Fundamentals of Artificial Intelligence Chapter 09: Inference in First-Order Logic

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto. sebastiani@unitn. it
http://disi.unitn.it/rseba/DIDATTICA/fai_2022/

Teaching assistant: Mauro Dragoni - dragoni@fbk.eu http://www.maurodragoni.com/teaching/fai/
M.S. Course "Artificial Intelligence Systems", academic year 2022-2023

Last update: Friday $11^{\text {th }}$ November, 2022, 14:19

[^0]
Outline

(1) Basic First-Order Reasoning

- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(2) Handling Definite FOL KBs \& Datalog
- Forward Chaining
- Backward Chaining
(3) Resolution for General FOL KBs
- CNF-Ization
- Resolution
- Dealing with Equalities [hints]
- A Complete Example

Outline

(1) Basic First-Order Reasoning

- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(2) Handling Definite FOL KBs \& Datalog
- Forward Chaining
- Backward Chaining
(3) Resolution for General FOL KBs
- CNF-Ization
- Resolution
- Dealing with Equalities [hints]
- A Complete Example

Outline

(1) Basic First-Order Reasoning

- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(2) Handling Definite FOL KBs \& Datalog
- Forward Chaining
- Backward Chaining
(3) Resolution for General FOL KBs
- CNF-Ization
- Resolution
- Dealing with Equalities [hints]
- A Complete Example

Term/Subformula Substitutions

Notation

- Substitution: "Subst(\{ $\left.\left.e_{1} / e_{2}\right\}, e\right)$ " or "e\{ $\left.e_{1} / e_{2}\right\}$ ": the expression obtained by simultaneously substituting every occurrence of e_{1} with e_{2} in e
- e_{1}, e_{2} either both terms (term substitution) or both subformulas (subformula substitution)
- e is either a term or a formula (only term for term substitution)
- Examples:
- (t. sub.): $(y+1=1+y)\{y / S(x)\} \Longrightarrow(S(x)+1=1+S(x))$
- (s.f. sub.): $(\operatorname{Even}(x) \vee \operatorname{Odd}(x))\{\operatorname{Even}(x) / \operatorname{Odd}(S(x))\} \Longrightarrow((\operatorname{Odd}(S(x)) \vee \operatorname{Odd}(x))$
- Multinle substitution: annly simulteneously all substitutions in a list: $\left.e_{\{ } e_{1} / e_{0} e_{0} / e_{1}\right\}$
- ex: $(P(x, y) \rightarrow Q(x, y))\{x / 1, y / 2\} \Longrightarrow(P(1,2) \rightarrow Q(1,2))$
- multiple substitutions are simultaneous: ex: $P(x) \vee Q(y)\{x / y, y / f(b)\}=P(y) \vee Q(f(b)(\operatorname{not} P(f(b)) \vee Q(f(b)))$
- If θ is a substitution list and e an expression (formula/term),
then we denote the result of a substitution as e θ

Term/Subformula Substitutions

Notation

- Substitution: "Subst(\{ $\left.\left.e_{1} / e_{2}\right\}, e\right)$ " or "e\{ $\left.e_{1} / e_{2}\right\}$ ": the expression obtained by simultaneously substituting every occurrence of e_{1} with e_{2} in e
- e_{1}, e_{2} either both terms (term substitution) or both subformulas (subformula substitution)
- e is either a term or a formula (only term for term substitution)
- Examples:
- (t. sub.): $(y+1=1+y)\{y / S(x)\} \Longrightarrow(S(x)+1=1+S(x))$
- (s.f. sub.): $(\operatorname{Even}(x) \vee \operatorname{Odd}(x))\{\operatorname{Even}(x) / \operatorname{Odd}(S(x))\} \Longrightarrow((\operatorname{Odd}(S(x)) \vee \operatorname{Odd}(x))$
- Multiple substitution: apply simulteneously all substitutions in a list: $e\left\{e_{1} / e_{2}, e_{3} / e_{4}\right.$
- ex: $(P(x, y) \rightarrow Q(x, y))\{x / 1, y / 2\} \Longrightarrow(P(1,2) \rightarrow Q(1,2))$
- multiple substitutions are simultaneous:
- If θ is a substitution list and e an expression (formula/term),
then we denote the result of a substitution as e θ

Term/Subformula Substitutions

Notation

- Substitution: "Subst(\{ $\left.\left.e_{1} / e_{2}\right\}, e\right)$ " or "e\{ $\left.e_{1} / e_{2}\right\}$ ": the expression obtained by simultaneously substituting every occurrence of e_{1} with e_{2} in e
- e_{1}, e_{2} either both terms (term substitution) or both subformulas (subformula substitution)
- e is either a term or a formula (only term for term substitution)
- Examples:
- (t. sub.): $(y+1=1+y)\{y / S(x)\} \Longrightarrow(S(x)+1=1+S(x))$
- (s.f. sub.): $(E v e n(x) \vee \operatorname{Odd}(x))\{E v e n(x) / \operatorname{Odd}(S(x))\} \Longrightarrow((\operatorname{Odd}(S(x)) \vee \operatorname{Odd}(x))$
- Multiple substitution: apply simulteneously all substitutions in a list: $e\left\{e_{1} / e_{2}, e_{3} / e_{4}\right\}$
- ex: $(P(x, y) \rightarrow Q(x, y))\{x / 1, y / 2\} \Longrightarrow(P(1,2) \rightarrow Q(1,2))$
- multiple substitutions are simultaneous:

$$
\text { ex: } P(x) \vee Q(y)\{x / y, y / f(b)\}=P(y) \vee Q(f(b)(\operatorname{not} P(f(b)) \vee Q(f(b)))
$$

- If θ is a substitution list and e an expression (formula/term), then we denote the result of a substitution as e θ

