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Generalities

So far we addresses a single category of problems:
1 observable,
2 deterministic,
3 with known environment,
4 s.t. the solution is a sequence of actions.

What happens when these assumptions are relaxed?
In order we will:

release condition 4 =⇒ local search
release condition 2 =⇒ search with non-deterministic actions
release condition 1 =⇒ search with no observability or with partial observability
release condition 3 =⇒ online search
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Outline

1 Local Search and Optimization
General Ideas
Hill-Climbing
Simulated Annealing
Local Beam Search & Genetic Algorithms

2 Search with Nondeterministic Actions

3 Search with Partial or No Observations (Deterministic/Nondeterministic Actions)
Search with No Observations
Search with Partial Observations

4 Online Search (aka Exploration)
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Recall: Generalities

So far we addressed a single category of problems:
1 observable,
2 deterministic,
3 with known environment,
4 s.t. the solution is a sequence of actions.

What happens when these assumptions are relaxed?
In order we will:

release condition 4 =⇒local search
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General Ideas

Search techniques: systematic exploration of search space
solution to problem: the path to the goal state
ex: 8-puzzle

With many problems, the path to goal is irrelevant
goals expressed as conditions, not as explicit list of goal states
solution to problem: only the goal state itself
ex: N-queens
many important applications:
integrated-circuit design, factory-floor layout, job-shop scheduling, automatic programming,
telecommunications network optimization, vehicle routing, portfolio management...

The state space is a set of “complete” configurations
decision problems: find goal configuration satisfying constraints/rules (ex: N-queens)
optimization problems: find optimal configurations
(ex: Travelling Salesperson Problem TSP)

If so, we can use iterative-improvement algorithms (in particular local search algorithms):
keep a single “current” state, try to improve it
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Local Search

Idea: use single current state and move to “neighbouring” states
operate using a single current node
the paths followed by the search are not retained

Two key advantages:
use very little memory (usually constant)
can often find reasonable solutions in large or infinite (continuous) state spaces,
for which systematic algorithms are unsuitable

Also useful for pure optimization problems
find the best state according to an objective function
often do not fit the “standard” search model of previous chapter
ex: Darwinian survival of the fittest: metaphor for optimization,
but no “goal test” and no “path cost”

A complete local search algorithm: guaranteed to always find a solution (if exists)
A optimal local search algorithm: guaranteed to always find a maximum/minimum solution

maximization and minimization dual (switch sign)
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Local Search Example: N-Queens

One queen per column (incremental representation)
Cost (h): # of queen pairs on the same row, column, or diagonal
Goal: h=0
Step: move a queen vertically to reduce number of conflicts

(© S. Russell & P. Norwig, AIMA)

Almost always solves N-queens problems almost instantaneously for very large N
(e.g., N=1million)
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Optimization Local Search Example: TSP

Travelling Salesperson Problem (TSP)

Given an undirected graph, with n nodes and each arc
associated with a positive value, find the Hamiltonian tour
with the minimum total cost.

Very hard for classic search!

(Courtesy of Michela Milano, UniBO)
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Optimization Local Search Example: TSP

State represented as a permutation of numbers (1,2, ...,n)
Cost (h): total cycle length
Start with any complete tour
Step: (2-swap) perform pairwise exchange

(© S. Russell & P. Norwig, AIMA)

Variants of this approach get within 1% of optimal very quickly with thousands of cities
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Local Search: State-Space Landscape
State-space landscape (Maximization)

Local search algorithms explore state-space landscape
state space n-dimensional (and typically discrete)
move to “nearby” states (neighbours)

NP-Hard problems may have exponentially-many local optima

(© S. Russell & P. Norwig, AIMA)
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Outline

1 Local Search and Optimization
General Ideas
Hill-Climbing
Simulated Annealing
Local Beam Search & Genetic Algorithms

2 Search with Nondeterministic Actions
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Hill-Climbing Search (aka Greedy Local Search)
Hill-Climbing

Very-basic local search algorithm
Idea: a move is performed only if the solution it produces is better than the current solution

