r [rbg]
pick NSW =r [rbg]
pick T=r [rbg]
NT =g [ba]
£ Q=b [b]
pick V=»b [b, 9]
M = sA={ |

@ backtrack to

@ backtrack to

@ backtrack to
— backtrack to

(5)
@)
@ backtrack to (2), pick T = b = same subtree (4)...
(2)
(1)

WA NT Q
SA NSW

V
T

47466

Standard Chronological Backtracking: Example

Assume variable selection order: WA,NSW,T,NT,Q,V,SA
step assignment [domain]

(1) pick WA=r [rbg]
(2) pick NSW =r [rbg] NT
. (8) pick T=r [rbg]
o failed branch: (4) pick NT =g [bg] WA Q
5) = a-b [SA_[Nsw
(6) pick V=b (b, g]
7 £ sa=g [v
@ backtrack to (5), pick V = g = (7) again T
@ backtrack to (3), pick NT = b £, 0= g = same subtree (6), with values switched

)
)
)
)

Py

@ backtrack to (2), pick T = b = same subtree (4)...

@ backtrack to (2), pick T = g = same subtree (4)...
— backtrack to (1), then assign NSW another value
— lots of useless search on T and V values

Standard Chronological Backtracking: Example

Assume variable selection order: WA,NSW,T,NT,Q,V,SA
step assignment [domain]

(1) pick WA=r [rbg]
(2) pick NSW=r [rbg] NT

@ failed branch: Ei% gﬁi ICT: :r g {ZZ?] WA Q
(5) = o=b [oA, [Nsw
(6) pick V=b [b, d]
7)) = SsA={ 1 M T

@ backtrack to (5), pick V = g = (7) again
, pick NT = b £, 0= g = same subtree (6), with values switched
@ backtrack to (2), pick T = b = same subtree (4)...
@ backtrack to (2), pick T = g =—> same subtree (4)...
— backtrack to (1), then assign NSW another value
— lots of useless search on T and V values

@ source of inconsistency not identified: {WA =r, NSW = r}

(
@ backtrack to (3

(

(

—_ — — —=

Standard Chronological Backtracking: Example [cont.]
Search Tree

@
ovnevo\x iz
(e
IV
d 1P
o
= / & @' IR
e e o 8
S
6) 6) - 3

(¢Y)
@
3)
“)
®)
(6)
(7

48766

Nogoods & Conflict Sets

@ Nogood: subassignment which cannot be part of any solution
o ex: {WA=r,NSW = r} (see previous example)

49/66

Nogoods & Conflict Sets

@ Nogood: subassignment which cannot be part of any solution
o ex: {WA=r,NSW = r} (see previous example)
@ Conflict set for X; (aka explanations):
(minimal) set of value assignments which caused the reduction of D; via forward checking
(i.e., in direct conflict with some values of X;)
e ex: NSW=r,NT=g in conflict with r and g values for Q resp.
= domain of Q reduced to {b} via forward checking
e a conflict set of an empty-domain variable is a nogood

49/66

Conflict-Driven Backjumping

@ Idea: When a branch fails (empty domain for variable X;):
@ identify nogood which caused the failure deterministically via forward checking
@ backtrack s.t. to pop the most-recently assigned element in nogood,
@ change its value

50/66

Conflict-Driven Backjumping

@ Idea: When a branch fails (empty domain for variable X;):

@ identify nogood which caused the failure deterministically via forward checking
@ backtrack s.t. to pop the most-recently assigned element in nogood,
@ change its value

—> May jump much higher, lots of search saved

50/66

Conflict-Driven Backjumping

@ |dea: When a branch fails (empty domain for variable Xj):
@ identify nogood which caused the failure deterministically via forward checking
@ backtrack s.t. to pop the most-recently assigned element in nogood,
@ change its value
— May jump much higher, lots of search saved
@ |dentify nogood:

@ take the conflict set C; of empty-domain X; (initial nogood)
@ progressively backward-substitute inside C; every deterministic assignments X; = v with its
respective conflict set C;:

Ci:=GCGuG\{X=v}
until none is left

50/66

Conflict-Driven Backjumping

@ |dea: When a branch fails (empty domain for variable Xj):
@ identify nogood which caused the failure deterministically via forward checking
@ backtrack s.t. to pop the most-recently assigned element in nogood,
@ change its value
— May jump much higher, lots of search saved
@ |dentify nogood:

@ take the conflict set C; of empty-domain X; (initial nogood)
@ progressively backward-substitute inside C; every deterministic assignments X; = v with its
respective conflict set C;:

Ci=GuUG\{X=v}
until none is left
— l|dentify the most recent decision which caused the failure due to FC by “undoing” FC steps