Term/Subformula Substitutions

Notation

- Substitution: "Subst(\{ $\left.\left.e_{1} / e_{2}\right\}, e\right)$ " or "e\{ $\left.e_{1} / e_{2}\right\}$ ": the expression obtained by simultaneously substituting every occurrence of e_{1} with e_{2} in e
- e_{1}, e_{2} either both terms (term substitution) or both subformulas (subformula substitution)
- e is either a term or a formula (only term for term substitution)
- Examples:
- (t. sub.): $(y+1=1+y)\{y / S(x)\} \Longrightarrow(S(x)+1=1+S(x))$
- (s.f. sub.): $(E v e n(x) \vee \operatorname{Odd}(x))\{E v e n(x) / \operatorname{Odd}(S(x))\} \Longrightarrow((\operatorname{Odd}(S(x)) \vee \operatorname{Odd}(x))$
- Multiple substitution: apply simulteneously all substitutions in a list: $e\left\{e_{1} / e_{2}, e_{3} / e_{4}\right\}$
- ex: $(P(x, y) \rightarrow Q(x, y))\{x / 1, y / 2\} \Longrightarrow(P(1,2) \rightarrow Q(1,2))$
- multiple substitutions are simultaneous:

$$
\text { ex: } P(x) \vee Q(y)\{x / y, y / f(b)\}=P(y) \vee Q(f(b)(\operatorname{not} P(f(b)) \vee Q(f(b)))
$$

- If θ is a substitution list and e an expression (formula/term), then we denote the result of a substitution as e θ

Substitution with equivalent terms

Equal-term substitution rule

$$
\frac{\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha}{\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha \wedge \alpha\left\{t_{1} / t_{2}\right\}}
$$

- Ex: $(S(x)=x+1) \wedge(0 \neq S(x)) \Longrightarrow(S(x)=x+1) \wedge(0 \neq S(x)) \wedge(0 \neq x+1)$
- Preserves validity: $M\left(\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha \wedge \alpha\left\{t_{1} / t_{2}\right\}\right)=M\left(\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha\right)$
- α can be safely dropped from the result

Substitution with equivalent terms

Equal-term substitution rule

$$
\frac{\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha}{\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha \wedge \alpha\left\{t_{1} / t_{2}\right\}}
$$

- Ex: $(S(x)=x+1) \wedge(0 \neq S(x)) \Longrightarrow(S(x)=x+1) \wedge(0 \neq S(x)) \wedge(0 \neq x+1)$
- Preserves validity: M(Г
- α can be safely dropped from the result

Substitution with equivalent terms

Equal-term substitution rule

$$
\frac{\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha}{\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha \wedge \alpha\left\{t_{1} / t_{2}\right\}}
$$

- Ex: $(S(x)=x+1) \wedge(0 \neq S(x)) \Longrightarrow(S(x)=x+1) \wedge(0 \neq S(x)) \wedge(0 \neq x+1)$
- Preserves validity: $M\left(\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha \wedge \alpha\left\{t_{1} / t_{2}\right\}\right)=M\left(\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha\right)$
- α can be safely dropped from the result

Substitution with equivalent terms

Equal-term substitution rule

$$
\frac{\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha}{\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha\left\{t_{1} / t_{2}\right\}}
$$

- Ex: $(S(x)=x+1) \wedge(0 \neq S(x)) \Longrightarrow(S(x)=x+1) \wedge(0 \neq S(x)) \wedge(0 \neq x+1)$
- Preserves validity: $M\left(\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \wedge \alpha\left\{t_{1} / t_{2}\right\}\right)=M\left(\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha\right)$
- α can be safely dropped from the result

Substitution with equivalent formulas

Equivalent-subformula substitution rule

$$
\frac{\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha}{\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha \wedge \alpha\left\{\beta_{1} / \beta_{2}\right\}}
$$

- Ex: $(E v e n(x) \leftrightarrow \operatorname{Odd}(S(x))) \wedge(E v e n(x) \vee \operatorname{Odd}(x)) \Longrightarrow$ $(\operatorname{Even}(x) \leftrightarrow \operatorname{Odd}(S(x))) \wedge(E \operatorname{ven}(x) \vee \operatorname{Odd}(x)) \wedge(\operatorname{Odd}(S(x)) \vee \operatorname{Odd}(x))$
- Preserves validity: $M\left(\Gamma \wedge\left(\beta_{1}=\beta_{2}\right) \wedge \alpha \wedge \alpha\left\{\beta_{1} / \beta_{2}\right\}\right)=M\left(\Gamma \wedge\left(\beta_{1} \leftarrow \beta_{2}\right) \wedge \alpha\right)$
- α can be safely dropped from the result

Substitution with equivalent formulas

Equivalent-subformula substitution rule

$$
\frac{\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha}{\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha \wedge \alpha\left\{\beta_{1} / \beta_{2}\right\}}
$$

- Ex: $(\operatorname{Even}(x) \leftrightarrow \operatorname{Odd}(S(x))) \wedge(E v e n(x) \vee \operatorname{Odd}(x)) \Longrightarrow$ $(E v e n(x) \leftrightarrow \operatorname{Odd}(S(x))) \wedge(E \operatorname{ven}(x) \vee \operatorname{Odd}(x)) \wedge(\operatorname{Odd}(S(x)) \vee \operatorname{Odd}(x))$
- α can be safely dropped from the result

Substitution with equivalent formulas

Equivalent-subformula substitution rule

$$
\frac{\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha}{\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha \wedge \alpha\left\{\beta_{1} / \beta_{2}\right\}}
$$

