Fundamentals of Artificial Intelligence Chapter 12: Knowledge Representation

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto. sebastiani@unitn. it
http://disi.unitn.it/rseba/DIDATTICA/fai_2022/

Teaching assistant: Mauro Dragoni - dragoni@fbk.eu http://www.maurodragoni.com/teaching/fai/
M.S. Course "Artificial Intelligence Systems", academic year 2022-2023

Last update: Friday $2^{\text {nd }}$ December, 2022, 14:48

[^0]
Outline

(1) Ontologies and Ontological Engineering
(2) Categories and Objects
(3) Reasoning about Knowledge

4 Reasoning about Categories

- Semantic Networks (hints)
- Description Logics

Outline

(1) Ontologies and Ontological Engineering
(2) Categories and Objects
(3) Reasoning about Knowledge
4. Reasoning about Categories

- Semantic Networks (hints)
- Description Logics

Generalities

Q：What content do we put into an agent＇s KB？
－how do we organize such content？
－how do we represent facts about the world？
－A whole Al field：Knowledge Representation，KR
－often combined with Automated Reasoning on KB
\Rightarrow Knowledge Representation \＆Reasoning，KRR
－KR：use FOL to represent the most important aspects of the real world，such as： action，space，time，knowledge，belief
－Topics：
－ontologies and ontological engineering
－objects and categories，composite objects，measurements，．．．
－actions and change，events，temporal intervals，．．
－reasoning about knowledge \＆beliefs
－reasoning about categories
－default reasoning

Generalities

Q: What content do we put into an agent's KB?

- how do we organize such content?
- how do we represent facts about the world?
- A whole AI field: Knowledge Representation, KR
- often combined with Automated Reasoning on KB
\Longrightarrow Knowledge Representation \& Reasoning, KRR
- KR: use FOL to represent the most important aspects of the real world, such as action, space, time, knowledge, belief
- Topics:
- ontologies and ontological engineering
- objects and categories, composite objects, measurements, ...
- actions and change, events, temporal intervals,
- reasoning about knowledge \& beliefs
- reasoning about categories
- default reasoning

Generalities

Q: What content do we put into an agent's KB?

- how do we organize such content?
- how do we represent facts about the world?
- A whole AI field: Knowledge Representation, KR
- often combined with Automated Reasoning on KB
\Longrightarrow Knowledge Representation \& Reasoning, KRR
- KR: use FOL to represent the most important aspects of the real world, such as: action, space, time, knowledge, belief

- Topics

- ontologies and ontological engineering
- objects and categories, composite objects, measurements, ...
- actions and change, events, temporal intervals,
- reasoning about knowledge \& beliefs
- reasoning about categories
- default reasoning

Generalities

Q: What content do we put into an agent's KB?

- how do we organize such content?
- how do we represent facts about the world?
- A whole AI field: Knowledge Representation, KR
- often combined with Automated Reasoning on KB
\Longrightarrow Knowledge Representation \& Reasoning, KRR
- KR: use FOL to represent the most important aspects of the real world, such as: action, space, time, knowledge, belief
- Topics:
- ontologies and ontological engineering
- objects and categories, composite objects, measurements, ...
- actions and change, events, temporal intervals, ...
- reasoning about knowledge \& beliefs
- reasoning about categories
- default reasoning
- ...

Knowledge Engineering and Ontological Engineering

Knowledge Engineering

- The activity to formalize a specific problem or task domain
- Relevant questions to be addressed:
- What are the relevant facts, objects, relations ... ?
- Which is the right level of abstraction?
- What are the queries to the KB (inferences)?

Ontological Engineering

Knowledge Engineering and Ontological Engineering

Knowledge Engineering

- The activity to formalize a specific problem or task domain
- Relevant questions to be addressed:
- What are the relevant facts, objects, relations ... ?
- Which is the right level of abstraction?
- What are the queries to the KB (inferences)?

Ontological Engineering

- The activity to build general-purpose ontologies
- should be applicable in any special-purpose domain (with the addition of domain-specific axioms)
- In non trivial domains, reasoning and problem solving could involve several areas of knowledge simultaneously
\rightarrow different areas of knowledge must be combined
- Several attempts to build general-purpose ontologies
- CYC, DBpedia, TextRunner,
- not very successful so far

Knowledge Engineering and Ontological Engineering

Knowledge Engineering

- The activity to formalize a specific problem or task domain
- Relevant questions to be addressed:
- What are the relevant facts, objects, relations ... ?
- Which is the right level of abstraction?
- What are the queries to the KB (inferences)?

Ontological Engineering

- The activity to build general-purpose ontologies
- should be applicable in any special-purpose domain (with the addition of domain-specific axioms)
- In non trivial domains, reasoning and problem solving could involve several areas of knowledge simultaneously
\Longrightarrow different areas of knowledge must be combined
- Several attempts to build general-purpose ontologies
- CYC, DBpedia, TextRunner,
- not very successful so far

Knowledge Engineering and Ontological Engineering

Knowledge Engineering

- The activity to formalize a specific problem or task domain
- Relevant questions to be addressed:
- What are the relevant facts, objects, relations ... ?
- Which is the right level of abstraction?
- What are the queries to the KB (inferences)?

Ontological Engineering

- The activity to build general-purpose ontologies
- should be applicable in any special-purpose domain (with the addition of domain-specific axioms)
- In non trivial domains, reasoning and problem solving could involve several areas of knowledge simultaneously
\Longrightarrow different areas of knowledge must be combined
- Several attempts to build general-purpose ontologies
- CYC, DBpedia, TextRunner,
- not very successful so far

Knowledge Engineering and Ontological Engineering

Knowledge Engineering

- The activity to formalize a specific problem or task domain
- Relevant questions to be addressed:
- What are the relevant facts, objects, relations ... ?
- Which is the right level of abstraction?
- What are the queries to the KB (inferences)?

Ontological Engineering

- The activity to build general-purpose ontologies
- should be applicable in any special-purpose domain (with the addition of domain-specific axioms)
- In non trivial domains, reasoning and problem solving could involve several areas of knowledge simultaneously
\Longrightarrow different areas of knowledge must be combined
- Several attempts to build general-purpose ontologies
- CYC, DBpedia, TextRunner, ...
- not very successful so far

Outline

(1) Ontologies and Ontological Engineering
(2) Categories and Objects
(3) Reasoning about Knowledge
4. Reasoning about Categories

- Semantic Networks (hints)
- Description Logics

Categories and Objects

Categories, Objects, Members and Subclasses

- KR requires the organisation of objects into categories
- interaction at the level of the object
- reasoning at the level of categories
- ex: typically we want to buy a basketball, rather than a particular basketball instance
- Categories play a role in predictions about objects
- agent infers the presence of certain objects from perceptual input
- infers category from the perceived properties of the objects,
- uses category information to make predictions about the objects
- Categories can be represented in two ways by FOL
- predicates (ex Basketball(x)): relations
- reification of categories into objects (ex Basketballs): sets \Longrightarrow allows categories to be argument of predicates/functions
- Membership of a category as set membership
- ex: Member(b, Basketballs) (abbr. b \in Basketballs)
- Subcategories (aka subclasses) are (strict) subsets
- ex: Subset(Basketballs, Balls) (abbr. Basketballs \subset Balls)

Categories and Objects

Categories, Objects, Members and Subclasses

- KR requires the organisation of objects into categories
- interaction at the level of the object
- reasoning at the level of categories
- ex: typically we want to buy a basketball, rather than a particular basketball instance
- Categories play a role in predictions about objects
- agent infers the presence of certain objects from perceptual input
- infers category from the perceived properties of the objects,
- uses category information to make predictions about the objects
- Categories can be represented in two ways by FOL
- predicates (ex Basketball(x)): relations
- reification of categories into objects (ex Bisketballs): sets \Longrightarrow allows categories to be argument of predicates/functions
- Membership of a category as set membership
- ex: Member(b, Basketballs) (abbr. b B Basketbal s)
- Subcategories (aka subclasses) are (strict) subsets
- ex: Subset(Basketballs, Balls) (abbr. Basketballs \subset Balls)

Categories and Objects

Categories, Objects, Members and Subclasses

- KR requires the organisation of objects into categories
- interaction at the level of the object
- reasoning at the level of categories
- ex: typically we want to buy a basketball, rather than a particular basketball instance
- Categories play a role in predictions about objects
- agent infers the presence of certain objects from perceptual input
- infers category from the perceived properties of the objects,
- uses category information to make predictions about the objects
- Categories can be represented in two ways by FOL
- predicates (ex Basketball(x)): relations
- reification of categories into objects (ex Basketballs): sets
\Longrightarrow allows categories to be argument of predicates/functions
- Membership of a category as set membership
- ex: Member(b, Basketballs) (abbr. $b \in$ Basketballs)
- Subcategories (aka subclasses) are (strict) subsets
- ex: Subset(Basketballs, Balls) (abbr. Basketballs \subset Balls)

Categories and Objects

Categories, Objects, Members and Subclasses

- KR requires the organisation of objects into categories
- interaction at the level of the object
- reasoning at the level of categories
- ex: typically we want to buy a basketball, rather than a particular basketball instance
- Categories play a role in predictions about objects
- agent infers the presence of certain objects from perceptual input
- infers category from the perceived properties of the objects,
- uses category information to make predictions about the objects
- Categories can be represented in two ways by FOL
- predicates (ex Basketball(x)): relations
- reification of categories into objects (ex Basketballs): sets
\Longrightarrow allows categories to be argument of predicates/functions
- Membership of a category as set membership
- ex: Member(b, Basketballs) (abbr. $b \in$ Basketballs)
- Subcategories (aka subclasses) are (strict) subsets
- ex: Subset(Basketballs, Balls) (abbr. Basketballs \subset Balls)

Categories and Objects

Categories, Objects, Members and Subclasses

- KR requires the organisation of objects into categories
- interaction at the level of the object
- reasoning at the level of categories
- ex: typically we want to buy a basketball, rather than a particular basketball instance
- Categories play a role in predictions about objects
- agent infers the presence of certain objects from perceptual input
- infers category from the perceived properties of the objects,
- uses category information to make predictions about the objects
- Categories can be represented in two ways by FOL
- predicates (ex Basketball(x)): relations
- reification of categories into objects (ex Basketballs): sets
\Longrightarrow allows categories to be argument of predicates/functions
- Membership of a category as set membership
- ex: Member(b, Basketballs) (abbr. $b \in$ Basketballs)
- Subcategories (aka subclasses) are (strict) subsets
- ex: Subset(Basketballs, Balls) (abbr. Basketballs \subset Balls)

Categories and Objects [cont.]

Inheritance and Taxonomies

- A subcategory inherits the properties of the category
- ex:
if $\forall x .(x \in \operatorname{Food} \rightarrow \operatorname{Edible}(x))$, Fruit \subset Food, Apples \subset Fruit then $\forall x .(x \in$ Apple \rightarrow Edible $(x))$
- A member inherits the properties of the category
- if $a \in$ Apples, then Edible(a)
a Subclass relation organize catego ries into taxonomies (aka taxonomic hierarchies)
- ex: taxonomy of >10M living\&extinct species
- ex: Dewey Decimal System: taxonomy of all fields of knowledge

Categories and Objects [cont.]

Inheritance and Taxonomies

- A subcategory inherits the properties of the category
- ex:
if $\forall x .(x \in \operatorname{Food} \rightarrow \operatorname{Edible}(x))$, Fruit \subset Food, Apples \subset Fruit then $\forall x .(x \in$ Apple \rightarrow Edible $(x))$
- A member inherits the properties of the category
- if $a \in$ Apples, then Edible(a)
- Subclass relation organize categories into taxonomies (aka taxonomic hierarchies)
- ex: taxonomy of >10M living ε extinct species
- ex: Dewey Decimal System: taxonomy of all fields of knowledge

Categories and Objects [cont.]

Inheritance and Taxonomies

- A subcategory inherits the properties of the category
- ex:
if $\forall x .(x \in \operatorname{Food} \rightarrow$ Edible $(x))$, Fruit \subset Food, Apples \subset Fruit then $\forall x .(x \in$ Apple \rightarrow Edible $(x))$
- A member inherits the properties of the category
- if $a \in$ Apples, then Edible(a)
- Subclass relation organize categories into taxonomies (aka taxonomic hierarchies)
- ex: taxonomy of >10M living\&extinct species
- ex: Dewey Decimal System: taxonomy of all fields of knowledge

Categories and Objects [cont.]

