Fundamentals of Artificial Intelligence Laboratory

Dr. Mauro Dragoni

Exercise 8.1-Which of the following are correct?

a. False |= True. This is true because False has no models and hence entails every sentence and because True is true in all models and hence is entailed by every sentence.
b. True I= False. This is false.
c. $(A \wedge B) I=(A \Leftrightarrow B)$. This is true because the left-hand side has exactly one model that is one of the two models of the right-hand side.
d. $A \Leftrightarrow B \mid=A \vee B$. This is false because one of the models of $A \Leftrightarrow B$ has both A and B false, which does not satisfy $A \vee B$.
e. $A \Leftrightarrow B \mid=\neg A \vee B$. This is true because the RHS is $A \Rightarrow B$, one of the conjuncts in the definition of $A \Leftrightarrow B$.
f. $\quad(A \wedge B) \Rightarrow C \mid=(A \Rightarrow C) \vee(B \Rightarrow C)$. This is true because the RHS is false only when both disjuncts are false, i.e., when A and B are true and C is false, in which case the LHS is also false. This may seem counterintuitive, and would not hold if \Rightarrow is interpreted as "causes."
g. $\quad(A \vee B) \wedge(\neg C \vee \neg D \vee E) \mid=(A \vee B)$. This is true; removing a conjunct only allows more models.
h. $\quad(A \vee B) \wedge(\neg C \vee \neg D \vee E) \mid=(A \vee B) \wedge(\neg D \vee E)$. This is false; removing a disjunct allows fewer models.
i. $\quad(A \vee B) \wedge \neg(A \Rightarrow B)$ is satisfiable. This is satisfiable; model has A and $\neg B$.
j. $\quad(A \Leftrightarrow B) \wedge(\neg A \vee B)$ is satisfiable. This is satisfiable; RHS is entailed by LHS so models are those of $A \Leftrightarrow B$.

Exercise 8.2 - Homework

Using truth tables, verify the following equivalences:
a. $P \wedge Q \Leftrightarrow Q \wedge P$
b. $P \vee Q \Leftrightarrow Q \vee P$
c. $P \wedge(Q \wedge R) \Leftrightarrow(P \wedge Q) \wedge R$
d. $P \vee(Q \vee R) \Leftrightarrow(P \vee Q) \vee R$

Exercise 8.3

Consider a vocabulary with only four propositions, A, B, C, and D. How many models are there for the following sentences?
a. B V C.

Sentence is false only if B and C are false, which occurs in 4 cases for A and D, leaving 12.
b. $\neg A \vee \neg B \vee \neg C \vee \neg D$.

Sentence is false only if A, B, C, and D are true, which occurs in 1 case, leaving 15.
c. $(A \Rightarrow B) \wedge A \wedge \neg B \wedge C \wedge D$.

The last four conjuncts specify a model in which the first conjunct is false, so 0 .

Exercise 8.4

According to some political pundits, a person who is radical (R) is electable (E) if he/she is conservative (C), but otherwise is not electable.
a. Which of the following are correct representations of this assertion?
(i) $(R \wedge E) \Leftrightarrow C$
(ii) $R \Rightarrow(E \Leftrightarrow C)$
(iii) $R \Rightarrow((C \Rightarrow E) \vee \neg E)$

Exercise 8.4

According to some political pundits, a person who is radical (R) is electable (E) if he/she is conservative (C), but otherwise is not electable.
a. Which of the following are correct representations of this assertion?
(i) $(R \wedge E) \Leftrightarrow C$

No.
This sentence asserts, among other things, that all conservatives are radical, which is not what was stated.

Exercise 8.4

According to some political pundits, a person who is radical (R) is electable (E) if he/she is conservative (C), but otherwise is not electable.
a. Which of the following are correct representations of this assertion?
(ii) $R \Rightarrow(E \Leftrightarrow C)$

Yes.
This says that if a person is a radical then they are electable if and only if they are conservative.

Exercise 8.4

According to some political pundits, a person who is radical (R) is electable (E) if he/she is conservative (C), but otherwise is not electable.
a. Which of the following are correct representations of this assertion?
(iii) $R \Rightarrow((C \Rightarrow E) \vee \neg E)$

No.
This is equivalent to $\neg R \vee \neg C \vee E \vee \neg E$ which is a tautology, true under any assignment.