- Ex: $(E v e n(x) \leftrightarrow \operatorname{Odd}(S(x))) \wedge(E v e n(x) \vee \operatorname{Odd}(x)) \Longrightarrow$ $(\operatorname{Even}(x) \leftrightarrow \operatorname{Odd}(S(x))) \wedge(\operatorname{Even}(x) \vee \operatorname{Odd}(x)) \wedge(\operatorname{Odd}(S(x)) \vee \operatorname{Odd}(x))$
- Preserves validity: $M\left(\Gamma \wedge\left(\beta_{1}=\beta_{2}\right) \wedge \alpha \wedge \alpha\left\{\beta_{1} / \beta_{2}\right\}\right)=M\left(\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha\right)$
- α can be safely dropped from the result

Substitution with equivalent formulas

Equivalent-subformula substitution rule

$$
\frac{\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha}{\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \wedge\left\{\beta_{1} / \beta_{2}\right\}}
$$

- Ex: $(\operatorname{Even}(x) \leftrightarrow \operatorname{Odd}(S(x))) \wedge(E v e n(x) \vee \operatorname{Odd}(x)) \Longrightarrow$ $(\operatorname{Even}(x) \leftrightarrow \operatorname{Odd}(S(x))) \wedge(E v e n(x) \vee \operatorname{Odd}(x)) \wedge(\operatorname{Odd}(S(x)) \vee \operatorname{Odd}(x))$
- Preserves validity: $M\left(\Gamma \wedge\left(\beta_{1}=\beta_{2}\right) \wedge \wedge \alpha\left\{\beta_{1} / \beta_{2}\right\}\right)=M\left(\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha\right)$
- α can be safely dropped from the result

Universal Instantiation (UI)

- Every instantiation of a universally quantified-sentence is entailed by it:

$$
\frac{\Gamma \wedge \forall x \cdot \alpha}{\Gamma \wedge \forall x \cdot \alpha \wedge \alpha\{x / t\}}
$$

for every variable x and term t
Ex:

- (King(John) \wedge Greedy (John)) \rightarrow Evil(John)
- (King(Richard) \wedge Greedy (Richard)) \rightarrow Evil(Ric hard)
- (King(Fathor(Johnl)) A Cracd.'(Fathor(Johnl)) \rightarrow Evil(Father(John))
- $($ King $($ Father $(F a t h e r(J o h n))) \wedge$ Greedy (Father $($ Father $(J o h n)))) \rightarrow$ Evil(Father(Father(John)))
- Preserves validity:

M
$M(\Gamma \wedge \forall x . \alpha)$

Universal Instantiation (UI)

- Every instantiation of a universally quantified-sentence is entailed by it:

$$
\frac{\Gamma \wedge \forall x . \alpha}{\Gamma \wedge \forall x . \alpha \wedge \alpha\{x / t\}}
$$

for every variable x and term t

- Ex: $\forall x .((\operatorname{King}(x) \wedge \operatorname{Greed}(x)) \rightarrow \operatorname{Evil}(x))$
- (King(John) \wedge Greedy(John)) \rightarrow Evil(John)
- (King(Richard) \wedge Greedy (Richard)) \rightarrow Evil(Richard)
- $(\operatorname{King}($ Father $(\operatorname{John})) \wedge \operatorname{Greedy}(F \operatorname{Father}(\operatorname{John}))) \rightarrow \operatorname{Evil}($ Father $(J o h n))$
- $(\operatorname{King}(F a t h e r(F a t h e r(\operatorname{John}))) \wedge \operatorname{Greedy}($ Father $(F a t h e r(\operatorname{John})))) \rightarrow$ Evil(Father(Father(John)))
- Preserves validity:

M(Г

Universal Instantiation (UI)

- Every instantiation of a universally quantified-sentence is entailed by it:

$$
\frac{\Gamma \wedge \forall x . \alpha}{\Gamma \wedge \forall x . \alpha \wedge \alpha\{x / t\}}
$$

for every variable x and term t

- Ex: $\forall x .((\operatorname{King}(x) \wedge \operatorname{Greed}(x)) \rightarrow \operatorname{Evil}(x))$
- $($ King (John $) \wedge$ Greedy $($ John $)) \rightarrow$ Evil(John)
- (King(Richard) \wedge Greedy (Richard)) \rightarrow Evil(Richard)
- $($ King $($ Father $(J o h n)) \wedge$ Greedy $($ Father $(J o h n))) \rightarrow$ Evil(Father $(J o h n))$
- $(\operatorname{King}(F a t h e r(F a t h e r(J o h n))) \wedge \operatorname{Greedy}($ Father $($ Father $(\operatorname{John})))) \rightarrow \operatorname{Evil}($ Father $($ Father $(J o h n)))$
- ...
- Preserves validity:

$$
M(\Gamma \wedge \forall x . \alpha \wedge \alpha\{x / t\})=M(\Gamma \wedge \forall x . \alpha)
$$

Existential Instantiation (EI)

- An existentially quantified-sentence can be substituted by one of its instantation with a fresh constant:

$$
\frac{\Gamma \wedge \exists x \cdot \alpha}{\Gamma \wedge \alpha\{x / C\}}
$$

for every variable x and for a "fresh" constant C, i.e. a constant which does not appear in $\ulcorner\wedge \exists x . \alpha$

- C is a Skolem constant, El subcase of Skolemization (see later)
- Intuition: if there is an object satisfying some condition, then we give a (new) name to it
- Ex: $\exists x$. (Crown $(x) \wedge$ OnHead (x, John))
- $(C r o w n(C) \wedge O n H e a d(C, J o h n))$
- given "There is a crown on John's head", I call "C" such crown
- Preserves satisfiability (aka preserves inferential equivalence) $M(\Gamma \wedge \alpha\{x / C\}) \neq \emptyset$ iff $M(\Gamma \wedge$
(i.e.. $(\Gamma \wedge \alpha\{x / C\})=\beta$ iff $(\Gamma$
for every β)
- Example from math:

we call it " e " \longrightarrow $\frac{d(e)}{d v}$

Existential Instantiation (EI)