(steepest-ascent version): selects the neighbour with best score improvement
(select randomly among best neighbours if ≥ 1)
does not look ahead of immediate neighbors of the current state
stops as soon as it finds a (possibly local) minimum

Several variants (Stochastic H.C., Random-Restart H.C., ...)
Often used as part of more complex local-search algorithms

(© S. Russell & P. Norwig, AIMA) 14 / 71



Hill-Climbing Search (aka Greedy Local Search)
Hill-Climbing

Very-basic local search algorithm
Idea: a move is performed only if the solution it produces is better than the current solution

(steepest-ascent version): selects the neighbour with best score improvement
(select randomly among best neighbours if ≥ 1)
does not look ahead of immediate neighbors of the current state
stops as soon as it finds a (possibly local) minimum

Several variants (Stochastic H.C., Random-Restart H.C., ...)
Often used as part of more complex local-search algorithms

(© S. Russell & P. Norwig, AIMA) 14 / 71



Hill-Climbing Search: Example
8-queen puzzle (minimization)

Neighbour states: generated by moving one queen vertically
Cost (h): # of queen pairs on the same row, column, or diagonal
Goal: h=0

Two scenarios ((a) =⇒ (b) in 5 steps) :
(a) 8-queens state with heuristic cost estimate h = 17 (12d, 5h)
(b) local minimum: h=1, but all neighbours have higher costs

(© S. Russell & P. Norwig, AIMA)
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Hill-Climbing Search: Drawbacks
Incomplete: gets stuck in local optima, flat local optima & shoulders (aka plateaux), ridges
(sequences of local optima)

Ex: with 8-queens, gets stuck 86% of the time, fast when succeed

note: converges very fast till (local) minima or plateaux
Possible idea: allow 0-progress moves (aka sideways moves)

pros: may allow getting out of shoulders
cons: may cause infinite loops with flat local optima

=⇒ set a limit to consecutive sideways moves (e.g. 100)
Ex: with 8-queens, pass from 14% to 94% success, slower

(© S. Russell & P. Norwig, AIMA)
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Hill-climbing: Variations

Stochastic hill-climbing
random selection among the uphill moves
selection probability can vary with the steepness of uphill move
sometimes slower, but often finds better solutions

First-choice hill-climbing
generates successors randomly until a better one is found
good when there are large amounts of successors

Random-restart hill-climbing
conducts a series of hill-climbing searches from randomly generated initial states
tries to avoid getting stuck in local maxima
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Outline

1 Local Search and Optimization
General Ideas
Hill-Climbing
Simulated Annealing
Local Beam Search & Genetic Algorithms

2 Search with Nondeterministic Actions

3 Search with Partial or No Observations (Deterministic/Nondeterministic Actions)
Search with No Observations
Search with Partial Observations

4 Online Search (aka Exploration)
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Simulated Annealing

Inspired to statistical-mechanics analysis of metallurgical annealing
(Boltzmann’s state distributions)
Idea: Escape local maxima by allowing “bad” moves...

“bad move”: move toward states with worse value
typically pick a move taken at random (“random walk”)

... but gradually decrease their size and frequency.
sideways moves progressively less likely

Analogy: get a ball into the deepest crevice in a bumpy surface
initially shaking hard (“high temperature”)
progressively shaking less hard (“decrease the temperature”)

Widely used in large-scale optimization tasks (e.g. VSLI layout problems, factory scheduling,...)
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Simulated Annealing [cont.]
Simulated Annealing (maximization)

A “temperature” parameter T slowly decreases with steps (“schedule”)
The probability of picking a “bad move”:

decreases exponentially with the “badness” of the move |∆E |
decreases as the “temperature” T goes down

If schedule lowers T slowly enough,
then the algorithm will find a global optimum with probability approaching 1

(© S. Russell & P. Norwig, AIMA) 20 / 71



Outline
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Local Beam Search
Local Beam Search
Idea: keep track of k states instead of one

Initially: k random states
Step:

1 determine all successors of k states
2 if any of successors is goal =⇒ finished
3 else select k best from successors

Different from k searches run in parallel:
searches that find good states recruit other searches to join them
=⇒ information is shared among k search threads

Lack of diversity: quite often, all k states end up in the same local hill
=⇒ Stochastic Local Beam: choose k successors randomly,

with probability proportional to state success.