FOL Reasoning about Categories

- FOL allows to state facts about categories:
- an object is a member of a category $B B_{9} \in$ Basketballs
- a category is a subclass of another category Basketballs \subset Balls
- all members of a category have some properties
$\forall x$. $(x \in$ Basketballs \rightarrow Spherical $(x))$
- members of a category can be recognized by some properties $\forall x .\left(\left(\right.\right.$ Orange $(x) \wedge$ Round $(x) \wedge \operatorname{Diameter}(x)=9.5^{\prime \prime} \wedge x \in$ Balls $)$ $\rightarrow x \in$ Basketballs)
- category as a whole has some properties Dogs \in DomesticatedSpecies
- New categories can be defined by providing necessary and sufficient conditions for membership
- $\forall x .(x \in$ Bachelors \leftrightarrow (Unmarried $(x) \wedge x \in$ Adults $\wedge x \in$ Males $)$)

Categories and Objects [cont.]

FOL Reasoning about Categories

- FOL allows to state facts about categories:
- an object is a member of a category $B B_{9} \in$ Basketballs
- a category is a subclass of another category Basketballs \subset Balls
- all members of a category have some properties
$\forall x .(x \in$ Basketballs \rightarrow Spherical $(x))$
- members of a category can be recognized by some properties
$\forall x .\left(\left(\right.\right.$ Orange $(x) \wedge$ Round $(x) \wedge \operatorname{Diameter}(x)=9.5^{\prime \prime} \wedge x \in$ Balls $)$
$\rightarrow x \in$ Basketballs)
- category as a whole has some properties

Dogs \in DomesticatedSpecies

- New categories can be defined by providing necessary and sufficient conditions for membership
- $\forall x .(x \in$ Bachelors \leftrightarrow (Unmarried $(x) \wedge x \in$ Adults $\wedge x \in$ Males))

Categories and Objects [cont.]

FOL Reasoning about Categories

- FOL allows to state facts about categories:
- an object is a member of a category $B B_{9} \in$ Basketballs
- a category is a subclass of another category Basketballs \subset Balls
- all members of a category have some properties $\forall x .(x \in$ Basketballs \rightarrow Spherical $(x))$
- members of a category can be recognized by some properties $\forall x .\left(\left(\right.\right.$ Orange $(x) \wedge$ Round $(x) \wedge \operatorname{Diameter}(x)=9.5^{\prime \prime} \wedge x \in$ Balls $)$
$\rightarrow x \in$ Basketballs)
- category as a whole has some properties Dogs \in DomesticatedSpecies
- New categories can be defined by providing necessary and sufficient conditions for membership
- $\forall x .(x \in$ Bachelors \leftrightarrow (Unmarried $(x) \wedge x \in$ Adults $\wedge x \in$ Males $))$

Categories and Objects [cont.]

Derived relations

- Two or more categories in a set s are disjoint iff they have no members in common
- Disjoint(s) $\leftrightarrow\left(\forall c_{1} c_{2}\right.$. $\left(\left(c_{1} \in s \wedge c_{2} \in s \wedge c_{1} \neq c_{2}\right)\right.$
$\left.\rightarrow \operatorname{Intersection}\left(c_{1}, c_{2}\right)=\emptyset\right)$
- ex:

Disjoint(\{Animals, Vegetables\}), Disjoint(\{Insects, Birds, Mammals, Reptiles\}),

- A set of categories s is an exhaustive decomposition of a category ciff all members of c are covered by categories in s
- ExaustiveDecomposition($s, c)$
- ex: E.D.(\{Americans, Canadians, Mexicans\}, NorthAmericans)
- A disjoint exhaustive decomposition is a partition
- Partition $(s, c) \leftrightarrow$ (Disjoint $(s) \wedge$ ExhaustiveDecomposition $(s, c))$
- ex: Partition(\{Northernltalians, Centralltalians, Southernltalians, Insularltalians\}, Italians)

Categories and Objects [cont.]

Derived relations

- Two or more categories in a set s are disjoint iff they have no members in common
- Disjoint(s) $\leftrightarrow\left(\forall c_{1} c_{2} .\left(\left(c_{1} \in s \wedge c_{2} \in s \wedge c_{1} \neq c_{2}\right)\right.\right.$
$\left.\rightarrow \operatorname{Intersection}\left(c_{1}, c_{2}\right)=\emptyset\right)$
- ex:

Disjoint(\{Animals, Vegetables\}), Disjoint(\{ Insects, Birds, Mammals, Reptiles\}),

- A set of categories s is an exhaustive decomposition of a category c iff all members of c are covered by categories in s
- ExaustiveDecomposition $(s, c) \leftrightarrow \forall i .\left(i \in c \leftrightarrow\left(\exists c_{2} .\left(c_{2} \in s \wedge i \in c_{2}\right)\right)\right)$
- ex: E.D.(\{Americans, Canadians, Mexicans\}, NorthAmericans)
- A disjoint exhaustive decomposition is a partition
- Partition $(s, c) \leftrightarrow($ Disjoint $(s) \wedge$ ExhaustiveDecomposition $(s, c))$
- ex: Partition(\{Northernltalians, Centralltalians, Southernltalians, Insularltalians \}, Italians)

Categories and Objects [cont.]

Derived relations

- Two or more categories in a set s are disjoint iff they have no members in common
- Disjoint $(s) \leftrightarrow\left(\forall c_{1} c_{2} .\left(\left(c_{1} \in s \wedge c_{2} \in s \wedge c_{1} \neq c_{2}\right)\right.\right.$

$$
\left.\rightarrow \text { Intersection }\left(c_{1}, c_{2}\right)=\emptyset\right)
$$

- ex:

Disjoint(\{Animals, Vegetables\}), Disjoint(\{ Insects, Birds, Mammals, Reptiles\}),

- A set of categories s is an exhaustive decomposition of a category c iff all members of c are covered by categories in s
- ExaustiveDecomposition $(s, c) \leftrightarrow \forall i .\left(i \in c \leftrightarrow\left(\exists c_{2} .\left(c_{2} \in s \wedge i \in c_{2}\right)\right)\right)$
- ex: E.D.(\{Americans, Canadians, Mexicans\}, NorthAmericans)
- A disjoint exhaustive decomposition is a partition
- Partition $(s, c) \leftrightarrow(\operatorname{Disjoint}(s) \wedge$ ExhaustiveDecomposition $(s, c))$
- ex: Partition(\{NorthernItalians, Centralltalians, SouthernItalians, Insularltalians\}, Italians)

Digression: Natural Kinds

- Many categories have no clear-cut definition (ex: chair, bush, ...)
- Ex: tomatoes are sometimes green, red, yellow, black; they are mostly round
- One useful solution: category "Typical(.)", s.t. Typical(c) $\subseteq c$
\Rightarrow most knowledge about natural kinds will actually be about their typical instances
- ex: $\forall x .(x \in$ Typical(Tomatoes $) \rightarrow(\operatorname{Red}(x) \wedge \operatorname{Round}(x)))$

We can write down useful facts about categories without providing exact definitions

Note
Quine (1953) challenged the utility of the notion of strict definition.

- Ex: "bachelor": is the Pope a bachelor? \Longrightarrow technically yes, but misleading

Digression: Natural Kinds

- Many categories have no clear-cut definition (ex: chair, bush, ...)
- Ex: tomatoes are sometimes green, red, yellow, black; they are mostly round
- One useful solution: category "Typical(.)", s.t. Typical(c) $\subseteq c$
\Longrightarrow most knowledge about natural kinds will actually be about their typical instances
- ex: $\forall x .(x \in$ Typical(Tomatoes $) \rightarrow(\operatorname{Red}(x) \wedge \operatorname{Round}(x)))$
- Ex: "bachelor": is the Pope a bachelor? technically yes, but misleading

Digression: Natural Kinds

- Many categories have no clear-cut definition (ex: chair, bush, ...)
- Ex: tomatoes are sometimes green, red, yellow, black; they are mostly round
- One useful solution: category "Typical(.)", s.t. Typical(c) $\subseteq c$
\Longrightarrow most knowledge about natural kinds will actually be about their typical instances
- ex: $\forall x .(x \in \operatorname{Typical}($ Tomatoes $) \rightarrow(\operatorname{Red}(x) \wedge \operatorname{Round}(x)))$
\Longrightarrow We can write down useful facts about categories without providing exact definitions

```
Quine (1953) challenged the utility of the notion of strict definition.
- Ex: "bachelor": is the Pope a bachelor? technically yes, but misleading
```


Digression: Natural Kinds

- Many categories have no clear-cut definition (ex: chair, bush, ...)
- Ex: tomatoes are sometimes green, red, yellow, black; they are mostly round
- One useful solution: category "Typical(.)", s.t. Typical(c) $\subseteq c$
\Longrightarrow most knowledge about natural kinds will actually be about their typical instances
- ex: $\forall x .(x \in \operatorname{Typical}($ Tomatoes $) \rightarrow(\operatorname{Red}(x) \wedge \operatorname{Round}(x)))$
\Longrightarrow We can write down useful facts about categories without providing exact definitions

Note

Quine (1953) challenged the utility of the notion of strict definition.

- Ex: "bachelor": is the Pope a bachelor?
\Longrightarrow technically yes, but misleading

Physical Composition

- PartOf(., .) relation: One object may be part of another
- PartOf(Bucharest, Romania)
- PartOf(Romania, EasternEurope)
- PartOf(EasternEurope, Europe)
- PartOf(.,.) is reflexive and transitive:
- $\forall x$. PartOf (x, x)
- $\forall x, y, z .((\operatorname{PartOf}(x, y) \wedge$ PartOf $(y, z)) \rightarrow$ PartOf $(x, z))$
\rightarrow Parior(Bucharest, Europe)
- Categories of composite objects are often characterized by structural relations among parts. Ex: Biped
- Other concepts \& relations: PartPartition, BunchOf.

Physical Composition

- PartOf(., .) relation: One object may be part of another
- PartOf(Bucharest, Romania)
- PartOf(Romania, EasternEurope)
- PartOf(EasternEurope, Europe)
- PartOf(.,.) is reflexive and transitive:
- $\forall x$.PartOf (x, x)
- $\forall x, y, z .((\operatorname{PartOf}(x, y) \wedge \operatorname{PartOf}(y, z)) \rightarrow \operatorname{PartOf}(x, z))$
\Longrightarrow PartOf(Bucharest, Europe)
- Categories of composite objects are often characterized by structural relations among parts. Ex: Biped

Physical Composition

- PartOf(., .) relation: One object may be part of another
- PartOf(Bucharest, Romania)
- PartOf(Romania, EasternEurope)
- PartOf(EasternEurope, Europe)
- PartOf(., .) is reflexive and transitive:
- $\forall x$. PartOf (x, x)
- $\forall x, y, z$. $((\operatorname{PartOf}(x, y) \wedge \operatorname{PartOf}(y, z)) \rightarrow \operatorname{PartOf}(x, z))$
\Longrightarrow PartOf(Bucharest, Europe)
- Categories of composite objects are often characterized by structural relations among parts. Ex: Biped

$$
\begin{aligned}
\operatorname{Biped}(a) \Rightarrow \quad & \exists l_{1}, l_{2}, b \operatorname{Leg}\left(l_{1}\right) \wedge \operatorname{Leg}\left(l_{2}\right) \wedge \operatorname{Body}(b) \wedge \\
& \operatorname{PartOf}\left(l_{1}, a\right) \wedge \operatorname{PartOf}\left(l_{2}, a\right) \wedge \operatorname{PartOf}(b, a) \wedge \\
& \text { Attached }\left(l_{1}, b\right) \wedge \operatorname{Attached}\left(l_{2}, b\right) \wedge \\
& l_{1} \neq l_{2} \wedge\left[\forall l_{3} \operatorname{Leg}\left(l_{3}\right) \wedge \operatorname{PartOf}\left(l_{3}, a\right) \Rightarrow\left(l_{3}=l_{1} \vee l_{3}=l_{2}\right)\right]
\end{aligned}
$$

Physical Composition

- PartOf(., .) relation: One object may be part of another
- PartOf(Bucharest, Romania)
- PartOf(Romania, EasternEurope)
- PartOf(EasternEurope, Europe)
- PartOf(.,.) is reflexive and transitive:
- $\forall x$. PartOf (x, x)
- $\forall x, y, z$. $((\operatorname{PartOf}(x, y) \wedge \operatorname{PartOf}(y, z)) \rightarrow \operatorname{PartOf}(x, z))$
\Longrightarrow PartOf(Bucharest, Europe)
- Categories of composite objects are often characterized by structural relations among parts. Ex: Biped

$$
\begin{aligned}
& \operatorname{Biped}(a) \Rightarrow \quad \exists l_{1}, l_{2}, b \operatorname{Leg}\left(l_{1}\right) \wedge \operatorname{Leg}\left(l_{2}\right) \wedge \operatorname{Body}(b) \wedge \\
& \operatorname{PartOf}\left(l_{1}, a\right) \wedge \operatorname{PartOf}\left(l_{2}, a\right) \wedge \operatorname{PartOf}(b, a) \wedge \\
& \operatorname{Attached}\left(l_{1}, b\right) \wedge \operatorname{Attached}\left(l_{2}, b\right) \wedge \\
& l_{1} \neq l_{2} \wedge\left[\forall l_{3} \operatorname{Leg}\left(l_{3}\right) \wedge \operatorname{PartOf}\left(l_{3}, a\right) \Rightarrow\left(l_{3}=l_{1} \vee l_{3}=l_{2}\right)\right]
\end{aligned}
$$

- Other concepts \& relations: PartPartition, BunchOf...