- An existentially quantified-sentence can be substituted by one of its instantation with a fresh constant:

$$
\frac{\Gamma \wedge \exists x \cdot \alpha}{\Gamma \wedge \alpha\{x / C\}}
$$

for every variable x and for a "fresh" constant C, i.e. a constant which does not appear in $\ulcorner\wedge \exists x . \alpha$

- C is a Skolem constant, El subcase of Skolemization (see later)
- Intuition: if there is an object satisfying some condition, then we give a (new) name to it
- $($ Crown $(C) \wedge$ OnHead (C, John))
- given "There is a crown on John's head", I call "C" such crown
- Preserves satisfiability (aka preserves inferential equivalence) $M(\Gamma \wedge \alpha\{x / C\}) \neq \emptyset$ iff $M(\Gamma \wedge$
(i.e.. $(\Gamma \wedge \alpha\{x / C\})=\beta$ iff $(\Gamma$
for every β)
- Example from math:

Existential Instantiation (EI)

- An existentially quantified-sentence can be substituted by one of its instantation with a fresh constant:

$$
\frac{\Gamma \wedge \exists x \cdot \alpha}{\Gamma \wedge \alpha\{x / C\}}
$$

for every variable x and for a "fresh" constant C, i.e. a constant which does not appear in $\ulcorner\wedge \exists x . \alpha$

- C is a Skolem constant, El subcase of Skolemization (see later)
- Intuition: if there is an object satisfying some condition, then we give a (new) name to it
- Ex: $\exists x .(\operatorname{Crown}(x) \wedge$ OnHead (x, John $)$)
- (Crown $(C) \wedge$ OnHead (C, John) $)$
- given "There is a crown on John's head", I call "C" such crown
- Preserves satisfiability (aka preserves inferential equivalence) $M(\Gamma \wedge \alpha\{x / C\}) \neq \emptyset$ iff $M(\Gamma \wedge$
(i.e.. $(\Gamma \wedge \alpha\{x / C\})=\beta$ iff $(\Gamma$
for every β)
- Example from math: $\exists x$

Existential Instantiation (EI)

- An existentially quantified-sentence can be substituted by one of its instantation with a fresh constant:

$$
\frac{\Gamma \wedge \exists x \cdot \alpha}{\Gamma \wedge \alpha\{x / C\}}
$$

for every variable x and for a "fresh" constant C, i.e. a constant which does not appear in $\ulcorner\wedge \exists x . \alpha$

- C is a Skolem constant, El subcase of Skolemization (see later)
- Intuition: if there is an object satisfying some condition, then we give a (new) name to it
- Ex: $\exists x$. (Crown $(x) \wedge$ OnHead (x, John))
- (Crown $(C) \wedge$ OnHead (C, John) $)$
- given "There is a crown on John's head", I call "C" such crown
- Preserves satisfiability (aka preserves inferential equivalence) $M(\Gamma \wedge \alpha\{x / C\}) \neq \emptyset$ iff $M(\Gamma \wedge \exists x . \alpha) \neq \emptyset$ (i.e.. $(\Gamma \wedge \alpha\{x / C\}) \vDash \beta$ iff $(\Gamma \wedge \exists x . \alpha) \models \beta$, for every β)
- Example from math:

Existential Instantiation（EI）

－An existentially quantified－sentence can be substituted by one of its instantation with a fresh constant：

$$
\frac{\Gamma \wedge \exists x \cdot \alpha}{\Gamma \wedge \alpha\{x / C\}}
$$

for every variable x and for a＂fresh＂constant C ，i．e．a constant which does not appear in $\ulcorner\wedge \exists x . \alpha$
－C is a Skolem constant，El subcase of Skolemization（see later）
－Intuition：if there is an object satisfying some condition，then we give a（new）name to it
－Ex：$\exists x$ ．（Crown $(x) \wedge$ OnHead（ x ，John））
－（Crown $(C) \wedge$ OnHead（ C, John）$)$
－given＂There is a crown on John＇s head＂，I call＂C＂such crown
－Preserves satisfiability（aka preserves inferential equivalence） $M(\Gamma \wedge \alpha\{x / C\}) \neq \emptyset$ iff $M(\Gamma \wedge \exists x . \alpha) \neq \emptyset$
（i．e．．$(\Gamma \wedge \alpha\{x / C\}) \vDash \beta$ iff $(\Gamma \wedge \exists x . \alpha) \models \beta$ ，for every β ）
－Example from math：$\exists x \cdot\left(\frac{d\left(x^{y}\right)}{d y}=x^{y}\right)$ ，we call it＂e＂$\Longrightarrow\left(\frac{d\left(e^{y}\right)}{d y}=e^{y}\right)$

Remarks

- About Universal Instantiation:
- Ul can be applied several times to add new sentences;
- the new Γ is logically equivalent to the old Γ
- About Existential Instantiation:
- El can be applied once to replace the existential sentence;
- the new Γ is not equivalent to the old,
- but is (un)satisfiable iff the old I is (un)satisfiable
the new Γ can infer β iff the old Γ can infer β

Before applying UI or EI, sentences must be rewritten s.t. negations (even when implicit) must be pushed inside the quantifications:

- $\neg \forall x . \alpha \Longrightarrow \exists x . \neg \alpha$
- $\neg \exists x . \alpha \Longrightarrow \forall x . \neg \alpha$

Remarks

- About Universal Instantiation:
- Ul can be applied several times to add new sentences;
- the new Γ is logically equivalent to the old Γ
- About Existential Instantiation:
- El can be applied once to replace the existential sentence;
- the new Γ is not equivalent to the old,
- but is (un)satisfiable iff the old Γ is (un)satisfiable
\Longrightarrow the new Γ can infer β iff the old Γ can infer β

