
Fundamentals of Artificial Intelligence
Laboratory

Dr. Mauro Dragoni

Department of Information Engineering and Computer Science
Academic Year 2021/2022

Exercise 3.10

page
02

▪ Apply both the iterative deepening depth-first search and the bidirectional
search for reaching the goal (N-17) from the start (N-0)

Exercise 3.10 - Solution

page
03

▪ In order to avoid misunderstanding and to do not create confusion, we apply the
algorithm as it is explained in the book without considering possible variants.

▪ Iterative deepening
d0 = {0}
d1 = {0,1,2,4,7,14}
d2 = {0,1,2,4,7,14,5,8,11}
d3 = {0,1,2,4,7,14,5,8,11,6,9,15}
d4 = {0,1,2,4,7,14,5,8,11,6,9,15,13,17}

Exercise 3.10 - Solution

page
04

▪ In order to avoid misunderstanding and to do not create confusion, we apply the
algorithm as it is explained in the book without considering possible variants.

▪ Bidirectional search (by applying breadth-first)
Step0 = {0} {17}
Step1 = {0,1,2,4,7,14} {17,3,10,13,15,16}
Step2 = {0,1,2,4,7,14,5,8,11} {17, 3,10,13,15,16,9,12,11}

▪ Bidirectional search (by applying depth-first)
Step0 = {0} {17}
Step1 = {0,1} {17,3}
Step2 = {0,1,2} {17,3,10}
Step3 = {0,1,2,5} {17,3,10,13}
Step4 = {0,1,2,5,4} {17,3,10,13,9}
Step5 = {0,1,2,5,4,7} {17,3,10,13,9,6}
Step6 = {0,1,2,5,4,7,8} {17,3,10,13,9,6,5}

Exercise 3.11

page
05

▪ Apply the greedy best-first search strategy for finding the route from Lugoj to
Bucharest.

Exercise 3.11 - Solution

page
06

▪ Apply the greedy best-first search strategy for finding the route from Lugoj to
Bucharest.

▪ Initial state: Lugoj(244)

Step1, expanding Lugoj: Mehadia(241), Timisoara(329)

Step2, expanding Mehadia: Lugoj(244), Drobeta(242)

Step3, expanding Drobeta: Mehadia(241), Craiova(160)

Step4, expanding Craiova: Drobeta(242), Rimnicu Vilcea(193), Pitesti(100)

Step5, expanding Pitesti: Craiova(160), Rimnicu Vilcea(193), Bucharest(0)

Exercise 3.12

page
07

▪ A* algorithm

WHILE (QUEUE not empty && first path not reach goal) DO

Remove first path from QUEUE

Create paths to all children

Reject paths with loops

Add paths and sort QUEUE (by f = cost + heuristic)

IF QUEUE contains paths: P, Q

AND P ends in node Ni && Q contains node Ni

AND cost(P) ≥ cost(Q)

THEN remove P

IF goal reached THEN success ELSE failure

Exercise 3.12

page
08

f = accumulated path cost + heuristic

QUEUE = path containing root

QUEUE = <S>

Exercise 3.12

page
09

f = accumulated path cost + heuristic

Remove first path, Create paths to all children,
Reject loops and Add paths. SORT QUEUE by f

QUEUE = <SB,SA>

Exercise 3.12

page
010

f = accumulated path cost + heuristic

Remove first path, Create paths to all children,
Reject loops and Add paths. SORT QUEUE by f

QUEUE = <SA,SBC,SBG,SBA>

Exercise 3.12

page
011

f = accumulated path cost + heuristic

IF QUEUE contains paths: P, Q

AND P ends in node Ni && Q contains node Ni

AND cost(P) ≥ cost(Q)

THEN remove P

QUEUE = <SA,SBC,SBG,SBA>

Exercise 3.12

page
012

f = accumulated path cost + heuristic

Remove first path, Create paths to all children,
Reject loops and Add paths. SORT QUEUE by f

QUEUE = <SBC,SBG,SAB>

Exercise 3.12

page
013

f = accumulated path cost + heuristic

IF QUEUE contains paths: P, Q

AND P ends in node Ni && Q contains node Ni

AND cost(P) ≥ cost(Q)

