Fundamentals of Artificial Intelligence Chapter 06: **Constraint Satisfaction Problems**

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it https://disi.unitn.it/rseba/DIDATTICA/fai_2023/

Teaching assistants:

Mauro Dragoni, dragoni@fbk.eu, https://www.maurodragoni.com/teaching/fai/ Paolo Morettin, paolo.morettin@unitn.it, https://paolomorettin.github.io/

M.S. Course "Artificial Intelligence Systems", academic year 2023-2024

Last update: Friday 20th October, 2023, 15:55

Copyright notice: Most examples and images displayed in the slides of this course are taken from [Russell & Norwig, "Artificial Intelligence, a Modern Approach", 3rd ed., Pearson], including explicitly figures from the above-mentioned book, so that their copyright is detained by the authors. A few other material (text, figures, examples) is authored by (in alphabetical order): Pieter Abbeel, Bonnie J. Dorr, Anca Dragan, Dan Klein, Nikita Kitaev, Tom Lenaerts, Michela Milano, Dana Nau, Maria Simi, who detain its copyright a These slides cannot be displayed in public without the permission of the author.

Outline

Constraint Satisfaction Problems (CSPs)

Search with CSPs

- Inference: Constraint Propagation
- Backtracking Search
- Interleaving Search and Inference
- Chronological vs. Conflict-Drivem Backtracking

Local Search with CSPs

Exploiting Structure of CSPs

Outline

Constraint Satisfaction Problems (CSPs)

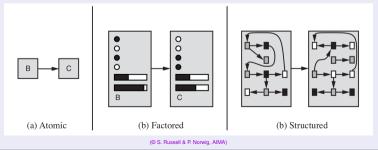
Search with CSPs

- Inference: Constraint Propagation
- Backtracking Search
- Interleaving Search and Inference
- Chronological vs. Conflict-Drivem Backtracking
- Local Search with CSPs
- Exploiting Structure of CSPs

Recall: State Representations [Ch. 02]

Representations of states and transitions

- Three ways to represent states and transitions between them:
 - atomic: a state is a black box with no internal structure
 - factored: a state consists of a vector of attribute values
 - structured: a state includes objects, each of which may have attributes of its own as well as relationships to other objects
- increasing expressive power and computational complexity
- reality represented at different levels of abstraction



Constraint Satisfaction Problems (CSPs): Generalities

Constraint Satisfaction Problems, CSPs (aka Constraint Satisfiability Problems)

- Search problem so far: Atomic representation of states
 - black box with no internal structure
 - goal test as set inclusion

Henceforth: use a Factored representation of states

- state is defined by a set of variables values from some domains
- goal test is a set of constraints specifying allowable combinations of values for subsets of variables

• a set of variable values is a goal iff the values verify all constraints

CSP Search Algorithms

- take advantage of the structure of states
- use general-purpose heuristics rather than problem-specific ones
- main idea: eliminate large portions of the search space all at once
 - identify variable/value combinations that violate the constraints

Constraint Satisfaction Problems (CSPs): Generalities

Constraint Satisfaction Problems, CSPs (aka Constraint Satisfiability Problems)

- Search problem so far: Atomic representation of states
 - black box with no internal structure
 - goal test as set inclusion
- Henceforth: use a Factored representation of states
 - state is defined by a set of variables values from some domains
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables
 - a set of variable values is a goal iff the values verify all constraints

CSP Search Algorithms

- take advantage of the structure of states
- use general-purpose heuristics rather than problem-specific ones
- main idea: eliminate large portions of the search space all at once
 - identify variable/value combinations that violate the constraints

Constraint Satisfaction Problems (CSPs): Generalities

Constraint Satisfaction Problems, CSPs (aka Constraint Satisfiability Problems)

- Search problem so far: Atomic representation of states
 - black box with no internal structure
 - goal test as set inclusion
- Henceforth: use a Factored representation of states
 - state is defined by a set of variables values from some domains
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables
 - a set of variable values is a goal iff the values verify all constraints
- CSP Search Algorithms
 - take advantage of the structure of states
 - use general-purpose heuristics rather than problem-specific ones
 - main idea: eliminate large portions of the search space all at once
 - identify variable/value combinations that violate the constraints

- A Constraint Satisfaction Problem is a tuple $\langle X, D, C \rangle$:
 - a set of variables $X \stackrel{\text{\tiny def}}{=} \{X_1, ..., X_n\}$
 - a set of (non-empty) domains $D \stackrel{\text{def}}{=} \{D_1, ..., D_n\}$, one for each X_i
 - a set of constraints $C \stackrel{\text{def}}{=} \{C_1, ..., C_m\}$
 - specify allowable combinations of values for the variables in X
- Each D_i is a set of allowable values $\{v_i, ..., v_k\}$ for variable X_i
- Each C_i is a pair $\langle scope, rel \rangle$
 - scope is a tuple of variables that participate in the constraint
 - rel is a relation defining the values that such variables can take
- A relation is
 - an explicit list of all tuples of values that satisfy the constraint (most often inconvenient), or
 - an abstract relation supporting two operations:
 - test if a tuple is a member of the relation
 - enumerate the members of the relation
- We need a language to express constraint relations!

- A Constraint Satisfaction Problem is a tuple $\langle X, D, C \rangle$:
 - a set of variables $X \stackrel{\text{\tiny def}}{=} \{X_1, ..., X_n\}$
 - a set of (non-empty) domains $D \stackrel{\text{def}}{=} \{D_1, ..., D_n\}$, one for each X_i
 - a set of constraints $C \stackrel{\text{def}}{=} \{C_1, ..., C_m\}$
 - specify allowable combinations of values for the variables in X
- Each D_i is a set of allowable values $\{v_i, ..., v_k\}$ for variable X_i
- Each C_i is a pair $\langle scope, rel \rangle$
 - scope is a tuple of variables that participate in the constraint
 - rel is a relation defining the values that such variables can take
- A relation is
 - an explicit list of all tuples of values that satisfy the constraint (most often inconvenient), or
 - an abstract relation supporting two operations:
 - test if a tuple is a member of the relation
 - enumerate the members of the relation
- We need a language to express constraint relations!

- A Constraint Satisfaction Problem is a tuple $\langle X, D, C \rangle$:
 - a set of variables $X \stackrel{\text{\tiny def}}{=} \{X_1, ..., X_n\}$
 - a set of (non-empty) domains $D \stackrel{\text{def}}{=} \{D_1, ..., D_n\}$, one for each X_i
 - a set of constraints $C \stackrel{\text{def}}{=} \{C_1, ..., C_m\}$
 - specify allowable combinations of values for the variables in X
- Each D_i is a set of allowable values $\{v_i, ..., v_k\}$ for variable X_i
- Each C_i is a pair $\langle scope, rel \rangle$
 - scope is a tuple of variables that participate in the constraint
 - rel is a relation defining the values that such variables can take
- A relation is
 - an explicit list of all tuples of values that satisfy the constraint (most often inconvenient), or
 - an abstract relation supporting two operations:
 - test if a tuple is a member of the relation
 - enumerate the members of the relation
- We need a language to express constraint relations!

- A Constraint Satisfaction Problem is a tuple $\langle X, D, C \rangle$:
 - a set of variables $X \stackrel{\text{\tiny def}}{=} \{X_1, ..., X_n\}$
 - a set of (non-empty) domains $D \stackrel{\text{def}}{=} \{D_1, ..., D_n\}$, one for each X_i
 - a set of constraints $C \stackrel{\text{def}}{=} \{C_1, ..., C_m\}$
 - specify allowable combinations of values for the variables in X
- Each D_i is a set of allowable values $\{v_i, ..., v_k\}$ for variable X_i
- Each C_i is a pair $\langle scope, rel \rangle$
 - scope is a tuple of variables that participate in the constraint
 - rel is a relation defining the values that such variables can take
- A relation is
 - an explicit list of all tuples of values that satisfy the constraint (most often inconvenient), or
 - an abstract relation supporting two operations:
 - test if a tuple is a member of the relation
 - enumerate the members of the relation
- We need a language to express constraint relations!

- A Constraint Satisfaction Problem is a tuple $\langle X, D, C \rangle$:
 - a set of variables $X \stackrel{\text{\tiny def}}{=} \{X_1, ..., X_n\}$
 - a set of (non-empty) domains $D \stackrel{\text{def}}{=} \{D_1, ..., D_n\}$, one for each X_i
 - a set of constraints $C \stackrel{\text{def}}{=} \{C_1, ..., C_m\}$
 - specify allowable combinations of values for the variables in X
- Each D_i is a set of allowable values $\{v_i, ..., v_k\}$ for variable X_i
- Each C_i is a pair $\langle scope, rel \rangle$
 - scope is a tuple of variables that participate in the constraint
 - rel is a relation defining the values that such variables can take
- A relation is
 - an explicit list of all tuples of values that satisfy the constraint (most often inconvenient), or
 - an abstract relation supporting two operations:
 - test if a tuple is a member of the relation
 - enumerate the members of the relation
- We need a language to express constraint relations!

States, Assignments and Solutions

• A state in a CSP is an assignment of values to some or all of the variables $\{X_i = v_{x_i}\}_i$ s.t $X_i \in X$ and $v_{x_i} \in D_i$

- An assignment is
 - complete (aka total) if every variable is assigned a value
 - incomplete (aka partial) if some variable is assigned a value
- An assignment that does not violate any constraints in the CSP is called a consistent or legal assignment
- A solution to a CSP is a consistent and complete assignment
- A CSP consists in finding one solution (or state there is none)
- Constraint Optimization Problems (COPs): CSPs requiring solutions that maximize/minimize an objective function

States, Assignments and Solutions

- A state in a CSP is an assignment of values to some or all of the variables $\{X_i = v_{x_i}\}_i$ s.t $X_i \in X$ and $v_{x_i} \in D_i$
- An assignment is
 - complete (aka total) if every variable is assigned a value
 - incomplete (aka partial) if some variable is assigned a value
- An assignment that does not violate any constraints in the CSP is called a consistent or legal assignment
- A solution to a CSP is a consistent and complete assignment
- A CSP consists in finding one solution (or state there is none)
- Constraint Optimization Problems (COPs): CSPs requiring solutions that maximize/minimize an objective function

States, Assignments and Solutions

- A state in a CSP is an assignment of values to some or all of the variables $\{X_i = v_{x_i}\}_i$ s.t $X_i \in X$ and $v_{x_i} \in D_i$
- An assignment is
 - complete (aka total) if every variable is assigned a value
 - incomplete (aka partial) if some variable is assigned a value
- An assignment that does not violate any constraints in the CSP is called a consistent or legal assignment
- A solution to a CSP is a consistent and complete assignment
- A CSP consists in finding one solution (or state there is none)
- Constraint Optimization Problems (COPs): CSPs requiring solutions that maximize/minimize an objective functio

States, Assignments and Solutions

- A state in a CSP is an assignment of values to some or all of the variables $\{X_i = v_{x_i}\}_i$ s.t $X_i \in X$ and $v_{x_i} \in D_i$
- An assignment is
 - complete (aka total) if every variable is assigned a value
 - incomplete (aka partial) if some variable is assigned a value
- An assignment that does not violate any constraints in the CSP is called a consistent or legal assignment
- A solution to a CSP is a consistent and complete assignment
- A CSP consists in finding one solution (or state there is none)
- Constraint Optimization Problems (COPs):

CSPs requiring solutions that maximize/minimize an objective function

States, Assignments and Solutions

- A state in a CSP is an assignment of values to some or all of the variables $\{X_i = v_{x_i}\}_i$ s.t $X_i \in X$ and $v_{x_i} \in D_i$
- An assignment is
 - complete (aka total) if every variable is assigned a value
 - incomplete (aka partial) if some variable is assigned a value
- An assignment that does not violate any constraints in the CSP is called a consistent or legal assignment
- A solution to a CSP is a consistent and complete assignment
- A CSP consists in finding one solution (or state there is none)
- Constraint Optimization Problems (COPs): CSPs requiring solutions that maximize/minimize an objective function

States, Assignments and Solutions

- A state in a CSP is an assignment of values to some or all of the variables $\{X_i = v_{x_i}\}_i$ s.t $X_i \in X$ and $v_{x_i} \in D_i$
- An assignment is
 - complete (aka total) if every variable is assigned a value
 - incomplete (aka partial) if some variable is assigned a value
- An assignment that does not violate any constraints in the CSP is called a consistent or legal assignment
- A solution to a CSP is a consistent and complete assignment
- A CSP consists in finding one solution (or state there is none)
- Constraint Optimization Problems (COPs): CSPs requiring solutions that maximize/minimize an objective function

- 81 Variables: (each square) X_{ij},
 i = A, ..., *I*; *j* = 1...9
- Domain: {1,2,...,8,9}
- Constraints:
 - $AllDiff(X_{i1}, ..., X_{i9})$ for each row i
 - *AllDiff*(*X*_{*Aj*},...,*X*_{*lj*}) for each column *j*
 - AllDiff($X_{A1}, ..., X_{A3}, X_{B1}..., X_{C3}$) for each 3×3 square region

(alternatively, a long list of pairwise inequality constraints: $X_{A1} \neq X_{A2}, X_{A1} \neq X_{A3}, ...$)

• Solution: total value assignment satisfying all the constraints: *X*_{A1} = 4, *X*_{A2} = 8, *X*_{A3} = 3, ...

	1	2	3	4	5	6	7	8	9	
А			3		2		6			
в	9			3		5			1	
С			1	8		6	4			
D			8	1		2	9			
Е	7								8	
F			6	7		8	2			
G			2	6		9	5			
н	8			2		3			9	
Т			5		1		3			
(© S. F	(© S. Russell & P. Norwig, AIMA)									

- 81 Variables: (each square) X_{ij},
 i = *A*, ..., *I*; *j* = 1...9
- Domain: {1,2,...,8,9}
- Constraints:
 - $AllDiff(X_{i1}, ..., X_{i9})$ for each row i
 - *AllDiff*(*X*_{Aj},...,*X*_{lj}) for each column *j*
 - AllDiff($X_{A1}, ..., X_{A3}, X_{B1}..., X_{C3}$) for each 3×3 square region

(alternatively, a long list of pairwise inequality constraints: $X_{A1} \neq X_{A2}, X_{A1} \neq X_{A3}, ...$)

• Solution: total value assignment satisfying all the constraints: *X*_{A1} = 4, *X*_{A2} = 8, *X*_{A3} = 3, ...

	1	2	3	4	5	6	7	8	9
А			3		2		6		
в	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Е	7								8
F			6	7		8	2		
G			2	6		9	5		
н	8			2		3			9
Т			5		1		3		
(© S. F	Russell & I	P. Norwig,	AIMA)						

- 81 Variables: (each square) *X_{ij}*, *i* = *A*, ..., *I*; *j* = 1...9
- Domain: {1,2,...,8,9}
- Constraints:
 - $AllDiff(X_{i1}, ..., X_{i9})$ for each row *i*
 - AllDiff(X_{Aj},...,X_{lj}) for each column j
 - $AllDiff(X_{A1}, ..., X_{A3}, X_{B1}..., X_{C3})$ for each 3×3 square region

(alternatively, a long list of pairwise inequality constraints: $X_{A1} \neq X_{A2}, X_{A1} \neq X_{A3}, ...$)

• Solution: total value assignment satisfying all the constraints: *X*_{A1} = 4, *X*_{A2} = 8, *X*_{A3} = 3, ...

	1	2	3	4	5	6	7	8	9	
А			3		2		6			
в	9			3		5			1	
С			1	8		6	4			
D			8	1		2	9			
Е	7								8	
F			6	7		8	2			
G			2	6		9	5			
н	8			2		3			9	
Т			5		1		3			
(© S. F	Russell & F	P. Norwig,	AIMA)							

- 81 Variables: (each square) *X_{ij}*, *i* = *A*, ..., *I*; *j* = 1...9
- Domain: {1, 2, ..., 8, 9}
- Constraints:
 - $AllDiff(X_{i1}, ..., X_{i9})$ for each row *i*
 - AllDiff(X_{Aj},...,X_{lj}) for each column j
 - $AllDiff(X_{A1}, ..., X_{A3}, X_{B1}..., X_{C3})$ for each 3×3 square region

(alternatively, a long list of pairwise inequality constraints: $X_{A1} \neq X_{A2}, X_{A1} \neq X_{A3}, ...$)

• Solution: total value assignment satisfying all the constraints: *X*_{A1} = 4, *X*_{A2} = 8, *X*_{A3} = 3, ...

	1	2	3	4	5	6	7	8	9
А	4	8	3	9	2	1	6	5	7
в	9	6	7	3	4	5	8	2	1
С	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
Е	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
н	8	1	4	2	5	3	7	6	9
I	6	9	5	4	1	7	3	8	2

(© S. Russell & P. Norwig, AIMA)

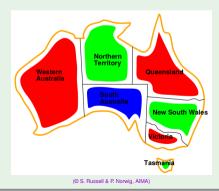
- Variables WA, NT, Q, NSW, V, SA, T
- Domain $D_i = \{red, green, blue\}, \forall i$
- Constraints: adjacent regions must have different colours
 - e.g. (explicit enumeration): $\langle WA, NT \rangle \in \{ \langle red, green \rangle, \langle red, blue \rangle, \}$ or (implicit, if language allows it): $WA \neq NT$
- A solution: {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

- Variables WA, NT, Q, NSW, V, SA, T
- Domain $D_i = \{$ *red*, *green*, *blue* $\}, \forall i$
- Constraints: adjacent regions must have different colours
 - e.g. (explicit enumeration): $\langle WA, NT \rangle \in \{ \langle red, green \rangle, \langle red, blue \rangle, \}$ or (implicit, if language allows it): $WA \neq NT$
- A solution: {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

- Variables WA, NT, Q, NSW, V, SA, T
- Domain $D_i = \{red, green, blue\}, \forall i$
- Constraints: adjacent regions must have different colours
 - e.g. (explicit enumeration): ⟨WA, NT⟩ ∈ {⟨red, green⟩, ⟨red, blue⟩,}
 or (implicit, if language allows it): WA ≠ NT

• A solution: {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

- Variables WA, NT, Q, NSW, V, SA, T
- Domain $D_i = \{red, green, blue\}, \forall i$
- Constraints: adjacent regions must have different colours
 - e.g. (explicit enumeration): ⟨WA, NT⟩ ∈ {⟨red, green⟩, ⟨red, blue⟩,} or (implicit, if language allows it): WA ≠ NT
- A solution: {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}



Constraint Graphs

- Useful to visualize a CSP as a constraint graph (aka network)
 - the nodes of the graph correspond to variables of the problem
 - an edge connects any two variables that participate in a constraint
- CSP algorithms use the graph structure to speed up search
 - Ex: Tasmania is an independent subproblem!

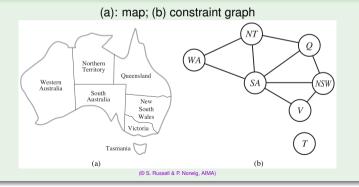
Constraint Graphs

- Useful to visualize a CSP as a constraint graph (aka network)
 - the nodes of the graph correspond to variables of the problem
 - an edge connects any two variables that participate in a constraint
- CSP algorithms use the graph structure to speed up search
 - Ex: Tasmania is an independent subproblem!

Constraint Graphs

- Useful to visualize a CSP as a constraint graph (aka network)
 - the nodes of the graph correspond to variables of the problem
 - an edge connects any two variables that participate in a constraint
- CSP algorithms use the graph structure to speed up search
 - Ex: Tasmania is an independent subproblem!