Exercise 8.5

Show using the propositional resolution calculus that:
(1) $P \vee \neg Q$
(2) $\neg P \vee R \vee S$
(3) Q
(4) $\neg P \vee \neg R$
(5) $\mathrm{Q} \vee \mathrm{P} \vee \mathrm{R}$
(6) $S \vee \neg Q$
(7) R
is not satisfiable;

Exercise 8.5 - Solution

Show using the propositional resolution calculus that:
(1) $P \vee \neg Q$
(2) $\neg P \vee R \vee S$
(3) Q
(4) $\neg P \vee \neg R$
(5) $\mathrm{Q} \vee \mathrm{P} \vee \mathrm{R}$
(6) $S \vee \neg Q$
(7) R
(8) P

Exercise 8.5 - Solution

Show using the propositional resolution calculus that:
(1) $P \vee \neg Q$
(2) $\neg P \vee R \vee S$
(3) Q
(4) $\neg P \vee \neg R$
(5) $\mathrm{Q} \vee \mathrm{P} \vee \mathrm{R}$
(6) $S \vee \neg Q$
(7) R
(8) P
(9) $\neg \mathbf{R}$

Exercise 8.5-Solution

Show using the propositional resolution calculus that:
(1) $P \vee \neg Q$
(2) $\neg P \vee R \vee S$
(3) Q
(4) $\neg P \vee \neg R$
(5) $\mathrm{Q} \vee \mathrm{P} \vee \mathrm{R}$
(6) $S \vee \neg Q$
(7) R
(8) P
(9) $\neg \mathrm{R}$
(10) $\}$

Exercise 8.6

Show using the propositional resolution calculus that:
(1) $P \vee Q$
(2) $\neg Q \vee P \vee \neg R$
(3) $\neg P \vee \neg R$
(4) R
is not satisfiable.

Exercise 8.6

Show using the propositional resolution calculus that:
(1) $P \vee Q$
(2) $\neg Q \vee P \vee \neg R$
(3) $\neg P \vee \neg R$
(4) R
(5) $P \vee P \vee \neg R$

Exercise 8.6

Show using the propositional resolution calculus that:
(1) $P \vee Q$
(2) $\neg Q \vee P \vee \neg R$
(3) $\neg P \vee \neg R$
(4) R
(5) $\mathrm{P} \vee \mathrm{P} \vee \neg \mathrm{R}$
(6) $P \vee \neg R$

Exercise 8.6

Show using the propositional resolution calculus that:
(1) $P \vee Q$
(2) $\neg Q \vee P \vee \neg R$
(3) $\neg P \vee \neg R$
(4) R
(5) $\mathrm{P} \vee \mathrm{P} \vee \neg \mathrm{R}$
(6) $P \vee \neg R$
(7) $\neg R$

016

Exercise 8.6

Show using the propositional resolution calculus that:
(1) $P \vee Q$
(2) $\neg Q \vee P \vee \neg R$
(3) $\neg P \vee \neg R$
(4) R
(5) $\mathrm{P} \vee \mathrm{P} \vee \neg \mathrm{R}$
(6) $P \vee \neg R$
(7) $\neg R$
(8) $\}$

Exercise 8.7

Show using the propositional resolution calculus that:
(1) $G \vee D \vee \neg B$
(2) $\neg E \vee C$
(3) G
(4) $\mathrm{F} \vee \mathrm{C} \vee \neg \mathrm{A}$
(5) $\neg A$
(6) $\neg \mathrm{C} \vee \mathrm{B}$
(7) $\neg \mathrm{G} \vee \neg \mathrm{F} \vee \mathrm{E}$
(8) F
(9) $\neg F \vee \neg E \vee D$
(10) $\neg F \vee \neg B \vee A$
is not satisfiable;

018

Exercise 8.7

(1) $G \vee D \vee \neg B$
(2) $\neg \mathrm{E} \vee \mathrm{C}$
(3) G
(4) $F \vee C \vee \neg A$
(5) $\neg \mathrm{A}$
(6) $\neg \mathrm{C} \vee \mathrm{B}$
(7) $\neg \mathrm{G} \vee \neg \mathrm{F} \vee \mathrm{E}$
(8) F
(9) $\neg F \vee \neg E \vee D$
(10) $\neg F \vee \neg B \vee A$
(11) $[(7),(3)] \Rightarrow(\neg F \vee E)$
(12) $[(8),(11)] \Rightarrow(E)$
(13) $[(12),(2)] \Rightarrow(\mathrm{C})$
(14) $[(13),(6)] \Rightarrow(B)$
(15) $[(8),(10)] \Rightarrow(\neg B \vee A)$
(16) $[(14),(15)] \Rightarrow(A)$