Measurements

Quantitative Measurements

- Objects may have "quantitative" properties
- e.g. height, mass, cost, ...
- Values that we assign to these properties are measures
- Can be represented by unit functions
- ex Length $\left(L_{1}\right)=\operatorname{Inches}(1.5) \wedge \operatorname{Inches}(1.5)=$ Centimeters(3.81)
- Conversion between units:
- $\forall i$. Centimeters $(2.54 \times i)=\operatorname{Inches}(i)$
- Measures can be used to describe objects:
- ex: Diameter(Basketball 12) $=\operatorname{Inches}(9.5)$
- ex: ListPrice $($ Basketball 12$)=\$(19)$
- ex: $\forall d .(d \in \operatorname{Days} \rightarrow \operatorname{Duration}(d)=$ Hours(24))

Measurements

Quantitative Measurements

- Objects may have "quantitative" properties
- e.g. height, mass, cost, ...
- Values that we assign to these properties are measures
- Can be represented by unit functions
- ex Length $\left(L_{1}\right)=\operatorname{Inches}(1.5) \wedge \operatorname{Inches}(1.5)=$ Centimeters(3.81)
- Conversion between units:
- $\forall i$. Centimeters $(2.54 \times i)=\operatorname{Inches}(i)$
- Measures can be used to describe objects:
- ex: Diameter(Basketball 12) $=\operatorname{Inches}(9.5)$
- ex: ListPrice $($ Basketball 12$)=\$(19)$
- ex: $\forall d .(d \in$ Days \rightarrow Duration $(d)=$ Hours(24))

Measurements

Quantitative Measurements

- Objects may have "quantitative" properties
- e.g. height, mass, cost, ...
- Values that we assign to these properties are measures
- Can be represented by unit functions
- ex Length $\left(L_{1}\right)=\operatorname{Inches}(1.5) \wedge \operatorname{Inches}(1.5)=$ Centimeters(3.81)
- Conversion between units:
- $\forall i$. Centimeters $(2.54 \times i)=\operatorname{Inches}(i)$
a Measures can be used to describe objects:
- ex: Diameter(Basketball 12) $=\operatorname{Inches}(9.5)$
- ex: ListPrice $($ Basketball 12$)=\$(19)$
- ex: $\forall d .(d \in$ Days \rightarrow Duration $(d)=$ Hours(24))

Measurements

Quantitative Measurements

- Objects may have "quantitative" properties
- e.g. height, mass, cost, ...
- Values that we assign to these properties are measures
- Can be represented by unit functions
- ex Length $\left(L_{1}\right)=\operatorname{Inches}(1.5) \wedge \operatorname{Inches}(1.5)=$ Centimeters(3.81)
- Conversion between units:
- $\forall i$. Centimeters $(2.54 \times i)=\operatorname{Inches}(i)$
- Measures can be used to describe objects:
- ex: Diameter $\left(\right.$ Basketball ${ }_{12}$) $=\operatorname{Inches}(9.5)$
- ex: ListPrice $\left(\right.$ Basketball 1_{2}) $=\$(19)$
- ex: vd' (d' \in Days \rightarrow Duralion $\left({ }^{\prime \prime}\right)=$ Hours(24))

Measurements

Quantitative Measurements

- Objects may have "quantitative" properties
- e.g. height, mass, cost, ...
- Values that we assign to these properties are measures
- Can be represented by unit functions
- ex Length $\left(L_{1}\right)=\operatorname{Inches}(1.5) \wedge \operatorname{Inches}(1.5)=$ Centimeters(3.81)
- Conversion between units:
- $\forall i$. Centimeters $(2.54 \times i)=\operatorname{Inches}(i)$
- Measures can be used to describe objects:
- ex: Diameter $\left(\right.$ Basketball ${ }_{12}$) $=\operatorname{Inches}(9.5)$
- ex: ListPrice $($ Basketball 12$)=\$(19)$
- ex: $\forall d .(d \in$ Days \rightarrow Duration $(d)=$ Hours(24))

Measurements [cont.]

Qualitative Measurements

- Some measures have no scale
- ex: beauty, deliciousness, difficulty,...
- Most important aspect of measures: they are orderable
- Ex: Deliciousness(SacherTorte) > Deliciousness(BrussellSprout)
- Ex: Beauty (PaulNewmann) > Beauty (MartyFeldman)
- Ex: Difficulty(Prove_P $=$ NP) $>$ Difficulty(SolvePuzzle)
- Allow for reasoning by exploiting transitivity of monotonicity: $\forall e_{1} e_{2} .\left(\left(e_{1} \in\right.\right.$ Exercises $\wedge e_{2} \in$ Exercises \wedge Wrote(Norvig, $\left.e_{1}\right) \wedge$ Wrote(Russell, $\left.\left.e_{2}\right)\right)$ $\left.\operatorname{Difficulty}\left(e_{1}\right)>\operatorname{Difficulty}\left(e_{2}\right)\right)$ $\forall e_{1} e_{2} \cdot\left(\left(e_{1} \in\right.\right.$ Exercises $\wedge e_{2} \in$ Exercises \wedge Difficulty $\left.\left(e_{1}\right)>\operatorname{Difficulty~}\left(e_{2}\right)\right)$ \rightarrow ExpectedScore $\left(e_{1}\right)$ ExpectedScore (e_{2})) $\forall e_{1} e_{2} \cdot\left(\right.$ ExpectedScore $\left(e_{1}\right)<$ ExpectedScore $\left(e_{2}\right) \rightarrow \operatorname{Pick}\left(e_{1}, e_{2}\right)=e_{2}$
Then: $\left(\right.$ Wrote $($ Norvig, E E 1$) \wedge$ Wrote $\left(\right.$ Russell, $\left.\left.E_{2}\right)\right) \models \operatorname{Pick}\left(E_{1}, E_{2}\right)=E_{2}$
- Oualitative physics: a subfield of AI that investigates how to reason about physical systems without numerical computations

Measurements [cont.]

Qualitative Measurements

- Some measures have no scale
- ex: beauty, deliciousness, difficulty,...
- Most important aspect of measures: they are orderable
- Ex: Deliciousness(SacherTorte) > Deliciousness(BrussellSprout)
- Ex: Beauty(PaulNewmann) > Beauty(MartyFeldman)
- Ex: Difficulty(Prove_P $=$ NP) $>$ Difficulty(SolvePuzzle)
- Allow for reasoning by exploiting transitivity of monotonicity:
$\forall e_{1} e_{2} .\left(\left(e_{1} \in\right.\right.$ Exercises $\wedge e_{2} \in$ Exercises \wedge Wrote(Norvig, $\left.e_{1}\right) \wedge$ Wrote(Russell, $\left.\left.e_{2}\right)\right)$
$\left.\rightarrow \operatorname{Difficulty}\left(e_{1}\right)>\operatorname{Difficulty}\left(e_{2}\right)\right)$
$\forall e_{1} e_{2} .\left(\left(e_{1} \in\right.\right.$ Exercises $\wedge e_{2} \in$ Exercises $\left.\wedge \operatorname{Difficulty}\left(e_{1}\right)>\operatorname{Difficulty}\left(e_{2}\right)\right)$
\rightarrow ExpectedScore $\left(e_{1}\right)<$ ExpectedScore $\left.\left(e_{2}\right)\right)$
$\forall e_{1} e_{2}$. ExpectedScore $\left(e_{1}\right)<$ ExpectedScore $\left(e_{2}\right) \rightarrow \operatorname{Pick}\left(e_{1}, e_{2}\right)=e_{2}$
Then: $\left(W \operatorname{rote}\left(\right.\right.$ Norvig, $\left.\left.E_{1}\right) \wedge \operatorname{Wrote}\left(R u s s e l l, E_{2}\right)\right) \models \operatorname{Pick}\left(E_{1}, E_{2}\right)=E_{2}$
- Qualitative physics: a subfield of Al that investigates how to reason about physical systems without numerical computations

Measurements [cont.]

Qualitative Measurements

- Some measures have no scale
- ex: beauty, deliciousness, difficulty,...
- Most important aspect of measures: they are orderable
- Ex: Deliciousness(SacherTorte) > Deliciousness(BrussellSprout)
- Ex: Beauty(PaulNewmann) > Beauty(MartyFeldman)
- Ex: Difficulty (Prove_P $\neq N P)>$ Difficulty(SolvePuzzle)
- Allow for reasoning by exploiting transitivity of monotonicity:

```
\forall\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}.((\mp@subsup{e}{1}{}\in\mathrm{ Exercises }\wedge\mp@subsup{e}{2}{}\in\mathrm{ Exercises }\wedge\mathrm{ Wrote(Norvig, e}\mp@subsup{e}{1}{})\wedge Wrote(Russell, e}\mp@subsup{e}{2}{})
    Difficulty (e}\mp@subsup{e}{1}{})>\operatorname{Difficulty (e}\mp@subsup{e}{2}{})
\forall\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}.((\mp@subsup{e}{1}{}\in\mathrm{ Exercises }\wedge \mp@subsup{e}{2}{}\in\mathrm{ Exercises }\wedge\operatorname{Difficulty (}(\mp@subsup{e}{1}{})>\operatorname{Difficulty (}\mp@subsup{e}{2}{}))
    ExpectedScore(e, < ) ExpectedScore(e}\mp@subsup{e}{2}{})
\forall\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}.(ExpectedScore}(\mp@subsup{e}{1}{})<\mathrm{ ExpectedScore }(\mp@subsup{e}{2}{})->\operatorname{Pick}(\mp@subsup{e}{1}{},\mp@subsup{e}{2}{})=\mp@subsup{e}{2}{
Then: (Wrote(Norvig, E E ) ^ Wrote(Russell, E E ) ) }=\operatorname{Pick}(\mp@subsup{E}{1}{},\mp@subsup{E}{2}{})=\mp@subsup{E}{2}{
```

- Qualitative physics: a subfield of AI that investigates how to reason about physical systems without numerical computations

Objects vs Stuff

- There are countable objects
- e,g, apples, holes, theorems, ...
and mass objects, aka stuff or substances
- e.g. butter, water, energy,

Intuitive meaning "an amount/cuantity of...

- ex: $b \in$ butter: " b is an amount/quantity of butter"
- Any part of stuff is still stuff:
- ex: $\forall b, p .((b \in$ Butter $\wedge \operatorname{PartOf}(p, b)) \rightarrow p \in$ Butter $)$
- Can define sub-categories, which are stuff
- ex: UnsaltedButter \subset Butter
- Stuff has a number of intrinsic properties, shared by its subparts
- e.g., color, fat content, density
- ex: $\forall b .(b \in$ Butter \rightarrow MeltingPoint(b, Centigrade(30)))
- Stuff has no extrinsic properties
- e.g., weight, length, shape,

Objects vs Stuff

- There are countable objects
- e,g, apples, holes, theorems, ...
- ... and mass objects, aka stuff or substances
- e.g. butter, water, energy, ...

Intuitive meaning "an amount/quantity of..."