Before applying UI or EI, sentences must be rewritten s.t. negations (even when implicit) must be pushed inside the quantifications:

- $\neg \forall x . \alpha \Longrightarrow \exists x . \neg \alpha$
- $\neg \exists x . \alpha \Longrightarrow \forall x . \neg \alpha$

Remarks

- About Universal Instantiation:
- UI can be applied several times to add new sentences;
- the new Γ is logically equivalent to the old Γ
- About Existential Instantiation:
- El can be applied once to replace the existential sentence;
- the new Γ is not equivalent to the old,
- but is (un)satisfiable iff the old Γ is (un)satisfiable
\Longrightarrow the new Γ can infer β iff the old Γ can infer β

Before applying UI or EI, sentences must be rewritten s.t. negations (even when implicit) must be pushed inside the quantifications:

- $\neg \forall x . \alpha \Longrightarrow \exists x . \neg \alpha$
- $\neg \exists x . \alpha \Longrightarrow \forall x . \neg \alpha$
- ex:

Remarks

- About Universal Instantiation:
- UI can be applied several times to add new sentences;
- the new Γ is logically equivalent to the old Γ
- About Existential Instantiation:
- El can be applied once to replace the existential sentence;
- the new Γ is not equivalent to the old,
- but is (un)satisfiable iff the old Γ is (un)satisfiable
\Longrightarrow the new Γ can infer β iff the old Γ can infer β

Before applying UI or EI, sentences must be rewritten s.t. negations (even when implicit) must be pushed inside the quantifications:

- $\neg \forall x . \alpha \Longrightarrow \exists x . \neg \alpha$
- $\neg \exists x . \alpha \Longrightarrow \forall x . \neg \alpha$
- ex: $\forall x \cdot P(x) \rightarrow \neg \exists y \cdot Q(y)$
$\Longrightarrow \neg \forall x . P(x) \vee \neg \exists y . Q(y)$
$\Longrightarrow \exists x . \neg P(x) \vee \forall y . \neg Q(y)$

Outline

(1) Basic First-Order Reasoning

- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(2) Handling Definite FOL KBs \& Datalog
- Forward Chaining
- Backward Chaining

3 Resolution for General FOL KBs

- CNF-Ization
- Resolution
- Dealing with Equalities [hints]
- A Complete Example

Reduction to Propositional Inference (aka propositionalization))

- Idea: Given a FOL closed KB Γ and query α, Convert $(\Gamma \wedge \neg \alpha)$ to PL \Longrightarrow use a PL SAT solver to check PL (un)satisfiability
- Trick:
- replace variables with ground terms, creating all possible instantiations of quantified sentences
- convert atomic sentences into propositional symbols
e.g. "King(John)" \Longrightarrow "King_John",
e.g. "Brother(John,Richard)" \Longrightarrow "Brother_John-Richard"
- Theorem: (Herbrand, 1930)

If a ground sentence α is entailed by an FOL KB
then it is entailed by a finite subset of the propositionalized KB I

- The vice-versa does not hold
\Longrightarrow works if α is entailed, loops if α is not entailed

Reduction to Propositional Inference (aka propositionalization))

- Idea: Given a FOL closed KB Γ and query α, Convert $(\Gamma \wedge \neg \alpha)$ to PL \Longrightarrow use a PL SAT solver to check PL (un)satisfiability
- Trick:
- replace variables with ground terms, creating all possible instantiations of quantified sentences
- convert atomic sentences into propositional symbols
e.g. "King(John)" \Longrightarrow "King_John",
e.g. "Brother(John,Richard)" \Longrightarrow "Brother_John-Richard",
- Theorem: (Herbrand, 1930)

If a ground sentence α is entailed by an FOL KB Γ
then it is entailed by a finite subset of the propositionalized KB |

- The vice-versa does not hold
\Longrightarrow works if α is entailed, loops if α is not entailed

Reduction to Propositional Inference (aka propositionalization))

- Idea: Given a FOL closed KB Γ and query α, Convert $(\Gamma \wedge \neg \alpha)$ to PL \Longrightarrow use a PL SAT solver to check PL (un)satisfiability
- Trick:
- replace variables with ground terms, creating all possible instantiations of quantified sentences
- convert atomic sentences into propositional symbols
e.g. "King(John)" \Longrightarrow "King_John",
e.g. "Brother(John,Richard)" \Longrightarrow "Brother_John-Richard",
- Theorem: (Herbrand, 1930) If a ground sentence α is entailed by an FOL KB Г, then it is entailed by a finite subset of the propositionalized KB 「
\Longrightarrow Every FOL KB Γ can be propositionalized s.t. to preserve entailment
- The vice-versa does not hold
\Longrightarrow works if α is entailed, loops if α is not entailed

Reduction to Propositional Inference (aka propositionalization))

- Idea: Given a FOL closed KB Γ and query α, Convert $(\Gamma \wedge \neg \alpha)$ to PL \Longrightarrow use a PL SAT solver to check PL (un)satisfiability
- Trick:
- replace variables with ground terms, creating all possible instantiations of quantified sentences
- convert atomic sentences into propositional symbols
e.g. "King(John)" \Longrightarrow "King_John",
e.g. "Brother(John,Richard)" \Longrightarrow "Brother_John-Richard",
- Theorem: (Herbrand, 1930) If a ground sentence α is entailed by an FOL KB Г, then it is entailed by a finite subset of the propositionalized KB 「
\Longrightarrow Every FOL KB Γ can be propositionalized s.t. to preserve entailment
- The vice-versa does not hold
\Longrightarrow works if α is entailed, loops if α is not entailed