Resolution: deduction of a new clause from a pair of clauses with EXACTLY ONE incompatible variable (resolvent)

(17) $[(5),(16)] \Rightarrow\}$

Exercise 8.7

(1) $G \vee D \vee \neg B$
(2) $\neg \mathrm{E} \vee \mathrm{C}$
(3) G
(4) $\mathrm{F} \vee \mathrm{C} \vee \neg \mathrm{A}$
(5) $\neg \mathrm{A}$
(6) $\neg C \vee B$
(7) $\neg \mathrm{G} \vee \neg \mathrm{F} \vee \mathrm{E}$
(8) F
(9) $\neg F \vee \neg E \vee D$
(10) $\neg F \vee \neg B \vee A$
(11) $[(7),(3)] \Rightarrow(\neg F \vee E)$
(12) $[(8),(11)] \Rightarrow(E)$
(13) $[(12),(2)] \Rightarrow(C)$
(14) $[(13),(6)] \Rightarrow(B)$
(15) $[(8),(10)] \Rightarrow(\neg B \vee A)$
(16) $[(14),(15)] \Rightarrow(A)$

Resolution: deduction of a new clause from a pair of clauses with EXACTLY ONE incompatible variable (resolvent)
$(17)[(5),(16)] \Rightarrow\}$

Exercise 8.8

Using DPLL algorithm to find a model for the following proposition:

- $(A \vee B) \wedge(C \vee D) \wedge \neg B$

Exercise 8.8

Using DPLL algorithm to find a model for the following proposition:

- $(A \vee B) \wedge(C \vee D) \wedge \neg B$
- $(A \vee B) \wedge(C \vee D) \wedge \neg B$

Propagate: B = False

Exercise 8.8

Using DPLL algorithm to find a model for the following proposition:

- $(A \vee B) \wedge(C \vee D) \wedge \neg B$
- $(A \vee B) \wedge(C \vee D) \wedge \neg B$
- $(A \vee B) \wedge(C \vee D) \wedge \neg B$

Propagate: $\mathrm{B}=$ False Propagate: A = True

Exercise 8.8

Using DPLL algorithm to find a model for the following proposition:

- $(A \vee B) \wedge(C \vee D) \wedge \neg B$
- $(A \vee B) \wedge(C \vee D) \wedge \neg B$
- $(A \vee B) \wedge(C \vee D) \wedge \neg B$
- $(A \vee B) \wedge(C \vee D) \wedge \neg B$

Propagate: $\mathrm{B}=$ False
Propagate: A = True
Decide: C = True

Interpretation: $\mathrm{A}=$ True; $\mathrm{B}=$ False; $\mathrm{C}=$ True

Exercise 8.9

Using DPLL algorithm to find a model for the following proposition:

- $(\neg A \vee B) \wedge(\neg C \vee \neg B) \wedge(C \vee \neg B) \wedge(A \vee D)$

Exercise 8.9

Using DPLL algorithm to find a model for the following proposition:

- $(\neg A \vee B) \wedge(\neg C \vee \neg B) \wedge(C \vee \neg B) \wedge(A \vee D)$
- $(\neg A \vee B) \wedge(\neg C \vee \neg B) \wedge(C \vee \neg B) \wedge(A \vee D)$

Decide: A = True

Exercise 8.9

Using DPLL algorithm to find a model for the following proposition:

- $(\neg A \vee B) \wedge(\neg C \vee \neg B) \wedge(C \vee \neg B) \wedge(A \vee D)$
- $(\neg A \vee B) \wedge(\neg C \vee \neg B) \wedge(C \vee \neg B) \wedge(A \vee D)$

Decide: A = True
Propagate: B = True

Exercise 8.9

Using DPLL algorithm to find a model for the following proposition:

- $(\neg A \vee B) \wedge(\neg C \vee \neg B) \wedge(C \vee \neg B) \wedge(A \vee D)$
- $(\neg A \vee B) \wedge(\neg C \vee \neg B) \wedge(C \vee \neg B) \wedge(A \vee D)$
- $(\neg A \vee B) \wedge(\neg C \vee \neg B)(C \vee \neg B) \lambda(A \vee D)$

Decide: A = True
Propagate: B = True
Propagate: C = False

Exercise 8.9

Using DPLL algorithm to find a model for the following proposition:

- $(\neg A \vee B) \wedge(\neg C \vee \neg B) \wedge(C \vee \neg B) \wedge(A \vee D)$
- $(\neg A \vee B) \wedge(\neg C \vee \neg B) \wedge(C \vee \neg B) \wedge(A \vee D)$
- $(\neg A \vee B) \wedge(\neg C \vee \neg B) \wedge(C \vee \neg B) \lambda(A \vee D)$