- ex: $b \in$ butter: " b is an amount/quantity of butter"
- Any part of stuff is still stuff:
- ex: $\forall b, p \cdot((b \in$ Butter $\wedge \operatorname{PartOf}(p, b)) \rightarrow p \in$ Butter $)$
- Can define sub-categories, which are stuff
- ex: UnsaltedButter \subset Butter
- Stuff has a number of intrinsic properties, shared by its subparts
- e.g., color, fat content, density
- ex: $\forall b .(b \in$ Butter \rightarrow MeltingPoirt(b. Centigrade(30)))
- Stuff has no extrinsic properties
- e.g., weight, length, shape,

Objects vs Stuff

- There are countable objects
- e,g, apples, holes, theorems, ...
- ... and mass objects, aka stuff or substances
- e.g. butter, water, energy, ...
\Longrightarrow Intuitive meaning "an amount/quantity of..."
- ex: $b \in$ butter: " b is an amount/quantity of butter"
- Any part of stuff is still stuff:
- ex: $\forall b, p .((b \in$ Butter $\wedge \operatorname{PartOf}(p, b)) \rightarrow p \in$ Butter $)$
- Can define sub-categories, which are stuff
- ex: UnsaltedButter \subset Butter
- Stuff has a number of intrinsic properties, shared by its subparts
- e.g., color, fat content, density
- ex: $\forall b .(b \in$ Butter \rightarrow MeltingPoint(b, Centigrade(30)))
- Stuff has no extrinsic properties
- e.g., weight, length, shape,

Objects vs Stuff

- There are countable objects
- e,g, apples, holes, theorems, ...
- ... and mass objects, aka stuff or substances
- e.g. butter, water, energy, ...
\Longrightarrow Intuitive meaning "an amount/quantity of..."
- ex: $b \in$ butter: " b is an amount/quantity of butter"
- Any part of stuff is still stuff:
- ex: $\forall b, p .((b \in$ Butter $\wedge \operatorname{PartOf}(p, b)) \rightarrow p \in$ Butter $)$
- Can define sub-categories, which are stuff
- ex: UnsaltedButter \subset Butter
- Stuff has a number of intrinsic properties, shared by its subparts
- e.g., color, fat content, density
- ex: $\forall b .(b \in$ Butter \rightarrow MeltingPoint(b. Centigrade(30)))
- Stuff has no extrinsic properties
- e.g., weight, length, shape,

Objects vs Stuff

- There are countable objects
- e,g, apples, holes, theorems, ...
- ... and mass objects, aka stuff or substances
- e.g. butter, water, energy, ...
\Longrightarrow Intuitive meaning "an amount/quantity of..."
- ex: $b \in$ butter: " b is an amount/quantity of butter"
- Any part of stuff is still stuff:
- ex: $\forall b, p .((b \in$ Butter $\wedge \operatorname{PartOf}(p, b)) \rightarrow p \in$ Butter $)$
- Can define sub-categories, which are stuff
- ex: UnsaltedButter \subset Butter
- Stuff has a number of intrinsic properties, shared by its subparts
- e.g., color, fat content, density .
- ex: $\forall b .(b \in$ Butter \rightarrow MeltingPoint(b, Centigrade(30)))
- Stuff has no extrinsic properties
- e.g., weight, length, shape,

Objects vs Stuff

- There are countable objects
- e,g, apples, holes, theorems, ...
- ... and mass objects, aka stuff or substances
- e.g. butter, water, energy, ...
\Longrightarrow Intuitive meaning "an amount/quantity of..."
- ex: $b \in$ butter: " b is an amount/quantity of butter"
- Any part of stuff is still stuff:
- ex: $\forall b, p .((b \in$ Butter $\wedge \operatorname{PartOf}(p, b)) \rightarrow p \in$ Butter $)$
- Can define sub-categories, which are stuff
- ex: UnsaltedButter \subset Butter
- Stuff has a number of intrinsic properties, shared by its subparts
- e.g., color, fat content, density .
- ex: $\forall b .(b \in$ Butter \rightarrow MeltingPoint(b, Centigrade(30)))
- Stuff has no extrinsic properties
- e.g., weight, length, shape,

Outline

（1）Ontologies and Ontological Engineering
（2）Categories and Objects
（3）Reasoning about Knowledge

4．Reasoning about Categories
－Semantic Networks（hints）
－Description Logics

Agents' Attitudes

- Intelligence is intrinsically social: agents need to negotiate and coordinate with other agents
- In multi-agents scenarios, to predict what other agents will do, we need methods to model mental states of other agents
- representations of other agents knowledge (and beliefs, goals)
- Agent's Propositional attitudes: Knows, Believes, Wants,...
- ex "Lois Knows that Superman can fly"

```
Problem
Propositional attitudes do not behave as regular predicates
- issue: Referential onacity vs. referential transparency
```


Agents' Attitudes

- Intelligence is intrinsically social: agents need to negotiate and coordinate with other agents
- In multi-agents scenarios, to predict what other agents will do, we need methods to model mental states of other agents
- representations of other agents' knowledge (and beliefs, goals)
- Agent's Propositional attitudes: Knows, Believes, Wants,...
- ex "Lois Knows that Superman can fly"

```
Problem
Propositional attitudes do not behave as regular predicates
- issue: Referential opacity vs. referential transparency
```


Agents' Attitudes

- Intelligence is intrinsically social: agents need to negotiate and coordinate with other agents
- In multi-agents scenarios, to predict what other agents will do, we need methods to model mental states of other agents
- representations of other agents' knowledge (and beliefs, goals)
- Agent's Propositional attitudes: Knows, Believes, Wants,...
- ex "Lois Knows that Superman can fly"

```
Problem
Propositional attitudes do not behave as regular predicates
    - issue: Referential opacity vs. referential transparency
```


Agents' Attitudes

- Intelligence is intrinsically social: agents need to negotiate and coordinate with other agents
- In multi-agents scenarios, to predict what other agents will do, we need methods to model mental states of other agents
- representations of other agents' knowledge (and beliefs, goals)
- Agent's Propositional attitudes: Knows, Believes, Wants,...
- ex "Lois Knows that Superman can fly"

Problem

Propositional attitudes do not behave as regular predicates

- issue: Referential opacity vs. referential transparency

Referential opacity vs. Referential transparency

- Consider the assertion "Lois knows that Superman can fly"
- Consider the FOL formalization: Knows(Lois, CanFly(Superman))
- Minor Problem: CanFly (Superman) is a formula
\Longrightarrow cannot occur as argument of a predicate
- Major Problem (Referential Transparency of FOL):
- since Superman is Clark Kent (but Lois doesn't know it!), FOL allows to conclude "Lois knows
that Clark Kent can fly"
Superman $=$ Clark \wedge Knows (Lois, CanFly (Superman))
- Fol Knows(Lois, CanFly (Clark))
\Longrightarrow Wrong inference! (Lois doesn't know Clark Kent can fly!)
- Hint: FOL predicates transparent to equality reasoning:
- Need a logic which is opaque to equality reasoning (aka Referential Opacity): Modal Logics

Referential opacity vs. Referential transparency

- Consider the assertion "Lois knows that Superman can fly"
- Consider the FOL formalization: Knows(Lois, CanFly(Superman))
- Minor Problem: CanFly (Superman) is a formula
\Longrightarrow cannot occur as argument of a predicate
\Longrightarrow must apply reification \Longrightarrow make it a term
- Major Problem (Referential Transparency of FOL):
- since Superman is Clark Kent (but Lois doesn't know it!), FOL allows to conclude "Lois knows
that Clark Kent can fly"
Superman $=$ Clark \wedge Knows(Lois, CanFly (Superman))
${ }_{=\text {FOL }}$ Knows(Lois, CanFly (Clark))
\Longrightarrow Wrong inference! (Lois doesn't know Clark Kent can fly!)
- Hint: FOL predicates transparent to equality reasoning:
- Need a logic which is opaque to equality reasoning (aka Referential Opacity): Modal Logics

Referential opacity vs. Referential transparency

- Consider the assertion "Lois knows that Superman can fly"
- Consider the FOL formalization: Knows(Lois, CanFly(Superman))
- Minor Problem: CanFly(Superman) is a formula
\Longrightarrow cannot occur as argument of a predicate
\Longrightarrow must apply reification \Longrightarrow make it a term
- Major Problem (Referential Transparency of FOL):
- since Superman is Clark Kent (but Lois doesn't know it!), FOL allows to conclude "Lois knows that Clark Kent can fly":
Superman $=$ Clark \wedge Knows(Lois, CanFly(Superman))
$\eta_{\text {FOL }}$ Knows(Lois, CanFly(Clark))
\Longrightarrow Wrong inference! (Lois doesn't know Clark Kent can fly!)
- Hint: FOL predicates transparent to equality reasoning:
- Need a logic which is opaque to equality reasoning (aka Referential Opacity):

Modal Logics

Referential opacity vs．Referential transparency

－Consider the assertion＂Lois knows that Superman can fly＂
－Consider the FOL formalization：Knows（Lois，CanFly（Superman））
－Minor Problem：CanFly（Superman）is a formula
\Longrightarrow cannot occur as argument of a predicate
\Longrightarrow must apply reification \Longrightarrow make it a term
－Major Problem（Referential Transparency of FOL）：
－since Superman is Clark Kent（but Lois doesn＇t know it！），FOL allows to conclude＂Lois knows that Clark Kent can fly＂：
Superman $=$ Clark \wedge Knows（Lois，CanFly（Superman））
$\eta_{\text {FOL }}$ Knows（Lois，CanFly（Clark））
\Longrightarrow Wrong inference！（Lois doesn＇t know Clark Kent can fly！）
－Hint：FOL predicates transparent to equality reasoning：

$$
t=\left.s \wedge P(s, \ldots)\right|_{F O L} P(t, \ldots)
$$

－Need a logic which is opaque to equality reasoning（aka Referential Opacity）：
Modal Logics

Referential opacity vs. Referential transparency

- Consider the assertion "Lois knows that Superman can fly"
- Consider the FOL formalization: Knows(Lois, CanFly(Superman))
- Minor Problem: CanFly(Superman) is a formula
\Longrightarrow cannot occur as argument of a predicate
\Longrightarrow must apply reification \Longrightarrow make it a term
- Major Problem (Referential Transparency of FOL):
- since Superman is Clark Kent (but Lois doesn't know it!), FOL allows to conclude "Lois knows that Clark Kent can fly":
Superman $=$ Clark \wedge Knows(Lois, CanFly (Superman))
$\eta_{\text {FOL }}$ Knows(Lois, CanFly(Clark))
\Longrightarrow Wrong inference! (Lois doesn't know Clark Kent can fly!)
- Hint: FOL predicates transparent to equality reasoning:

$$
t=s \wedge P(s, \ldots) \models_{F O L} P(t, \ldots)
$$

- Need a logic which is opaque to equality reasoning (aka Referential Opacity): Modal Logics

Modal Logics

- Modal logics include special modal operators that take formulas (not terms!) as arguments
- "A knows P " is represented with $K_{A} P$ (P formula, not term!)
- ex: "Lois knows that Superman can fly": K Lois CanFly (Superman)
- ex: "Lois knows Clark Kent knows if he is Superman or not":
$K_{\text {Lois }}\left(K_{\text {Clark }}\right.$ Identity (Superman, Clark) $\vee K_{\text {Clark }} \neg$ Identity (Superman, Clark))
- Properties in all modal logics:
- The following axiom holds in all (normal) modal logics:
(distribution axiom): "A is able to perform propositional inference"
- The following axioms hold in some (normal) modal logics:
$T: K_{A \varphi} \rightarrow \varphi$ (knowledge axiom): "A knows only true facts"
$4: K_{A} \varphi \rightarrow K_{A} K_{A \varphi}$ (positive-introspection axiom): "If A knows fact φ, then [s]he knows [s]he knows it" $5:-K_{A \varphi} \rightarrow K_{A} \neg K_{A \varphi}$ (negative-introspection axiom):
"If A doesn't knows φ, then [s]he knows [s]he doesn't know it"
- Referential Opacity: Superman $=$ Clark $\wedge K_{\text {Lois }}$ CanFly (Superman) $\neq K_{\text {Lois }}$ CanFly (Clark)
- Reasoning in (pronositional) Modal logics is NP-hard (most often even PSPACF-haro)

Modal Logics

- Modal logics include special modal operators that take formulas (not terms!) as arguments
- "A knows P " is represented with $K_{A} P$ (P formula, not term!)
- ex: "Lois knows that Superman can fly": K Lois CanFly (Superman)
- ex: "Lois knows Clark Kent knows if he is Superman or not":
$K_{\text {Lois }}\left(K_{\text {clark }}\right.$ Identity $\left(\right.$ Superman, Clark) $\vee K_{\text {Clark }} \neg$ Identity (Superman, Clark))
- Properties in all modal logics:
- The following axiom holds in all (normal) modal logics:
(distribution axiom): "A is able to perform propositional inference"
- The following axioms hold in some (normal) modal logics:
$T: K_{A \varphi} \rightarrow \varphi$ (knowledge axiom): "A knows only true facts"
$4: K_{A} \varphi \rightarrow K_{A} K_{A} \varphi$ (positive-introspection axiom): "If A knows fact φ, then [s]he knows [s]he knows it" (negative-introspection axiom):
"If A doesn't knows φ, then [s]he knows [s]he doesn't know it"
- Referential Opacity: Superman $=$ Clark $\wedge K_{\text {Lois }}$ CanFly (Superman) $\notin K_{\text {Lois }}$ CanFly (Clark)
- Reasoning in (propositional) Modal logics is NP-hard (most often even PSPACE-harc)