Resembles natural selection with asexual reproduction:
the successors (offspring) of a state (organism) populate the next generation according to its

value (fitness), with a random component.
22 / 71
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Genetic Algorithms

Variant of local beam search: successor states generated by combining two parent states
(rather than one single state)

States represented as strings over a finite alphabet (e.g. {0, 1})

Initially: pick k random states
Step:

1 parent states are rated according to a fitness function
2 k parent pairs are selected at random for reproduction,

with probability increasing with their fitness
gender and monogamy not considered

3 for each parent pair
1 a crossover point is chosen randomly
2 a new state is created by crossing over the parent strings
3 the offspring state is subject to (low-probability) random mutation

Ends when some state is fit enough (or timeout)
Many algorithm variants available

Resembles natural selection, with sexual reproduction
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3 the offspring state is subject to (low-probability) random mutation

Ends when some state is fit enough (or timeout)
Many algorithm variants available

Resembles natural selection, with sexual reproduction
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Genetic Algorithms

(© S. Russell & P. Norwig, AIMA)
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Genetic Algorithms: Example
Example: 8-Queens
state[i]: (upward) position of the queen in i th column

327|52411 + 247|48552 = 327|48552
(© S. Russell & P. Norwig, AIMA) 25 / 71



Genetic Algorithms: Intuitions, Pros & Cons
Intuitions

Selection drives the population toward high fitness
Crossover combines good parts from good solutions
(but it might achieve the opposite effect)
Mutation introduces diversity

Pros & Cons
Pros:

extremely simple
general purpose
tractable theoretical models

Cons:
not completely understood
good coding is crucial (e.g., Gray codes for numbers)
too simple genetic operators

Widespread impact on optimization problems, i.e. circuit layout and job-shop scheduling
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Outline

1 Local Search and Optimization
General Ideas
Hill-Climbing
Simulated Annealing
Local Beam Search & Genetic Algorithms

2 Search with Nondeterministic Actions

3 Search with Partial or No Observations (Deterministic/Nondeterministic Actions)
Search with No Observations
Search with Partial Observations

4 Online Search (aka Exploration)
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Recall: Generalities

So far we addresses a single category of problems:
1 observable,
2 deterministic,
3 with known environment,
4 s.t. the solution is a sequence of actions.

What happens when these assumptions are relaxed?
In order we will:

release condition 4 =⇒ local search
release condition 2 =⇒search with non-deterministic actions
release condition 1 =⇒ search with no observability or with partial observability
release condition 3 =⇒ online search

28 / 71



Generalities (cont.)

Assumptions so far (see ch. 2 and 3):
the environment is deterministic
the environment is fully observable
the agent knows the effects of each action

=⇒ The agent does not need perception:
can calculate which state results from any sequence of actions
always knows which state it is in

If one of the above does not hold, then percepts are useful
the future percepts cannot be determined in advance
the agent’s future actions will depend on future percepts

Solution: not a sequence but a contingency plan (aka conditional plan, strategy)
specifies the actions depending on what percepts are received

We analyze first the case of nondeterministic environments
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Example: The Erratic Vacuum Cleaner

Erratic Vacuum-Cleaner Example

actions: Left, Right, Suck
goal: A and B cleaned (states 7, 8)
if environment is observable, deterministic, and
completely known =⇒ solvable by search algos
ex: if initially in 1, then [suck,right,suck] leads to 8:
[1,5,6,8]

(© S. Russell & P. Norwig, AIMA)Nondeterministic version (erratic vacuum cleaner):
if dirty square: cleans the square, sometimes cleans also the other square. Ex: 1 suck

=⇒ {5, 7}
if clean square: sometimes deposits dirt on the carpet
Ex: 5 suck

=⇒ {1, 5}
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Searching with Nondeterministic Actions

Generalized notion of transition model
RESULTS(S,A) returns a set of possible outcomes states

Ex: RESULTS(1,SUCK)={5, 7}, RESULTS(5,SUCK)={1, 5}, ...