Reduction to Propositional Inference：Example

－Suppose 「 contains only：
$\forall x .((\operatorname{King}(x) \wedge \operatorname{Greed} y(x)) \rightarrow \operatorname{Evil}(x))$
King（John）
Greedy（John）
Brother（Richard，John）
－Instantiating the universal sentence in all possible ways：
（King $($ John $) \wedge$ Greedy $(J o h n)) \rightarrow$ Evil（John）
$($ King $($ Richard $) \wedge$ Greedy $($ Richard $)) \rightarrow$ Evil（Richard）
King（John）
Greedy（John）
Brother（Richard，John）
－The new Γ is pronositionalized：
（King＿John＾Greedy＿John）\rightarrow Evil＿John
（King＿Richard \wedge Greedy＿Richard）\rightarrow Evil＿Richard
King＿John
Greedy＿John
Brother＿Richard－John
－Evil＿John entailed by new 「（Evil（John）entailed by old 「）

Reduction to Propositional Inference：Example

－Suppose 「 contains only：
$\forall x .((\operatorname{King}(x) \wedge \operatorname{Greed} y(x)) \rightarrow \operatorname{Evil}(x))$
King（John）
Greedy（John）
Brother（Richard，John）
－Instantiating the universal sentence in all possible ways：
（King（John）\wedge Greedy（John））\rightarrow Evil（John）
（King（Richard）\wedge Greedy（Richard））\rightarrow Evil（Richard）
King（John）
Greedy（John）
Brother（Richard，John）
－The new Γ is propositionalized：
（King＿John \wedge Greedy＿John）\rightarrow Evil＿John
（King＿Richard \wedge Greedy＿Richard）\rightarrow Evil＿Richard
King＿John
Greedy＿John
Brother Richard－John
－Evil＿John entailed by new 「（Evil（John）entailed by old 「）

Reduction to Propositional Inference：Example

－Suppose 「 contains only：

```
\forall. ((King (x) ^Greedy (x)) ->Evil(x))
King(John)
Greedy(John)
Brother(Richard, John)
```

－Instantiating the universal sentence in all possible ways：
$($ King $($ John $) \wedge$ Greedy（John）$) \rightarrow$ Evil（John）
（King（Richard）\wedge Greedy（Richard））\rightarrow Evil（Richard）
King（John）
Greedy（John）
Brother（Richard，John）
－The new Γ is propositionalized：
（King＿John \wedge Greedy＿John）\rightarrow Evil＿John
（King＿Richard \wedge Greedy＿Richard）\rightarrow Evil＿Richard
King＿John
Greedy＿John
Brother＿Richard－John
－Evil＿John entailed by new 「（Evil（John）entailed by old 「）

Reduction to Propositional Inference: Example

- Suppose 「 contains only:

```
\forall. ((King (x) ^Greedy (x)) ->Evil(x))
King(John)
Greedy(John)
Brother(Richard, John)
```

- Instantiating the universal sentence in all possible ways:
$($ King $($ John $) \wedge$ Greedy (John) $) \rightarrow$ Evil(John)
(King(Richard) \wedge Greedy (Richard)) \rightarrow Evil(Richard)
King(John)
Greedy(John)
Brother(Richard, John)
- The new Γ is propositionalized:
(King_John \wedge Greedy_John) \rightarrow Evil_John
(King_Richard \wedge Greedy_Richard) \rightarrow Evil_Richard
King_John
Greedy_John
Brother_Richard-John
- Evil_John entailed by new Г (Evil(John) entailed by old Γ)

Problems with Propositionalization

- Propositionalization generates lots of irrelevant sentences Ex:
$\forall x .((\operatorname{King}(x) \wedge \operatorname{Greedy}(x)) \rightarrow \operatorname{Evil}(x))$
King(John)
$\forall y . \operatorname{Greedy}(y)$
Brother(Richard, John)
\Longrightarrow produces irrelevant atoms like Greedy(Richard)
- With p k-ary predicates and n constants, $p \cdot n^{k}$ instantiations

Problems with Propositionalization

- Propositionalization generates lots of irrelevant sentences

Ex:
$\forall x .((\operatorname{King}(x) \wedge \operatorname{Greedy}(x)) \rightarrow \operatorname{Evil}(x))$
King(John)
$\forall y . \operatorname{Greedy}(y)$
Brother(Richard, John)
\Longrightarrow produces irrelevant atoms like Greedy(Richard)

- With pk-ary predicates and n constants, $p \cdot n^{k}$ instantiations

Problems with Propositionalization [cont.]

- Problem: nested function applications
- e.g. Father(John), Father(Father(John)), Father(Father(Father(John))), ...
\Longrightarrow infinite instantiations
- Actual Trick: for $\mathrm{k}=0$ to ∞, use terms of function nesting depth k
- create propositionalized Γ by instantiating depth-k terms
- if $\Gamma \models \alpha$, then will find a contradiction for some finite k
- if $\Gamma \neq \alpha$, may find a loop forever
- Theorem: (Turing, 1936), (Church, 1936):

Entailment in FOL is semidecidable

- Propositionalization not very efficient in general, and used only in very particular cases

Problems with Propositionalization [cont.]

- Problem: nested function applications
- e.g. Father(John), Father(Father(John)), Father(Father(Father(John))), ...
\Longrightarrow infinite instantiations
- Actual Trick: for $\mathrm{k}=0$ to ∞, use terms of function nesting depth k
- create propositionalized Γ by instantiating depth-k terms
- if $\Gamma \models \alpha$, then will find a contradiction for some finite k
- if $\Gamma \not \vDash \alpha$, may find a loop forever
- Theorem: (Turing, 1936), (Church, 1936):

Entailment in FOL is semidecidable

- Propositionalization not very efficient in general, and used only in very particular cases

Problems with Propositionalization [cont.]