Example: Map Coloring



Varieties of CSPs

- Discrete variables
 - Finite domains (ex: Booleans, bounded integers, lists of values)
 - domain size d \implies d^n complete assignments (candidate solutions)
 - e.g. Boolean CSPs, incl. Boolean satisfiability (NP-complete)
 - possible to define constraints by enumerating all combinations (although unpractical)
 - Infinite domains (ex: unbounded integers)
 - infinite domain size \implies infinite # of complete assignments
 - e.g. job scheduling: variables are start/end days for each job
 - need a constraint language (ex: *StartJob*₁ + 5 \leq *StartJob*₃)
 - linear constraints ⇒ solvable (but NP-Hard)
 - non-linear constraints \implies undecidable (ex: $x^n + y^n = z^n, n > 2$)
- Continuous variables (ex: reals, rationals)
 - linear constraints solvable in poly time by LP methods
 - non-linear constraints solvable (e.g. by Cylindrical Algebraic Decomposition) but dramatically hard

The same problem may have distinct formulations as CSP!

Varieties of CSPs

- Discrete variables
 - Finite domains (ex: Booleans, bounded integers, lists of values)
 - domain size $d \implies d^n$ complete assignments (candidate solutions)
 - e.g. Boolean CSPs, incl. Boolean satisfiability (NP-complete)
 - possible to define constraints by enumerating all combinations (although unpractical)
 - Infinite domains (ex: unbounded integers)
 - infinite domain size \implies infinite # of complete assignments
 - e.g. job scheduling: variables are start/end days for each job
 - need a constraint language (ex: *StartJob*₁ + 5 \leq *StartJob*₃)
 - linear constraints ⇒ solvable (but NP-Hard)
 - non-linear constraints \implies undecidable (ex: $x^n + y^n = z^n, n > 2$)
- Continuous variables (ex: reals, rationals)
 - linear constraints solvable in poly time by LP methods
 - non-linear constraints solvable (e.g. by Cylindrical Algebraic Decomposition) but dramatically hard

The same problem may have distinct formulations as CSP!

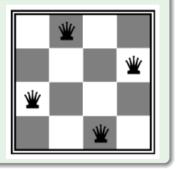
Varieties of CSPs

- Discrete variables
 - Finite domains (ex: Booleans, bounded integers, lists of values)
 - domain size $d \implies d^n$ complete assignments (candidate solutions)
 - e.g. Boolean CSPs, incl. Boolean satisfiability (NP-complete)
 - possible to define constraints by enumerating all combinations (although unpractical)
 - Infinite domains (ex: unbounded integers)
 - infinite domain size \implies infinite # of complete assignments
 - e.g. job scheduling: variables are start/end days for each job
 - need a constraint language (ex: *StartJob*₁ + 5 \leq *StartJob*₃)
 - linear constraints ⇒ solvable (but NP-Hard)
 - non-linear constraints \implies undecidable (ex: $x^n + y^n = z^n, n > 2$)
- Continuous variables (ex: reals, rationals)
 - linear constraints solvable in poly time by LP methods
 - non-linear constraints solvable (e.g. by Cylindrical Algebraic Decomposition) but dramatically hard

The same problem may have distinct formulations as CSP!

Formulation #1

- variables X_{ij} , i, j = 1..N (there is a queen i position i, j)
- domains: {0,1} (false,true)
- constraints (explicit):
 - $\forall i, j, k \langle X_{ij}, X_{ik} \rangle \in \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \}$ (row)
 - $\forall i, j, k \ \langle X_{ij}, X_{kj} \rangle \in \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \}$ (column)
 - $\forall i, j, k \ \langle X_{ij}, X_{i+k,j+k} \rangle \in \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \}$ (upward diagonal)
 - $\forall i, j, k \ \langle X_{ij}, X_{i+k,j-k} \rangle \in \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \}$ (downward diagonal)
- explicit representation
- very inefficient



Formulation #1

- variables X_{ij} , i, j = 1..N (there is a queen i position i, j)
- domains: {0, 1} (false,true)
- constraints (explicit):
 - $\forall i, j, k \ \langle X_{ij}, X_{ik} \rangle \in \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \}$ (row)
 - $\forall i, j, k \langle X_{ij}, X_{kj} \rangle \in \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \}$ (column)
 - $\forall i, j, k \ \langle X_{ij}, X_{i+k,j+k} \rangle \in \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \}$ (upward diagonal)
 - $\forall i, j, k \ \langle X_{ij}, X_{i+k,j-k} \rangle \in \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \}$ (downward diagonal)

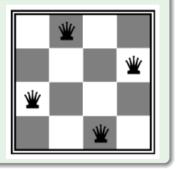
• explicit representation

• very inefficient

	¥			
			坐	
⊯				
		Ŵ		

Formulation #1

- variables X_{ij} , i, j = 1..N (there is a queen i position i, j)
- domains: {0, 1} (false,true)
- constraints (explicit):
 - $\forall i, j, k \langle X_{ij}, X_{ik} \rangle \in \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \}$ (row)
 - $\forall i, j, k \langle X_{ij}, X_{kj} \rangle \in \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \}$ (column)
 - $\forall i, j, k \ \langle X_{ij}, X_{i+k,j+k} \rangle \in \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \}$ (upward diagonal)
 - $\forall i, j, k \ \langle X_{ij}, X_{i+k,j-k} \rangle \in \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \}$ (downward diagonal)
- explicit representation
- very inefficient

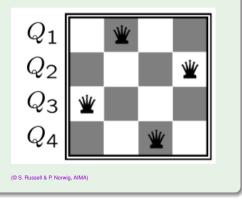


Formulation #1

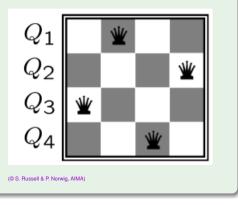
- variables X_{ij} , i, j = 1..N (there is a queen i position i, j)
- domains: {0, 1} (false,true)
- constraints (explicit):
 - $\forall i, j, k \langle X_{ij}, X_{ik} \rangle \in \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \}$ (row)
 - $\forall i, j, k \langle X_{ij}, X_{kj} \rangle \in \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \}$ (column)
 - $\forall i, j, k \ \langle X_{ij}, X_{i+k,j+k} \rangle \in \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \}$ (upward diagonal)
 - $\forall i, j, k \ \langle X_{ij}, X_{i+k,j-k} \rangle \in \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \}$ (downward diagonal)
- explicit representation
- very inefficient

	⊻			
			坐	
⊻				
		Ŵ		

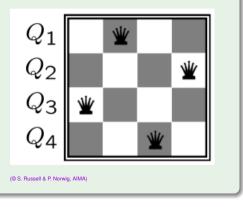
- variables Q_k , k = 1..N (row)
- domains: {1..*N*} (column position)
- constraints (implicit): *Nonthreatening*($Q_k, Q_{k'}$):
 - none (row)
 - $Q_i \neq Q_j$ (column)
 - $Q_i \neq Q_{j+k} + k$ (downward diagonal)
 - $Q_i \neq Q_{j+k} k$ (upward diagonal)
- implicit representation
- much more efficient



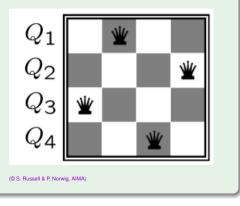
- variables Q_k , k = 1..N (row)
- domains: {1..*N*} (column position)
- constraints (implicit): *Nonthreatening*($Q_k, Q_{k'}$):
 - none (row)
 - $Q_i \neq Q_j$ (column)
 - $Q_i \neq Q_{j+k} + k$ (downward diagonal)
 - $Q_i \neq Q_{j+k} k$ (upward diagonal)
- implicit representation
- much more efficient



- variables Q_k , k = 1..N (row)
- domains: {1..*N*} (column position)
- constraints (implicit): *Nonthreatening*($Q_k, Q_{k'}$):
 - none (row)
 - $Q_i \neq Q_j$ (column)
 - $Q_i \neq Q_{j+k} + k$ (downward diagonal)
 - $Q_i \neq Q_{j+k} k$ (upward diagonal)
- implicit representation
- much more efficient



- variables Q_k , k = 1..N (row)
- domains: {1..*N*} (column position)
- constraints (implicit): *Nonthreatening*($Q_k, Q_{k'}$):
 - none (row)
 - $Q_i \neq Q_j$ (column)
 - $Q_i \neq Q_{j+k} + k$ (downward diagonal)
 - $Q_i \neq Q_{j+k} k$ (upward diagonal)
- implicit representation
- much more efficient



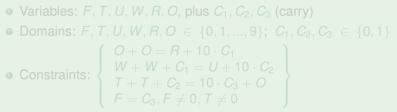
- Unary constraints: involve one single variable
 - ex: ($SA \neq green$)
- Binary constraints: involve pairs of variables
 - ex: ($SA \neq WA$)
- Higher-order constraints: involve > 3 variables
 - ex: cryptarithmetic column constraints
 - can be represented by constraint hypergraphs (hypernodes represent n-ary constraints, squares in cryptarithmetic example)
- Global constraints: involve an arbitrary number of variables
 - ex: $AllDiff(X_1, ..., X_k)$
 - note: maximum domain size $\geq k$, otherwise *AllDiff*() unsatisfiable
 - compact, specialized routines for handling them
- Preference constraints (aka soft constraints): describe preferences between/among solutions
 - ex: "I'd rather WA in red than in blue or green"
 - can often be encoded as costs/rewards for variables/constraints:
 - \Rightarrow solved by cost-optimization search techniques (Constraint Optimization Problems (COPs))

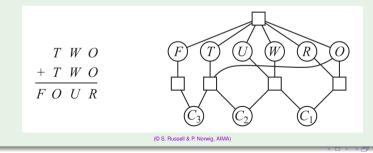
- Unary constraints: involve one single variable
 - ex: ($SA \neq green$)
- Binary constraints: involve pairs of variables
 - ex: (SA \neq WA)
- Higher-order constraints: involve \geq 3 variables
 - ex: cryptarithmetic column constraints
 - can be represented by constraint hypergraphs (hypernodes represent n-ary constraints, squares in cryptarithmetic example)
- Global constraints: involve an arbitrary number of variables
 - ex: $AllDiff(X_1, ..., X_k)$
 - note: maximum domain size $\geq k$, otherwise AllDiff() unsatisfiable
 - compact, specialized routines for handling them
- Preference constraints (aka soft constraints): describe preferences between/among solutions
 - ex: "I'd rather WA in red than in blue or green"
 - can often be encoded as costs/rewards for variables/constraints:
 - \Rightarrow solved by cost-optimization search techniques (Constraint Optimization Problems (COPs))

- Unary constraints: involve one single variable
 - ex: ($SA \neq green$)
- Binary constraints: involve pairs of variables
 - ex: (SA \neq WA)
- Higher-order constraints: involve \geq 3 variables
 - ex: cryptarithmetic column constraints
 - can be represented by constraint hypergraphs (hypernodes represent n-ary constraints, squares in cryptarithmetic example)
- Global constraints: involve an arbitrary number of variables
 - ex: $AllDiff(X_1,...,X_k)$
 - note: maximum domain size $\geq k$, otherwise *AllDiff*() unsatisfiable
 - compact, specialized routines for handling them
- Preference constraints (aka soft constraints): describe preferences between/among solutions
 - ex: "I'd rather WA in red than in blue or green"
 - can often be encoded as costs/rewards for variables/constraints:
 - \Rightarrow solved by cost-optimization search techniques (Constraint Optimization Problems (COPs))

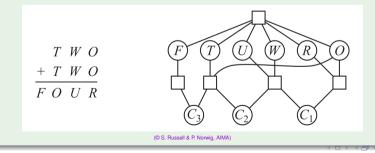
- Unary constraints: involve one single variable
 - ex: ($SA \neq green$)
- Binary constraints: involve pairs of variables
 - ex: ($SA \neq WA$)
- Higher-order constraints: involve \geq 3 variables
 - ex: cryptarithmetic column constraints
 - can be represented by constraint hypergraphs (hypernodes represent n-ary constraints, squares in cryptarithmetic example)
- Global constraints: involve an arbitrary number of variables
 - ex: $AllDiff(X_1, ..., X_k)$
 - note: maximum domain size $\geq k$, otherwise AllDiff() unsatisfiable
 - compact, specialized routines for handling them
- Preference constraints (aka soft constraints): describe preferences between/among solutions
 - ex: "I'd rather WA in red than in blue or green"
 - can often be encoded as costs/rewards for variables/constraints:
 - \Rightarrow solved by cost-optimization search techniques (Constraint Optimization Problems (COPs))

- Unary constraints: involve one single variable
 - ex: ($SA \neq green$)
- Binary constraints: involve pairs of variables
 - ex: (SA \neq WA)
- Higher-order constraints: involve \geq 3 variables
 - ex: cryptarithmetic column constraints
 - can be represented by constraint hypergraphs (hypernodes represent n-ary constraints, squares in cryptarithmetic example)
- Global constraints: involve an arbitrary number of variables
 - ex: $AllDiff(X_1, ..., X_k)$
 - note: maximum domain size $\geq k$, otherwise AllDiff() unsatisfiable
 - compact, specialized routines for handling them
- Preference constraints (aka soft constraints): describe preferences between/among solutions
 - ex: "I'd rather WA in red than in blue or green"
 - can often be encoded as costs/rewards for variables/constraints:
 - \implies solved by cost-optimization search techniques (Constraint Optimization Problems (COPs))





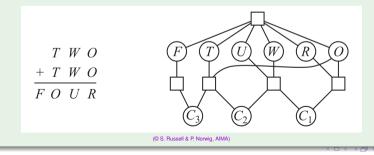
• Variables: F, T, U, W, R, O, plus C_1, C_2, C_3 (carry) • Domains: $F, T, U, W, R, O \in \{0, 1, ..., 9\}; C_1, C_2, C_3 \in \{0, 1\}$ • Constraints: $\begin{cases} O + O = R + 10 \cdot C_1 \\ W + W + C_1 = U + 10 \cdot C_2 \\ T + T + C_2 = 10 \cdot C_3 + O \\ F = C_3, F \neq 0, T \neq 0 \end{cases}$



- Variables: F, T, U, W, R, O, plus C_1, C_2, C_3 (carry)
- Domains: $F, T, U, W, R, O \in \{0, 1, ..., 9\}; C_1, C_2, C_3 \in \{0, 1\}$

Constraints

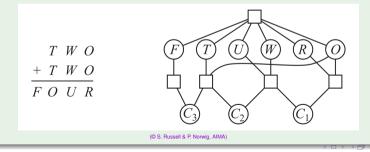
 $D + O = R + 10 \cdot C_1$ $V + W + C_1 = U + 10 \cdot C_2$ $F + T + C_2 = 10 \cdot C_3 + O$ $F = C_3, F \neq 0, T \neq 0$



- Variables: F, T, U, W, R, O, plus C_1, C_2, C_3 (carry)
- Domains: $F, T, U, W, R, O \in \{0, 1, ..., 9\}; C_1, C_2, C_3 \in \{0, 1\}$

Constraints:

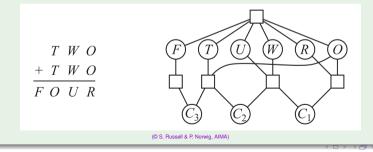
$$\left. \begin{array}{c} O + O = R + 10 \cdot C_1 \\ W + W + C_1 = U + 10 \cdot C_2 \\ T + T + C_2 = 10 \cdot C_3 + O \\ F = C_3, F \neq 0, T \neq 0 \end{array} \right\}$$



- Variables: F, T, U, W, R, O, plus C_1, C_2, C_3 (carry)
- Domains: $F, T, U, W, R, O \in \{0, 1, ..., 9\}; C_1, C_2, C_3 \in \{0, 1\}$

Constraints:

$$O + O = R + 10 \cdot C_1 W + W + C_1 = U + 10 \cdot C_2 T + T + C_2 = 10 \cdot C_3 + O F = C_3, F \neq 0, T \neq 0$$



- Scheduling the assembling of a car requires several tasks
 - ex: installing axles, installing wheels, tightening nuts, put on hubcap, inspect
- Variables X_t (for each task t): starting times of the tasks
- Domain: (bounded) integers (time units)
- Constraints:
 - Precedence: $(X_T + duration_T \le X_{T'})$ (task T precedes task T')
 - *duration*_T constant value (ex: $(X_{axleA} + 10 \le X_{axleb}))$
 - Alternative precedence (combine arithmetic and logic):
 - $(X_T + duration_T \leq X_{T'})$ or $(X_{T'} + duration_{T'} \leq X_T)$

Example: Job-Shop Scheduling

- Scheduling the assembling of a car requires several tasks
 - ex: installing axles, installing wheels, tightening nuts, put on hubcap, inspect
- Variables X_t (for each task t): starting times of the tasks
- Domain: (bounded) integers (time units)
- Constraints:
 - Precedence: $(X_T + duration_T \le X_{T'})$ (task T precedes task T')
 - *duration*_T constant value (ex: $(X_{axleA} + 10 \le X_{axleb}))$
 - Alternative precedence (combine arithmetic and logic):
 - $(X_T + duration_T \leq X_{T'})$ or $(X_{T'} + duration_{T'} \leq X_T)$

- Scheduling the assembling of a car requires several tasks
 - ex: installing axles, installing wheels, tightening nuts, put on hubcap, inspect
- Variables X_t (for each task t): starting times of the tasks
- Domain: (bounded) integers (time units)
- Constraints:
 - Precedence: $(X_T + duration_T \le X_{T'})$ (task T precedes task T')
 - *duration*_T constant value (ex: $(X_{axleA} + 10 \le X_{axleb}))$
 - Alternative precedence (combine arithmetic and logic):
 - $(X_T + duration_T \leq X_{T'})$ or $(X_{T'} + duration_{T'} \leq X_T)$

- Scheduling the assembling of a car requires several tasks
 - ex: installing axles, installing wheels, tightening nuts, put on hubcap, inspect
- Variables X_t (for each task t): starting times of the tasks
- Domain: (bounded) integers (time units)
- Constraints:
 - Precedence: $(X_T + duration_T \le X_{T'})$ (task T precedes task T')
 - *duration_T* constant value (ex: $(X_{axleA} + 10 \le X_{axleb}))$
 - Alternative precedence (combine arithmetic and logic):

 $(X_T + duration_T \leq X_{T'})$ or $(X_{T'} + duration_{T'} \leq X_T)$

- k-ary constraints can be transformed into sets of binary constraints
 - hint: add enough auxiliary variables (see ex. 6.6 in AIMA book)
- ⇒ often CSP solvers work with binary constraints only
- In the rest of this chapter (unless specified otherwise) we assume we have only binary constraints in the CSP
- We call neighbours two variables sharing a binary constraint

- k-ary constraints can be transformed into sets of binary constraints
 - hint: add enough auxiliary variables (see ex. 6.6 in AIMA book)
- ⇒ often CSP solvers work with binary constraints only
 - In the rest of this chapter (unless specified otherwise) we assume we have only binary constraints in the CSP
 - We call neighbours two variables sharing a binary constraint

- k-ary constraints can be transformed into sets of binary constraints
 - hint: add enough auxiliary variables (see ex. 6.6 in AIMA book)
- ⇒ often CSP solvers work with binary constraints only
 - In the rest of this chapter (unless specified otherwise) we assume we have only binary constraints in the CSP
 - We call neighbours two variables sharing a binary constraint

Real-World CSPs

- Task-Assignment problems
 - Ex: who teaches which class?
- Timetabling problems
 - Ex: which class is offered when and where?
- Hardware configuration
 - Ex: which component is placed where? with which connections?
- Transportation scheduling
 - Ex: which van goes where?
- Factory scheduling
 - Ex: which machine/worker takes which task? in which order?
- ...