A solution is a contingency plan (aka conditional plan, strategy)
contains nested conditions on future percepts (if-then-else, case-switch, ...)
Ex: from state 1 we can act the following contingency plan:
[SUCK, IF STATE = 5 THEN [RIGHT, SUCK] ELSE [ ]]

Can cause loops (see later)

Remark
In practice, we don’t reason on states, rather on state variable values:
[Suck; if B.Dirty then [Right, Suck] else [ ]]
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Searching with Nondeterministic Actions [cont.]

And-Or Search Trees
In a deterministic environment, we branch on agent’s choices
=⇒ OR nodes, hence OR search trees

OR nodes correspond to states

In a nondeterministic environment, we branch also on (environment’s choice of) outcome for
each action

the agent has to handle all such outcomes
=⇒ AND nodes, hence AND-OR search trees

AND nodes correspond to actions
leaf nodes are goal, dead-end or loop OR nodes

A solution for an AND-OR search problem is a subtree s.t.:
has a goal node at every leaf
specifies one action at each of its OR nodes
includes all outcome branches at each of its AND nodes

OR tree: AND-OR tree with 1 outcome each AND node (determinism)
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And-Or Search Trees: Example

(Part of) And-Or Search Tree for Erratic Vacuum Cleaner Example.

Problem: Init: 1, Goal: 7,8.
Solution: [SUCK, IF STATE = 5 THEN [RIGHT, SUCK] ELSE [ ]] (solid arcs)

(© S. Russell & P. Norwig, AIMA)
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AND-OR Search

Recursive Depth-First (Tree-based) AND-OR Search

(© S. Russell & P. Norwig, AIMA)

Note: nested if-then-else can be rewritten as case-switch
34 / 71



AND-OR Search [cont.]

Recursive Depth-First (Tree-based) AND-OR Search

Cycles: if the current state already occurs in the path =⇒ failure
cycle detection like with ordinary DFS
does not mean “no solution”
means “if there is a non-cyclic solution,
then it must be reachable from the earlier incarnation of the current state”
=⇒ the new incarnation can be discharged

=⇒ Complete (if state space finite): every path must reach a goal, a dead-end or loop state
Can be augmented with “explored” data structure for avoiding redundant branches
(graph-based search)
Implictly Depth-First, but can also be explored by breadth-first or best-first method

e.g. A∗ variant for AND-OR search available (see AIMA book)
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AND-OR Search: Cyclic Solutions

Some problems have no acyclic solutions
A cyclic plan may be considered a cyclic solution provided that:

every leaf is a goal state (loop states not considered leaves), and
a leaf is reachable from every point in the plan

Can be expressed by means of introducing
labels, and backward goto’s to labels
loop syntax (e.g., while-do)

=⇒ Executing a cyclic solution eventually reaches a goal,
provided that each outcome of a nondeterministic action eventually occurs

Is this assumption reasonable?
Yes, provided we distinguish:
⟨nondeterministic,observable⟩ ≠⟨deterministic,partially-observable⟩
Ex: device may not always work ̸= device is broken (but we don’t know it)
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Cyclic Solution: Example
Example: Slippery Vacuum Cleaner

Movement actions may fail: e.g., Results(1,Right) = {1,2}
A cyclic solution
Use labels: [Suck, L1 : Right, if State = 5 then L1 else Suck]
Use cycles: [Suck, While State = 5 do Right, Suck]

(© S. Russell & P. Norwig, AIMA)
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Recall: Generalities

So far we addresses a single category of problems:
1 observable,
2 deterministic,
3 with known environment,
4 s.t. the solution is a sequence of actions.

What happens when these assumptions are relaxed?
In order we will:

release condition 4 =⇒ local search
release condition 2 =⇒ search with non-deterministic actions
release condition 1 =⇒search with no observability or with partial observability
release condition 3 =⇒ online search
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Generalities

Partial Observability

Partial observability: percepts do not capture the whole state
partial state corresponds to a set of possible physical states

If the agent is in one of several possible physical states, then an action may lead to one of
several possible outcomes, even if the environment is deterministic

Belief States
Belief state: the agent’s current belief about the possible physical states it might be in,
given the previous sequence of actions and percepts

is a set of physical states: the agent is in one of these states (but does not know in which one)
contains the actual physical state the agent is in
ex: {1, 2}: the agent is either in state 1 or in state 2 (but it does not know in which one)
if the belief state contains only one state, then the agent knows it is in that state

2n possible belief states out of n possible physical states!