Decide: A = True

Propagate: $B=$ True
Propagate: $\mathrm{C}=$ False

Exercise 8.9

Using DPLL algorithm to find a model for the following proposition:

- $(\neg A \vee B) \wedge(\neg C \vee \neg B) \wedge(C \vee \neg B) \wedge(A \vee D)$
- $(\neg A \vee B) \wedge(\neg C \vee \neg B) \wedge(C \vee \neg B) \wedge(A \vee D)$

Decide: A = False

Exercise 8.9

Using DPLL algorithm to find a model for the following proposition:

- $(\neg A \vee B) \wedge(\neg C \vee \neg B) \wedge(C \vee \neg B) \wedge(A \vee D)$
- $(\neg A \vee B) \wedge(\neg C \vee \neg B) \wedge(C \vee \neg B) \wedge(A \vee D)$

Decide: A = False
Propagate: D = True

Exercise 8.9

Using DPLL algorithm to find a model for the following proposition:

- $(\neg A \vee B) \wedge(\neg C \vee \neg B) \wedge(C \vee \neg B) \wedge(A \vee D)$
- $(\neg A \vee B) \wedge(\neg C \vee \neg B) \wedge(C \vee \neg B) \wedge(A \vee D)$

Decide: A = False
Propagate: D = True
Decide: $\mathrm{B}=$ False

Interpretation: A=False; B=False; D=True

Exercise 8.10

Consider the following CNF formula in PL:

		$\vee L)$
$\neg N$		\wedge
\checkmark H	$\vee \neg N$	$\vee G)$
${ }^{\text {H }}$	$\vee \neg G$	$\checkmark \neg N$)
F	$\vee \neg N$	$\vee H)$
H	$\vee \neg$	$\checkmark \neg N$)
N	$\checkmark E$	$\checkmark L) \wedge$
E	$\checkmark \neg D$	$\checkmark N)$
D	$\checkmark C$	$\vee B)$
$\neg C$	$\vee L$	$\vee \neg B)$
		$\checkmark B)$
C	$\vee A$	$\vee \neg$)
D	$\vee C$	$\vee \neg A)$

Draw the search tree obtained by applying to the above formula the DPLL algorithm without the pure-symbol rule. Variables should be chosen according to reverse alphabetic order, and assigned true first.

Exercise 8.10

$$
\begin{aligned}
& (\neg L) \quad \wedge \quad \wedge) \wedge \\
& (\neg N \vee I) \wedge \\
& (\neg H \quad \vee \neg N \vee G) \wedge \\
& (\neg H \quad \vee \neg G \quad \vee \neg N) \wedge \\
& \left(\begin{array}{ll}
F & \vee \neg N \vee H) \wedge
\end{array}\right. \\
& \left(\begin{array}{lll}
H & \vee \neg F & \vee \neg N) \wedge
\end{array}\right. \\
& (N \vee E \vee L) \wedge \\
& (\neg E \vee \neg D \vee N) \wedge \\
& (D \vee C \vee B) \wedge \\
& (\neg C \vee L \vee \neg B) \wedge \\
& (N \vee \neg C \vee B) \wedge \\
& (C \vee A \vee \neg E) \wedge \\
& \left(\begin{array}{lll}
D & \vee & \vee \neg A)
\end{array}\right.
\end{aligned}
$$

Exercise 8.11-Homework

Prove each of the following assertions:
a. a is valid if and only if True $l=a$. Forward: If alpha is valid it is true in all models, hence it is true in all models of True. Backward: if True |= a then a must be true in all models of True, i.e., in all models, hence a must be valid.
b. For any a, False |= a. False doesn't hold in any model, so a trivially holds in every model of False.
c. $\quad \alpha \mid=\beta$ if and only if the sentence $(\alpha \Rightarrow \beta)$ is valid. Both sides are equivalent to the assertion that there is no model in which α is true and β is false, i.e., no model in which $\alpha \Rightarrow \beta$ is false.
d. $\quad a \equiv \beta$ if and only if the sentence $(\alpha \Leftrightarrow \beta)$ is valid. Both sides are equivalent to the assertion that α and β have the same truth value in every model.
a. $\quad \alpha \mid=\beta$ if and only if the sentence $(\alpha \wedge \neg \beta)$ is unsatisfiable. As in c, both sides are equivalent to the assertion that there is no model in which α is true and β is false.