- Problem: nested function applications
- e.g. Father(John), Father(Father(John)), Father(Father(Father(John))), ...
\Longrightarrow infinite instantiations
- Actual Trick: for $\mathrm{k}=0$ to ∞, use terms of function nesting depth k
- create propositionalized Γ by instantiating depth-k terms
- if $\Gamma \models \alpha$, then will find a contradiction for some finite k
- if $\Gamma \not \vDash \alpha$, may find a loop forever
- Theorem: (Turing, 1936), (Church, 1936):

Entailment in FOL is semidecidable

- Propositionalization not very efficient in general, and used only in very particular cases

Problems with Propositionalization [cont.]

- Problem: nested function applications
- e.g. Father(John), Father(Father(John)), Father(Father(Father(John))), ...
\Longrightarrow infinite instantiations
- Actual Trick: for $\mathrm{k}=0$ to ∞, use terms of function nesting depth k
- create propositionalized Γ by instantiating depth-k terms
- if $\Gamma \models \alpha$, then will find a contradiction for some finite k
- if $\Gamma \not \vDash \alpha$, may find a loop forever
- Theorem: (Turing, 1936), (Church, 1936):

Entailment in FOL is semidecidable

- Propositionalization not very efficient in general, and used only in very particular cases

Outline

(1) Basic First-Order Reasoning

- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(2) Handling Definite FOL KBs \& Datalog
- Forward Chaining
- Backward Chaining
(3) Resolution for General FOL KBs
- CNF-Ization
- Resolution
- Dealing with Equalities [hints]
- A Complete Example

Generalized Modus Ponens (GMP)

- "Lifted inference": Combine PL inference with UI/EI
- Aristotle's "Modus Ponens" syllogism:
"All men are mortal; Socrates is a man; thus Socrates is mortal."
- Generalized Modus Ponens:
if exists a substitution θ s.t., for all $i \in 1 . . k, \alpha_{j}^{\prime} \theta=\alpha_{j} \theta$, then
- all variables (implicitly) assumed as universally quantified
- θ substitutes (universally quantified) variables with terms
- Ex: using $\theta \stackrel{\text { def }}{=}\{x / J o h n, y / J o h n\}$ we can infer Evil(John) from:
$\forall x .((\operatorname{King}(x) \wedge \operatorname{Greedy}(x)) \rightarrow$ Evil $(x))$, King(John), $\forall y$. Greedy (y)
- GMP used w. KB of definite clauses (exactly one positive literal)
- Used in Prolog, Datalog, Production-rule systems,

Generalized Modus Ponens (GMP)

- "Lifted inference": Combine PL inference with UI/EI
- Aristotle's "Modus Ponens" syllogism:
"All men are mortal; Socrates is a man; thus Socrates is mortal."

- Generalized Modus Ponens: if exists a substitution θ s.t., for all $i \in 1 . . k, \alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, then
- all variables (implicitly) assumed as universally quantified
- θ substitutes (universally quantified) variables with terms
- Ex: using $\theta \stackrel{\text { der }}{=}\{x / J o h n, y / J o h n\}$ we can infer Evil(John) from: $\forall x .(($ King $(x) \wedge \operatorname{Greedy}(x)) \rightarrow$ Evil $(x))$, King (John), $\forall y$. Greedy (y)
- GMP used w. KB of definite clauses (exactly one positive literal)
- Used in Prolog, Datalog, Production-rule systems,

Generalized Modus Ponens (GMP)

- "Lifted inference": Combine PL inference with UI/EI
- Aristotle's "Modus Ponens" syllogism:
"All men are mortal; Socrates is a man; thus Socrates is mortal."

$$
\frac{\operatorname{Man}(\text { Socrates }) \quad \forall x .(\text { Man }(x) \rightarrow \operatorname{Mortal}(x))}{\text { Mortal(Socrates) }}
$$

- Generalized Modus Ponens:
if exists a substitution θ s.t., for : all $i \in 1 . . k, a_{i}^{\prime} \theta=a_{i} \theta$, then
- all variables (implicitly) assumed as universally quantified
- θ substitutes (universally quantified) variables with terms
- Ex: using $\theta \stackrel{\text { de }}{=}\{x / J o h n, y / J o h n\}$ we can infer Evil(John) from: $\forall x .((\operatorname{King}(x) \wedge \operatorname{Greedy}(x)) \rightarrow$ Evil $(x))$, King(John), $\forall y$. Greedy (y)
- GMP used w. KB of definite clauses (exactly one positive literal)
- Used in Prolog, Datalog, Production-rule systems,

Generalized Modus Ponens (GMP)

- "Lifted inference": Combine PL inference with UI/EI
- Aristotle's "Modus Ponens" syllogism:
"All men are mortal; Socrates is a man; thus Socrates is mortal."

$$
\frac{\operatorname{Man}(\text { Socrates }) \quad \forall x .(\text { Man }(x) \rightarrow \operatorname{Mortal}(x))}{\text { Mortal(Socrates) }}
$$

- Generalized Modus Ponens:
if exists a substitution θ s.t., for all $i \in 1 . . k, \alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, then

$$
\frac{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime},\left(\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{k}\right) \rightarrow \beta}{\beta \theta}
$$

- all variables (implicitly) assumed as universally quantified
- θ substitutes (universally quantified) variables with terms
- Ex: using θ \{x/John, y/John\} we can infer Evil(John) from: $\forall x$. (King (x)

Greedy $(x)) \rightarrow$ Evil $(x))$, King(John), $\forall y$. Greedy (y)

- GMP used w. KB of definite clauses (exactly one positive literal)
- Used in Prolog, Datalog, Production-rule systems,

Generalized Modus Ponens (GMP)

- "Lifted inference": Combine PL inference with UI/EI
- Aristotle's "Modus Ponens" syllogism:
"All men are mortal; Socrates is a man; thus Socrates is mortal."

$$
\frac{\operatorname{Man}(\text { Socrates }) \quad \forall x .(\text { Man }(x) \rightarrow \operatorname{Mortal}(x))}{\text { Mortal(Socrates })}
$$

- Generalized Modus Ponens:
if exists a substitution θ s.t., for all $i \in 1 . . k, \alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, then

$$
\frac{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime},\left(\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{k}\right) \rightarrow \beta}{\beta \theta}
$$

- all variables (implicitly) assumed as universally quantified
- θ substitutes (universally quantified) variables with terms
- Ex: using $\theta \stackrel{\text { def }}{=}\{x /$ John, $y / J o h n\}$ we can infer Evil(John) from: $\forall x .(($ King $(x) \wedge \operatorname{Greed} y(x)) \rightarrow$ Evil $(x))$, King(John), $\forall y$.Greedy (y)
- GMP used w. KB of definite clauses (exactly one positive literal)
- Used in Prolog, Datalog, Production-rule systems,.

