Fundamentals of Artificial Intelligence Laboratory

Dr. Mauro Dragoni

Exercise 3.10

- Apply both the iterative deepening depth-first search and the bidirectional search for reaching the goal ($\mathrm{N}-17$) from the start ($\mathrm{N}-0$)

Exercise 3.10 - Solution

- In order to avoid misunderstanding and to do not create confusion, we apply the algorithm as it is explained in the book without considering possible variants.
- Iterative deepening

$$
\begin{aligned}
& \mathrm{d} 0=\{0\} \\
& \mathrm{d} 1=\{0,1,2,4,7,14\} \\
& \mathrm{d} 2=\{0,1,2,4,7,14,5,8,11\} \\
& \mathrm{d} 3=\{0,1,2,4,7,14,5,8,11,6,9,15\} \\
& \mathrm{d} 4=\{0,1,2,4,7,14,5,8,11,6,9,15,13,17\}
\end{aligned}
$$

Exercise 3.10 - Solution

- In order to avoid misunderstanding and to do not create confusion, we apply the algorithm as it is explained in the book without considering possible variants.
- Bidirectional search (by applying breadth-first)

$$
\begin{aligned}
& \text { Step0 }=\{0\}\{17\} \\
& \text { Step1 }=\{0,1,2,4,7,14\}\{17,3,10,13,15,16\} \\
& \text { Step2 }=\{0,1,2,4,7,14,5,8,11\}\{17,3,10,13,15,16,9,12,11\}
\end{aligned}
$$

- Bidirectional search (by applying depth-first)

```
Step0 \(=\{0\}\{17\}\)
Step1 \(=\{0,1\}\{17,3\}\)
Step2 \(=\{0,1,2\}\{17,3,10\}\)
Step3 \(=\{0,1,2,5\}\{17,3,10,13\}\)
Step4 \(=\{0,1,2,5,4\}\{17,3,10,13,9\}\)
Step5 \(=\{0,1,2,5,4,7\}\{17,3,10,13,9,6\}\)
Step6 \(=\{0,1,2,5,4,7,8\}\{17,3,10,13,9,6,5\}\)
```


Exercise 3.11

- Apply the greedy best-first search strategy for finding the route from Lugoj to Bucharest.

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Exercise 3.11 - Solution

- Apply the greedy best-first search strategy for finding the route from Lugoj to Bucharest.
- Initial state: Lugoj(244)

Step1, expanding Lugoj: Mehadia(241), Timisoara(329)
Step2, expanding Mehadia: Lugoj(244), Drobeta(242)
Step3, expanding Drobeta: Mehadia(241), Craiova(160)
Step4, expanding Craiova: Drobeta(242), Rimnicu Vilcea(193), Pitesti(100)
Step5, expanding Pitesti: Craiova(160), Rimnicu Vilcea(193), Bucharest(0)

Exercise 3.12

- A* algorithm

```
WHILE (QUEUE not empty && first path not reach goal) DO
    Remove first path from QUEUE
    Create paths to all children
    Reject paths with loops
    Add paths and sort QUEUE (by f = cost + heuristic)
    IF QUEUE contains paths: P, Q
            AND P ends in node Ni && Q contains node Ni
            AND cost(P) \geq cost(Q)
    THEN remove P
IF goal reached THEN success ELSE failure
```


Exercise 3.12

$\mathrm{f}=$ accumulated path cost + heuristic
$7{ }_{7}^{7}$
QUEUE = path containing root
QUEUE = <S>

Exercise 3.12

f = accumulated path cost + heuristic

Remove first path, Create paths to all children,
Reject loops and Add paths. SORT QUEUE by f
QUEUE = <SB,SA>

Exercise 3.12

Exercise 3.12

Exercise 3.12

Exercise 3.12

Exercise 3.12

$\mathrm{f}=$ accumulated path cost + heuristic

Exercise 3.12

Exercise 3.12

$\mathrm{f}=$ accumulated path cost + heuristic

Exercise 3.13

- Perform the A* Algorithm on the following figure. Explicitly write down the queue at each step.