Remarks

- many real-world problems involve real/rational-valued variables
- many real-world problems involve combinatorics and logic
- many real-world problems require optimization

Real-World CSPs

- Task-Assignment problems
 - Ex: who teaches which class?
- Timetabling problems
 - Ex: which class is offered when and where?
- Hardware configuration
 - Ex: which component is placed where? with which connections?
- Transportation scheduling
 - Ex: which van goes where?
- Factory scheduling
 - Ex: which machine/worker takes which task? in which order?
- ...

Remarks

- many real-world problems involve real/rational-valued variables
- many real-world problems involve combinatorics and logic
- many real-world problems require optimization

Outline

Constraint Satisfaction Problems (CSPs)

Search with CSPs

- Inference: Constraint Propagation
- Backtracking Search
- Interleaving Search and Inference
- Chronological vs. Conflict-Drivem Backtracking
- Local Search with CSPs
- Exploiting Structure of CSPs

- move from complete state to complete state
- A CSPs interleaves search with constraint propagation:
 - search: pick a new variable assignment (and backtrack when needed)
 - does not move from complete state to complete state.
 - rather, builds a complete state by progressively extending partial ones
 - constraint propagation (aka inference):
 - use the constraints to reduce the set of legal candidate values for a variable
 - forces next variable assignment when candidate values are reduced to one
 - forces backtracking when candidate values are reduced to zero.
- Constraint propagation can either:
 - be interleaved with search
 - be performed as a preprocessing step

- move from complete state to complete state
- A CSPs interleaves search with constraint propagation:
 - search: pick a new variable assignment (and backtrack when needed)
 - does not move from complete state to complete state,
 - rather, builds a complete state by progressively extending partial ones
 - constraint propagation (aka inference):
 - use the constraints to reduce the set of legal candidate values for a variable
 - forces next variable assignment when candidate values are reduced to one
 - forces backtracking when candidate values are reduced to zero
- Constraint propagation can either:
 - be interleaved with search
 - be performed as a preprocessing step

- move from complete state to complete state
- A CSPs interleaves search with constraint propagation:
 - search: pick a new variable assignment (and backtrack when needed)
 - does not move from complete state to complete state,
 - rather, builds a complete state by progressively extending partial ones
 - constraint propagation (aka inference):
 - use the constraints to reduce the set of legal candidate values for a variable
 - forces next variable assignment when candidate values are reduced to one
 - forces backtracking when candidate values are reduced to zero
- Constraint propagation can either:
 - be interleaved with search
 - be performed as a preprocessing step

- move from complete state to complete state
- A CSPs interleaves search with constraint propagation:
 - search: pick a new variable assignment (and backtrack when needed)
 - does not move from complete state to complete state,
 - rather, builds a complete state by progressively extending partial ones
 - constraint propagation (aka inference):
 - use the constraints to reduce the set of legal candidate values for a variable
 - forces next variable assignment when candidate values are reduced to one
 - forces backtracking when candidate values are reduced to zero
- Constraint propagation can either:
 - be interleaved with search
 - be performed as a preprocessing step

- move from complete state to complete state
- A CSPs interleaves search with constraint propagation:
 - search: pick a new variable assignment (and backtrack when needed)
 - does not move from complete state to complete state,
 - rather, builds a complete state by progressively extending partial ones
 - constraint propagation (aka inference):
 - use the constraints to reduce the set of legal candidate values for a variable
 - · forces next variable assignment when candidate values are reduced to one
 - forces backtracking when candidate values are reduced to zero
- Constraint propagation can either:
 - be interleaved with search
 - be performed as a preprocessing step

Outline

2

Search with CSPs

- Inference: Constraint Propagation
- Backtracking Search
- Interleaving Search and Inference
- Chronological vs. Conflict-Drivem Backtracking

Local Search with CSPs

Exploiting Structure of CSPs

Use the constraints to reduce the set of legal candidate values for variables

- Intuition: preserve and propagate local consistency
 - enforcing local consistency in each part of the constraint graph
 - $\Rightarrow~$ inconsistent values eliminated throughout the graph
- Different types of local consistency:
 - node consistency (aka 1-consistency)
 - arc consistency (aka 2-consistency)
 - path consistency (aka 3-consistency)
 - k-consistency $k \ge 1$

- Use the constraints to reduce the set of legal candidate values for variables
- Intuition: preserve and propagate local consistency
 - enforcing local consistency in each part of the constraint graph
 - \implies inconsistent values eliminated throughout the graph
- Different types of local consistency:
 - node consistency (aka 1-consistency)
 - arc consistency (aka 2-consistency)
 - path consistency (aka 3-consistency)
 - k-consistency $k \ge 1$

- Use the constraints to reduce the set of legal candidate values for variables
- Intuition: preserve and propagate local consistency
 - enforcing local consistency in each part of the constraint graph
 - \implies inconsistent values eliminated throughout the graph
- Different types of local consistency:
 - node consistency (aka 1-consistency)
 - arc consistency (aka 2-consistency)
 - path consistency (aka 3-consistency)
 - k-consistency $k \ge 1$

Node Consistency (aka 1-Consistency)

- X_i is node-consistent if all the values in the variable's domain satisfy its unary constraints
- A CSP is node-consistent if every variable is node-consistent
- Node-consistency propagation: remove all values from the domain D_i of X_i which violate unary constraints on X_i
 - ex: if the constraint *WA* ≠ *green* is added to map-coloring problem then *WA* domain {*red*, *green*, *blue*} is reduced to {*red*, *blue*}
 - ex: if the constraint *WA* = *green* is added to map-coloring problem then *WA* domain {*red*, *green*, *blue*} is reduced to {*green*}
- Unary constraints can be removed a priori by node consistency propagation

Node Consistency (aka 1-Consistency)

- X_i is node-consistent if all the values in the variable's domain satisfy its unary constraints
- A CSP is node-consistent if every variable is node-consistent
- Node-consistency propagation: remove all values from the domain D_i of X_i which violate unary constraints on X_i
 - ex: if the constraint *WA* ≠ *green* is added to map-coloring problem then *WA* domain {*red*, *green*, *blue*} is reduced to {*red*, *blue*}
 - ex: if the constraint *WA* = *green* is added to map-coloring problem then *WA* domain {*red*, *green*, *blue*} is reduced to {*green*}
- Unary constraints can be removed a priori by node consistency propagation

Node Consistency (aka 1-Consistency)

- X_i is node-consistent if all the values in the variable's domain satisfy its unary constraints
- A CSP is node-consistent if every variable is node-consistent
- Node-consistency propagation: remove all values from the domain *D_i* of *X_i* which violate unary constraints on *X_i*
 - ex: if the constraint *WA* ≠ *green* is added to map-coloring problem then *WA* domain {*red*, *green*, *blue*} is reduced to {*red*, *blue*}
 - ex: if the constraint *WA* = *green* is added to map-coloring problem then *WA* domain {*red*, *green*, *blue*} is reduced to {*green*}

Unary constraints can be removed a priori by node consistency propagation

Node Consistency (aka 1-Consistency)

- X_i is node-consistent if all the values in the variable's domain satisfy its unary constraints
- A CSP is node-consistent if every variable is node-consistent
- Node-consistency propagation: remove all values from the domain *D_i* of *X_i* which violate unary constraints on *X_i*
 - ex: if the constraint *WA* ≠ *green* is added to map-coloring problem then *WA* domain {*red*, *green*, *blue*} is reduced to {*red*, *blue*}
 - ex: if the constraint *WA* = *green* is added to map-coloring problem then *WA* domain {*red*, *green*, *blue*} is reduced to {*green*}
- Unary constraints can be removed a priori by node consistency propagation

- X_i is arc-consistent wrt. X_j iff for every value d_i of X_i in D_i exists a value d_j for X_j in D_j which satisfy all binary constraints on $\langle X_i, X_j \rangle$
- A CSP is arc-consistent if every variable is arc consistent with every other variable
- Forward Checking: remove values from unassigned variables which are not arc consistent with assigned variables
 - i.e., remove values which are non consistent with the assigned values of neighbour variables
 - \Rightarrow ensure arcs from assigned to unassigned variables are arc consistent
 - Limitation: If X loses a value, neighbors of X are not rechecked
- Arc-consistency propagation: remove all values from the domains of every variable which are not arc-consistent with these of some other variables
 - Idea: If X loses a value, neighbors of X are rechecked
 - \Rightarrow ensure all arcs are arc consistent!
- A well-known algorithm: AC-3
 - $\Rightarrow\,$ every arc is arc-consistent, or some variable domain is empty
 - complexity: $O(|C| \cdot |D|^3)$ worst-case
 - AC-4 is $O(|C| \cdot |D|^2)$ worst-case, but worse than AC-3 on average
- \Rightarrow Can be interleaved with search or used as a preprocessing step

- X_i is arc-consistent wrt. X_j iff for every value d_i of X_i in D_i exists a value d_j for X_j in D_j which satisfy all binary constraints on $\langle X_i, X_j \rangle$
- A CSP is arc-consistent if every variable is arc consistent with every other variable
- Forward Checking: remove values from unassigned variables which are not arc consistent with assigned variables
 - i.e., remove values which are non consistent with the assigned values of neighbour variables
 - \Rightarrow ensure arcs from assigned to unassigned variables are arc consistent
 - Limitation: If X loses a value, neighbors of X are not rechecked
- Arc-consistency propagation: remove all values from the domains of every variable which are not arc-consistent with these of some other variables
 - Idea: If X loses a value, neighbors of X are rechecked
 - \Rightarrow ensure all arcs are arc consistent!
- A well-known algorithm: AC-3
 - $\Rightarrow\,$ every arc is arc-consistent, or some variable domain is empty
 - complexity: $O(|C| \cdot |D|^3)$ worst-case
 - AC-4 is $O(|C| \cdot |D|^2)$ worst-case, but worse than AC-3 on average
- \Rightarrow Can be interleaved with search or used as a preprocessing step

- X_i is arc-consistent wrt. X_j iff for every value d_i of X_i in D_i exists a value d_j for X_j in D_j which satisfy all binary constraints on $\langle X_i, X_j \rangle$
- A CSP is arc-consistent if every variable is arc consistent with every other variable
- Forward Checking: remove values from unassigned variables which are not arc consistent with assigned variables
 - i.e., remove values which are non consistent with the assigned values of neighbour variables
 - \implies ensure arcs from assigned to unassigned variables are arc consistent
 - Limitation: If X loses a value, neighbors of X are not rechecked
- Arc-consistency propagation: remove all values from the domains of every variable which are not arc-consistent with these of some other variables
 - Idea: If X loses a value, neighbors of X are rechecked
 - \implies ensure all arcs are arc consistent!
- A well-known algorithm: AC-3
 - $\Rightarrow\,$ every arc is arc-consistent, or some variable domain is empty
 - complexity: $O(|C| \cdot |D|^3)$ worst-case
 - AC-4 is $O(|C| \cdot |D|^2)$ worst-case, but worse than AC-3 on average
- \Rightarrow Can be interleaved with search or used as a preprocessing step

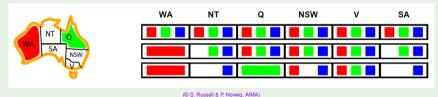
- X_i is arc-consistent wrt. X_j iff for every value d_i of X_i in D_i exists a value d_j for X_j in D_j which satisfy all binary constraints on $\langle X_i, X_j \rangle$
- A CSP is arc-consistent if every variable is arc consistent with every other variable
- Forward Checking: remove values from unassigned variables which are not arc consistent with assigned variables
 - i.e., remove values which are non consistent with the assigned values of neighbour variables
 - \implies ensure arcs from assigned to unassigned variables are arc consistent
 - Limitation: If X loses a value, neighbors of X are not rechecked
- Arc-consistency propagation: remove all values from the domains of every variable which are not arc-consistent with these of some other variables
 - Idea: If X loses a value, neighbors of X are rechecked
 - ⇒ ensure all arcs are arc consistent!
- A well-known algorithm: AC-3
 - $\Rightarrow~$ every arc is arc-consistent, or some variable domain is empty
 - complexity: $O(|C| \cdot |D|^3)$ worst-case
 - AC-4 is $O(|C| \cdot |D|^2)$ worst-case, but worse than AC-3 on average
- \Rightarrow Can be interleaved with search or used as a preprocessing step

- X_i is arc-consistent wrt. X_j iff for every value d_i of X_i in D_i exists a value d_j for X_j in D_j which satisfy all binary constraints on $\langle X_i, X_j \rangle$
- A CSP is arc-consistent if every variable is arc consistent with every other variable
- Forward Checking: remove values from unassigned variables which are not arc consistent with assigned variables
 - i.e., remove values which are non consistent with the assigned values of neighbour variables
 - \implies ensure arcs from assigned to unassigned variables are arc consistent
 - Limitation: If X loses a value, neighbors of X are not rechecked
- Arc-consistency propagation: remove all values from the domains of every variable which are not arc-consistent with these of some other variables
 - Idea: If X loses a value, neighbors of X are rechecked
 - ⇒ ensure all arcs are arc consistent!
- A well-known algorithm: AC-3
 - \implies every arc is arc-consistent, or some variable domain is empty
 - complexity: $O(|C| \cdot |D|^3)$ worst-case
 - AC-4 is $O(|C| \cdot |D|^2)$ worst-case, but worse than AC-3 on average

 \Rightarrow Can be interleaved with search or used as a preprocessing step

- X_i is arc-consistent wrt. X_j iff for every value d_i of X_i in D_i exists a value d_j for X_j in D_j which satisfy all binary constraints on $\langle X_i, X_j \rangle$
- A CSP is arc-consistent if every variable is arc consistent with every other variable
- Forward Checking: remove values from unassigned variables which are not arc consistent with assigned variables
 - i.e., remove values which are non consistent with the assigned values of neighbour variables
 - \implies ensure arcs from assigned to unassigned variables are arc consistent
 - Limitation: If X loses a value, neighbors of X are not rechecked
- Arc-consistency propagation: remove all values from the domains of every variable which are not arc-consistent with these of some other variables
 - Idea: If X loses a value, neighbors of X are rechecked
 - ⇒ ensure all arcs are arc consistent!
- A well-known algorithm: AC-3
 - \implies every arc is arc-consistent, or some variable domain is empty
 - complexity: $O(|C| \cdot |D|^3)$ worst-case
 - AC-4 is $O(|C| \cdot |D|^2)$ worst-case, but worse than AC-3 on average
- \implies Can be interleaved with search or used as a preprocessing step

- Simplest form of propagation
- Idea: propagate information from assigned to unassigned variables
 - pick (novel) variable assignment
 - update remaining legal values for unassigned variables
- Does not provide early detection for all failures
- Limitation: If X loses a value, neighbors of X are not rechecked!
 - ex: SA single value is incompatible with NT single value
- Can we conclude anything?
 - NT and SA cannot both be blue!
- Why didn't we detect this inconsistency yet?

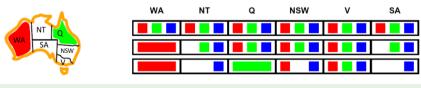


25/6

- Simplest form of propagation
- Idea: propagate information from assigned to unassigned variables
 - pick (novel) variable assignment
 - update remaining legal values for unassigned variables
- Does not provide early detection for all failures
- Limitation: If X loses a value, neighbors of X are not rechecked!
 - ex: SA single value is incompatible with NT single value
- Can we conclude anything?
 - NT and SA cannot both be blue!
- Why didn't we detect this inconsistency yet?

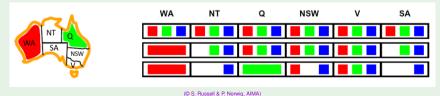
- Simplest form of propagation
- Idea: propagate information from assigned to unassigned variables
 - pick (novel) variable assignment
 - update remaining legal values for unassigned variables
- Does not provide early detection for all failures
- Limitation: If X loses a value, neighbors of X are not rechecked!
 - ex: SA single value is incompatible with NT single value
- Can we conclude anything?
 - NT and SA cannot both be blue!
- Why didn't we detect this inconsistency yet?

- Simplest form of propagation
- Idea: propagate information from assigned to unassigned variables
 - pick (novel) variable assignment
 - update remaining legal values for unassigned variables
- Does not provide early detection for all failures
- Limitation: If X loses a value, neighbors of X are not rechecked!
 - ex: SA single value is incompatible with NT single value
- Can we conclude anything?
 - NT and SA cannot both be blue!
- Why didn't we detect this inconsistency yet?

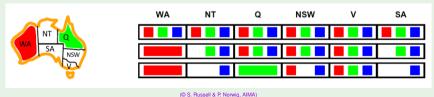


(© S. Russell & P. Norwig, AIMA)

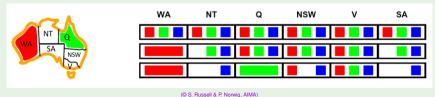
- Simplest form of propagation
- Idea: propagate information from assigned to unassigned variables
 - pick (novel) variable assignment
 - update remaining legal values for unassigned variables
- Does not provide early detection for all failures
- Limitation: If X loses a value, neighbors of X are not rechecked!
 - ex: SA single value is incompatible with NT single value
- Can we conclude anything?
 - NT and SA cannot both be blue!
- Why didn't we detect this inconsistency yet?



- Simplest form of propagation
- Idea: propagate information from assigned to unassigned variables
 - pick (novel) variable assignment
 - update remaining legal values for unassigned variables
- Does not provide early detection for all failures
- Limitation: If X loses a value, neighbors of X are not rechecked!
 - ex: SA single value is incompatible with NT single value
- Can we conclude anything?
 - NT and SA cannot both be blue!
- Why didn't we detect this inconsistency yet?



- Simplest form of propagation
- Idea: propagate information from assigned to unassigned variables
 - pick (novel) variable assignment
 - update remaining legal values for unassigned variables
- Does not provide early detection for all failures
- Limitation: If X loses a value, neighbors of X are not rechecked!
 - ex: SA single value is incompatible with NT single value
- Can we conclude anything?
 - NT and SA cannot both be blue!
- Why didn't we detect this inconsistency yet?



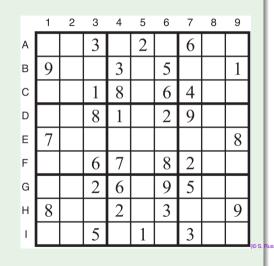
(consider *AllDiff*() as a set of binary constraints) Apply forward checking:

• What about E6?

- forward checking on column 6: drop 2,3,5,6,8,9 ⇒ Domain(E6)={1,4,7}
- forward checking on square: drop 1,7 ⇒ Domain(E6)={4}
 - (will be assigned to 4 at next search step, but does not trigger other propagations)

• What about I6?