50/66

Conflict-Driven Backjumping

@ |dea: When a branch fails (empty domain for variable Xj):

@ identify nogood which caused the failure deterministically via forward checking
@ backtrack s.t. to pop the most-recently assigned element in nogood,
@ change its value

— May jump much higher, lots of search saved
@ |dentify nogood:

@ take the conflict set C; of empty-domain X; (initial nogood)
@ progressively backward-substitute inside C; every deterministic assignments X; = v with its
respective conflict set C;:

Ci:=GCGuG\{X=v}
until none is left

— l|dentify the most recent decision which caused the failure due to FC by “undoing” FC steps
@ Many different strategies & variants available

50/66

Conflict-Driven Backjumping: Example

@ failed branch:

step assign. [domain] <« {conflict set}
(1) pick WA=r [rbg] +~{}
(2) pick NSW=r [rbg] —{}
(8) pick T=r [rbg] +~{}
(4) pick NT=g [bg] «— {WA=r}
(5) = Q=b [t] « {NSW=r,NT=g}
(6) pick V=b [b, 9] +— {NSW=r}
(7) =L SsA=0 | «— {WA=r,NT=g,Q=Db}
NT
WA Q
SA NSW
V

Conflict-Driven Backjumping: Example

@ failed branch:

step assign. [domain] <« {conflict set}

(1) pick WA=r [rbg] +~{}

(2) pick NSW=r [rbg] —{}

(8) pick T=r [rbg] +~{}

(4) pick NT=g [bg] «— {WA=r}

(5) = Qa=b [b] « {NSW=r,NT=g}

(6) pick V=b [b, g] +— {NSW=r}

7) =& sA=0 | « {WA=r,NT=g,Q=b}
@ backward-substitute assignments

0 (7)

{WA=r,NT=g,Q=b} (5)
{WA=r,NT=g, NSW=r}

WA NT Q
SA NSW
V

Conflict-Driven Backjumping: Example

@ failed branch:

step assign. [domain] <« {conflict set}

(1) pick WA=r [rbg] +~{}

(2) pick NSW=r [rbg] ~—{}

(8) pick T=r [rbg] +~{}

(4) pick NT=g [bg] «— {WA=r}

(5) = Qa=b [b] « {NSW=r,NT=g}

(6) pick V=b [b, 9] +— {NSW=r}

7) L& sa=0 | « {WA=r,NT=g,Q=b}

@ backward-substitute assignments

b (7)

{WA=r,NT=g,Q=b} (5)

{WA=r,NT=g, NSW=r}

— backtrack till (3) s.t. to pop (4), then assign NT = b

WA

NT Q
SA NSW
V

Conflict-Driven Backjumping: Example

@ failed branch:

step assign. [domain] <« {conflict set}

(1) pick WA=r [rbg] +~{}

(2) pick NSW=r [rbg] ~—{}

(8) pick T=r [rbg] +~{}

(4) pick NT=g [bg] «— {WA=r}

(5) = Qa=b [b] « {NSW=r,NT=g}

(6) pick V=b [b, 9] +— {NSW=r}

7) L& sa=p « {WA=r,NT=g,Q=b}

@ backward-substitute assignments

b (7)

{WA=r,NT=g,Q=b} (5)

{WA=r,NT=g, NSW=r}

— backtrack till (3) s.t. to pop (4), then assign NT = b
— saves useless search on V values

WA

NT Q
SA NSW
V
T

Conflict-Driven Backjumping: Example [cont.]

@ new failed branch:

step assign. [domain] <« {conflict set}

(1) pick WA=r [rbg] +~{}

(2) pick NSW=r [rbg] —{}

(8) pick T=r [rbg] +~{}

(4) pick NT=b [p] «— {WA=r}

5) = a=g [d] — {NSW=r,NT =b}

(6) pick V=b [b, g] +— {NSW=r}

7) =& sA=0 « {WA=r,NT=b,Q=g} NT
WA Q

SA NSW
V

Conflict-Driven Backjumping: Example [cont.]

@ new failed branch:

step assign. [domain] <« {conflict set}

(1) pick WA=r [rbg] «~{}

(2) pick NSW=r [rbg] ~—{}

(8) pick T=r [rbg] +~{}

(4) pick NT=b [b] — {WA=r}

5) = a=g [d] — {NSW=r,NT=b}

(6) pick V=b [b, 9] +— {NSW=r}

7) L& sa=p « {WA=r,NT=b,Q=g}

@ backward-substitute assignments WA NT Q
0 () SA

{WA=r,NT=b,Q=g} (5) NSW