In practice, the agent reasons in terms of partial states, rather than a of sets of states.
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Outline

1 Local Search and Optimization
General Ideas
Hill-Climbing
Simulated Annealing
Local Beam Search & Genetic Algorithms

2 Search with Nondeterministic Actions

3 Search with Partial or No Observations (Deterministic/Nondeterministic Actions)
Search with No Observations
Search with Partial Observations

4 Online Search (aka Exploration)
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Search with No Observation

Search with No Observation (aka Sensorless Search or Conformant Search)

Idea: To solve sensorless problems, the agent searches in the space of belief states rather
than in that of physical states

fully observable, because the agent knows its own belief space
solutions are always sequences of actions (no contingency plan),
because percepts are always empty and thus predictable

Main drawback: 2N candidate states rather than N
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Search with No Observation: Example
Example: Sensorless Vacuum Cleaner

the vacuum cleaner knows the geography of its world,
but it doesn’t know its location or the distribution of dirt

initial state: {1, 2, 3, 4, 5, 6, 7, 8}
after action RIGHT, state is {2, 4, 6, 8}
after action sequence [RIGHT,SUCK],
state is {4, 8}
after action sequence [RIGHT,SUCK,LEFT],
state is {3, 7}
after action sequence [RIGHT,SUCK,LEFT,SUCK],
state is {7}

In practice, the information on the state is made
progressively less partial by the actions:
{1,2,3,4,5,6,7,8}︷ ︸︸ ︷
⟨?, ⟨?, ?⟩⟩ RIGHT

=⇒

{2,4,6,8}︷ ︸︸ ︷
⟨B, ⟨?, ?⟩⟩ SUCK

=⇒

{4,8}︷ ︸︸ ︷
⟨B, ⟨?,Clean⟩⟩

LEFT
=⇒

{3,7}︷ ︸︸ ︷
⟨A, ⟨?,Clean⟩⟩ SUCK

=⇒

{7}︷ ︸︸ ︷
⟨A, ⟨Clean,Clean⟩⟩ (© S. Russell & P. Norwig, AIMA)
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Belief-State Problem Formulation

Let ActionsP(), ResultP(), GoalTestP(), StepCostP() refer to physical System P:
Belief states: subsets of physical states

If P has N states, then the sensorless problem has up to 2N states

Initial state: typically the set of all physical states in P
Actions: (assumption: illegal actions have no effects)

Actions(b) def
=

⋃
s∈b ActionsP(s) (i.e., must consider all possible actions in all possible states)

Transition model:
for deterministic actions: b′ = Result(b, a) def

= {s′ | s′ = ResultP(s, a) and s ∈ b}
for nondeterministic actions:
b′ = Result(b, a) def

= {s′ | s′ ∈ ResultP(s, a) and s ∈ b} =
⋃

s∈b ResultP(s, a)

This step is called Prediction: b′ def
= Predict(b, a)

Goal test: GoalTest(b) holds iff GoalTestP(s) holds, ∀s ∈ b
(i.e., all possible states must be goal ones)
Path cost: (assumption: cost of an action the same in all states)

StepCost(a, b) def
= StepCostP(a, s), ∀s ∈ b
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Belief-State Problem Formulation [cont.]