- forward checking on column 6: drop 2,3,5,6,8,9 ⇒ Domain(I6)={1,4,7}
- forward checking on square: drop 1 ⇒ Domain(I6)={4,7]
- What about A6?
 - forward checking on column 6: drop 2,3,5,6,8,9 ⇒ Domain(A6)={1,4,7}
- Next decisions: assign *E*6 = 4

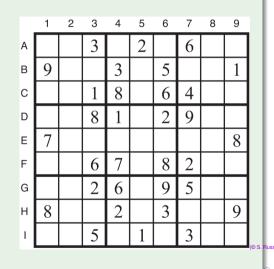


(consider *AllDiff*() as a set of binary constraints) Apply forward checking:

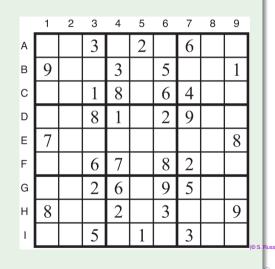
- What about E6?
 - forward checking on column 6: drop 2,3,5,6,8,9 \Longrightarrow Domain(E6)={1,4,7}
 - forward checking on square;

drop $1,7 \implies$ Domain(E6)={4} (will be assigned to 4 at next search step, but does not trigger other propagations)

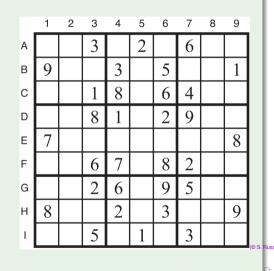
- What about I6?
 - forward checking on column 6: drop 2,3,5,6,8,9 → Domain(I6)={1,4,7}
 - s forward checking on square: drop 1 \implies Domain(I6)= $\{4,7\}$
- What about A6?
 - forward checking on column 6: drop 2,3,5,6,8,9 → Domain(A6)={1,4,7}
- Next decisions: assign E6 = 4



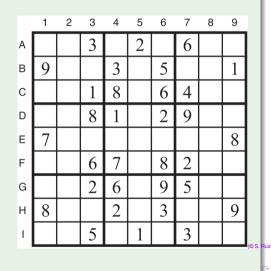
- What about E6?
 - forward checking on column 6: drop 2,3,5,6,8,9 ⇒ Domain(E6)={1,4,7}
 - forward checking on square: drop 1,7 ⇒ Domain(E6)={4} (will be assigned to 4 at next search step, but does not trigger other propagations)
- What about I6?
 - forward checking on column 6: drop 2,3,5,6,8,9 ⇒ Domain(l6)={1,4,7}
 - I forward checking on square: drop 1 ⇒ Domain(I6)={4,7
- What about A6?
 - forward checking on column 6: drop 2,3,5,6,8,9 ⇒ Domain(A6)={1, 4, 7}
- Next decisions: assign E6 = 4



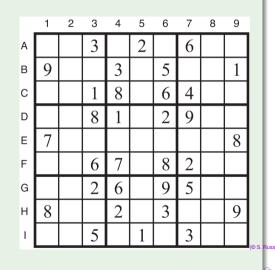
- What about E6?
 - forward checking on column 6: drop 2,3,5,6,8,9 ⇒ Domain(E6)={1,4,7}
 - forward checking on square: drop 1,7 ⇒ Domain(E6)={4} (will be assigned to 4 at next search step, but does not trigger other propagations)
- What about I6?
 - forward checking on column 6: drop 2,3,5,6,8,9 ⇒ Domain(16)={1,4,7}
 - forward checking on square: drop 1 \implies Domain(I6)={4,7}
- What about A6?
 - forward checking on column 6: drop 2,3,5,6,8,9 ⇒ Domain(A6)={1,4,7}
- Next decisions: assign E6 = 4



- What about E6?
 - forward checking on column 6: drop 2,3,5,6,8,9 ⇒ Domain(E6)={1,4,7}
 - forward checking on square: drop 1,7 ⇒ Domain(E6)={4} (will be assigned to 4 at next search step, but does not trigger other propagations)
- What about I6?
 - forward checking on column 6: drop 2,3,5,6,8,9 ⇒ Domain(I6)={1,4,7}
 - I forward checking on square: drop 1 ⇒ Domain(I6)={4,7}
- What about A6?
 - forward checking on column 6: drop 2,3,5,6,8,9 ⇒ Domain(A6)={1,4,7
- Next decisions: assign E6 = 4



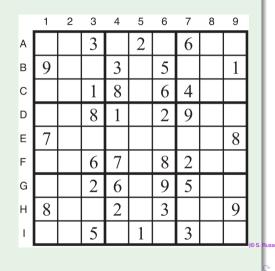
- What about E6?
 - forward checking on column 6: drop 2,3,5,6,8,9 ⇒ Domain(E6)={1,4,7}
 - forward checking on square: drop 1,7 ⇒ Domain(E6)={4} (will be assigned to 4 at next search step, but does not trigger other propagations)
- What about I6?
 - forward checking on column 6: drop 2,3,5,6,8,9 \implies Domain(I6)= $\{1, 4, 7\}$
 - forward checking on square: drop 1 ⇒ Domain(I6)={4,7}
- What about A6?
 - forward checking on column 6: drop 2,3,5,6,8,9 ⇒ Domain(A6)={1,4,7}
- Next decisions: assign E6 = 4



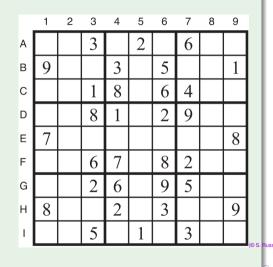
(consider *AllDiff*() as a set of binary constraints) Apply forward checking:

- What about E6?
 - forward checking on column 6: drop 2,3,5,6,8,9 \Longrightarrow Domain(E6)={1,4,7}
 - forward checking on square: drop 1,7 ⇒ Domain(E6)={4} (will be assigned to 4 at next search step, but does not trigger other propagations)
- What about I6?
 - forward checking on column 6: drop 2,3,5,6,8,9 \Longrightarrow Domain(I6)= $\{1, 4, 7\}$
 - forward checking on square: drop 1 ⇒ Domain(I6)={4,7}
- What about A6?

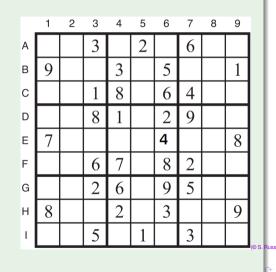
 forward checking on column 6: drop 2,3,5,6,8,9 ⇒ Domain(A6)={1,4,7}
 Next decisions: assign E6 = 4



- What about E6?
 - forward checking on column 6: drop 2,3,5,6,8,9 \Longrightarrow Domain(E6)={1,4,7}
 - forward checking on square: drop 1,7 ⇒ Domain(E6)={4} (will be assigned to 4 at next search step, but does not trigger other propagations)
- What about I6?
 - forward checking on column 6: drop 2,3,5,6,8,9 \Longrightarrow Domain(I6)= $\{1, 4, 7\}$
 - forward checking on square: drop 1 ⇒ Domain(I6)={4,7}
- What about A6?
 - forward checking on column 6: drop 2,3,5,6,8,9 ⇒ Domain(A6)={1,4,7}
- Next decisions: assign *E*6 = 4



- What about E6?
 - forward checking on column 6: drop 2,3,5,6,8,9 \Longrightarrow Domain(E6)={1,4,7}
 - forward checking on square: drop 1,7 ⇒ Domain(E6)={4} (will be assigned to 4 at next search step, but does not trigger other propagations)
- What about I6?
 - forward checking on column 6: drop 2,3,5,6,8,9 \Longrightarrow Domain(I6)= $\{1, 4, 7\}$
 - forward checking on square: drop 1 ⇒ Domain(I6)={4,7}
- What about A6?
 - forward checking on column 6: drop 2,3,5,6,8,9 ⇒ Domain(A6)={1,4,7}
- Next decisions: assign *E*6 = 4



The Arc-Consistency Propagation Algorithm AC-3

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
inputs: csp, a binary CSP with components (X, D, C)
local variables: queue, a queue of arcs, initially all the arcs in csp
```

```
while queue is not empty do

(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)