THEN remove P

QUEUE = < SBC,SBG,SAB>

Exercise 3.12

page
014

f = accumulated path cost + heuristic

Remove first path, Create paths to all children,
Reject loops and Add paths. SORT QUEUE by f

QUEUE = <SBCG,SBG>

Exercise 3.12

page
015

f = accumulated path cost + heuristic

IF QUEUE contains paths: P, Q

AND P ends in node Ni && Q contains node Ni

AND cost(P) ≥ cost(Q)

THEN remove P

QUEUE = < SBCG,SBG>

Exercise 3.12

page
016

f = accumulated path cost + heuristic

SUCCESS

QUEUE = < SBCG>

Exercise 3.13

page
017

▪ Perform the A* Algorithm on the following figure. Explicitly write down the queue
at each step.

Exercise 3.13

page
018

▪ Step 1

Exercise 3.13

page
019

▪ Step 2

Exercise 3.13

page
020

▪ Step 3

Exercise 3.13

page
021

▪ Step 4

Exercise 3.13

page
022

▪ Step 5

Exercise 3.13

page
023

▪ Step 6

Exercise 3.13

page
024

▪ Step 7

Exercise 3.13

page
025

▪ Step 8

Exercise 3.13

page
026

▪ Step 9

Exercise 3.13

page
027

▪ Step 10

Exercise 3.13

page
028

▪ Step 11

Exercise 3.14

page
029

Exercise 3.14

page
030

Exercise 3.15

page
031

Exercise 3.15

page
032

ST
(9)

B
(5)

A
(7)

E
(5)

D
(5)

C
(3)

F
(3)

EN
(0)

4 5

1

1

4

5

4

3

2

4

6

G
(9)

H
(5)

3

3

6

3

3

6

3

Exercise 3.16

page
033

Step Queue
Processed

Nodes
Children

1 ST(7) ST(7) A(1+7) B(2+5) F(4+3)

2 B(7) F(7) A(8) B(7) D(6+5) E(5+5)

3 F(7) A(8) E(10) D(11) F(7) A(7+7) G(10+9)

4 A(8) E(10) D(11) G(19) A(8) C(2+3) D(5+5)

5 C(5) D(10) E(10) G(19) C(5) EN(7+0) D(5+5)

6 EN(7) D(10) E(10) G(19) EN(7)

Node h h*

ST 9 7

A 7 6

B 5 8

C 3 5

D 5 4

E 5 6

F 3 9

G 9 5

H 5 3

The h function is not admissible because for the nodes ST,
A,D,G, and H the estimated cost for reaching the goal is
higher than the actual one.

Exercise 3.16

page
034

ST
(6)

B
(5)

A
(4)

E
(8)

D
(2)

C
(3)

F
(4)

EN
(0)

3

2

2

2

4

1

3

G
(4)

H
(4)

3

5

4

4

4

4

4

I
(4)

J
(4)

K
(4)

2

6

4

2

1

4

1

2

1

Exercise 3.17

page
035

Step Queue
Processed

Nodes
Children

1 ST(6) ST(6) A(2+4) B(1+5) F(3+4)

2 A(6) B(6) F(7) A(6) C(4+3) D(5+2)

3 B(6) C(7) D(7) F(7) B(6) D(3+2) E(5+8)

4 D(5) C(7) F(7) E(13) D(5) I(5+4)

5 C(7) F(7) I(9) E(13) C(7) D(8+2) J(10+4)

6 F(7) I(9) E(13) J(14) F(7) A(7+4) G(7+4)

7 I(9) G(11) E(13) J(14) I(9) EN(9+0)

8 EN(9) G(11) E(13) J(14) EN(9)

Node h h*

ST 6 9

A 4 7

B 5 8

C 3 7

D 2 6

E 8 8

F 4 10

G 4 6

H 4 3

I 4 4

J 4 1

K 4 2

The h function is not admissible because for the
nodes H, J, and K the estimated cost for reaching
the goal is higher than the actual one.

Exercise 3.17

page
036