Example: Sensorless Vacuum Cleaner, plain and slippery versions
Prediction: Result({1, 3},Right), deterministic (a) and nondeterministic action (b)

(© S. Russell & P. Norwig, AIMA)
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Belief-State Problem Formulation [cont.]
Example: Sensorless Vacuum Cleaner: Belief State Space
(self-loops are omitted)

(© S. Russell & P. Norwig, AIMA)
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Exercises

Exercises
Draw the Belief State Space in case of:

Erratic vacuum cleaner
Slippery vacuum cleaner
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Belief-State Problem Formulation [cont.]
Remarks

if b ⊆ b′, then Result(b,a) ⊆ Result(b′,a) (b more informative than b′)
If a is deterministic, then |Result(b,a)| ≤ |b|
The agent might achieve the goal earlier than GoalTest(b) holds, but it does not know it
(because he knows it only when all states in the belief state are goal states)

Properties

An action sequence is a solution for b iff it leads b to a goal
If an action sequence is a solution for a belief state b, then it is also a solution for any belief
state b′ s.t. b′ ⊆ b

if b
a17→ ....

ak7→ g, then b′ a17→ ....
ak7→ g

We can apply to the Belief-State space any search algorithm.
if a solution for b has been found, then any b′ ⊆ b is solvable
if b′ ⊆ b has already been generated and discarded,
then we can discard a path reaching a belief state b

=⇒ Dramatically improves efficiency
48 / 71
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Outline

1 Local Search and Optimization
General Ideas
Hill-Climbing
Simulated Annealing
Local Beam Search & Genetic Algorithms

2 Search with Nondeterministic Actions

3 Search with Partial or No Observations (Deterministic/Nondeterministic Actions)
Search with No Observations
Search with Partial Observations

4 Online Search (aka Exploration)
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Search with Observations

Perception and Belief-State Problem Formulation

Percept(s) returns the percept received in state s
(if sensing is nondeterministic, a function Percepts(s) returns a set of possible percepts)

ex: local-sensing vacuum cleaner, can perceive dirty/clean only on the current position:
Percept(1) = [A,Dirty ]
with fully observable problems: Percept(s) = s, ∀s
with sensorless problems: Percept(s) = null, ∀s

Partial observations: many states can produce the same percept
ex: Percept(1) = Percept(3) = [A,Dirty ]

=⇒ Percepts(s) may correspond to many different candidate states

Actions(), StepCost(), GoalTest(): as with sensorless case
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Transition Model with (Partial) Perceptions

The Prediction-Observation-Update process

Three steps:
1 Prediction (same as for sensorless): predict the belief state after action a

b̂ = Predict(b, a) def
= Result(sensorless)(b, a) = {s′ | s′ = ResultP(s, a) and s ∈ b}

2 Observation prediction: determines the set of percepts that could be observed in the predicted
belief state: PossiblePercepts(b̂) def

= {o | o = Percept(s) and s ∈ b̂}
3 Update: for each percept o, determine the belief state bo, i.e., the subset of states in b̂ that could

have produced the percept o:

bo = Update(b̂, o) def
= {s | s ∈ b̂ and o = Percept(s)}

=⇒ Result(b,a) =
{

bo

∣∣∣∣ bo = Update(Predict(b,a),o) and
o ∈ PossiblePercepts(Predict(b,a))

}
set (not union!) of belief states, one for each possible percepts o
for each o, bo ⊆ b̂ =⇒ sensing reduces uncertainty!
(if sensing is deterministic) the bo ’s are all disjoint (each s belongs to bo s.t. o = Percept(s))
=⇒ each next possible percepts o is used to partition b̂ into a smaller belief state bo

=⇒ Non-deterministic belief-state problem
due to the inability to predict exactly the next percept
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bo
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set (not union!) of belief states, one for each possible percepts o
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Transition Model with Perceptions: Example

Deterministic actions: Local-sensing vacuum cleaner

b̂ = Predict({1,3},Right) = {2,4}
PossiblePercepts(b̂) = {[B,Dirty ], [B,Clean]}
Result({1,3},Right) = {{2}, {4}}

(© S. Russell & P. Norwig, AIMA)
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Transition Model with Perceptions: Example

Nondeterministic actions: Slippery local-sensing vacuum cleaner

b̂ = Predict({1,3},Right) = {1,2,3,4}
PossiblePercepts(b̂) = {[B,Dirty ], [A,Dirty ], [B,Clean]}
Result({1,3},Right) = {{2}, {1,3}, {4}}

(© S. Russell & P. Norwig, AIMA)
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Solving Partially-Observable Problems
Formulation as a nondeterministic belief-state search problem

non-determinism due to different possible percepts

=⇒ The AND-OR search algorithms can be applied
=⇒ The solution is a conditional plan