if REVISE(csp, X_i, X_j) then # makes Xi arc-consistent wrt. XJ

if size of D_i = 0 then return false

for each X_k in X_i.NEIGHBORS - \{X_j\} do

add (X_k, X_i) to queue

return true
```

```
function REVISE( csp, X_i, X_j) returns true iff we revise the domain of X_i

revised \leftarrow false

for each x in D_i do

if no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j then

delete x from D_i

revised \leftarrow true

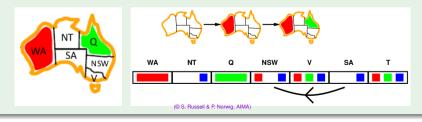
return revised
```

(© S. Russell & P. Norwig, AIMA)

note: "queue" is LIFO \Longrightarrow revises first the neighbours of revised vars

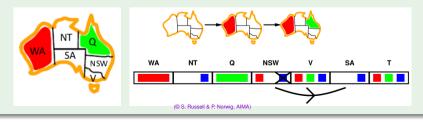
• Idea: If X loses a value, neighbors of X need to be rechecked

- Revise(SA,NSW) $\implies D_{SA}$ unchanged
- ...
- Revise(NSW,SA) $\implies D_{NSW}$ revised
- Revise(V,NSW) $\Longrightarrow D_V$ revised
- ...
- Revise(SA,NT) $\implies D_{SA}$ revised
- Empty domain!
- \Rightarrow Arc-consistency propagation detects failure earlier than forward checking



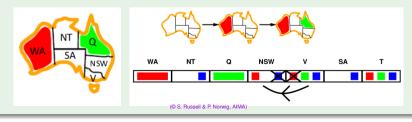
• Idea: If X loses a value, neighbors of X need to be rechecked

- Revise(SA,NSW) \implies D_{SA} unchanged
- ...
- Revise(NSW,SA) $\implies D_{NSW}$ revised
- Revise(V,NSW) $\Longrightarrow D_V$ revised
- ...
- Revise(SA,NT) $\implies D_{SA}$ revised
- Empty domain!
- \Rightarrow Arc-consistency propagation detects failure earlier than forward checking



• Idea: If X loses a value, neighbors of X need to be rechecked

- Revise(SA,NSW) \implies D_{SA} unchanged
- ...
- Revise(NSW,SA) $\implies D_{NSW}$ revised
- Revise(V,NSW) $\Longrightarrow D_V$ revised
- ...
- Revise(SA,NT) $\implies D_{SA}$ revised
- Empty domain!
- \Rightarrow Arc-consistency propagation detects failure earlier than forward checking

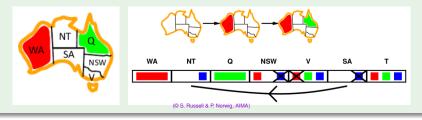


• Idea: If X loses a value, neighbors of X need to be rechecked

• Ex:

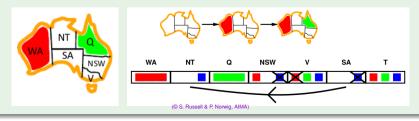
- Revise(SA,NSW) $\implies D_{SA}$ unchanged
- ...
- Revise(NSW,SA) $\implies D_{NSW}$ revised
- Revise(V,NSW) $\Longrightarrow D_V$ revised
- ...
- Revise(SA,NT) $\implies D_{SA}$ revised
- Empty domain!

 \Rightarrow Arc-consistency propagation detects failure earlier than forward checking



• Idea: If X loses a value, neighbors of X need to be rechecked

- Revise(SA,NSW) $\implies D_{SA}$ unchanged
- ...
- Revise(NSW,SA) $\implies D_{NSW}$ revised
- Revise(V,NSW) $\Longrightarrow D_V$ revised
- ...
- Revise(SA,NT) $\Longrightarrow D_{SA}$ revised
- Empty domain!
- \Rightarrow Arc-consistency propagation detects failure earlier than forward checking



Remark

Notice the differences between:

- (a) an assigned variable X_i , with value v_j , and
- (b) an unassigned variable X_i whose domain is reduced to a singleton $\{v_j\}$:
 - With (b) X_i is not (yet) assigned the value v_j
 (although it will be likely assigned soon the value v_j by next search steps)
 - With Forward Checking, (a) forces checking the domain of *X_i*'s unassigned neighbours wrt. *X_i*, whereas (b) does not
 - With ARC-Consistency Propagation, both (a) and (b) force checking the domain of *X*_i's unassigned neighbours wrt. *X*_i

Remark

Notice the differences between:

- (a) an assigned variable X_i , with value v_j , and
- (b) an unassigned variable X_i whose domain is reduced to a singleton $\{v_j\}$:
 - With (b) X_i is not (yet) assigned the value v_j
 (although it will be likely assigned soon the value v_j by next search steps)
 - With Forward Checking, (a) forces checking the domain of *X_i*'s unassigned neighbours wrt. *X_i*, whereas (b) does not
 - With ARC-Consistency Propagation, both (a) and (b) force checking the domain of *X_i*'s unassigned neighbours wrt. *X_i*

Remark

Notice the differences between:

- (a) an assigned variable X_i , with value v_j , and
- (b) an unassigned variable X_i whose domain is reduced to a singleton $\{v_j\}$:
 - With (b) X_i is not (yet) assigned the value v_j
 (although it will be likely assigned soon the value v_j by next search steps)
 - With Forward Checking, (a) forces checking the domain of X_i's unassigned neighbours wrt.
 X_i, whereas (b) does not
 - With ARC-Consistency Propagation, both (a) and (b) force checking the domain of X_i's unassigned neighbours wrt. X_i

Apply arc-consistency propagation:

What about E6?

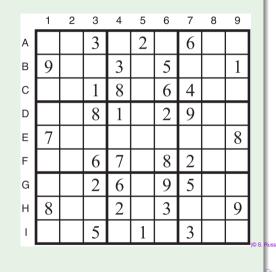
- arc-consistency propagation on column 6: drop 2,3,5,6,8,9 ⇒ Domain(E6)={1,4,7}
- arc-consistency propagation on square: drop 1,7 ⇒ Domain(E6)={4} (will be assigned to 4 at next search step, but triggers next propagations)

• What about I6?

- arc-consistency propagation on column 6: drop 2,3,4,5,6,8,9 ⇒> Domain(I6)={1,7}
- arc-consistency propagation on square: drop 1 => Domain(I6)={7}

• What about A6?

- arc-consistency propagation on column 6: drop 2,3,4,5,6,7,8,9 ⇒ Domain(A6)={1}
- Next decisions: assign E6=4, I6=7, A6=1,...
- Exercise: show that AC-3 solves the whole puzzle

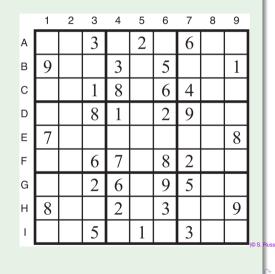


Apply arc-consistency propagation:

- What about E6?
 - arc-consistency propagation on column 6: drop 2,3,5,6,8,9 ⇒ Domain(E6)={1,4,7}
 - arc-consistency propagation on square: drop 1,7 ⇒ Domain(E6)={4} (will be assigned to 4 at next search step, but triggers next propagations)
- What about I6?
 - arc-consistency propagation on column 6: drop 2,3,4,5,6,8,9 ⇒ Domain(I6)={1,7}
 - arc-consistency propagation on square: drop 1 => Domain(I6)={7}

• What about A6?

- arc-consistency propagation on column 6: drop 2,3,4,5,6,7,8,9 ⇒ Domain(A6)={1}
- Next decisions: assign E6=4, I6=7, A6=1,...
- Exercise: show that AC-3 solves the whole puzzle



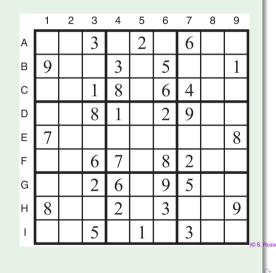
30/6

Apply arc-consistency propagation:

- What about E6?
 - arc-consistency propagation on column 6: drop 2,3,5,6,8,9 ⇒ Domain(E6)={1,4,7}
 - arc-consistency propagation on square: drop 1,7 ⇒ Domain(E6)={4} (will be assigned to 4 at next search step, but triggers next propagations)
- What about I6?
 - arc-consistency propagation on column 6: drop 2,3,4,5,6,8,9 ⇒ Domain(I6)={1,7}
 - arc-consistency propagation on square: drop 1 => Domain(16)={7}

• What about A6?

- arc-consistency propagation on column 6: drop 2,3,4,5,6,7,8,9 ⇒ Domain(A6)={1}
- Next decisions: assign E6=4, I6=7, A6=1,...
- Exercise: show that AC-3 solves the whole puzzle



Apply arc-consistency propagation:

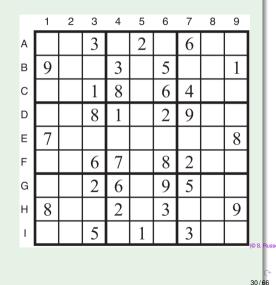
- What about E6?
 - arc-consistency propagation on column 6: drop 2,3,5,6,8,9 ⇒ Domain(E6)={1,4,7}
 - arc-consistency propagation on square: drop 1,7 ⇒ Domain(E6)={4} (will be assigned to 4 at next search step, but triggers next propagations)

What about I6?

- arc-consistency propagation on column 6: drop 2,3,4,5,6,8,9 ⇒ Domain(I6)={1,7}
- arc-consistency propagation on square: drop 1 ⇒ Domain(I6)={7}

• What about A6?

- arc-consistency propagation on column 6: drop 2,3,4,5,6,7,8,9 → Domain(A6)={1}
- Next decisions: assign E6=4, I6=7, A6=1,...
- Exercise: show that AC-3 solves the whole puzzle



Apply arc-consistency propagation:

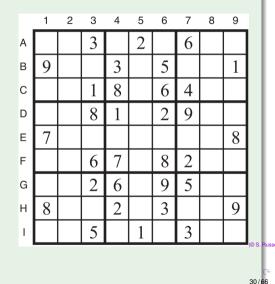
- What about E6?
 - arc-consistency propagation on column 6: drop 2,3,5,6,8,9 ⇒ Domain(E6)={1,4,7}
 - arc-consistency propagation on square: drop 1,7 ⇒ Domain(E6)={4} (will be assigned to 4 at next search step, but triggers next propagations)
- What about I6?
 - arc-consistency propagation on column 6: drop 2,3,4,5,6,8,9 ⇒ Domain(I6)={1,7}
 - arc-consistency propagation on square: drop 1 ⇒ Domain(I6)={7}

• What about A6?

 arc-consistency propagation on column 6: drop 2,3,4,5,6,7,8,9 ⇒ Domain(A6)={1}

• Next decisions: assign E6=4, I6=7, A6=1,...

• Exercise: show that AC-3 solves the whole puzzle

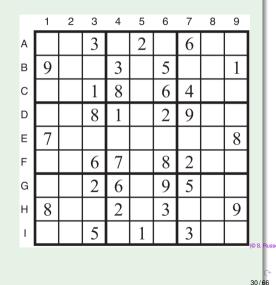


Apply arc-consistency propagation:

- What about E6?
 - arc-consistency propagation on column 6: drop 2,3,5,6,8,9 ⇒ Domain(E6)={1,4,7}
 - arc-consistency propagation on square: drop 1,7 ⇒ Domain(E6)={4} (will be assigned to 4 at next search step, but triggers next propagations)
- What about I6?
 - arc-consistency propagation on column 6: drop 2,3,4,5,6,8,9 ⇒ Domain(I6)={1,7}
 - arc-consistency propagation on square: drop 1 ⇒ Domain(I6)={7}

• What about A6?

- arc-consistency propagation on column 6: drop 2,3,4,5,6,7,8,9 ⇒ Domain(A6)={1}
- Next decisions: assign E6=4, I6=7, A6=1,...
- Exercise: show that AC-3 solves the whole puzzle

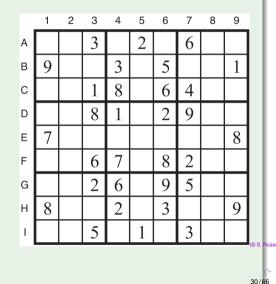


Apply arc-consistency propagation:

- What about E6?
 - arc-consistency propagation on column 6: drop 2,3,5,6,8,9 ⇒ Domain(E6)={1,4,7}
 - arc-consistency propagation on square: drop 1,7 ⇒ Domain(E6)={4} (will be assigned to 4 at next search step, but triggers next propagations)
- What about I6?
 - arc-consistency propagation on column 6: drop 2,3,4,5,6,8,9 ⇒ Domain(I6)={1,7}
 - arc-consistency propagation on square: drop 1 ⇒ Domain(I6)={7}

What about A6?

- arc-consistency propagation on column 6: drop 2,3,4,5,6,7,8,9 ⇒ Domain(A6)={1}
- Next decisions: assign E6=4, I6=7, A6=1,...
- Exercise: show that AC-3 solves the whole puzzle



Apply arc-consistency propagation:

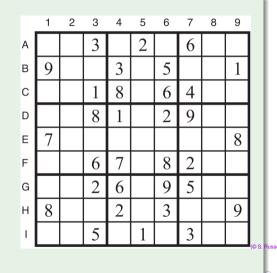
- What about E6?
 - arc-consistency propagation on column 6: drop 2,3,5,6,8,9 ⇒ Domain(E6)={1,4,7}
 - arc-consistency propagation on square: drop 1,7 ⇒ Domain(E6)={4} (will be assigned to 4 at next search step, but triggers next propagations)
- What about I6?
 - arc-consistency propagation on column 6: drop 2,3,4,5,6,8,9 ⇒ Domain(I6)={1,7}
 - arc-consistency propagation on square: drop 1 ⇒ Domain(I6)={7}

What about A6?

 arc-consistency propagation on column 6: drop 2,3,4,5,6,7,8,9 ⇒ Domain(A6)={1}

• Next decisions: assign E6=4, I6=7, A6=1,...

• Exercise: show that AC-3 solves the whole puzzle



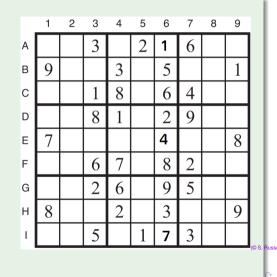
30/6

Apply arc-consistency propagation:

- What about E6?
 - arc-consistency propagation on column 6: drop 2,3,5,6,8,9 ⇒ Domain(E6)={1,4,7}
 - arc-consistency propagation on square: drop 1,7 ⇒ Domain(E6)={4} (will be assigned to 4 at next search step, but triggers next propagations)
- What about I6?
 - arc-consistency propagation on column 6: drop 2,3,4,5,6,8,9 ⇒ Domain(I6)={1,7}
 - arc-consistency propagation on square: drop 1 ⇒ Domain(I6)={7}

• What about A6?

- arc-consistency propagation on column 6: drop 2,3,4,5,6,7,8,9 ⇒ Domain(A6)={1}
- Next decisions: assign E6=4, I6=7, A6=1,...



30/6

Apply arc-consistency propagation:

- What about E6?
 - arc-consistency propagation on column 6: drop 2,3,5,6,8,9 ⇒ Domain(E6)={1,4,7}
 - arc-consistency propagation on square: drop 1,7 ⇒ Domain(E6)={4} (will be assigned to 4 at next search step, but triggers next propagations)
- What about I6?
 - arc-consistency propagation on column 6: drop 2,3,4,5,6,8,9 ⇒ Domain(I6)={1,7}
 - arc-consistency propagation on square: drop 1 ⇒ Domain(I6)={7}
- What about A6?
 - arc-consistency propagation on column 6: drop 2,3,4,5,6,7,8,9 ⇒ Domain(A6)={1}
- Next decisions: assign E6=4, I6=7, A6=1,...
- Exercise: show that AC-3 solves the whole puzzle

	1	2	3	4	5	6	7	8	9	
А	4	8	3	9	2	1	6	5	7	
в	9	6	7	3	4	5	8	2	1	
С	2	5	1	8	7	6	4	9	3	
D	5	4	8	1	3	2	9	7	6	
Е	7	2	9	5	6	4	1	3	8	
F	1	3	6	7	9	8	2	4	5	
G	3	7	2	6	8	9	5	1	4	
н	8	1	4	2	5	3	7	6	9	
Т	6	9	5	4	1	7	3	8	2	

30/6

Path Consistency

A two-variable set $\{X_i, X_j\}$ is **path-consistent** wrt. a third variable X_m if, for every assignment $\{X_i = a, X_j = b\}$ consistent with the constraints on $\{X_i, X_j\}$, there is an assignment to X_m that satisfies the constraints on $\{X_i, X_m\}$ and $\{X_m, X_i\}$.

- A CSP is k-consistent iff for any set of k 1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any other k-th variable
 - 1-consistency is node consistency
 - 2-consistency is arc consistency
 - 3-consistency is path consistency
- Algorithm for 3-consistency available: PC-2
 - generalization of AC-3
- Time and space complexity grow exponentially with k

Path Consistency

A two-variable set $\{X_i, X_j\}$ is **path-consistent** wrt. a third variable X_m if, for every assignment $\{X_i = a, X_j = b\}$ consistent with the constraints on $\{X_i, X_j\}$, there is an assignment to X_m that satisfies the constraints on $\{X_i, X_m\}$ and $\{X_m, X_i\}$.

- A CSP is k-consistent iff for any set of k 1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any other k-th variable
 - 1-consistency is node consistency
 - 2-consistency is arc consistency
 - 3-consistency is path consistency
- Algorithm for 3-consistency available: PC-2
 - generalization of AC-3
- Time and space complexity grow exponentially with k

Path Consistency

A two-variable set $\{X_i, X_j\}$ is **path-consistent** wrt. a third variable X_m if, for every assignment $\{X_i = a, X_j = b\}$ consistent with the constraints on $\{X_i, X_j\}$, there is an assignment to X_m that satisfies the constraints on $\{X_i, X_m\}$ and $\{X_m, X_i\}$.

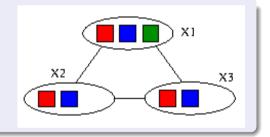
- A CSP is k-consistent iff for any set of k 1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any other k-th variable
 - 1-consistency is node consistency
 - 2-consistency is arc consistency
 - 3-consistency is path consistency
- Algorithm for 3-consistency available: PC-2
 - generalization of AC-3
- Time and space complexity grow exponentially with k

Path Consistency

A two-variable set $\{X_i, X_j\}$ is **path-consistent** wrt. a third variable X_m if, for every assignment $\{X_i = a, X_j = b\}$ consistent with the constraints on $\{X_i, X_j\}$, there is an assignment to X_m that satisfies the constraints on $\{X_i, X_m\}$ and $\{X_m, X_i\}$.

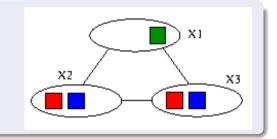
- A CSP is k-consistent iff for any set of k 1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any other k-th variable
 - 1-consistency is node consistency
 - 2-consistency is arc consistency
 - 3-consistency is path consistency
- Algorithm for 3-consistency available: PC-2
 - generalization of AC-3
- Time and space complexity grow exponentially with k

- Can we say anything about X1?
 - We can drop red & blue from D1
- ⇒ Infers the assignment C1 = green
- Can arc-consistency propagation reveal it?
- Can path-consistency propagation reveal it?

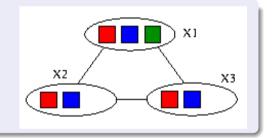


- Can we say anything about X1? We can drop red & blue from D1
- \Rightarrow Infers the assignment C1 = green
- Can arc-consistency propagation reveal it?

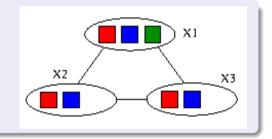
• Can path-consistency propagation reveal it?



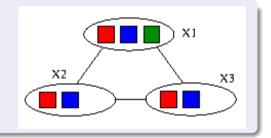
- Can we say anything about X1? We can drop red & blue from D1
- \Rightarrow Infers the assignment C1 = green
- Can arc-consistency propagation reveal it?
- Can path-consistency propagation reveal it?



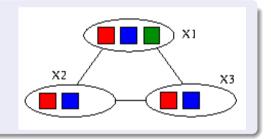
- Can we say anything about X1? We can drop red & blue from D1
- \Rightarrow Infers the assignment C1 = green
- Can arc-consistency propagation reveal it? NO!
- Can path-consistency propagation reveal it?



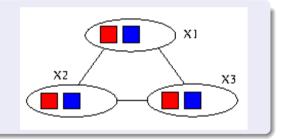
- Can we say anything about X1? We can drop red & blue from D1
- \Rightarrow Infers the assignment C1 = green
- Can arc-consistency propagation reveal it? NO!
- Can path-consistency propagation reveal it?



- Can we say anything about X1? We can drop red & blue from D1
- \Rightarrow Infers the assignment C1 = green
- Can arc-consistency propagation reveal it? NO!
- Can path-consistency propagation reveal it? YES!

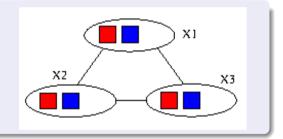


- Can we say anything?
 - The triplet is inconsistent
- Can arc-consistency propagation reveal it?
- Can path-consistency propagation reveal it?



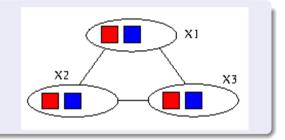
- Can we say anything? The triplet is inconsistent
- Can arc-consistency propagation reveal it?

 Can path-consistency propagation reveal it? YESI



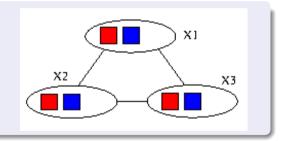
- Can we say anything? The triplet is inconsistent
- Can arc-consistency propagation reveal it?

• Can path-consistency propagation reveal it?

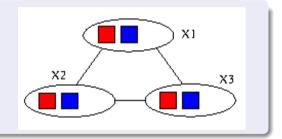


- Can we say anything? The triplet is inconsistent
- Can arc-consistency propagation reveal it? NO!

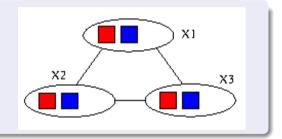
• Can path-consistency propagation reveal it?



- Can we say anything? The triplet is inconsistent
- Can arc-consistency propagation reveal it? NO!
- Can path-consistency propagation reveal it? YES!



- Can we say anything? The triplet is inconsistent
- Can arc-consistency propagation reveal it? NO!
- Can path-consistency propagation reveal it? YES!



Outline

Constraint Satisfaction Problems (CSPs)

Search with CSPs

• Inference: Constraint Propagation

Backtracking Search

- Interleaving Search and Inference
- Chronological vs. Conflict-Drivem Backtracking

Local Search with CSPs

Exploiting Structure of CSPs

Backtracking Search: Generalities

Backtracking Search

- Basic uninformed algorithm for solving CSPs
- Idea 1: Pick one variable at a time
 - ullet variable assignments are commutative \Longrightarrow fix an ordering
 - ex: { WA = red, NT = green} same as { NT = green, WA = red }
 - \implies can consider assignments to a single variable at each step
 - reasons on partial assignments
- Idea 2: Check constraints as long as you proceed
 - pick only values which do not conflict with previous assignments
 - requires some computation to check the constraints
 - \Rightarrow "incremental goal test"
 - can detect if a partial assignments violate a goal
 - \implies early detection of inconsistencies \implies pruning
- Backtracking search: DFS with the two above improvements

Backtracking Search: Generalities

Backtracking Search

- Basic uninformed algorithm for solving CSPs
- Idea 1: Pick one variable at a time
 - variable assignments are commutative \Longrightarrow fix an ordering
 - ex: {*WA* = *red*, *NT* = *green*} same as {*NT* = *green*, *WA* = *red*}
 - \implies can consider assignments to a single variable at each step
 - reasons on partial assignments
- Idea 2: Check constraints as long as you proceed
 - pick only values which do not conflict with previous assignments
 - requires some computation to check the constraints
 - \implies "incremental goal test"
 - can detect if a partial assignments violate a goal
 - \implies early detection of inconsistencies \implies pruning
- Backtracking search: DFS with the two above improvements