Modal Logics

- Modal logics include special modal operators that take formulas (not terms!) as arguments
- "A knows P " is represented with $K_{A} P$ (P formula, not term!)
- ex: "Lois knows that Superman can fly": K Lois CanFly (Superman)
- ex: "Lois knows Clark Kent knows if he is Superman or not":
$K_{\text {Lois }}\left(K_{\text {clark }}\right.$ Identity $\left(\right.$ Superman, Clark) $\vee K_{\text {Clark }} \neg$ Identity (Superman, Clark))
- Properties in all modal logics:
- $K_{A}(P \wedge Q) \Longleftrightarrow K_{A} P \wedge K_{A} Q$
- The following axiom holds in all (normal) modal logics:
(distribution axiom): "A is able to perform propositional inference"
- The following axioms hold in some (normal) modal logics:
$T: K_{A \varphi} \rightarrow \varphi$ (knowledge axiom): "A knows only true facts"
$4: K_{A} \varphi \rightarrow K_{A} K_{A} \varphi$ (positive-introspection axiom): "If A knows fact φ, then [s]he knows [s]he knows it" (negative-introspection axiom):
"If A doesn't knows φ, then [s]he knows [s]he doesn't know it"
- Referential Opacity: Superman $=$ Clark $\wedge K_{\text {Lois }}$ CanFly (Superman) $\neq K_{\text {Lois }}$ CanFly (Clark)
- Reasoning in (nronositional) Modal logics is NP-hard (most often even PSPACF-hara)

Modal Logics

- Modal logics include special modal operators that take formulas (not terms!) as arguments
- "A knows P " is represented with $K_{A} P$ (P formula, not term!)
- ex: "Lois knows that Superman can fly": K Lois CanFly (Superman)
- ex: "Lois knows Clark Kent knows if he is Superman or not":

$$
K_{\text {Lois }}\left(K_{\text {Clark }} \text { Identity }(\text { Superman, Clark }) \vee K_{\text {Clark }} \neg I \text { dentity }(\text { Superman, Clark) })\right.
$$

- Properties in all modal logics:
- $K_{A}(P \wedge Q) \Longleftrightarrow K_{A} P \wedge K_{A} Q$
- $K_{A} P \vee K_{A} Q \vDash K_{A}(P \vee Q)$, but $K_{A}(P \vee Q) \not \vDash K_{A} P \vee K_{A} Q\left(\right.$ e.g. $\left.K_{A}(P \vee \neg P) \not \vDash K_{A} P \vee K_{A} \neg P\right)$
- The following axiom holds in all (normal) modal logics:
(distribution axiom): "A is able to perform propositional inference"
- The following axioms hold in some (normal) modal loaics:
$T: K_{A \varphi} \rightarrow \varphi$ (knowledge axiom): "A knows only true facts"
$4: K_{A} \varphi \rightarrow K_{A} K_{A} \varphi$ (positive-introspection axiom): "If A knows fact φ, then [s]he knows [s]he knows it" (negative-introspection axiom):
"If A doesn't knows φ, then [s]he knows [s]he doesn't know it"
- Referential Opacity: Superman $=$ Clark $\wedge K_{\text {Lois }}$ CanFly $($ Superman $) \neq K_{\text {Lois }}$ CanFly (Clark)
- Reasoning in (propositional) Modal logics is NP-hard (most often even PSPACE-hard)

Modal Logics

- Modal logics include special modal operators that take formulas (not terms!) as arguments
- "A knows P " is represented with $K_{A} P$ (P formula, not term!)
- ex: "Lois knows that Superman can fly": K Lois CanFly (Superman)
- ex: "Lois knows Clark Kent knows if he is Superman or not":
$K_{\text {Lois }}\left(K_{\text {Clark }}\right.$ Identity (Superman, Clark) $\vee K_{\text {Clark }} \neg$ Identity (Superman, Clark))
- Properties in all modal logics:
- $K_{A}(P \wedge Q) \Longleftrightarrow K_{A} P \wedge K_{A} Q$
- $K_{A} P \vee K_{A} Q \models K_{A}(P \vee Q)$, but $K_{A}(P \vee Q) \not \vDash K_{A} P \vee K_{A} Q$ (e.g. $\left.K_{A}(P \vee \neg P) \not \vDash K_{A} P \vee K_{A} \neg P\right)$
- The following axiom holds in all (normal) modal logics:
$K:\left(K_{A} \phi \wedge K_{A}(\phi \rightarrow \psi) \rightarrow K_{A} \psi\right.$ (distribution axiom): "A is able to perform propositional inference"
- The following axioms hold in some (normal) modal logics:
(knowledge axiom): "A knows only true facts"
(positive-introspection axiom): "If A knows fact φ, then [s]he knows [s]he knows it" (negative-introspection aviom):
"If A doesn't knows φ, then [s]he knows [s]he doesn't know it"
- Referential Opacity: Superman $=$ Clark $\wedge K_{\text {Lois }}$ CanFly (Superman) $\nLeftarrow K_{\text {Lois }}$ CanFly (Clark)
- Reasoning in (propositional) Modal loaics is NP-hard (most often even PSPACE-harc)

Modal Logics

- Modal logics include special modal operators that take formulas (not terms!) as arguments
- "A knows P" is represented with $K_{A} P$ (P formula, not term!)
- ex: "Lois knows that Superman can fly": K Lois CanFly (Superman)
- ex: "Lois knows Clark Kent knows if he is Superman or not":
$K_{\text {Lois }}\left(K_{\text {Clark }}\right.$ Identity $($ Superman, Clark $) \vee K_{\text {Clark }} \neg$ Identity (Superman, Clark))
- Properties in all modal logics:
- $K_{A}(P \wedge Q) \Longleftrightarrow K_{A} P \wedge K_{A} Q$
- $K_{A} P \vee K_{A} Q \models K_{A}(P \vee Q)$, but $K_{A}(P \vee Q) \not \vDash K_{A} P \vee K_{A} Q$ (e.g. $\left.K_{A}(P \vee \neg P) \not \vDash K_{A} P \vee K_{A} \neg P\right)$
- The following axiom holds in all (normal) modal logics:
$K:\left(K_{A} \phi \wedge K_{A}(\phi \rightarrow \psi) \rightarrow K_{A} \psi\right.$ (distribution axiom): "A is able to perform propositional inference"
- The following axioms hold in some (normal) modal logics:
$T: K_{A} \varphi \rightarrow \varphi$ (knowledge axiom): "A knows only true facts"
4: $K_{A} \varphi \rightarrow K_{A} K_{A} \varphi$ (positive-introspection axiom): "If A knows fact φ, then [s]he knows [s]he knows it" $5: \neg K_{A \varphi} \rightarrow K_{A} \neg K_{A} \varphi$ (negative-introspection axiom):
"If A doesn't knows φ, then [s]he knows [s]he doesn't know it"
- Referential Opacity: Superman = Clark $\wedge K_{\text {Lois }}$ CanFly (Superman) $\nLeftarrow K_{\text {Lois }}$ CanFly (Clark)
- Reasoning in (propositional) Modal logics is NP-hard (most often even PSPACE-hard)

Modal Logics

- Modal logics include special modal operators that take formulas (not terms!) as arguments
- "A knows P" is represented with $K_{A} P$ (P formula, not term!)
- ex: "Lois knows that Superman can fly": K Lois CanFly (Superman)
- ex: "Lois knows Clark Kent knows if he is Superman or not":
$K_{\text {Lois }}$ (KClark I dentity (Superman, Clark) $\vee K_{\text {Clark }} \neg$ Identity (Superman, Clark))
- Properties in all modal logics:
- $K_{A}(P \wedge Q) \Longleftrightarrow K_{A} P \wedge K_{A} Q$
- $K_{A} P \vee K_{A} Q \models K_{A}(P \vee Q)$, but $K_{A}(P \vee Q) \not \vDash K_{A} P \vee K_{A} Q$ (e.g. $\left.K_{A}(P \vee \neg P) \not \vDash K_{A} P \vee K_{A} \neg P\right)$
- The following axiom holds in all (normal) modal logics:
$K:\left(K_{A} \phi \wedge K_{A}(\phi \rightarrow \psi) \rightarrow K_{A} \psi\right.$ (distribution axiom): "A is able to perform propositional inference"
- The following axioms hold in some (normal) modal logics:
$T: K_{A} \varphi \rightarrow \varphi$ (knowledge axiom): "A knows only true facts"
4: $K_{A} \varphi \rightarrow K_{A} K_{A} \varphi$ (positive-introspection axiom): "If A knows fact φ, then [s]he knows [s]he knows it" $5: \neg K_{A \varphi} \rightarrow K_{A} \neg K_{A} \varphi$ (negative-introspection axiom):
"If A doesn't knows φ, then [s]he knows [s]he doesn't know it"
- Referential Opacity: Superman $=$ Clark $\wedge K_{\text {Lois }}$ CanFly (Superman) $\not \models K_{\text {Lois }}$ CanFly (Clark)
- Reasoning in (propositional) Modal logics is NP-hard (most often even PSPACE-hard)

Modal Logics

- Modal logics include special modal operators that take formulas (not terms!) as arguments
- "A knows P" is represented with $K_{A} P$ (P formula, not term!)
- ex: "Lois knows that Superman can fly": K Lois CanFly (Superman)
- ex: "Lois knows Clark Kent knows if he is Superman or not":
$K_{\text {Lois }}\left(K_{\text {Clark }}\right.$ Identity $($ Superman, Clark $) \vee K_{\text {Clark }} \neg$ Identity (Superman, Clark))
- Properties in all modal logics:
- $K_{A}(P \wedge Q) \Longleftrightarrow K_{A} P \wedge K_{A} Q$
- $K_{A} P \vee K_{A} Q \models K_{A}(P \vee Q)$, but $K_{A}(P \vee Q) \not \vDash K_{A} P \vee K_{A} Q$ (e.g. $\left.K_{A}(P \vee \neg P) \not \vDash K_{A} P \vee K_{A} \neg P\right)$
- The following axiom holds in all (normal) modal logics:
$K:\left(K_{A} \phi \wedge K_{A}(\phi \rightarrow \psi) \rightarrow K_{A} \psi\right.$ (distribution axiom): "A is able to perform propositional inference"
- The following axioms hold in some (normal) modal logics:
$T: K_{A} \varphi \rightarrow \varphi$ (knowledge axiom): "A knows only true facts"
4: $K_{A} \varphi \rightarrow K_{A} K_{A} \varphi$ (positive-introspection axiom): "If A knows fact φ, then [s]he knows [s]he knows it" $5: \neg K_{A \varphi} \rightarrow K_{A} \neg K_{A} \varphi$ (negative-introspection axiom):
"If A doesn't knows φ, then [s]he knows [s]he doesn't know it"
- Referential Opacity: Superman =Clark $\wedge K_{\text {Lois }}$ CanFly (Superman) $\not \models K_{\text {Lois }}$ CanFly (Clark)
- Reasoning in (propositional) Modal logics is NP-hard (most often even PSPACE-hard)

Semantics of Modal Logics

- A model (Kripke model) is a collection of possible worlds w_{i}
- possible worlds are connected in a graph by accessibility relations
- one relation for each distinct modal operator K_{A}
- w_{1} is accessible from $w_{0} w r t . K_{A}$ if everything which holds in w_{1} is consistent with what A

- the more is known in w_{0}, the less worlds are accessible from w_{0}
- remark: two possible worlds may differ also for what an agent know there
- Different modal logics differ by different properties of $\operatorname{Acc}\left(K_{A}, \ldots\right)$
- $T: K_{A} \varphi \rightarrow \varphi$ holds iff $\operatorname{AcC}\left(K_{A}, \ldots\right)$ reflexive: $w \stackrel{K_{A}}{\longrightarrow} w$
- 4: $K_{A} \varphi \rightarrow K_{A} K_{A \varphi}$ holds iff $\operatorname{AcC}\left(K_{A}, \ldots\right)$ transitive: $W_{0} \stackrel{K_{A}}{\longmapsto} W_{1}$ and $W_{1} \rightarrow W_{2} \longrightarrow W_{0} \rightarrow W_{2}$
- 5: $\neg K_{A \varphi} \rightarrow K_{A} \neg K_{A \varphi}$ holds iff $A C C\left(K_{A}, \ldots\right)$ euclidean: $W_{0} \stackrel{W_{A}}{\longrightarrow} W_{1}$ and $W_{0} \xrightarrow{K_{A}} W_{2} \Longrightarrow W_{1} \stackrel{W_{A}}{\longrightarrow} W_{2}$

Semantics of Modal Logics

- A model (Kripke model) is a collection of possible worlds w_{i}
- possible worlds are connected in a graph by accessibility relations
- one relation for each distinct modal operator K_{A}
- w_{1} is accessible from w_{0} wrt. K_{A} if everything which holds in w_{1} is consistent with what A knows in w_{0} (written " $\operatorname{Acc}\left(K_{A}, w_{0}, w_{1}\right)$ " or " $w_{0} \stackrel{K_{A}}{\longrightarrow} w_{1}$ ")
$\Longrightarrow K_{A} \varphi$ holds in w_{0} iff φ holds in every world w_{i} accessible from w_{0}
- the more is known in w_{0}, the less worlds are accessible from w_{0}
- remark: two possible worlds may differ also for what an agent knows there
- Different modal logics differ by different properties of $\operatorname{Acc}\left(K_{A}, \ldots\right)$