Exercise 3.13

- Step 1

$\frac{\text { QUEUE: }}{S}$

Exercise 3.13

- Step 2

QUEUE:
SC
SA
SB

Exercise 3.13

- Step 3

Exercise 3.13

- Step 4

QUEUE:
SAE SCD
SB

Exercise 3.13

- Step 5

QUEUE:
SAEF
SCD
SB
SAEB

Exercise 3.13

- Step 6

QUEUE: SCD
SB
SAEFG
SAEFD

Exercise 3.13

- Step 7

QUEUE:
SB
SAEFG
SCDF SCDB

Exercise 3.13

- Step 8

QUEUE:
SBD
SBE
SAEFG

Exercise 3.13

- Step 9

QUEUE:
SBE SBDF
SAEFG SBDC

026

Exercise 3.13

- Step 10

Exercise 3.13

- Step 11

Exercise 3.14

$\left.\right|^{\text {唯 }}$

Exercise 3.14

Step	Queue	Processed Nodes	Children
1	$\mathrm{~S}(6)$	$\mathrm{S}(6)$	$\mathrm{A}(2+4) \mathrm{B}(1+5) \mathrm{F}(3+4)$
2	$\mathrm{~A}(6) \mathrm{B}(6) \mathrm{F}(7)$	$\mathrm{A}(6)$	$\mathrm{C}(4+3) \mathrm{D}(5+2)$
3	$\mathrm{~B}(6) \mathrm{C}(7) \mathrm{D}(7) \mathrm{F}(7)$	$\mathrm{B}(6)$	$\mathrm{D}(3+2) \mathrm{E}(5+8)$
4	$\mathrm{D}(5) \mathrm{C}(7) \mathrm{F}(7) \mathrm{E}(13)$	$\mathrm{D}(5)$	$\mathrm{G}(7+0)$
5	$\mathrm{C}(7) \mathrm{F}(7) \mathrm{G}(7) \mathrm{E}(13)$	$\mathrm{C}(7)$	$\mathrm{G}(8+0)$
6	$\mathrm{~F}(7) \mathrm{G}(7) \mathrm{E}(13)$	$\mathrm{F}(7)$	$\mathrm{G}(9+0)$
7	$\mathrm{G}(7) \mathrm{E}(13)$	$\mathrm{G}(7)$	

Node	h	h*
S	6	7
A	4	6
B	5	6
C	3	4
D	2	4
E	8	3
F	4	6

The \mathbf{h} function is not admissible because for the node \mathbf{E} the actual cost for reaching the goal is higher than the estimated one.

Exercise 3.15

$\left.\right|^{0930}$

Exercise 3.15

Step	Queue	Processed Nodes	Children
1	$\mathrm{~S}(7)$	$\mathrm{S}(7)$	$\mathrm{A}(2+4) \mathrm{B}(3+5) \mathrm{F}(2+5)$
2	$\mathrm{~A}(6) \mathrm{F}(7) \mathrm{B}(8)$	$\mathrm{A}(6)$	$\mathrm{C}(4+3) \mathrm{D}(3+2)$
3	$\mathrm{D}(5) \mathrm{C}(7) \mathrm{F}(7) \mathrm{B}(8)$	$\mathrm{D}(5)$	$\mathrm{G}(7+0)$
4	$\mathrm{C}(7) \mathrm{F}(7) \mathrm{G}(7) \mathrm{B}(8)$	$\mathrm{C}(7)$	$\mathrm{G}(9+0)$
5	$\mathrm{~F}(7) \mathrm{G}(7) \mathrm{B}(8)$	$\mathrm{F}(7)$	$\mathrm{G}(8+0)$
6	$\mathrm{G}(7) \mathrm{B}(8)$	$\mathrm{G}(7)$	

Node	\mathbf{h}	\mathbf{h}^{*}
S	7	7
A	4	5
B	5	6
C	3	5
D	2	4
E	$\mathbf{8}$	$\mathbf{3}$
F	5	6

The \mathbf{h} function is not admissible because for the node \mathbf{E} the actual cost for reaching the goal is higher than the estimated one.

Exercise 3.16

$\left.\right|^{\text {max }}$

Exercise 3.16

Step	Queue	Processed Nodes	Children
1	$S T(7)$	$S T(7)$	$A(1+7) B(2+5) F(4+3)$
2	$B(7) F(7) A(8)$	$B(7)$	$D(6+5) E(5+5)$
3	$F(7) A(8) E(10) D(11)$	$F(7)$	$A(7+7) G(10+9)$
4	$A(8) E(10) D(11) G(19)$	$A(8)$	$C(2+3) D(5+5)$
5	$C(5) D(10) E(10) G(19)$	$C(5)$	$E N(7+0) D(5+5)$
6	$E N(7) D(10) E(10) G(19)$	$E N(7)$	

Node	h	h*
ST	$\mathbf{9}$	$\mathbf{7}$
A	$\mathbf{7}$	$\mathbf{6}$
B	5	8
C	3	5
D	$\mathbf{5}$	$\mathbf{4}$
E	5	6
F	3	9
G	$\mathbf{9}$	$\mathbf{5}$
H	$\mathbf{5}$	$\mathbf{3}$

The h function is not admissible because for the nodes ST, A,D,G, and H the estimated cost for reaching the goal is higher than the actual one.

Exercise 3.17

$\left.\right|^{0.0950}$

Exercise 3.17

Step	Queue	Processed Nodes	Children
1	$S T(6)$	$S(6)$	$A(2+4) B(1+5) F(3+4)$
2	$A(6) B(6) F(7)$	$A(6)$	$C(4+3) D(5+2)$
3	$B(6) C(7) D(7) F(7)$	$B(6)$	$D(3+2) E(5+8)$
4	$D(5) C(7) F(7) E(13)$	$D(5)$	$I(5+4)$
5	$C(7) F(7) I(9) E(13)$	$C(7)$	$D(8+2) J(10+4)$
6	$F(7) I(9) E(13) J(14)$	$F(7)$	$A(7+4) G(7+4)$
7	$I(9) G(11) E(13) J(14)$	$I(9)$	$E N(9+0)$
8	$E N(9) G(11) E(13) J(14)$	$E N(9)$	

Node	h	\mathbf{h}^{*}
ST	6	9
A	4	7
B	5	8
C	3	7
D	2	6
E	8	8
F	4	10
G	4	6
H	$\mathbf{4}$	$\mathbf{3}$
I	$\mathbf{4}$	4
J	$\mathbf{4}$	$\mathbf{1}$
K	$\mathbf{4}$	$\mathbf{2}$

The \mathbf{h} function is not admissible because for the nodes \mathbf{H}, \mathbf{J}, and \mathbf{K} the estimated cost for reaching the goal is higher than the actual one.