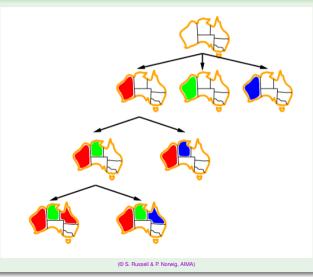
Backtracking Search: Generalities

Backtracking Search

- Basic uninformed algorithm for solving CSPs
- Idea 1: Pick one variable at a time
 - variable assignments are commutative \Longrightarrow fix an ordering
 - ex: {*WA* = *red*, *NT* = *green*} same as {*NT* = *green*, *WA* = *red*}
 - \implies can consider assignments to a single variable at each step
 - reasons on partial assignments
- Idea 2: Check constraints as long as you proceed
 - pick only values which do not conflict with previous assignments
 - requires some computation to check the constraints
 - ⇒ "incremental goal test"
 - can detect if a partial assignments violate a goal
 - \implies early detection of inconsistencies \implies pruning
- Backtracking search: DFS with the two above improvements

Backtracking Search: Example

(Part of) Search Tree for Map-Coloring



Backtracking Search Algorithm

function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK(csp, { })

function BACKTRACK(*csp*, *assignment*) **returns** a solution or *failure* if assignment is complete then return assignment $var \leftarrow SELECT-UNASSIGNED-VARIABLE(csp, assignment)$ for each value in ORDER-DOMAIN-VALUES(csp. var. assignment) do if value is consistent with assignment then add {*var* = *value*} to *assignment* $inferences \leftarrow \text{INFERENCE}(csp, var, assignment)$ **if** *inferences* \neq *failure* **then** add *inferences* to *csp* $result \leftarrow BACKTRACK(csp, assignment)$ **if** *result* \neq *failure* **then return** *result* remove *inferences* from *csp* remove {*var* = *value*} from *assignment* return failure

(© S. Russell & P. Norwig, AIMA)

General-purpose algorithm for generic CSPs

- The representation of CSPs is standardized
 - $\Rightarrow\,$ no need to provide a domain-specific initial state, action function, transition model, or goal test
- BACKTRACKING-SEARCH() keeps a single representation of a state
 - alters such representation rather than creating new ones
- We can add some sophistication to the unspecified functions:
 - SELECT-UNASSIGNED-VARIABLE(...): which variable should be assigned next?
 - ORDER-DOMAIN-VALUES(...): in which order should its values be tried?
 - INFERENCE(...): what inferences should be performed at each step?
- We can also wonder: when an assignment violates a constraint:
 - where should we backtrack s.t. to avoid usuless search?
 - how can we avoid repeating the same failure in the future?

- General-purpose algorithm for generic CSPs
- The representation of CSPs is standardized
 - → no need to provide a domain-specific initial state, action function, transition model, or goal test
- BACKTRACKING-SEARCH() keeps a single representation of a state
 - alters such representation rather than creating new ones
- We can add some sophistication to the unspecified functions:
 - SELECT-UNASSIGNED-VARIABLE(...): which variable should be assigned next?
 - ORDER-DOMAIN-VALUES(...): in which order should its values be tried?
 - INFERENCE(...): what inferences should be performed at each step?
- We can also wonder: when an assignment violates a constraint:
 - where should we backtrack s.t. to avoid usuless search?
 - how can we avoid repeating the same failure in the future?

- General-purpose algorithm for generic CSPs
- The representation of CSPs is standardized
 - → no need to provide a domain-specific initial state, action function, transition model, or goal test
- BACKTRACKING-SEARCH() keeps a single representation of a state
 - alters such representation rather than creating new ones
- We can add some sophistication to the unspecified functions:
 - SELECT-UNASSIGNED-VARIABLE(...): which variable should be assigned next?
 - ORDER-DOMAIN-VALUES(...): in which order should its values be tried?
 - INFERENCE(...): what inferences should be performed at each step?
- We can also wonder: when an assignment violates a constraint:
 - where should we backtrack s.t. to avoid usuless search?
 - how can we avoid repeating the same failure in the future?

- General-purpose algorithm for generic CSPs
- The representation of CSPs is standardized
 - → no need to provide a domain-specific initial state, action function, transition model, or goal test
- BACKTRACKING-SEARCH() keeps a single representation of a state
 - alters such representation rather than creating new ones
- We can add some sophistication to the unspecified functions:
 - SELECT-UNASSIGNED-VARIABLE(...): which variable should be assigned next?
 - ORDER-DOMAIN-VALUES(...): in which order should its values be tried?
 - INFERENCE(...): what inferences should be performed at each step?
- We can also wonder: when an assignment violates a constraint:
 - where should we backtrack s.t. to avoid usuless search?
 - how can we avoid repeating the same failure in the future?

- General-purpose algorithm for generic CSPs
- The representation of CSPs is standardized
 - → no need to provide a domain-specific initial state, action function, transition model, or goal test
- BACKTRACKING-SEARCH() keeps a single representation of a state
 - alters such representation rather than creating new ones
- We can add some sophistication to the unspecified functions:
 - SELECT-UNASSIGNED-VARIABLE(...): which variable should be assigned next?
 - ORDER-DOMAIN-VALUES(...): in which order should its values be tried?
 - INFERENCE(...): what inferences should be performed at each step?
- We can also wonder: when an assignment violates a constraint:
 - where should we backtrack s.t. to avoid usuless search?
 - how can we avoid repeating the same failure in the future?

- General-purpose algorithm for generic CSPs
- The representation of CSPs is standardized
 - → no need to provide a domain-specific initial state, action function, transition model, or goal test
- BACKTRACKING-SEARCH() keeps a single representation of a state
 - alters such representation rather than creating new ones
- We can add some sophistication to the unspecified functions:
 - SELECT-UNASSIGNED-VARIABLE(...): which variable should be assigned next?
 - ORDER-DOMAIN-VALUES(...): in which order should its values be tried?
 - INFERENCE(...): what inferences should be performed at each step?
- We can also wonder: when an assignment violates a constraint:
 - where should we backtrack s.t. to avoid usuless search?
 - how can we avoid repeating the same failure in the future?

- General-purpose algorithm for generic CSPs
- The representation of CSPs is standardized
 - → no need to provide a domain-specific initial state, action function, transition model, or goal test
- BACKTRACKING-SEARCH() keeps a single representation of a state
 - alters such representation rather than creating new ones
- We can add some sophistication to the unspecified functions:
 - SELECT-UNASSIGNED-VARIABLE(...): which variable should be assigned next?
 - ORDER-DOMAIN-VALUES(...): in which order should its values be tried?
 - INFERENCE(...): what inferences should be performed at each step?
- We can also wonder: when an assignment violates a constraint:
 - where should we backtrack s.t. to avoid usuless search?
 - how can we avoid repeating the same failure in the future?

- General-purpose algorithm for generic CSPs
- The representation of CSPs is standardized
 - → no need to provide a domain-specific initial state, action function, transition model, or goal test
- BACKTRACKING-SEARCH() keeps a single representation of a state
 - alters such representation rather than creating new ones
- We can add some sophistication to the unspecified functions:
 - SELECT-UNASSIGNED-VARIABLE(...): which variable should be assigned next?
 - ORDER-DOMAIN-VALUES(...): in which order should its values be tried?
 - INFERENCE(...): what inferences should be performed at each step?
- We can also wonder: when an assignment violates a constraint:
 - where should we backtrack s.t. to avoid usuless search?
 - how can we avoid repeating the same failure in the future?

- Aka most constrained variable or fail-first heuristic
- MRV: Choose the variable with the fewest legal values
 - $\Rightarrow\,$ pick a variable that is most likely to cause a failure soon
- If X has no legal values left, MRV heuristic selects X
 - \implies failure detected immediately
 - avoid pointless search through other variables
- (Otherwise) If X has one legal value left, MRV selects X
 - ⇒ performs deterministic choices first!
 - postpones nondeterministic steps as much as possible

- Aka most constrained variable or fail-first heuristic
- MRV: Choose the variable with the fewest legal values
 - \implies pick a variable that is most likely to cause a failure soon
- If X has no legal values left, MRV heuristic selects X
 - \implies failure detected immediately
 - avoid pointless search through other variables
- (Otherwise) If X has one legal value left, MRV selects X
 - ⇒ performs deterministic choices first!
 - postpones nondeterministic steps as much as possible

- Aka most constrained variable or fail-first heuristic
- MRV: Choose the variable with the fewest legal values
 - \implies pick a variable that is most likely to cause a failure soon
- If X has no legal values left, MRV heuristic selects X
 - \implies failure detected immediately
 - avoid pointless search through other variables
- (Otherwise) If X has one legal value left, MRV selects X
 - ⇒ performs deterministic choices first
 - postpones nondeterministic steps as much as possible

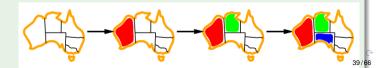
- Aka most constrained variable or fail-first heuristic
- MRV: Choose the variable with the fewest legal values
 - \implies pick a variable that is most likely to cause a failure soon
- If X has no legal values left, MRV heuristic selects X
 - \implies failure detected immediately
 - avoid pointless search through other variables
- (Otherwise) If X has one legal value left, MRV selects X
 - ⇒ performs deterministic choices first!
 - postpones nondeterministic steps as much as possible

- Aka most constrained variable or fail-first heuristic
- MRV: Choose the variable with the fewest legal values
 - \implies pick a variable that is most likely to cause a failure soon
- If X has no legal values left, MRV heuristic selects X
 - \implies failure detected immediately
 - avoid pointless search through other variables
- (Otherwise) If X has one legal value left, MRV selects X
 - → performs deterministic choices first!
 - postpones nondeterministic steps as much as possible
- Pick (WA = red), (NT = green) \implies (SA = blue) (deterministic)
- Next? (*Q* =)

Minimum Remaining Values (MRV) heuristic

- Aka most constrained variable or fail-first heuristic
- MRV: Choose the variable with the fewest legal values
 - \implies pick a variable that is most likely to cause a failure soon
- If X has no legal values left, MRV heuristic selects X
 - \implies failure detected immediately
 - avoid pointless search through other variables
- (Otherwise) If X has one legal value left, MRV selects X
 - → performs deterministic choices first!
 - postpones nondeterministic steps as much as possible
- Pick (WA = red), (NT = green) \implies (SA = blue) (deterministic)
- Next? (*Q* = *red*)

0



Minimum Remaining Values (MRV) heuristic

- Aka most constrained variable or fail-first heuristic
- MRV: Choose the variable with the fewest legal values
 - \implies pick a variable that is most likely to cause a failure soon
- If X has no legal values left, MRV heuristic selects X
 - \implies failure detected immediately
 - avoid pointless search through other variables
- (Otherwise) If X has one legal value left, MRV selects X
 - → performs deterministic choices first!
 - postpones nondeterministic steps as much as possible
- Pick (WA = red), (NT = green) \implies (SA = blue) (deterministic)
- Next? (*Q* = *red*)

O ...

Degree heuristic

- Pick the variable that is involved in the largest number of constraints on other unassigned variables
 - \implies attempts to reduce the branching factor on future choices
 - \implies favourishes future deterministic choices
- Used as tie-breaker in combination with MRV
 - apply MRV; if ties, apply DH to these variables

Degree heuristic

- Pick the variable that is involved in the largest number of constraints on other unassigned variables
 - \implies attempts to reduce the branching factor on future choices
 - ⇒ favourishes future deterministic choices
- Used as tie-breaker in combination with MRV
 - apply MRV; if ties, apply DH to these variables

Degree heuristic

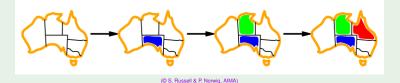
- Pick the variable that is involved in the largest number of constraints on other unassigned variables
 - \implies attempts to reduce the branching factor on future choices
 - ⇒ favourishes future deterministic choices
- Used as tie-breaker in combination with MRV
 - apply MRV; if ties, apply DH to these variables

Degree heuristic

- Pick the variable that is involved in the largest number of constraints on other unassigned variables
 - \implies attempts to reduce the branching factor on future choices
 - \implies favourishes future deterministic choices
- Used as tie-breaker in combination with MRV
 - apply MRV; if ties, apply DH to these variables

Example: MRV+DH

- Pick (SA = blue), (NT = green) \implies (Q = red) (deterministic)
- Next? (NSW=green)... (deterministic MRV+DH),

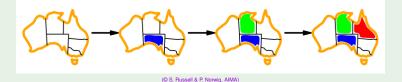


Degree heuristic

- Pick the variable that is involved in the largest number of constraints on other unassigned variables
 - \implies attempts to reduce the branching factor on future choices
 - \implies favourishes future deterministic choices
- Used as tie-breaker in combination with MRV
 - apply MRV; if ties, apply DH to these variables

Example: MRV+DH

- Pick (SA = blue), (NT = green) \implies (Q = red) (deterministic)
- Next? (NSW=green)... (deterministic MRV+DH),

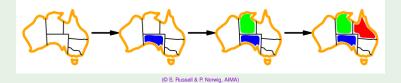


Degree heuristic

- Pick the variable that is involved in the largest number of constraints on other unassigned variables
 - \implies attempts to reduce the branching factor on future choices
 - \implies favourishes future deterministic choices
- Used as tie-breaker in combination with MRV
 - apply MRV; if ties, apply DH to these variables

Example: MRV+DH

- Pick (SA = blue), (NT = green) \implies (Q = red) (deterministic)
- Next? (NSW=green)... (deterministic MRV+DH),



Least Constraining Value (LCS) heuristic

- Pick the value that rules out the fewest choices for the neighboring variables
 - \implies tries maximum flexibility for subsequent variable assignments
- Look for the most likely values first
 - \implies improve chances of finding solutions earlier
- Ex: MRV+DH+LCS allow for solving 1000-queens

Least Constraining Value (LCS) heuristic

- Pick the value that rules out the fewest choices for the neighboring variables
 - \implies tries maximum flexibility for subsequent variable assignments
- Look for the most likely values first
 - \implies improve chances of finding solutions earlier

• Ex: MRV+DH+LCS allow for solving 1000-queens

Least Constraining Value (LCS) heuristic

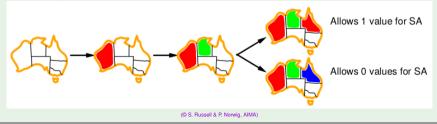
- Pick the value that rules out the fewest choices for the neighboring variables
 - \implies tries maximum flexibility for subsequent variable assignments
- Look for the most likely values first
 - \implies improve chances of finding solutions earlier
- Ex: MRV+DH+LCS allow for solving 1000-queens

Least Constraining Value (LCS) heuristic

- Pick the value that rules out the fewest choices for the neighboring variables
 - \implies tries maximum flexibility for subsequent variable assignments
- Look for the most likely values first
 - \implies improve chances of finding solutions earlier
- Ex: MRV+DH+LCS allow for solving 1000-queens

LCS

- Pick (SA = red), (NT = green) \Longrightarrow (Q = red) (preferred)
- Next? (SA=blu

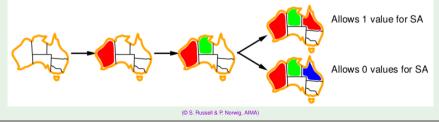


Least Constraining Value (LCS) heuristic

- Pick the value that rules out the fewest choices for the neighboring variables
 - \implies tries maximum flexibility for subsequent variable assignments
- Look for the most likely values first
 - \implies improve chances of finding solutions earlier
- Ex: MRV+DH+LCS allow for solving 1000-queens

LCS

- Pick (SA = red), (NT = green) \Longrightarrow (Q = red) (preferred)
- Next? (SA=blue)

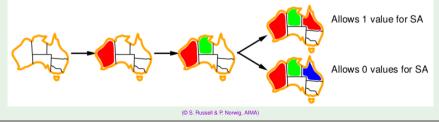


Least Constraining Value (LCS) heuristic

- Pick the value that rules out the fewest choices for the neighboring variables
 - \implies tries maximum flexibility for subsequent variable assignments
- Look for the most likely values first
 - \implies improve chances of finding solutions earlier
- Ex: MRV+DH+LCS allow for solving 1000-queens

LCS

- Pick (SA = red), (NT = green) \Longrightarrow (Q = red) (preferred)
- Next? (SA=blue)



Outline

Constraint Satisfaction Problems (CSPs)

Search with CSPs

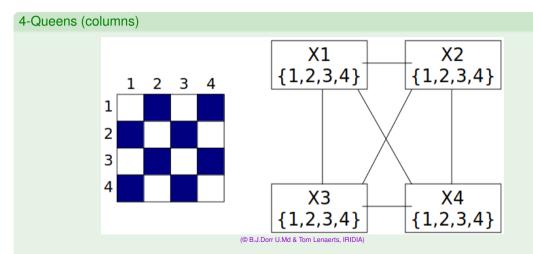
- Inference: Constraint Propagation
- Backtracking Search
- Interleaving Search and Inference
- Chronological vs. Conflict-Drivem Backtracking
- Local Search with CSPs
- Exploiting Structure of CSPs

- After each choice, infer new domain reductions on other variables
 - detect inconsistencies earlier
 - reduce search spaces
 - may produce unary domains (deterministic steps)
 - \implies returned as assignments ("inferences")
- Tradeoff between effectiveness and efficiency
- Forward checking
 - cheap
 - $\bullet\,$ ensures arc consistency of $\langle \textit{assigned}, \textit{unassigned} \rangle$ variable pairs only
- AC-3
 - more expensive
 - ensure arc consistency of all variable pairs
 - strategy (MAC):
 - after X_i is assigned, start AC-3 with only the arcs $\langle X_i, X_i \rangle$ s.t. X_i unassigned neighbour variables of X_i
 - \implies much more effective than forward checking, more expensive

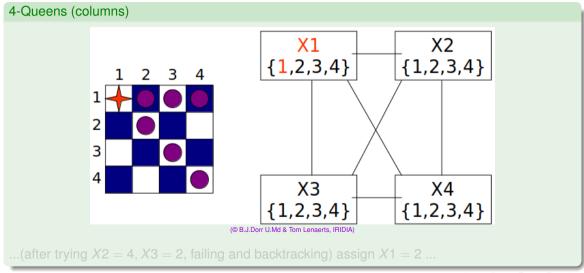
- After each choice, infer new domain reductions on other variables
 - detect inconsistencies earlier
 - reduce search spaces
 - may produce unary domains (deterministic steps)
 - \implies returned as assignments ("inferences")
- Tradeoff between effectiveness and efficiency
- Forward checking
 - cheap
 - $\bullet\,$ ensures arc consistency of $\langle \textit{assigned}, \textit{unassigned} \rangle\, \textit{variable pairs only}$
