Fundamentals of Artificial Intelligence Laboratory

Dr. Mauro Dragoni

Department of Information Engineering and Computer Science Academic Year 2021/2022

Consider (normal) modal logics. Let IsBlue(Pen), IsInPocket(Pen) be possible facts, let Anne, Jim be agents and let K_{Anne}, K_{Jim} denote the modal operators "Anne knows that..." and "Jim knows that..." respectively. For each of the following facts, say if it is true or false.

(a) If K_{Anne} IsBlue(Pen) and K_{Anne} (IsBlue(Pen) \Rightarrow K_{Jim} IsBlue(Pen)) hold, then K_{Anne}K_{Jim}IsBlue(Pen)) holds

(b) If K $_{im}$ IsBlue(Pen) and IsBlue(Pen) \Leftrightarrow IsInPocket(Pen) hold, then K_{lim}IsInPocket(Pen) holds

(c) If $\neg K_{Anne}$ IsBlue(Pen) holds, then K_{Anne} \neg IsBlue(Pen) holds

(d) If K_{Anne} -IsBlue(Pen) holds, then $-K_{Anne}$ IsBlue(Pen) holds

Consider (normal) modal logics. Let IsOn(Switch), IsRunning(Engine) be possible facts, let Susie, Bill be agents and let K_{Susie}, \mathbf{K}_{Bill} denote the modal operators "Susie knows that..." and "Bill knows that..." respectively. For each of the following facts, say if it is true or false.

(a) If K_{Susie} (IsOn(Switch) \vee IsRunning(Engine)) holds, then K_{Susie} IsOn(Switch) V K_{Susie} IsRunning(Engine) holds

(b) If K_{Bill} IsOn(Switch) and IsOn(Switch) \Leftrightarrow IsRunning(Engine) hold, then K_{Bill}IsRunning(Engine) holds

(c) If K_{Susie} IsOn(Switch) and K_{Susie} (IsOn(Switch) \Rightarrow K_{Bill} IsOn(Switch)) hold, then K_{Susie}K_{Bill}IsOn(Switch)) holds

(d) If K_{Susie} (IsOn(Switch) \land IsRunning(Engine)) holds, then K_{Susie} IsOn(Switch) $\wedge K_{Susie}$ IsRunning(Engine) holds

Given:

- a set of basic concepts: {Person, Male, Engineer, Doctor}
- a set of relations: {hasChild} with their obvious meaning. Write a T-box in ALCN description logic defining the following concepts.

(a) Female, Man, Woman (with their genetic meaning) **Female** = \neg **Male**; Man = **Person** \land **Male**;

(b) femaleEngineerWithoutChildren: female engineer with no children femaleEngineerWithoutChildren \equiv Woman \land Engineer $\land \neg \exists$ hasChild.Person

(c) fatherOfFemaleEngineer: father of at least three female engineers fatherOfFemaleEngineer = Man \land (\ge 3)hasChild(Female \land Engineer)

(d) motherOfEngineersOrDoctors: woman whose children are all doctors or engineers motherOfEngineersOrDoctors \equiv Woman $\land \forall$ hasChild(Doctor \lor Engineer)

page

Woman \equiv Person \land Female

Given:

- a set of basic concepts: {Person, Dog, Cat, Male, Female}
- a set of relations: {hasChild, hasPet} with their standard meaning ("hasChild" refers also to animals).

Write a T -box in ALCN description logic defining the following concepts

(a) DogLover: a person with at least two dogs **DogLover** = **Person** \land (\geq 2)hasPet.Dog

(b) ChildlessMaleCat: childless male cat ChildlessMaleCat = Cat \land Male $\land \neg \exists$.hasChild.Cat

(c) PersonWithFemaleDogs: a person with female dogs **PersonWithFemaleDogs** = **Person** \land **HasPet(Dog** \land **Female)**

(d) WomanWithDogsOrCats: woman whose pets are all dogs or cats WomanWithDogsOrCats = Person \land Female \land \forall hasPet(Dog \lor Cat)

Making a cup of tea

The tasks, durations, effort and task predecessors are listed in the table below.

- a. What task numbers are on the critical path for the basic network?
- **b.** If there is no consideration of over allocated resources, what is the earliest finish time of your Project?

PROJECT - Cup of Tea - Task List							
#	Description	Duration (secs)	Effort (secs)	Pre- decessor #			
1	START at Kettle Area	0	0	None			
2	Get Clean Mug from Cupboard, take to kettle area	15	15	1			
3	Get Teabag from container, take to kettle area	10	10	1			
4	Fill kettle with enough water and return to kettle area	20	20	1			
5	Put teabag into Mug	5	5	2,3			
6	Boil Kettle	180	2	4			
7	Pour boiling water into Mug	5	5	5,6			
8	Let tea brew in Mug	30	1	7			
9	Get milk from Fridge and take to kettle area	20	20	1			
10	Get spoon from Drawer and take to kettle area	10	10	1			
11	Remove teabag with spoon and put in bin	10	10	10,8			
12	Pour milk into Mug and return to Fridge	25	25	9,11			
13	Rinse spoon, dry and return to drawer	20	20	11			
14	FINISH at Kettle Area	0	0	13,12			

(List			
	Duration (secs)	Effort (secs)	Pre- decessor #
	0	0	None
ard, take to kettle area	15	15	1
take to kettle area	10	10	1
r and return to kettle area	20	20	1
	5	5	2,3
	180	2	4
	5	5	5,6
	30	1	7
ke to kettle area	20	20	1
take to kettle area	10	10	1
and put in bin	10	10	10,8
urn to Fridge	25	25	9,11
n to drawer	20	20	11
	0	0	13,12

Consider a simple case of resource allocation that contains 12 uninterruptible tasks, each with fixed duration and demand. These tasks need to be scheduled on a single renewable resource that has a capacity of eight units.

Task	Duration	Demand	Successors
1	1	4	4
2	2	2	5
3	2	3	
4	6	3	
5	3	2	
6	6	3	12
7	1	1	8, 9, 10
8	3	2	11
9	3	2	12
10	4	1	12
11	2	2	12
12	4	2	