Solution for initial percept [A, Dirty] (deterministic): [Suck, Right, if Bstate = {6} then Suck else [ ]]

First level:
(draw second level
for exercise)

(© S. Russell & P. Norwig, AIMA)
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An Agent for Partially-Observable Environments

Agent quite similar to the simple problem-solving agent [Ch.3]:
1 formulates a problem (as a belief-state search)
2 calls a search algorithm (an AND-OR-GRAPH one)
3 executes the solution

Two main differences:
the solution is a conditional plan, not an action sequence
in step (3) the agent needs to maintain its belief state as it performs actions and receives percepts
(aka monitoring, filtering, state estimation)

State estimation resembles the prediction-observation-update process:
simpler, because the percept o is given by the environment
=⇒ no need to calculate it
given b, a and o: b′ = Update(Predict(b, a), o)

Remark
The computation has to happen as fast as percepts are coming in
=⇒ in some complex applications, compute approximate belief states
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Example: Belief-State Maintenance

Example: Kindergarden Vacuum-Cleaner

local sensing =⇒ partially observable

any square may become dirty at any time unless the agent is actively cleaning it at that moment
=⇒ nondeterministic

Ex: Update(

{5,7}︷ ︸︸ ︷
Predict({1, 3},Suck), [A,Clean]) = {5, 7}

Ex: Update(

{2,4,6,8}︷ ︸︸ ︷
Predict({5, 7},Right), [B,Dirty ]) = {2, 6}

(© S. Russell & P. Norwig, AIMA)
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Example:
Knows the map, senses walls in the four directions (NESW)

localization broken: does not know where it is
navigation broken: does not know the direction is moving to =⇒ move is nondeterministic
goal: localization (know where it is)

b = {all locations}, o = NSW
1 bo = Update(b,NSW ) = (a)
2 bo = Update(Predict(Update(b,NSW ),Move),NS) = (b)

(© S. Russell & P. Norwig, AIMA)
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Outline

1 Local Search and Optimization
General Ideas
Hill-Climbing
Simulated Annealing
Local Beam Search & Genetic Algorithms

2 Search with Nondeterministic Actions

3 Search with Partial or No Observations (Deterministic/Nondeterministic Actions)
Search with No Observations
Search with Partial Observations

4 Online Search (aka Exploration)
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Recall: Generalities

So far we addresses a single category of problems:
1 observable,
2 deterministic,
3 with known environment,
4 s.t. the solution is a sequence of actions.

What happens when these assumptions are relaxed?
In order we will:

release condition 4 =⇒ local search
release condition 2 =⇒ search with non-deterministic actions
release condition 1 =⇒ search with no observability or with partial observability
release condition 3 =⇒online search
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Generalities

Online vs. offline search
So far: Offline search

it computes a complete solutions before executing it

Online search: agent interleaves computation and action
it takes an action,
then it observes the environment and computes the next action
(repeat)

Necessary in dynamic domains or unknown domains
cannot know the states and consequences of actions
faces an exploration problem: must use actions as experiments in order to learn enough
ex: a robot placed in a new building =⇒ must explore it to build a map for getting from A to B
ex: newborn baby =⇒ acts to learn the outcome of his/her actions

Useful in nondeterministic domains
prevents search blowup

Must be solved by executing actions, rather than by pure computation
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Online Search

Working Hypotheses

Assumption: a deterministic and fully observable environment
The agent knows only

Actions(s), which returns the list of actions allowed in s
the step-cost function c(s, a, s′) (cannot be used until s′ is known)
GoalTest(s)

Remark: The agent cannot determine Result(s,a)
except by actually being in s and doing a

The agent knows an admissible heuristic function h(s), that estimates the distance from the
current state to a goal state
Objective: reach goal with minimal cost

Cost: total cost of traveled path
Competitive ratio: ratio of cost over cost of the solution path if search space is known
(+∞ if agent in a deadend)
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Online Search: Example