- AC-3
 - more expensive
 - ensure arc consistency of all variable pairs
 - strategy (MAC):
 - after X_i is assigned, start AC-3 with only the arcs $\langle X_i, X_i \rangle$ s.t. X_i unassigned neighbour variables of X_i
 - \implies much more effective than forward checking, more expensive

- After each choice, infer new domain reductions on other variables
 - detect inconsistencies earlier
 - reduce search spaces
 - may produce unary domains (deterministic steps)
 - \implies returned as assignments ("inferences")
- Tradeoff between effectiveness and efficiency
- Forward checking
 - cheap
 - $\bullet~$ ensures arc consistency of $\langle \textit{assigned}, \textit{unassigned} \rangle$ variable pairs only
- AC-3
 - more expensive
 - ensure arc consistency of all variable pairs
 - strategy (MAC):
 - after X_i is assigned, start AC-3 with only the arcs $\langle X_i, X_i \rangle$ s.t. X_i unassigned neighbour variables of X_i
 - \implies much more effective than forward checking, more expensive

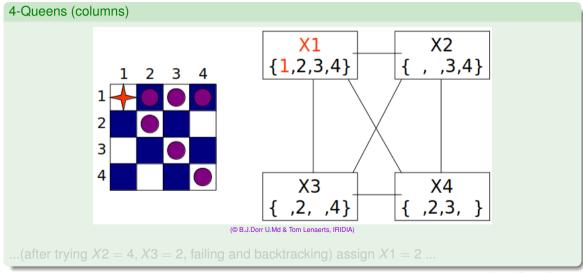
- After each choice, infer new domain reductions on other variables
 - detect inconsistencies earlier
 - reduce search spaces
 - may produce unary domains (deterministic steps)
 - \implies returned as assignments ("inferences")
- Tradeoff between effectiveness and efficiency
- Forward checking
 - cheap
 - ensures arc consistency of $\langle \textit{assigned}, \textit{unassigned} \rangle$ variable pairs only
- AC-3
 - more expensive
 - ensure arc consistency of all variable pairs
 - strategy (MAC):
 - after X_i is assigned, start AC-3 with only the arcs $\langle X_i, X_i \rangle$ s.t. X_i unassigned neighbour variables of X_i
 - \implies much more effective than forward checking, more expensive

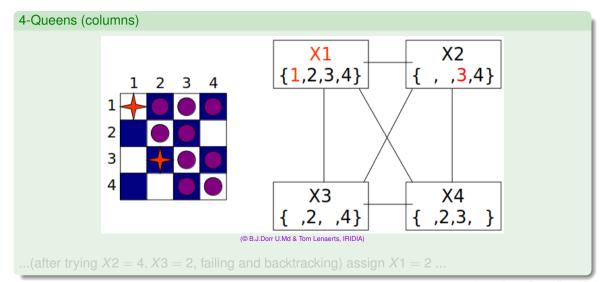


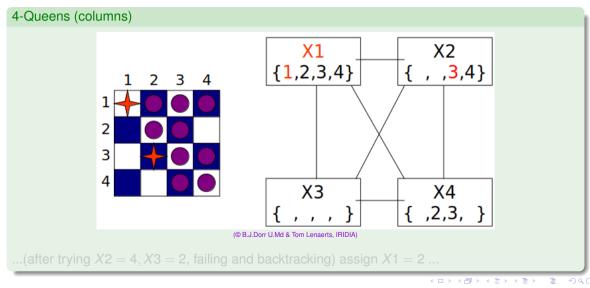
...(after trying X2 = 4, X3 = 2, failing and backtracking) assign X1 = 2 ...

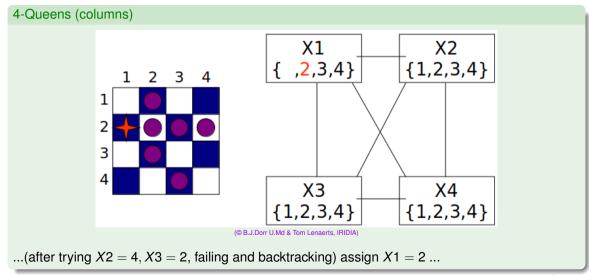


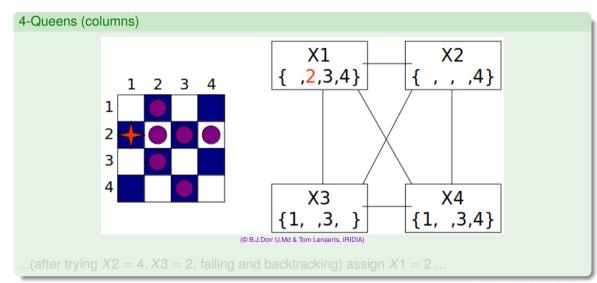
44/66

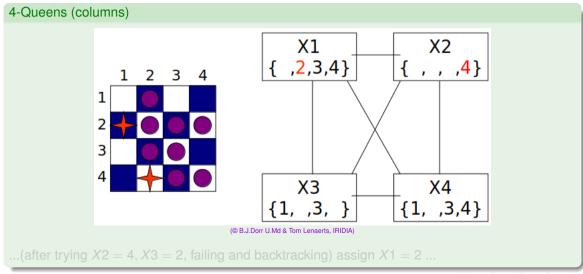




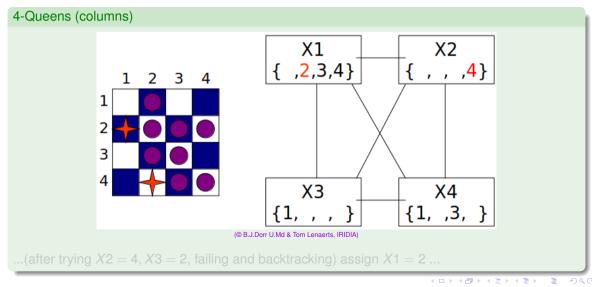


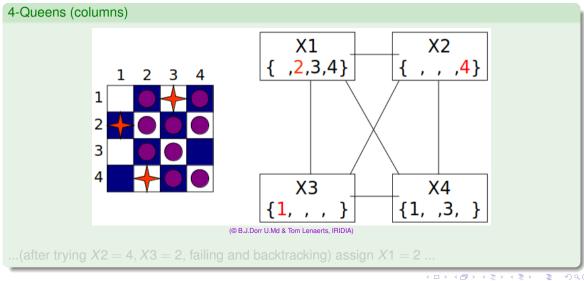


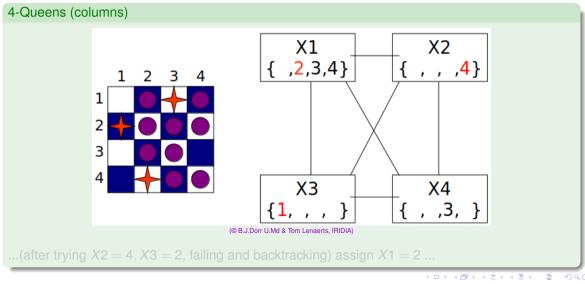


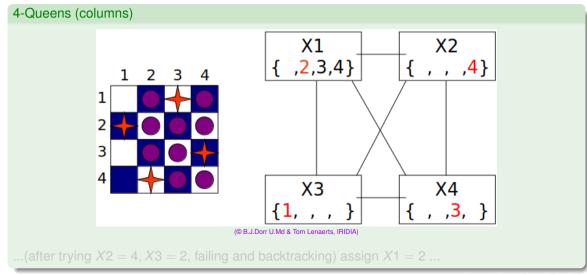


44/66









Outline

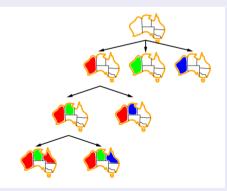
Constraint Satisfaction Problems (CSPs)

Search with CSPs

- Inference: Constraint Propagation
- Backtracking Search
- Interleaving Search and Inference
- Chronological vs. Conflict-Drivem Backtracking
- Local Search with CSPs
- Exploiting Structure of CSPs

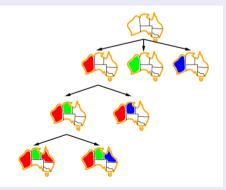
Standard Chronological Backtracking

- When a branch fails (empty domain for variable *X_i*):
 - back up to the preceding variable which still has some untried value
 - forward-propagated assignments and rightmost choices are skipped
 - Itry a different value for it
- Problem: lots of search wasted!



Standard Chronological Backtracking

- When a branch fails (empty domain for variable *X_i*):
 - back up to the preceding variable which still has some untried value
 - forward-propagated assignments and rightmost choices are skipped
 - Itry a different value for it
- Problem: lots of search wasted!



Assume variable selection order: WA,NSW,T,NT,Q,V,SA

assignment [domain] step pick WA = r[**rb**g] (1)NSW = r[**rb**g] (2) pick (3) pick T = r[rbg]• failed branch: (4)pick NT = g[**b**g] $\stackrel{fc}{\Longrightarrow} Q = \mathbf{b}$ (5) [<mark>b</mark>] (6)pick $V = \mathbf{b}$ [**b**, g] _fc → (7) $SA = \{\}$ Π

• backtrack to (5), pick $V = g \Longrightarrow$ (7) again

- backtrack to (3), pick $NT = b \stackrel{fc}{\Longrightarrow} Q = g \Longrightarrow$ same subtree (6), with values switched
- backtrack to (2), pick $T = b \Longrightarrow$ same subtree (4)...
- backtrack to (2), pick $T = g \Longrightarrow$ same subtree (4)...
- \Rightarrow backtrack to (1), then assign *NSW* another value
- \Rightarrow lots of useless search on T and V values
 - source of inconsistency not identified: $\{WA = r, NSW = r\}$

Assume variable selection order: WA,NSW,T,NT,Q,V,SA assignment [domain] step pick WA = r[**rb**g] (1)NSW = r[**rb**g] (2) pick (3) pick T = r[rbg]• failed branch: (4)pick NT = q[**b**g] $\stackrel{fc}{\Longrightarrow} Q = b$ (5) [**b**] pick V = b(6)[**b**, g] \xrightarrow{fc} (7) $SA = \{\}$ Π

- backtrack to (5), pick $V = g \Longrightarrow$ (7) again
- backtrack to (3), pick $NT = b \stackrel{fc}{\Longrightarrow} Q = g \Longrightarrow$ same subtree (6), with values switched
- backtrack to (2), pick $T = b \Longrightarrow$ same subtree (4)...
- backtrack to (2), pick $T = g \Longrightarrow$ same subtree (4)...
- \Rightarrow backtrack to (1), then assign *NSW* another value
- \Rightarrow lots of useless search on T and V values
 - source of inconsistency not identified: $\{WA = r, NSW = r\}$

Assume variable selection order: WA,NSW,T,NT,Q,V,SA assignment [domain] step pick WA = r[**rb**g] (1)NSW = r[**rb**g] (2) pick (3) pick T = r[rbg]• failed branch: (4)pick NT = g[**b**g] $\stackrel{fc}{\Longrightarrow} Q = b$ (5) [**b**] pick V = b(6) [**b**, g] $\stackrel{\text{fc}}{\Longrightarrow}$ $SA = \{\}$ (7)Π

- backtrack to (5), pick $V = g \Longrightarrow$ (7) again
- backtrack to (3), pick $NT = b \stackrel{fc}{\Longrightarrow} Q = g \Longrightarrow$ same subtree (6), with values switched
- backtrack to (2), pick $T = b \Longrightarrow$ same subtree (4)...
- backtrack to (2), pick $T = g \Longrightarrow$ same subtree (4)...
- \Rightarrow backtrack to (1), then assign NSW another value
- \Rightarrow lots of useless search on T and V values
 - source of inconsistency not identified: $\{WA = r, NSW = r\}$

Assume variable selection order: WA,NSW,T,NT,Q,V,SA assignment [domain] step pick WA = r[**rb**g] (1)NSW = r[**rb**g] (2) pick (3) pick T = r[rbg]• failed branch: (4)pick NT = g[**b**g] $\stackrel{fc}{\Longrightarrow} Q = b$ [**b**] (5) pick V = b [b, g] (6) $\stackrel{\text{fc}}{\Longrightarrow}$ $SA = \{\}$ (7) Π

- backtrack to (5), pick $V = g \Longrightarrow$ (7) again
- backtrack to (3), pick $NT = b \stackrel{fc}{\Longrightarrow} Q = g \implies$ same subtree (6), with values switched
- backtrack to (2), pick $T = b \implies$ same subtree (4)...
- backtrack to (2), pick $T = a \implies$ same subtree (4)...
- - source of inconsistency not identified: $\{WA = r, NSW = r\}$

Assume variable selection order: WA,NSW,T,NT,Q,V,SA assignment [domain] step pick WA = r[**rb**g] (1)NSW = r[**rb**g] (2) pick (3) pick T = r[rbg]• failed branch: (4)

- pick NT = g[<mark>b</mark>g] $\stackrel{\text{fc}}{\Longrightarrow} Q = b$ [**b**] (5) pick V = b [b, g] (6) $\stackrel{fc}{\Longrightarrow}$ $SA = \{\}$ (7)Π
- backtrack to (5), pick $V = g \Longrightarrow$ (7) again
- backtrack to (3), pick $NT = b \stackrel{fc}{\Longrightarrow} Q = g \implies$ same subtree (6), with values switched
- backtrack to (2), pick $T = b \implies$ same subtree (4)...
- backtrack to (2), pick $T = g \Longrightarrow$ same subtree (4)...
- - source of inconsistency not identified: $\{WA = r, NSW = r\}$

assignment

Assume variable selection order: WA,NSW,T,NT,Q,V,SA

step

• failed branch:

- pick WA = r[**rb**g] (1)pick NSW = r[**rb**g] (2) (3) pick T = r[rbg](4)pick NT = g[<mark>b</mark>g] $\stackrel{\text{fc}}{\Longrightarrow} Q = b$ [**b**] (5) pick V = b [b, g] (6) $\stackrel{\text{fc}}{\Longrightarrow}$ $SA = \{\}$ (7)Π
- backtrack to (5), pick $V = g \Longrightarrow$ (7) again
- backtrack to (3), pick $NT = b \stackrel{fc}{\Longrightarrow} Q = g \Longrightarrow$ same subtree (6), with values switched

[domain]

- backtrack to (2), pick $T = b \Longrightarrow$ same subtree (4)...
- backtrack to (2), pick $T = g \Longrightarrow$ same subtree (4)...
- \implies backtrack to (1), then assign *NSW* another value

 \Rightarrow lots of useless search on T and V values

• source of inconsistency not identified: $\{WA = r, NSW = r\}$

Assume variable selection order: WA,NSW,T,NT,Q,V,SA

pick WA = r(1)pick NSW = r(2) (3) pick T = r• failed branch: (4)pick NT = g[<mark>b</mark>g] $\stackrel{\text{fc}}{\Longrightarrow} Q = b$ [**b**] (5) pick V = b [b, g] (6) $\stackrel{fc}{\Longrightarrow}$ $SA = \{\}$ (7)

- backtrack to (5), pick $V = g \Longrightarrow$ (7) again
- backtrack to (3), pick $NT = b \stackrel{fc}{\Longrightarrow} Q = g \implies$ same subtree (6), with values switched

Π

[**rb**g]

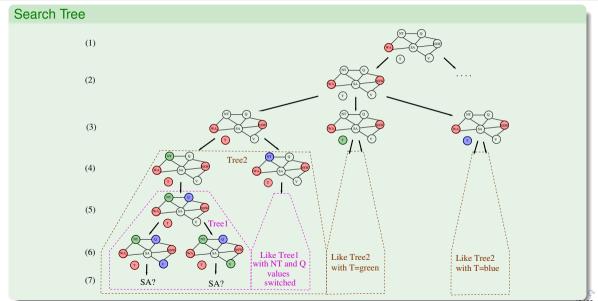
[rbg]

- backtrack to (2), pick $T = b \implies$ same subtree (4)...
- backtrack to (2), pick $T = g \implies$ same subtree (4)...
- \implies backtrack to (1), then assign NSW another value
- lots of useless search on T and V values
 - source of inconsistency not identified: $\{WA = r, NSW = r\}$

[domain] step assignment [**rb**g]

Assume variable selection order: WA,NSW,T,NT,Q,V,SA [domain] step assignment pick WA = r[**rb**g] (1)pick NSW = r [rbg] (2) pick T = r [rbg] (3) • failed branch: pick NT = g(4)[<mark>b</mark>g] $\stackrel{fc}{\Longrightarrow} Q = b$ [b] (5) pick V = b [b, g] (6) $\stackrel{fc}{\Longrightarrow}$ $SA = \{\}$ (7)Π

- backtrack to (5), pick $V = g \Longrightarrow$ (7) again
- backtrack to (3), pick $NT = b \stackrel{fc}{\Longrightarrow} Q = g \Longrightarrow$ same subtree (6), with values switched
- backtrack to (2), pick $T = b \Longrightarrow$ same subtree (4)...
- backtrack to (2), pick $T = g \Longrightarrow$ same subtree (4)...
- \implies backtrack to (1), then assign *NSW* another value
- \Rightarrow lots of useless search on T and V values
 - source of inconsistency not identified: {*WA* = *r*, *NSW* = *r*}



Nogood: subassignment which cannot be part of any solution

- ex: {WA = r, NSW = r} (see previous example)
- Conflict set for X_i (aka explanations):

(minimal) set of value assignments which caused the reduction of D_j via forward checking (i.e., in direct conflict with some values of X_j)

- ex: NSW=r,NT=g in conflict with r and g values for Q resp.
 - \implies domain of Q reduced to $\{b\}$ via forward checking
- a conflict set of an empty-domain variable is a nogood

- Nogood: subassignment which cannot be part of any solution
 - ex: {WA = r, NSW = r} (see previous example)
- Conflict set for X_j (aka explanations): (minimal) set of value assignments which caused the reduction of D_j via forward checking (i.e., in direct conflict with some values of X_j)
 - ex: NSW=r,NT=g in conflict with r and g values for Q resp.
 - \implies domain of *Q* reduced to $\{b\}$ via forward checking
 - a conflict set of an empty-domain variable is a nogood

- Idea: When a branch fails (empty domain for variable *X_i*):
 - identify nogood which caused the failure deterministically via forward checking
 - acktrack s.t. to pop the most-recently assigned element in nogood,
 - Change its value
- $\Rightarrow\,$ May jump much higher, lots of search saved
- Identify nogood:
 - take the conflict set C_i of empty-domain X_i (initial nogood)
 - Progressively backward-substitute inside C_i every deterministic assignments X_j = v with its respective conflict set C_j:

$$C_i := C_i \cup C_j \setminus \{X_j = v\}$$

- \Rightarrow Identify the most recent decision which caused the failure due to FC by "undoing" FC steps
- Many different strategies & variants available

- Idea: When a branch fails (empty domain for variable *X_i*):
 - identify nogood which caused the failure deterministically via forward checking
 - Dacktrack s.t. to pop the most-recently assigned element in nogood,
 - Change its value
- \Rightarrow May jump much higher, lots of search saved
- Identify nogood:
 - take the conflict set C_i of empty-domain X_i (initial nogood)
 - progressively backward-substitute inside C_i every deterministic assignments X_j = v with its respective conflict set C_i:

$$C_i := C_i \cup C_j \setminus \{X_j = v\}$$

- \Rightarrow Identify the most recent decision which caused the failure due to FC by "undoing" FC steps
- Many different strategies & variants available

- Idea: When a branch fails (empty domain for variable *X_i*):
 - identify nogood which caused the failure deterministically via forward checking
 - Backtrack s.t. to pop the most-recently assigned element in nogood,
 - Change its value
- \implies May jump much higher, lots of search saved
 - Identify nogood:
 - **1** take the conflict set C_i of empty-domain X_i (initial nogood)
 - **2** progressively backward-substitute inside C_i every deterministic assignments $X_j = v$ with its respective conflict set C_i :

$$C_i := C_i \cup C_j \setminus \{X_j = v\}$$

- \Rightarrow Identify the most recent decision which caused the failure due to FC by "undoing" FC steps
 - Many different strategies & variants available

- Idea: When a branch fails (empty domain for variable *X_i*):
 - identify nogood which caused the failure deterministically via forward checking
 - Backtrack s.t. to pop the most-recently assigned element in nogood,
 - Change its value
- \implies May jump much higher, lots of search saved
 - Identify nogood:
 - take the conflict set C_i of empty-domain X_i (initial nogood)
 - **2** progressively backward-substitute inside C_i every deterministic assignments $X_j = v$ with its respective conflict set C_i :

$$C_i := C_i \cup C_j \setminus \{X_j = v\}$$

- → Identify the most recent decision which caused the failure due to FC by "undoing" FC steps
 - Many different strategies & variants available

- Idea: When a branch fails (empty domain for variable X_i):
 - identify nogood which caused the failure deterministically via forward checking
 - Backtrack s.t. to pop the most-recently assigned element in nogood,
 - Change its value
- \implies May jump much higher, lots of search saved
 - Identify nogood:
 - take the conflict set C_i of empty-domain X_i (initial nogood)
 - **2** progressively backward-substitute inside C_i every deterministic assignments $X_j = v$ with its respective conflict set C_i :

$$C_i := C_i \cup C_j \setminus \{X_j = v\}$$

until none is left

→ Identify the most recent decision which caused the failure due to FC by "undoing" FC steps

Many different strategies & variants available

failed branch: [domain] \leftarrow {*conflict set*} step assign. (1) pick WA = r[rbg] $\leftarrow \{\}$ NSW = r[**rb**g] (2) pick $\leftarrow \{\}$ (3) pick T = r[**rb**g] $\leftarrow \{\}$ (4) pick NT = g $[bg] \leftarrow \{WA = r\}$ $(5) \stackrel{fc}{\Longrightarrow}$ $\leftarrow \{NSW = r, NT = a\}$ $Q = \mathbf{b}$ [<mark>b</mark>] $[b, g] \leftarrow \{NSW = r\}$ (6) pick V = b $(7) \stackrel{fc}{\Longrightarrow}$ $SA = \emptyset$ Π $\leftarrow \{WA = r, NT = q, Q = b\}$

backward-substitute assignments

 $\frac{\emptyset (7)}{\{WA=r, NT=g, Q=b\}} (5)$ $\{WA=r, NT=g, NSW=r\}$

⇒ backtrack till (3) s.t. to pop (4), then assign NT = b⇒ saves useless search on V values

• failed branch: <u>step</u> assign. [domain] (1) pick WA - r [rbc]

 \leftarrow {*conflict set*}

• backward-substitute assignments

$$\frac{\emptyset (7)}{\{WA = r, NT = g, Q = b\}} (5)$$

$$\{WA = r, NT = g, NSW = r\}$$

backtrack till (3) s.t. to pop (4), then assign NT = b saves useless search on V values

• failed branch:

step	assign.	[domain]	$\leftarrow \{ conflict \ set \}$
(1) <i>pick</i>	WA= r	[rb g]	$\leftarrow \{\} \rightarrow$
(2) pick	<i>NSW</i> = <i>r</i>	[rb g]	$\leftarrow \{\} \rightarrow$
(3) <i>pick</i>	T = r	[rb g]	$\leftarrow \{\}$
(4) pick	NT = g	[b g]	$\leftarrow \{WA = r\}$
$(5) \stackrel{fc}{\Longrightarrow}$	$Q = \frac{b}{b}$	[b]	$\leftarrow \{NSW = r, NT = g\}$
(6) <i>pick</i>		[<mark>b</mark> ,g]	$\leftarrow \{NSW = r\}$
$(7) \stackrel{fc}{\Longrightarrow}$	$S\!A \!=\! \emptyset$	[]	$\leftarrow \{WA = r, NT = g, Q = b\}$

backward-substitute assignments

$$\frac{\emptyset (7)}{\{WA=r, NT=g, Q=b\}} (5)}{\{WA=r, NT=g, NSW=r\}}$$

backtrack till (3) s.t. to pop (4), then assign NT = b

• failed branch:

step	assign.	[domain]	$\leftarrow \{\textit{conflict set}\}$
(1) <i>pick</i>	WA= r	[rb g]	$\leftarrow \{\} \rightarrow$
(2) pick	<i>NSW</i> = <i>r</i>	[rb g]	$\leftarrow \{\}$
(3) <i>pick</i>	T = r	[rb g]	$\leftarrow \{\}$
(4) <i>pick</i>	NT = g	[<mark>b</mark> g]	$\leftarrow \{WA = r\}$
$(5) \stackrel{fc}{\Longrightarrow}$	$Q = \frac{b}{b}$	[<mark>b</mark>]	$\leftarrow \{NSW = r, NT = g\}$
(6) <i>pick</i>	V = b	[<mark>b</mark> ,g]	$\leftarrow \{NSW = r\}$
$(7) \stackrel{fc}{\Longrightarrow}$	$S\!A \!=\! \emptyset$	[]	$\leftarrow \{ WA = r, NT = g, Q = b \}$

• backward-substitute assignments

$$\frac{\emptyset (7)}{\{WA=r, NT=g, Q=b\}} (5)}{\{WA=r, NT=g, NSW=r\}}$$

 \Rightarrow backtrack till (3) s.t. to pop (4), then assign NT = b

 \Rightarrow saves useless search on V values

• new failed branch: [domain] \leftarrow {*conflict set*} step assign. (1) pick WA = r[rbg] $\leftarrow \{\}$ NSW = r(2) pick [rbg] $\leftarrow \{\}$ (3) pick T = r[**rb**g] $\leftarrow \{\}$ (4) pick NT = b $\leftarrow \{WA = r\}$ [**b**] $(5) \stackrel{fc}{\Longrightarrow}$ Q = q $[g] \qquad \leftarrow \{NSW = r, NT = b\}$ $[b, g] \leftarrow \{NSW = r\}$ (6) pick V = b $(7) \stackrel{fc}{\Longrightarrow}$ $SA = \emptyset$ Π $\leftarrow \{WA = r, NT = b, Q = q\}$

- new failed branch: [domain] \leftarrow {*conflict set*} step assign. (1) pick WA = r[rbg] $\leftarrow \{\}$ (2) pick NSW = r[**rb**g] $\leftarrow \{\}$ (3) pick T = r[**rb**g] $\leftarrow \{\}$ (4) pick NT = b $\leftarrow \{WA = r\}$ [**b**] $(5) \stackrel{fc}{\Longrightarrow}$ Q = q $[g] \leftarrow \{NSW = r, NT = b\}$ $[b, g] \leftarrow \{NSW = r\}$ (6) pick V = b $(7) \stackrel{fc}{\Longrightarrow}$ $SA = \emptyset$ Π $\leftarrow \{WA = r, NT = b, Q = q\}$
- backward-substitute assignments

 $\frac{\emptyset (7)}{\overline{\{WA=r, NT=b, Q=g\}} (5)}$ $\frac{WA=r, NT=b, NSW=r\}}{\{WA=r, NSW=r\}} (4)$ ack till (1), then assign NSW another w

 \Rightarrow overall, saves lots of search wrt. chronological backtracki

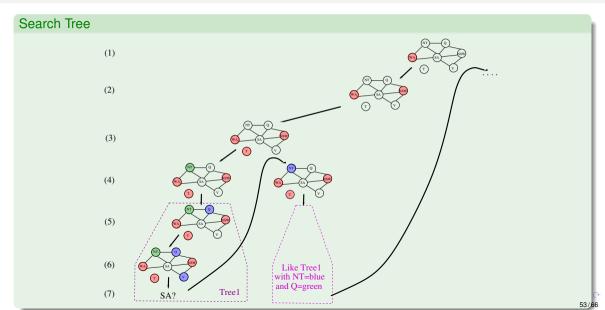
- new failed branch: [domain] \leftarrow {*conflict set*} step assign. (1) pick WA = r[rbg] $\leftarrow \{\}$ (2) pick NSW = r[**rb**g] $\leftarrow \{\}$ (3) pick T = r[**rb**g] $\leftarrow \{\}$ (4) pick NT = b $\leftarrow \{WA = r\}$ [**b**] $(5) \stackrel{fc}{\Longrightarrow}$ Q = q $[g] \leftarrow \{NSW = r, NT = b\}$ $[b, g] \leftarrow \{NSW = r\}$ (6) pick V = b $(7) \stackrel{fc}{\Longrightarrow}$ $SA = \emptyset$ Π $\leftarrow \{WA = r, NT = b, Q = q\}$