- 4: $K_{A} \varphi \rightarrow K_{A} K_{A} \varphi$ holds iff $A C C\left(K_{A}, \ldots\right)$ transitive: $w_{0} \stackrel{K_{A}}{\longrightarrow} w_{1}$ and $w_{1} \stackrel{K_{A}}{\longrightarrow} w_{2} \Longrightarrow w_{0} \stackrel{K_{A}}{\longrightarrow} w_{2}$
- 5: $\neg K_{\Delta \varphi} \varphi K_{\Delta} \neg K_{\Delta \varphi}$ holds iff $A c c\left(K_{\Delta} \ldots\right)$ euclidean: $W_{n} \stackrel{K_{A}}{\longmapsto} W_{1}$ and $W_{n} \stackrel{K_{A}}{\longmapsto} W_{2} \Longrightarrow W_{1} \stackrel{K_{A}}{\longmapsto} W$

Semantics of Modal Logics

- A model (Kripke model) is a collection of possible worlds w_{i}
- possible worlds are connected in a graph by accessibility relations
- one relation for each distinct modal operator K_{A}
- w_{1} is accessible from w_{0} wrt. K_{A} if everything which holds in w_{1} is consistent with what A knows in w_{0} (written " $\operatorname{Acc}\left(K_{A}, w_{0}, w_{1}\right)$ " or " $w_{0} \stackrel{K_{A}}{\longrightarrow} w_{1}$ ")
$\Longrightarrow K_{A} \varphi$ holds in w_{0} iff φ holds in every world w_{i} accessible from w_{0}
- the more is known in w_{0}, the less worlds are accessible from w_{0}
- remark: two possible worlds may differ also for what an agent knows there
- Different modal logics differ by different properties of $\operatorname{Acc}\left(K_{A}, \ldots\right)$
- $T: K_{A \varphi} \rightarrow \varphi$ holds iff $\operatorname{Acc}\left(K_{A}, \ldots\right)$ reflexive: $w \stackrel{K_{A}}{\longrightarrow} w$
- $4: K_{A} \varphi \rightarrow K_{A} K_{A} \varphi$ holds iff $A c C\left(K_{A}, \ldots\right)$ transitive: $w_{0} \stackrel{K_{A}}{\longrightarrow} w_{1}$ and $w_{1} \stackrel{K_{A}}{\longrightarrow} w_{2} \Longrightarrow w_{0} \stackrel{K_{A}}{\longrightarrow} w_{2}$
- 5: $\neg K_{A} \varphi \rightarrow K_{A} \neg K_{A} \varphi$ holds iff $A c c\left(K_{A}, \ldots\right)$ euclidean: $w_{0} \stackrel{K_{A}}{\longmapsto} w_{1}$ and $w_{0} \stackrel{K_{A}}{\longrightarrow} w_{2} \Longrightarrow w_{1} \stackrel{K_{A}}{\longmapsto} w_{2}$

T: reflexive

4: transitive

5: euclidean

Semantics of Modal Logics: Some Remarks

Assume the knowledge of A is correct: $T: K_{A} \varphi \rightarrow \varphi$ ("Everything which A knows holds")
A does not know everything which holds!
A does not know exactly in which world [s]he is

- The less worlds are accessible, the more precise is the knowledge of A
- uncertainty on some information makes accessible worlds different $\Longrightarrow A$ does not know the world [s]he is
- complete knowledge: current world is the only successor of itself $\Longrightarrow A$ knows exactly the world [s]he is

Notice the difference:

- $K_{A} \neg P$: agent A knows that P does not hold (in all accessible worlds P is false)
- $\neg K_{A} P$: agent A does not know if P holds (in some accessible worlds P is false) $K_{A} \neg P=\neg K_{A} P$, but

Semantics of Modal Logics: Some Remarks

Assume the knowledge of A is correct: $T: K_{A} \varphi \rightarrow \varphi$ ("Everything which A knows holds")

- $\forall \models \varphi K_{A} \varphi$: A does not know everything which holds!
$\Longrightarrow A$ does not know exactly in which world [s]he is
- The less worlds are accessible, the more precise is the knowledge of A
- uncertainty on some information makes accessible worlds different $\Longrightarrow A$ does not know the world [s]he is
- complete knowledge: current world is the only successor of itself $\Longrightarrow A$ knows exactly the world [s]he is

Notice the difference:

- $K_{A} \neg P$: agent A knows that P does not hold (in all accessible worlds P is false)
- $\neg K_{A} P$: agent A does not know if P holds (in some accessible worlds P is false)
$K_{A} \neg P=\neg K_{A} P$, but

Semantics of Modal Logics: Some Remarks

Assume the knowledge of A is correct: $T: K_{A} \varphi \rightarrow \varphi$ ("Everything which A knows holds")

- $\forall \models \varphi \rightarrow K_{A} \varphi$: A does not know everything which holds!
$\Longrightarrow A$ does not know exactly in which world [s]he is
- The less worlds are accessible, the more precise is the knowledge of A
- uncertainty on some information makes accessible worlds different $\Longrightarrow A$ does not know the world [s]he is
- complete knowledge: current world is the only successor of itself $\Longrightarrow A$ knows exactly the world [s]he is

Uncertainty

Complete knowledge

Notice the difference:

- $K_{A} \neg P$: agent A knows that P does not hold (in all accessible worlds P is false)
- $\neg K_{A} P$: agent A does not know if P holds (in some accessible worlds P is false)
$K_{A} \neg P \equiv \neg K_{A} P$, but $\neg K_{A} P \not \vDash K_{A} \neg P$

Semantics of Modal Logics: Some Remarks

Assume the knowledge of A is correct: $T: K_{A} \varphi \rightarrow \varphi$ ("Everything which A knows holds")

- $\forall \models \varphi \rightarrow K_{A} \varphi$: A does not know everything which holds!
$\Longrightarrow A$ does not know exactly in which world [s]he is
- The less worlds are accessible, the more precise is the knowledge of A
- uncertainty on some information makes accessible worlds different $\Longrightarrow A$ does not know the world [s]he is
- complete knowledge: current world is the only successor of itself $\Longrightarrow A$ knows exactly the world [s]he is

Uncertainty

Complete knowledge

Notice the difference:

- $K_{A} \neg P$: agent A knows that P does not hold (in all accessible worlds P is false)
- $\neg K_{A} P$: agent A does not know if P holds (in some accessible worlds P is false)
$\Longrightarrow K_{A} \neg P \vDash \neg K_{A} P$, but $\neg K_{A} P \not \models K_{A} \neg P$

Semantics of Modal Logics：Example

Accessibility relations：$K_{\text {Superman }}$（solid arrows）and $K_{\text {Lois }}$（dotted arrows）．
－Legenda：
－R：＂the weather report says tomorrow will rain＂
－I：＂Superman＇s secret identity is Clark Kent．＂
－Ex：$\left.K_{\text {Lois }}\left(K_{\text {Clark }} I \vee K_{\text {Clark }}\right\urcorner I\right)$ ：＂Lois Knows that Clark Knows if he is Superman or not．＂
－Superman knows his own identity：$K_{\text {superman }} I \vee K_{\text {Superman }} \neg$ I，and
（a）neither Superman nor Lois has seen the weather report，she knows Superman knows if he is Clark $\left(\neg K_{\text {Lois }} R \wedge \neg K_{\text {Lois }} \neg R\right) \wedge\left(\neg K_{\text {Superman }} R \wedge \neg K_{\text {Superman }} \neg R\right) \wedge K_{\text {Lois }}\left(K_{\text {Superman }} I \vee K_{\text {Superman }} \neg I\right)$

（a）

Semantics of Modal Logics: Example

Accessibility relations: $K_{\text {Superman }}$ (solid arrows) and $K_{\text {Lois }}$ (dotted arrows).

- Legenda:
- R: "the weather report says tomorrow will rain"
- I: "Superman's secret identity is Clark Kent."
- Ex: $K_{\text {Lois }}\left(K_{\text {Clark }} I \vee K_{\text {Clark }} \neg /\right)$: "Lois Knows that Clark Knows if he is Superman or not."
- Superman knows his own identity: $K_{\text {Superman }} I \vee K_{\text {Superman }} \neg I$, and
(b) Lois has seen the weather report, Superman has not, but he knows that Lois has seen it $\left(K_{\text {Lois }} R \vee K_{\text {Lois }} \neg R\right) \wedge\left(\neg K_{\text {Superman }} R \wedge \neg K_{\text {Superman }} \neg R\right)$
$K_{\text {Lois }}\left(K_{\text {Superman }} I \vee K_{\text {Superman }} \neg I\right) \wedge K_{\text {Superman }}\left(K_{\text {Lois }} R \vee K_{\text {Lois }} \neg R\right)$

(b)

Semantics of Modal Logics: Example

Accessibility relations: $K_{\text {Superman }}$ (solid arrows) and $K_{\text {Lois }}$ (dotted arrows).

- Legenda:
- R: "the weather report says tomorrow will rain"
- I: "Superman's secret identity is Clark Kent."
- Ex: $K_{\text {Lois }}\left(K_{\text {Clark }} I \vee K_{\text {Clark }} \neg I\right)$: "Lois Knows that Clark Knows if he is Superman or not."
- Superman knows his own identity: $K_{\text {Superman }} I \vee K_{\text {Superman }} \neg I$, and
(c) Lois may or may not have seen the weather report, Superman has not:
$\left(\left(\neg K_{\text {Lois }} R \wedge \neg K_{\text {Lois }} \neg R\right) \vee\left(K_{\text {Lois }} R \vee K_{\text {Lois }} \neg R\right)\right) \wedge\left(\neg K_{\text {sup. }} R \wedge \neg K_{\text {Sup. }} \neg R\right)$
$K_{\text {Lois }}\left(K_{\text {Superman }} I \vee K_{\text {Superman }} \neg I\right)$

(c)

Semantics of Modal Logics: Example

Accessibility relations: $K_{\text {Superman }}$ (solid arrows) and $K_{\text {Lois }}$ (dotted arrows).

- Legenda:
- R: "the weather report says tomorrow will rain"
- I: "Superman's secret identity is Clark Kent."
- Ex: $K_{\text {Lois }}\left(K_{\text {Clark }} I \vee K_{\text {Clark }} \neg I\right)$: "Lois Knows that Clark Knows if he is Superman or not."
- Superman knows his own identity: $K_{\text {Superman }} I \vee K_{\text {Superman }} \neg I$, and (c) Lois may or may not have seen the weather report Superman has not:

$$
\left(\neg K_{\text {sup. }} R \wedge \neg K_{\text {sup. }} \neg R\right)
$$

$$
K_{\text {Lois }}\left(K_{\text {Superman }} I \vee K_{\text {Superman }} \neg I\right)
$$

(c)

Exercise

Consider the previous example.

- For each scenario (a), (b) and (c) define doubly-nested knowledge in terms of $[\neg] K_{\text {Lois }}[\neg] K_{\text {Lois }}[\neg]$ I,
$[\neg] K_{\text {Lois }}[\neg] K_{\text {Lois }}[\neg] R$, $[\neg] K_{\text {sup. }[\neg]} K_{\text {Sup. }[\neg]} /$, $[\neg] K_{\text {Sup. }[\neg]} K_{\text {Sup. }}[\neg] R$

Exercise

Consider (normal) modal logics (i.e., axioms K, T, 4 and 5 hold).
Let IsRed(Pen), IsOnTable(Pen) be possible facts, let Mary, John be agents and let $K_{\text {Mary }}, K_{\text {John }}$ denote the modal operators "Mary knows that..." and "John knows that..." respectively.
For each of the following facts, say if it is true or false.

- If $K_{\text {Mary }} \neg$ IsRed(Pen) holds, then $\neg K_{\text {Mary }}$ IsRed(Pen) holds
- If $\neg K_{\text {Mary }}$ IsRed(Pen) holds, then $K_{\text {Mary }} \neg \operatorname{lsRed}(P e n)$ holds
- If $K_{\text {John }}$ IsRed(Pen) and IsRed(Pen) \leftrightarrow IsOnTable(Pen) hold, then $K_{\text {John }}$ IsOnTable(Pen) holds
- If $K_{\text {Mary }} \operatorname{IsRed}($ Pen $)$ and $K_{\text {Mary }}\left(\operatorname{IsRed}(P e n) \rightarrow \mathrm{K}_{\text {John }} \operatorname{IsRed}(\right.$ Pen $\left.)\right)$ hold, then $K_{\text {Mary }} K_{\text {John }}$ IsRed(Pen)) holds

Exercise

- Why does the third logician answers "Yes"?
- Formalize and solve the problem by means of modal logic $(\mathrm{K}+\mathrm{T}+4+5)$

THREE LOGICIANS WALK INTO A BAR..