Example: a simple maze problem

the agent does not know that going Up from (1,1) leads to (1,2)
having done that, it does not know that going Down leads to (1,1)
the agent might know the location of the goal
it may be able to use the Manhattan-distance heuristic

(© S. Russell & P. Norwig, AIMA)
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Online Search: Deadends
Inevitability of Deadends

Online search may face deadends (e.g., with irreversible actions)
No algorithm can avoid dead ends in all state spaces
Adversary argument: for each algo, an adversary can construct the state space while the
agent explores it

If states S and A visit. What next?
=⇒ if algo goes right, adversary builds (top), otherwise builds (bot)
=⇒ adversary builds a deadend

Assumption the state space is safely explorable: some goal state is reachable from every
reachable state (ex: reversible actions)

(© S. Russell & P. Norwig, AIMA)
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Online Search Agents

Online Search Agents: Basic Ideas

Idea: The agent creates & maintains a map of the environment (result [s,a])
map is updated based on percept input after every action
map is used to decide next action

Difference wrt. offline algorithms (ex A∗, BFS)
Can only expand the node it is physically in
=⇒ expand nodes in local order
=⇒ DFS natural candidate for an online version
Needs to backtrack physically

DFS: go back to the state from which the agent most recently entered the current state
must keep a table with the predecessor states of each state to which the agent has not yet backtracked
(unbacktracked [s])

=⇒ backtrack physically (find an action reversing the generation of s)
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Online DFS Search Agents

(© S. Russell & P. Norwig, AIMA)
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Online DFS: Example

(Courtesy of Tom Lenaerts, IRIDIA)

66 / 71



Online DFS: Example

(Courtesy of Tom Lenaerts, IRIDIA)

66 / 71



Online DFS: Example

(Courtesy of Tom Lenaerts, IRIDIA)

66 / 71



Online DFS: Example

(Courtesy of Tom Lenaerts, IRIDIA)

66 / 71



Online DFS: Example

(Courtesy of Tom Lenaerts, IRIDIA)

66 / 71



Online DFS: Example

(Courtesy of Tom Lenaerts, IRIDIA)

66 / 71



Online Search Agents

Online Search Agents: Facts

Works only if actions are always reversible
Worst case: each link ⟨s,a, s′⟩ is visited twice

one as exploration (a ∈ untried [s])
one as backtracking (a ∈ unbacktracked [s])

An agent can go on a long walk even if it is close to the solution
an online iterative deepening approach solves this problem
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Online Local Search

Hill Climbing natural candidate for online search
locality of search
only one state is stored
unfortunately, stuck in local minima
random restarts not possible

Possible solution: Random Walk
selects randomly one available actions from the current state
preference can be given to actions that have not yet been tried
eventually finds a goal or complete its exploration if space is finite
unfortunately, very slow

Random Walk: example

random walk takes exponentially many
steps to find a goal (backward progress
is twice as likely as forward progress)

(© S. Russell & P. Norwig, AIMA)
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Online A∗: LRTA∗

LRTA∗: General ideas
Better possible solution: add memory to hill climbing
Idea: store a “current best estimate” H(s) of the cost to reach the goal from each state that
has been visited

initially h(s)
updated as the agent gains experience in the state space

(recall that h(s) is in general “too optimistic”)
=⇒ Learning Real-Time A∗ (LRTA∗)

builds a map of the environment in the result[s,a] table
chooses the “apparently best” move a according to current H()
updates the cost estimate H(s) for the state s it has just left,
using the cost estimate of the target state s′

H(s) := c(s, a, s′) + H(s′)

”optimism under uncertainty”: untried actions in s are assumed to lead immediately to the goal
with the least possible cost h(s)

=⇒ encourages the agent to explore new, possibly promising paths

An LRTA∗ agent is guaranteed to find a goal in any finite, safely explorable environment.
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Online A∗: LRTA∗

(© S. Russell & P. Norwig, AIMA)
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Example: LRTA∗

Five iterations of LRTA∗ on a one-dimensional state space

states labeled with current H(s), arcs labeled with step cost

shaded state marks the location of the agent,

updated cost estimates a each iteration are circled

(© S. Russell & P. Norwig, AIMA)
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