- backward-substitute assignments

- new failed branch: [domain] \leftarrow {*conflict set*} step assign. (1) pick WA = r[rbg] $\leftarrow \{\}$ (2) pick NSW = r[**rb**g] $\leftarrow \{\}$ (3) pick T = r[**rb**g] $\leftarrow \{\}$ (4) pick NT = b $\leftarrow \{WA = r\}$ [**b**] $(5) \stackrel{fc}{\Longrightarrow}$ Q = q $[g] \qquad \leftarrow \{NSW = r, NT = b\}$ $[b, g] \leftarrow \{NSW = r\}$ (6) pick V = b $(7) \stackrel{fc}{\Longrightarrow}$ $SA = \emptyset$ Π $\leftarrow \{WA = r, NT = b, Q = q\}$
- backward-substitute assignments

 $\frac{\emptyset \quad (7)}{\{WA = r, NT = b, Q = g\}} \quad (5) \\
\frac{\{WA = r, NT = b, NSW = r\}}{\{WA = r, NSW = r\}} \quad (4) \\
WA = r, NSW = r\}$ $\Rightarrow \text{ backtrack till (1), then assign NSW another value} \\
\Rightarrow \text{ saves useless search on } T \text{ values} \\
\Rightarrow \text{ overall saves lots of search wrt, chronological backtrack till saves lots wrt, chronological backtrack till$

- new failed branch: [domain] \leftarrow {*conflict set*} step assign. (1) pick WA = r[rbg] $\leftarrow \{\}$ NSW = r(2) pick [**rb**g] $\leftarrow \{\}$ (3) pick T = r[**rb**g] $\leftarrow \{\}$ (4) pick NT = b $[b] \leftarrow \{WA = r\}$ $(5) \stackrel{fc}{\Longrightarrow}$ Q = q $[g] \qquad \leftarrow \{NSW = r, NT = b\}$ (6) pick V = b $[b, g] \leftarrow \{NSW = r\}$ $(7) \stackrel{fc}{\Longrightarrow} SA = \emptyset$ Π $\leftarrow \{WA = r, NT = b, Q = q\}$
- backward-substitute assignments

 $\frac{\emptyset (7)}{\frac{\{WA=r, NT=b, Q=g\}}{\{WA=r, NT=b, NSW=r\}}} (5)}{\frac{\{WA=r, NT=b, NSW=r\}}{\{WA=r, NSW=r\}}}$ backtrack till (1), then assign *NSW* another value saves useless search on *T* values overall, saves lots of search wrt, chronological backtracking



- Nogood can be *learned* (stored) for future search pruning:
 - added to constraints (e.g. "($WA \neq r$) or ($NSW \neq r$)")
 - added to explicit nogood list
- As soon as assignment contains all but one element of a nogood, drop the value of the remaining element from variable's domain
- Example:
 - given nogood: {*WA*=*r*, *NSW*=*r*}
 - as soon as {*NSW* = *r*} is added to assignment r is dropped from WA domain
- Allows for
 - early-reveal inconsistencies
 - cause further constraint propagation
- Nogoods can be learned either temporarily or permanently
 - pruning effectiveness vs. memory consumption & overhead
- Many different strategies & variants available

- Nogood can be *learned* (stored) for future search pruning:
 - added to constraints (e.g. "($WA \neq r$) or ($NSW \neq r$)")
 - added to explicit nogood list
- As soon as assignment contains all but one element of a nogood, drop the value of the remaining element from variable's domain
- Example:
 - given nogood: {*WA*=*r*, *NSW*=*r*}
 - as soon as {*NSW* = *r*} is added to assignment r is dropped from WA domain
- Allows for
 - early-reveal inconsistencies
 - cause further constraint propagation
- Nogoods can be learned either temporarily or permanently
 - pruning effectiveness vs. memory consumption & overhead
- Many different strategies & variants available

- Nogood can be *learned* (stored) for future search pruning:
 - added to constraints (e.g. "($WA \neq r$) or ($NSW \neq r$)")
 - added to explicit nogood list
- As soon as assignment contains all but one element of a nogood, drop the value of the remaining element from variable's domain
- Example:
 - given nogood: {*WA*=*r*, *NSW*=*r*}
 - as soon as {*NSW* = *r*} is added to assignment *r* is dropped from WA domain
- Allows for
 - early-reveal inconsistencies
 - cause further constraint propagation
- Nogoods can be learned either temporarily or permanently
 - pruning effectiveness vs. memory consumption & overhead
- Many different strategies & variants available

- Nogood can be *learned* (stored) for future search pruning:
 - added to constraints (e.g. "($WA \neq r$) or ($NSW \neq r$)")
 - added to explicit nogood list
- As soon as assignment contains all but one element of a nogood, drop the value of the remaining element from variable's domain
- Example:
 - given nogood: {*WA*=*r*, *NSW*=*r*}
 - as soon as {*NSW* = *r*} is added to assignment
 r is dropped from WA domain
- Allows for
 - early-reveal inconsistencies
 - cause further constraint propagation
- Nogoods can be learned either temporarily or permanently
 - pruning effectiveness vs. memory consumption & overhead
- Many different strategies & variants available

- Nogood can be *learned* (stored) for future search pruning:
 - added to constraints (e.g. "($WA \neq r$) or ($NSW \neq r$)")
 - added to explicit nogood list
- As soon as assignment contains all but one element of a nogood, drop the value of the remaining element from variable's domain
- Example:
 - given nogood: {*WA*=*r*, *NSW*=*r*}
 - as soon as {*NSW* = *r*} is added to assignment
 r is dropped from WA domain
- Allows for
 - early-reveal inconsistencies
 - cause further constraint propagation
- Nogoods can be learned either temporarily or permanently
 - pruning effectiveness vs. memory consumption & overhead
- Many different strategies & variants available

- Nogood can be *learned* (stored) for future search pruning:
 - added to constraints (e.g. "($WA \neq r$) or ($NSW \neq r$)")
 - added to explicit nogood list
- As soon as assignment contains all but one element of a nogood, drop the value of the remaining element from variable's domain
- Example:
 - given nogood: {*WA*=*r*, *NSW*=*r*}
 - as soon as {*NSW* = *r*} is added to assignment
 r is dropped from WA domain
- Allows for
 - early-reveal inconsistencies
 - cause further constraint propagation
- Nogoods can be learned either temporarily or permanently
 - pruning effectiveness vs. memory consumption & overhead
- Many different strategies & variants available

Outline

Constraint Satisfaction Problems (CSPs)

Search with CSPs

- Inference: Constraint Propagation
- Backtracking Search
- Interleaving Search and Inference
- Chronological vs. Conflict-Drivem Backtracking

Local Search with CSPs

Exploiting Structure of CSPs

Extension of Local Search to CSPs straightforward

- Use complete-state representation (complete assignments)
 - allow states with unsatisfied constraints
 - "neighbour states" differ for one variable value
 - steps: reassign variable values
- Min-conflicts heuristic in hill-climbing:
 - Variable selection: randomly select any conflicted variable
 - Value selection: select new value that results in a minimum number of conflicts with the other variables
 - Improvement: adaptive strategies giving different weights to constraints according to their criticality
- SLC variants [see Ch. 4] apply to CSPs as well
 - random walk, simulated annealing, GAs, taboo search, ...
- ex: 1000-queens solved in few minutes

- Extension of Local Search to CSPs straightforward
- Use complete-state representation (complete assignments)
 - allow states with unsatisfied constraints
 - "neighbour states" differ for one variable value
 - steps: reassign variable values
- Min-conflicts heuristic in hill-climbing:
 - Variable selection: randomly select any conflicted variable
 - Value selection: select new value that results in a minimum number of conflicts with the other variables
 - Improvement: adaptive strategies giving different weights to constraints according to their criticality
- SLC variants [see Ch. 4] apply to CSPs as well
 - random walk, simulated annealing, GAs, taboo search, ...
- ex: 1000-queens solved in few minutes

- Extension of Local Search to CSPs straightforward
- Use complete-state representation (complete assignments)
 - allow states with unsatisfied constraints
 - "neighbour states" differ for one variable value
 - steps: reassign variable values
- Min-conflicts heuristic in hill-climbing:
 - Variable selection: randomly select any conflicted variable
 - Value selection: select new value that results in a minimum number of conflicts with the other variables
 - Improvement: adaptive strategies giving different weights to constraints according to their criticality
- SLC variants [see Ch. 4] apply to CSPs as well
 - random walk, simulated annealing, GAs, taboo search, ...
- ex: 1000-queens solved in few minutes

- Extension of Local Search to CSPs straightforward
- Use complete-state representation (complete assignments)
 - allow states with unsatisfied constraints
 - "neighbour states" differ for one variable value
 - steps: reassign variable values
- Min-conflicts heuristic in hill-climbing:
 - Variable selection: randomly select any conflicted variable
 - Value selection: select new value that results in a minimum number of conflicts with the other variables
 - Improvement: adaptive strategies giving different weights to constraints according to their criticality
- SLC variants [see Ch. 4] apply to CSPs as well
 - random walk, simulated annealing, GAs, taboo search, ...
- ex: 1000-queens solved in few minutes

- Extension of Local Search to CSPs straightforward
- Use complete-state representation (complete assignments)
 - allow states with unsatisfied constraints
 - "neighbour states" differ for one variable value
 - steps: reassign variable values
- Min-conflicts heuristic in hill-climbing:
 - Variable selection: randomly select any conflicted variable
 - Value selection: select new value that results in a minimum number of conflicts with the other variables
 - Improvement: adaptive strategies giving different weights to constraints according to their criticality
- SLC variants [see Ch. 4] apply to CSPs as well
 - random walk, simulated annealing, GAs, taboo search, ...
- ex: 1000-queens solved in few minutes

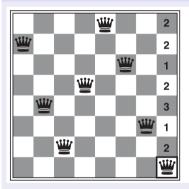
The Min-Conflicts Heuristic

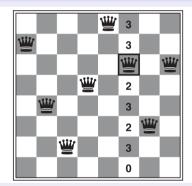
```
function MIN-CONFLICTS(csp, max_steps) returns a solution or failure
  inputs: csp, a constraint satisfaction problem
          max\_steps, the number of steps allowed before giving up
  current \leftarrow an initial complete assignment for csp
  for i = 1 to max_steps do
      if current is a solution for csp then return current
      var \leftarrow a randomly chosen conflicted variable from csp. VARIABLES
      value \leftarrow the value v for var that minimizes CONFLICTS(var, v, current, csp)
      set var = value in current
  return failure
```

(© S. Russell & P. Norwig, AIMA)

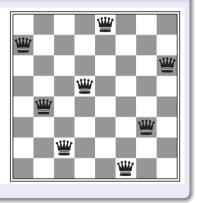
The Min-Conflicts Heuristic: Example

Two steps solution of 8-Queens problem





(© S. Russell & P. Norwig, AIMA)



Outline

Constraint Satisfaction Problems (CSPs)

Search with CSPs

- Inference: Constraint Propagation
- Backtracking Search
- Interleaving Search and Inference
- Chronological vs. Conflict-Drivem Backtracking
- Local Search with CSPs

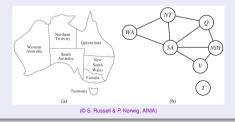
Exploiting Structure of CSPs

Partitioning CFPs

"Divide & Conquer" CSPs

- Idea (when applicable): Partition a CSP into independent CSPs
 - identify strongly-connected components in constraint graph
 - e.g. by Tarjan's algorithms (linear!)
- Ex: Tasmania and mainland are independent subproblems
- E.g. partition n-variable CSP into n/c CSPs with c variables each:
 - from d^n to $n/c \cdot d^c$ steps in worst-case
 - if n = 80, d = 2, c = 20, then from $2^{80} \approx 10^{24}$ to $4 \cdot 2^{20} \approx 4 \cdot 10^{6}$

 \implies from 4 billion years to 0.4 secs at 10million steps/sec

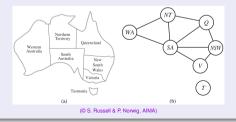


Partitioning CFPs

"Divide & Conquer" CSPs

- Idea (when applicable): Partition a CSP into independent CSPs
 - identify strongly-connected components in constraint graph
 - e.g. by Tarjan's algorithms (linear!)
- Ex: Tasmania and mainland are independent subproblems
- E.g. partition n-variable CSP into n/c CSPs with c variables each:
 - from d^n to $n/c \cdot d^c$ steps in worst-case
 - if n = 80, d = 2, c = 20, then from $2^{80} \approx 10^{24}$ to $4 \cdot 2^{20} \approx 4 \cdot 10^{6}$

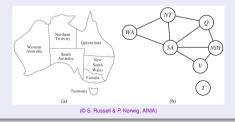
 \implies from 4 billion years to 0.4 secs at 10million steps/sec



Partitioning CFPs

"Divide & Conquer" CSPs

- Idea (when applicable): Partition a CSP into independent CSPs
 - identify strongly-connected components in constraint graph
 - e.g. by Tarjan's algorithms (linear!)
- Ex: Tasmania and mainland are independent subproblems
- E.g. partition n-variable CSP into n/c CSPs with c variables each:
 - from d^n to $n/c \cdot d^c$ steps in worst-case
 - if n = 80, d = 2, c = 20, then from $2^{80} \approx 10^{24}$ to $4 \cdot 2^{20} \approx 4 \cdot 10^{6}$
 - \implies from 4 billion years to 0.4 secs at 10million steps/sec



Theorem:

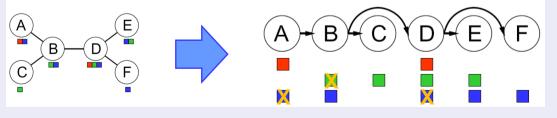
- If the constraint graph has no loops, the CSP can be solved in $O(nd^2)$ time in worst case
 - general CSPs can be solved $O(d^n)$ time worst-case

Theorem:

- If the constraint graph has no loops, the CSP can be solved in $O(nd^2)$ time in worst case
 - general CSPs can be solved $O(d^n)$ time worst-case

Algorithm

- Choose a variable as root, order variables from root to leaves
- ② For $j \in n$..2 apply MakeArcConsistent(Parent(X_j), X_j)
- If no empty domain, then) For $j \in 2..n$, assign X_j consistently with PARENT(X_j)

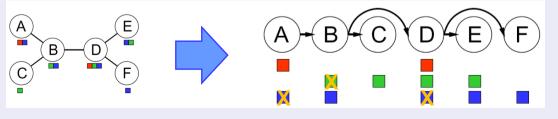


Theorem:

- If the constraint graph has no loops, the CSP can be solved in $O(nd^2)$ time in worst case
 - general CSPs can be solved $O(d^n)$ time worst-case

Algorithm

- Choose a variable as root, order variables from root to leaves
- **2** For $j \in n..2$ apply MAKEARCCONSISTENT(PARENT(X_j), X_j)
- ③ (If no empty domain, then) For $j \in 2..n$, assign X_j consistently with PARENT(X_j)

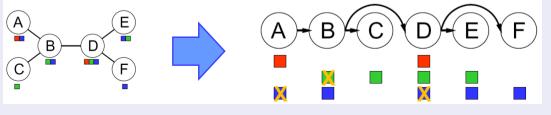


Theorem:

- If the constraint graph has no loops, the CSP can be solved in $O(nd^2)$ time in worst case
 - general CSPs can be solved $O(d^n)$ time worst-case

Algorithm

- Choose a variable as root, order variables from root to leaves
- **2** For $j \in n..2$ apply MAKEARCCONSISTENT(PARENT(X_j), X_j)
- ◎ (If no empty domain, then) For $j \in 2..n$, assign X_j consistently with PARENT(X_j)



Solving Tree-structured CSPs [cont.]

function TREE-CSP-SOLVER(csp) **returns** a solution, or failure **inputs**: csp, a CSP with components X, D, C

 $n \leftarrow$ number of variables in X

 $assignment \gets \text{an empty assignment}$

 $root \leftarrow any variable in X$

 $X \leftarrow \text{TOPOLOGICALSORT}(X, root)$

for j = n down to 2 do

MAKE-ARC-CONSISTENT(PARENT(X_j), X_j)

if it cannot be made consistent then return *failure* for i = 1 to n do

 $assignment[X_i] \leftarrow any consistent value from D_i$

if there is no consistent value then return failure

return assignment

Solving Nearly Tree-Structured CSPs

Cutset Conditioning

- Identify a (small) cycle cutset S: a set of variables s.t. the remaining constraint graph is a tree
 - finding smallest cycle cutset is NP-hard
 - fast approximated techniques known
- Isor each possible consistent assignment to the variables in S
 - a) remove from the domains of the remaining variables any values that are inconsistent with the assignment for S
 - b) apply the tree-structured CSP algorithm
- If $c \stackrel{\text{\tiny def}}{=} |S|$, then runtime is $O(d^c \cdot (n-c)d^2)$
 - \implies much smaller than d^n if c small

Solving Nearly Tree-Structured CSPs

Cutset Conditioning

- Identify a (small) cycle cutset S: a set of variables s.t. the remaining constraint graph is a tree
 - finding smallest cycle cutset is NP-hard
 - fast approximated techniques known
- Is a standard stan
 - a) remove from the domains of the remaining variables any values that are inconsistent with the assignment for S
 - b) apply the tree-structured CSP algorithm

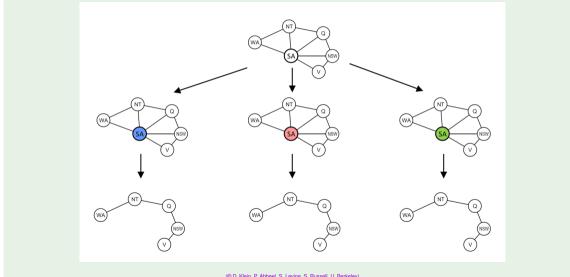
If $c \stackrel{\text{def}}{=} |S|$, then runtime is $O(d^c \cdot (n-c)d^2)$ \implies much smaller than d^n if c small

Solving Nearly Tree-Structured CSPs

Cutset Conditioning

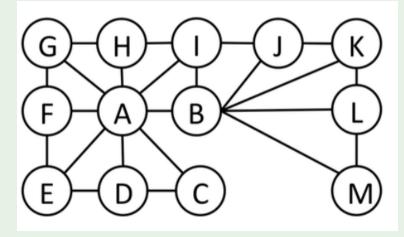
- Identify a (small) cycle cutset S: a set of variables s.t. the remaining constraint graph is a tree
 - finding smallest cycle cutset is NP-hard
 - fast approximated techniques known
- Is a standard stan
 - a) remove from the domains of the remaining variables any values that are inconsistent with the assignment for S
 - b) apply the tree-structured CSP algorithm
- If $c \stackrel{\text{def}}{=} |S|$, then runtime is $O(d^c \cdot (n-c)d^2)$
 - \implies much smaller than d^n if c small

Cutset Conditioning: Example



Exercise

• Solve the following 3-coloring problem by Cutset Conditioning



(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Breaking Value Symmetry

Value symmetry: if domain size is n and no unary constraints

- every solution has *n*! solutions obtained by permuting value names
- ex: 3-coloring, 3! = 6 permutations for every solutions
- Symmetry Breaking: add symmetry-breaking constraints s.t. only one of the *n*! solution is possible
 - \Rightarrow reduce search space by *n*! factor
- Add value-ordering constraints on *n* variables:
 - give an ordering of values (ex: r < b < g)
 - impose an ordering on the values of *n* variables s.t. x_i ≠ x_j (ex: WA < NT < SA)
 - ⇒ only one solution out of n!

Breaking Value Symmetry

Value symmetry: if domain size is n and no unary constraints

- every solution has n! solutions obtained by permuting value names
- ex: 3-coloring, 3! = 6 permutations for every solutions
- Symmetry Breaking: add symmetry-breaking constraints s.t. only one of the *n*! solution is possible
 - \implies reduce search space by *n*! factor
- Add value-ordering constraints on *n* variables:
 - give an ordering of values (ex: r < b < g)
 - impose an ordering on the values of *n* variables s.t. x_i ≠ x_j (ex: WA < NT < SA)
 - \implies only one solution out of *n*!

Breaking Value Symmetry

Value symmetry: if domain size is n and no unary constraints

- every solution has n! solutions obtained by permuting value names
- ex: 3-coloring, 3! = 6 permutations for every solutions
- Symmetry Breaking: add symmetry-breaking constraints s.t. only one of the *n*! solution is possible
 - \implies reduce search space by *n*! factor
- Add value-ordering constraints on *n* variables:
 - give an ordering of values (ex: r < b < g)
 - impose an ordering on the values of *n* variables s.t. $x_i \neq x_j$ (ex: WA < NT < SA)
 - \implies only one solution out of n!