(Courtesy of Maria Simi, UniPI)

Outline

(1) Ontologies and Ontological Engineering

2 Categories and Objects
(3) Reasoning about Knowledge

4 Reasoning about Categories

- Semantic Networks (hints)
- Description Logics

Outline

(1) Ontologies and Ontological Engineering
(2) Categories and Objects
(3) Reasoning about Knowledge
4. Reasoning about Categories

- Semantic Networks (hints)
- Description Logics

Reasoning Systems for Categories

Q. How to organize and reason with categories?

- Semantic Networks
- allow to visualize knowledge bases
- efficient algorithms for category membership inference
- limited expressivity
- many variants
- Description Logics (DLs)
- formal language for constructing and combining category definitions
- (relatively) efficient algorithms to decide subset and superset relationships between categories
- many DLs
- up to very high expressivity
- up to very high complexity (e.g., DOUBLY-EXPTIME)

Reasoning Systems for Categories

Q. How to organize and reason with categories?

- Semantic Networks
- allow to visualize knowledge bases
- efficient algorithms for category membership inference
- limited expressivity
- many variants
- Description Logics (DLs)
- formal language for constructing and combining category definitions
- (relatively) efficient algorithms to decide subset and superset relationships between categories
- many DLs
- up to very high expressivity
- up to very high complexity (e.g., DOUBLY-EXPTIME)

Reasoning Systems for Categories

Q. How to organize and reason with categories?

- Semantic Networks
- allow to visualize knowledge bases
- efficient algorithms for category membership inference
- limited expressivity
- many variants
- Description Logics (DLs)
- formal language for constructing and combining category definitions
- (relatively) efficient algorithms to decide subset and superset relationships between categories
- many DLs
- up to very high expressivity
- up to very high complexity (e.g., DOUBLY-EXPTIME)

Semantic Networks

- Allow for representing individual objects, categories of objects, and relations among objects
- A Semantic Network is a graph where:
- nodes, with a label, correspond to concepts
- arcs, labelled and directed, correspond to binary relations between concepts (aka roles)
- Two kinds of nodes:
- Generic concepts, corresponding to categories/classes
- Individual concepts, corresponding to individuals
- Two special relations are always present, with different names
- IS-A, aka SubsetOf/SubclassOf (subclass)
- InstanceOf aka MemberOf (membership)
- Inheritance detection straightforward
- Ability to represent default values for categories
- Limited expressive power: cannot represent neaation, disjunction, nested function symbols, existential quantification

Semantic Networks

- Allow for representing individual objects, categories of objects, and relations among objects
- A Semantic Network is a graph where:
- nodes, with a label, correspond to concepts
- arcs, labelled and directed, correspond to binary relations between concepts (aka roles)
- Two kinds of nodes:
- Generic concepts, corresponding to categories/classes
- Individual concepts, corresponding to individuals
- Two special relations are always present, with different names
- IS-A, aka SubsetOf/SubclassOf (subclass)
- InstanceOf aka MemberOf (membership)
- Inheritance detection straightforward
- Ability to represent default values for categories
- Limited expressive power: cannot represent neaation, disjunction, nested function symbols, existential quantification

Semantic Networks

- Allow for representing individual objects, categories of objects, and relations among objects
- A Semantic Network is a graph where:
- nodes, with a label, correspond to concepts
- arcs, labelled and directed, correspond to binary relations between concepts (aka roles)
- Two kinds of nodes:
- Generic concepts, corresponding to categories/classes
- Individual concepts, corresponding to individuals
- Two special relations are always present, with different names
- IS-A, aka SubsetOf/SubclassOf (subclass)
- InstanceOf aka MemberOf (membership)
- Inheritance detection straightforward
- Ability to represent default values for categories
- Limited expressive power: cannot represent negation, disjunction, nested function symbols, existential quantification

Semantic Networks

- Allow for representing individual objects, categories of objects, and relations among objects
- A Semantic Network is a graph where:
- nodes, with a label, correspond to concepts
- arcs, labelled and directed, correspond to binary relations between concepts (aka roles)
- Two kinds of nodes:
- Generic concepts, corresponding to categories/classes
- Individual concepts, corresponding to individuals
- Two special relations are always present, with different names
- IS-A, aka SubsetOf/SubclassOf (subclass)
- InstanceOf aka MemberOf (membership)
- Inheritance detection straightforward
- Ability to represent default values for categories
- Limited expressive power: cannot represent negation, disjunction, nested function symbols existential quantification

Semantic Networks

- Allow for representing individual objects, categories of objects, and relations among objects
- A Semantic Network is a graph where:
- nodes, with a label, correspond to concepts
- arcs, labelled and directed, correspond to binary relations between concepts (aka roles)
- Two kinds of nodes:
- Generic concepts, corresponding to categories/classes
- Individual concepts, corresponding to individuals
- Two special relations are always present, with different names
- IS-A, aka SubsetOf/SubclassOf (subclass)
- InstanceOf aka MemberOf (membership)
- Inheritance detection straightforward
- Ability to represent default values for categories
- Limited expressive power: cannot represent negation, disjunction, nested function symbols, existential quantification

Semantic Networks

- Allow for representing individual objects, categories of objects, and relations among objects
- A Semantic Network is a graph where:
- nodes, with a label, correspond to concepts
- arcs, labelled and directed, correspond to binary relations between concepts (aka roles)
- Two kinds of nodes:
- Generic concepts, corresponding to categories/classes
- Individual concepts, corresponding to individuals
- Two special relations are always present, with different names
- IS-A, aka SubsetOf/SubclassOf (subclass)
- InstanceOf aka MemberOf (membership)
- Inheritance detection straightforward
- Ability to represent default values for categories
- Limited expressive power: cannot represent negation, disjunction, nested function symbols, existential quantification

Semantic Networks

- Allow for representing individual objects, categories of objects, and relations among objects
- A Semantic Network is a graph where:
- nodes, with a label, correspond to concepts
- arcs, labelled and directed, correspond to binary relations between concepts (aka roles)
- Two kinds of nodes:
- Generic concepts, corresponding to categories/classes
- Individual concepts, corresponding to individuals
- Two special relations are always present, with different names
- IS-A, aka SubsetOf/SubclassOf (subclass)
- InstanceOf aka MemberOf (membership)
- Inheritance detection straightforward
- Ability to represent default values for categories
- Limited expressive power: cannot represent negation, disjunction, nested function symbols, existential quantification

Semantic Networks: Example

- Notice

```
* "HasMother" is a relation between persons (individuals) (categories do not have mothers)
- "HasMother" (double-boxed notation) means
    \forallx.(x\inPersons }->[\forally.(HasMother (x,y)->y\inFemalePersons)]) 
0 "Legs" is a property of single persons (individuals)
```

- "Legs" (single-boxed notation) means:
$\forall x .(x \in$ Persons $\rightarrow \operatorname{Legs}(x, 2))$

Semantic Networks: Example

- Notice
- "HasMother" is a relation between persons (individuals) (categories do not have mothers)
- "HasMother" (double-boxed notation) means
$\forall x .(x \in$ Persons $\rightarrow[\forall y$.(HasMother $(x, y) \rightarrow y \in$ FemalePersons $)])$
- "Legs" is a property of single persons (individuals)
- "Legs" (single-boxed notation) means:
$\forall x .(x \in$ Persons $\rightarrow \operatorname{Legs}(x, 2))$

Semantic Networks: Example

- Notice
- "HasMother" is a relation between persons (individuals) (categories do not have mothers)
- "HasMother" (double-boxed notation) means $\forall x .(x \in$ Persons $\rightarrow[\forall y$.(HasMother $(x, y) \rightarrow y \in$ FemalePersons) $])$
- "Legs" is a property of single persons (individuals)
- "Legs" (single-boxed notation) means: $\forall x .(x \in$ Persons $\rightarrow \operatorname{Legs}(x, 2))$

Inheritance in Semantic Networks

- Inheritance conveniently implemented as link traversal
Q. How many legs has Clyde? follow the INST-OF/IS-A chain until find the property NLegs

Inheritance in Semantic Networks

- Inheritance conveniently implemented as link traversal
Q. How many legs has Clyde?
follow the INST-OF/IS-A chain until find the property NLegs

Inheritance in Semantic Networks

- Inheritance conveniently implemented as link traversal
Q. How many legs has Clyde?
\Longrightarrow follow the INST-OF/IS-A chain until find the property NLegs

Inheritance with Exceptions

The presence of exceptions does not create any problem with S.N.

- How many legs has Pat?
- Just take the most specific information: the
first that is found going up the hierarchy
\Rightarrow ability to represent default values for
categories

Inheritance with Exceptions

The presence of exceptions does not create any problem with S.N.

- How many legs has Pat?
- Just take the most specific information: the first that is found going up the hierarchy
ability to represent default values for categories

Inheritance with Exceptions

The presence of exceptions does not create any problem with S.N.

- How many legs has Pat?
- Just take the most specific information: the first that is found going up the hierarchy
\Longrightarrow ability to represent default values for categories

Encoding N-Ary Relations

- Semantic networks allow only binary relations

How to represent n-ary relations?
Reify the proposition as an event belonging to an appropriate event category

- ex "Fly 1_{17} " for Fly(Shankar, NewYork, NewDelhi, Yesterday)

Encoding N-Ary Relations

- Semantic networks allow only binary relations
Q. How to represent n-ary relations?

Reify the proposition as an event belonging to an appropriate event category

- ex "Fly 1_{17} " for Fly(Shankar, NewYork, NewDelhi, Yesterday)

Encoding N-Ary Relations

- Semantic networks allow only binary relations
Q. How to represent n-ary relations?
\Longrightarrow Reify the proposition as an event belonging to an appropriate event category
- ex "Fly 1_{17} " for Fly(Shankar, NewYork, NewDelhi, Yesterday)

Outline

(1) Ontologies and Ontological Engineering
(2) Categories and Objects
(3) Reasoning about Knowledge

4 Reasoning about Categories

- Semantic Networks (hints)
- Description Logics

Description Logics

- Designed to describe definitions and properties about categories
- Principal inference tasks:
- Subsumption: check if one category is a subset (sub-category) of another
- Classification: check whether an object belongs to a category
- Consistency: check if category membership criteria are satisfiable
- Defaults and exceptions are lost

Description Logics

- Designed to describe definitions and properties about categories
- Principal inference tasks:
- Subsumption: check if one category is a subset (sub-category) of another
- Classification: check whether an object belongs to a category
- Consistency: check if category membership criteria are satisfiable
- Defaults and exceptions are lost

Description Logics

- Designed to describe definitions and properties about categories
- Principal inference tasks:
- Subsumption: check if one category is a subset (sub-category) of another
- Classification: check whether an object belongs to a category
- Consistency: check if category membership criteria are satisfiable
- Defaults and exceptions are lost

Concepts, Roles, Individuals

- Concepts, corresponding to unary relations
- \top, \perp : universal and empty concepts
- atomic concepts: ex: Female, Male, Article, Journalist,
- operators for the construction of complex concepts: and (\square), or (\sqcup), not (\neg), all (\forall), some (\exists), atleast $(\geq n)$, atmost $(\leq n)$
- ex: mothers (i.e., women who have children) of at least three female children: Woman $\sqcap \exists$ hasChildren. Person $\Pi \geq 3$ hasChild. Female
- ex: articles that have authors and whose authors are all journalists: Article $\sqcap \exists$ hasAuthor. T Π VhasAuthor.Journalist
- Roles corresnonding to binary relations
- Individuals (used in assertions only)
- ex: Mary, John

Concepts, Roles, Individuals

- Concepts, corresponding to unary relations
- \top, \perp : universal and empty concepts
- atomic concepts: ex: Female, Male, Article, Journalist,
- operators for the construction of complex concepts:
and (\sqcap), or (\sqcup), not (\neg), all (\forall), some (\exists), atleast $(\geq n)$, atmost $(\leq n)$,
- ex: mothers (i.e., women who have children) of at least three female children: Woman \square ヨhasChildren. Person $\square \geq 3$ hasChild.Female
- ex: articles that have authors and whose authors are all journalists: Article $\sqcap \exists$ hasAuthor. T Π VhasAuthor.Journalist
- Roles corresponding to binary relations
- Individuals (used in assertions only)
- ex: Mary, John

Concepts, Roles, Individuals

- Concepts, corresponding to unary relations
- \top, \perp : universal and empty concepts
- atomic concepts: ex: Female, Male, Article, Journalist,...
- operators for the construction of complex concepts:
and (\square), or (\sqcup), not (\neg), all (\forall), some (\exists), atleast $(\geq n)$, atmost $(\leq n)$,
- ex: mothers (i.e., women who have children) of at least three female children: Woman $\sqcap \exists$ hasChildren. Person $\sqcap \geq 3$ hasChild. Female
- ex: articles that have authors and whose authors are all journalists:

Article $\sqcap \exists$ hasAuthor. T Π VhasAuthor. Journalist

- Roles corresnonding to binary relations
- Individuals (used in assertions only)
- ex: Mary, John

Concepts, Roles, Individuals

- Concepts, corresponding to unary relations
- \top, \perp : universal and empty concepts
- atomic concepts: ex: Female, Male, Article, Journalist,...
- operators for the construction of complex concepts: and (\sqcap), or (\sqcup), not (\neg), all (\forall), some (\exists), atleast $(\geq n)$, atmost $(\leq n), \ldots$
- ex: mothers (i.e., women who have children) of at least three female children: Woman $\sqcap \exists$ hasChildren. Person $\sqcap \geq 3$ hasChild. Female
- ex: articles that have authors and whose authors are all journalists: Article $\sqcap \exists$ hasAuthor. $T \Pi$ VhasAuthor. Journalist
- Roles corresponding to binary relations
- Individuals (used in assertions only)
- ex: Mary, John

Concepts, Roles, Individuals

- Concepts, corresponding to unary relations
- \top, \perp : universal and empty concepts
- atomic concepts: ex: Female, Male, Article, Journalist,...
- operators for the construction of complex concepts: and (\sqcap), or (\sqcup), not (\neg), all (\forall), some (\exists), atleast $(\geq n)$, atmost $(\leq n), \ldots$
- ex: mothers (i.e., women who have children) of at least three female children: Woman $\sqcap \exists$ hasChildren.Person $\sqcap \geq 3$ hasChild.Female
- ex: articles that have authors and whose authors are all journalists: Article $\sqcap \exists$ hasAuthor. $T \Pi \forall$ hasAuthor. Journalist
- Roles corresponding to binary relations
- Individuals (used in assertions only)
- ex: Mary, John

Concepts, Roles, Individuals

- Concepts, corresponding to unary relations
- \top, \perp : universal and empty concepts
- atomic concepts: ex: Female, Male, Article, Journalist,...
- operators for the construction of complex concepts: and (\sqcap), or (\sqcup), not (\neg), all (\forall), some (\exists), atleast $(\geq n)$, atmost $(\leq n), \ldots$
- ex: mothers (i.e., women who have children) of at least three female children: Woman $\sqcap \exists$ hasChildren.Person $\sqcap \geq 3$ hasChild.Female
- ex: articles that have authors and whose authors are all journalists:

Article $\sqcap \exists$ hasAuthor. $\top \sqcap \forall$ hasAuthor.Journalist

- Roles corresponding to binary relations
- Individuals (used in assertions only)
- ex: Mary, John

Concepts, Roles, Individuals

- Concepts, corresponding to unary relations
- \top, \perp : universal and empty concepts
- atomic concepts: ex: Female, Male, Article, Journalist,...
- operators for the construction of complex concepts: and (\sqcap), or (\sqcup), not (\neg), all (\forall), some (\exists), atleast $(\geq n)$, atmost $(\leq n), \ldots$
- ex: mothers (i.e., women who have children) of at least three female children: Woman $\sqcap \exists$ hasChildren.Person $\sqcap \geq 3$ hasChild.Female
- ex: articles that have authors and whose authors are all journalists:

Article $\sqcap \exists$ hasAuthor. $\top \sqcap \forall$ hasAuthor.Journalist

- Roles corresponding to binary relations
- ex: hasAuthor, hasChild
- can be combined with operators for constructing complex roles
- hasChildren \equiv hasSon \sqcup hasDaughter
- Individuals (used in assertions only)
- ex: Mary, John

Concepts, Roles, Individuals

- Concepts, corresponding to unary relations
- \top, \perp : universal and empty concepts
- atomic concepts: ex: Female, Male, Article, Journalist,...
- operators for the construction of complex concepts: and (\sqcap), or (\sqcup), not (\neg), all (\forall), some (\exists), atleast $(\geq n)$, atmost $(\leq n), \ldots$
- ex: mothers (i.e., women who have children) of at least three female children: Woman $\sqcap \exists$ hasChildren.Person $\sqcap \geq 3$ hasChild.Female
- ex: articles that have authors and whose authors are all journalists:

Article $\sqcap \exists$ hasAuthor. $\top \sqcap \forall$ hasAuthor.Journalist

- Roles corresponding to binary relations
- ex: hasAuthor, hasChild
- can be combined with operators for constructing complex roles
- hasChildren \equiv hasSon \sqcup hasDaughter
- Individuals (used in assertions only)
- ex: Mary, John

Concepts, Roles, Individuals

- Concepts, corresponding to unary relations
- \top, \perp : universal and empty concepts
- atomic concepts: ex: Female, Male, Article, Journalist,...
- operators for the construction of complex concepts: and (\sqcap), or (\sqcup), not (\neg), all (\forall), some (\exists), atleast $(\geq n)$, atmost $(\leq n), \ldots$
- ex: mothers (i.e., women who have children) of at least three female children: Woman $\sqcap \exists$ hasChildren.Person $\sqcap \geq 3$ hasChild.Female
- ex: articles that have authors and whose authors are all journalists:

Article $\sqcap \exists$ hasAuthor. $\top \sqcap \forall$ hasAuthor.Journalist

- Roles corresponding to binary relations
- ex: hasAuthor, hasChild
- can be combined with operators for constructing complex roles
- hasChildren \equiv hasSon \sqcup hasDaughter
- Individuals (used in assertions only)
- ex: Mary, John

T-Boxes and A-Boxes

- Terminologies (T-Boxes): sets of
- concepts definitions $\left(C_{1} \equiv C_{2}\right)$ ex: Father \equiv Man $\sqcap \exists$ hasChild.Person
- or concept generalizations $\left(C_{1} \sqsubseteq C_{2}\right)$ ex: Woman \sqsubseteq Person
- Assertions (A-Boxes): assert

T-Boxes and A-Boxes

- Terminologies (T-Boxes): sets of
- concepts definitions ($C_{1} \equiv C_{2}$) ex: Father \equiv Man $\sqcap \exists$ hasChild.Person
- or concept generalizations ($C_{1} \sqsubseteq C_{2}$)
ex: Woman $\sqsubseteq ~ P e r s o n ~$
- Assertions (A-Boxes): assert

T-Boxes and A-Boxes

- Terminologies (T-Boxes): sets of
- concepts definitions $\left(C_{1} \equiv C_{2}\right)$ ex: Father \equiv Man $\sqcap \exists$ hasChild.Person
- or concept generalizations $\left(C_{1} \sqsubseteq C_{2}\right)$ ex: Woman \sqsubseteq Person
- Assertions (A-Boxes): assert

T-Boxes and A-Boxes

- Terminologies (T-Boxes): sets of
- concepts definitions $\left(C_{1} \equiv C_{2}\right)$ ex: Father \equiv Man $\sqcap \exists$ hasChild.Person
- or concept generalizations $\left(C_{1} \sqsubseteq C_{2}\right)$ ex: Woman \sqsubseteq Person
- Assertions (A-Boxes): assert
- individuals as concept members i : C, where i is an individual and C is a concept ex: mary: Person, john : Father
- individual pairs as relation members $\langle i, j\rangle: R$, where i, j are individuals and R is a relation
ex: 〈john, mary〉: hasChild

T-Boxes and A-Boxes

- Terminologies (T-Boxes): sets of
- concepts definitions $\left(C_{1} \equiv C_{2}\right)$ ex: Father \equiv Man $\sqcap \exists$ hasChild.Person
- or concept generalizations $\left(C_{1} \sqsubseteq C_{2}\right)$ ex: Woman \sqsubseteq Person
- Assertions (A-Boxes): assert
- individuals as concept members $i: C$, where i is an individual and C is a concept ex: mary : Person, john : Father
- individual pairs as relation members $\langle i, j\rangle: R$, where i, j are individuals and R is a relation ex: 〈john, mary〉: hasChild

T-Boxes and A-Boxes

- Terminologies (T-Boxes): sets of
- concepts definitions ($C_{1} \equiv C_{2}$) ex: Father \equiv Man $п \exists h a s C h i l d . P e r s o n ~$
- or concept generalizations ($C_{1} \sqsubseteq C_{2}$) ex: Woman \sqsubseteq Person
- Assertions (A-Boxes): assert
- individuals as concept members $i: C$, where i is an individual and C is a concept ex: mary : Person, john : Father
- individual pairs as relation members $\langle i, j\rangle: R$, where i, j are individuals and R is a relation ex: 〈john, mary〉 : hasChild

T-Box: Example (Logic $\mathcal{A L C N}$)

$$
\begin{aligned}
\text { Woman } & \equiv \text { Person } \sqcap \text { Female } \\
\text { Man } & \equiv \text { Person } \sqcap \neg \text { Woman } \\
\text { Mother } & \equiv \text { Woman } \sqcap \exists \text { hasChild.Person } \\
\text { Father } & \equiv \text { Man } \sqcap \exists \text { hasChild.Person } \\
\text { Parent } & \equiv \text { Father } \sqcup \text { Mother } \\
\text { Grandmother } & \equiv \text { Mother } \sqcap \exists \text { hasChild. Parent } \\
\text { MotherWithManyChildren } & \equiv \text { Mother } \sqcap \geqslant 3 \text { hasChild .Person } \\
\text { MotherWithoutDaughter } & \equiv \text { Mother } \sqcap \text { VhasChild. } \neg \text { Woman } \\
\text { Wife } & \equiv \text { Woman } \sqcap \exists \text { hasHusband. Man }
\end{aligned}
$$

Reasoning Services for DLs

- Design and management of ontologies
- consistency checking of concepts, creation of hierarchies
- Ontology integration
- Relations between concepts of different ontologies
- Consistency of integrated hierarchies
- Queries
- Determine whether facts are consistent wrt ontologies
- Determine if individuals are instances of concepts
- Retrieve individuals satisfying a query (concept)
- Verify if a concept is more general than another (subsumption)

Reasoning Services for DLs

- Design and management of ontologies
- consistency checking of concepts, creation of hierarchies
- Ontology integration
- Relations between concepts of different ontologies
- Consistency of integrated hierarchies
- Queries
- Determine whether facts are consistent wrt ontologies
- Determine if individuals are instances of concepts
- Retrieve individuals satisfying a query (concept)
- Verify if a concept is more general than another (subsumption)

Reasoning Services for DLs

- Design and management of ontologies
- consistency checking of concepts, creation of hierarchies
- Ontology integration
- Relations between concepts of different ontologies
- Consistency of integrated hierarchies
- Queries
- Determine whether facts are consistent wrt ontologies
- Determine if individuals are instances of concepts
- Retrieve individuals satisfying a query (concept)
- Verify if a concept is more general than another (subsumption)

Querying a DL Ontology: Example

All the children of John are females. Mary is a child of John.
Tim is a friend of professor Blake. Prove that Mary is a female.

- $\mathcal{A} \stackrel{\text { def }}{=}\{j o h n: \forall h a s C h i l d . f e m a l e, ~(j o h n, ~ m a r y) ~: ~ h a s C h i l d, ~$ (blake, tim) : hasFriend, blake : professor\}
- Query: mary : female (or: is $\mathcal{A} \sqcap$ mary : \neg female unsatisfiable?)
- Yes

Querying a DL Ontology: Example

All the children of John are females. Mary is a child of John.
Tim is a friend of professor Blake. Prove that Mary is a female.

- $\mathcal{A} \stackrel{\text { def }}{=}\{j o h n: \forall h a s C h i l d . f e m a l e, ~(j o h n, ~ m a r y) ~: ~ h a s C h i l d, ~$ (blake, tim) : hasFriend, blake : professor\}
- Query: mary : female (or: is $\mathcal{A} \sqcap$ mary : \neg female unsatisfiable?)
- Yes

Exercise

Given:

- a set of basic concepts: \{Person, Male, Doctor, Engineer\}
- a set of relations: \{hasChild\}
with their obvious meaning. Write a \mathcal{T}-box in $\mathcal{A L C N}$ defining the following concepts
(a) Female, Man, Woman (with their standard meaning)
(b) femaleDoctorWithoutChildren: female doctor with no children
(c) fatherOfFemaleDoctor: father of at least two female doctors
(d) motherOfDoctorsOrEngineers: woman whose children are all engineers or ${ }^{a}$ doctors

[^1]
[^0]: Copyright notice: Most examples and images displayed in the slides of this course are taken from [Russell \& Norwig, "Artificial Intelligence, a Modern Approach", $3^{\text {rd }}$ ed., Pearson], including explicitly figures from the above-mentioned book, so that their copyright is detained by the authors. A few other material (text, figures, examples) is authored by (in alphabetical order): Pieter Abbeel, Bonnie J. Dorr, Anca Dragan, Dan Klein, Nikita Kitaev, Tom Lenaerts, Michela Milano, Dana Nau, Maria Simi, who detain its copyright.

 These slides cannot be displayed in public without the permission of the author.

[^1]: ${ }^{\text {a }}$ non-exclusive or.