Generalized Modus Ponens (GMP)

- "Lifted inference": Combine PL inference with UI/EI
- Aristotle's "Modus Ponens" syllogism:
"All men are mortal; Socrates is a man; thus Socrates is mortal."

$$
\frac{\operatorname{Man}(\text { Socrates }) \quad \forall x .(\text { Man }(x) \rightarrow \operatorname{Mortal}(x))}{\text { Mortal(Socrates) }}
$$

- Generalized Modus Ponens:
if exists a substitution θ s.t., for all $i \in 1 . . k, \alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, then

$$
\frac{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime},\left(\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{k}\right) \rightarrow \beta}{\beta \theta}
$$

- all variables (implicitly) assumed as universally quantified
- θ substitutes (universally quantified) variables with terms
- Ex: using $\theta \stackrel{\text { def }}{=}\{x /$ John, $y / J o h n\}$ we can infer Evil(John) from: $\forall x .((\operatorname{King}(x) \wedge \operatorname{Greed} y(x)) \rightarrow$ Evil $(x))$, King(John), $\forall y$.Greedy (y)
- GMP used w. KB of definite clauses (exactly one positive literal)
- Used in Prolog, Datalog, Production-rule systems,...

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$..k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- Unify $(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:
- Different (implicitly-universally-quantified) formulas should use different variables (Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$..k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- Unify $(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify(Knows(John, x), Knows(John, Jane)) $=\{x /$ Jane $\}$
Unify(Knows(John, $x), \operatorname{Knows}(y, O J))=\{x / O J, y / J o h n\}$
Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=\quad\{y / J o h n, x / \operatorname{Mother}(J o h n)\}$
Unify (Knows(John, x), Knows(x,OJ)) = FAIL

- Different (implicitly-universally-quantified) formulas should use different variables (Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$..k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- Unify $(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify(Knows(John, x), Knows(John, Jane)) =
Unify (Knows(John, x), Knows $(y, O J))=\{x / O J, y / J o h n\}$ Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=\quad\{y /$ John, $x / \operatorname{Mother}(J o h n)\}$ Unify $(\operatorname{Knows}(J o h n, ~ x)$, Knows $(x$, OJ $))=$ FAIL

- Different (imolicitlv-universallv-auantified) formulas should use different variables (Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$..k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- Unify $(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify (Knows(John, x), Knows(John, Jane)) $=\{x /$ Jane $\}$
Unify $(K$ nows $(J o h n, ~ x), \operatorname{Knows}(y, O J))=\{x / O J, y / J o h n\}$
Unify $(K \operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=\{y /$ John, $x /$ Mother $(J o h n)\}$
Unify $(K n o w s(J o h n, ~ x), K n o w s ~$
($x, O J))=$ FAIL $: x / ?$

- Different (implicitly-universally-quantified) formulas should use different variables (Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$..k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- Unify $(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify (Knows(John, $x)$, Knows(John, Jane)) $=\{x /$ Jane $\}$
Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, O J))=$
Unify (Knows(John, x), Knows(y, Mother(y))) = \{y/John, x/Mother(John)\}
Unify $($ Knows $(J o h n, x), \operatorname{Knows}(x, O J))=$ FAIL :

- Different (implicitly-universally-quantified) formulas should use different variables
(Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$..k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- Unify $(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify (Knows(John, $x)$, Knows(John, Jane)) $=\{x /$ Jane $\}$ Unify $($ Knows $(J o h n, x), \operatorname{Knows}(y, O J))=\{x / O J, y / J o h n\}$
Unify(Knows(John, x), Knows $(y, \operatorname{Mother}(y)))=\quad\{y / J o h n, x / \operatorname{Mother}(J o h n)\}$
Unify (Knows(John, x), Knows $(x, O J))=$ FAIL : $x /$?

- Different (implicitly-universally-quantified) formulas should use different variables
(Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$..k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- Unify $(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify (Knows(John, $x)$, Knows(John, Jane)) $=\{x /$ Jane $\}$
Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, O J))=\{x / O J, y / J o h n\}$
Unify $(K$ nows $(J o h n, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=\quad\{y / J o h n, x / \operatorname{Mother}(J o h n)\}$
Unify (Knows(John. x). Knows $(x$, OJ) $)=$ FAlL

- Different (implicitly-universally-quantified) formulas should use different variables
(Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$..k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- Unify $(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify (Knows(John, x), Knows(John, Jane)) $=\{x /$ Jane $\}$
Unify $($ Knows $(J o h n, x), \operatorname{Knows}(y, O J))=\{x / O J, y / J o h n\}$
Unify $(\operatorname{Knows}(\operatorname{John}, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=\quad\{y / \operatorname{John}, x / \operatorname{Mother}(\operatorname{John})\}$
Unify $(\operatorname{Knows}(J o h n, x)$, Knows $(x$, OJ) $)=$ FAlL : $x /$?

- Different (implicitly-universally-quantified) formulas should use different variables
(Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$..k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify $($ Knows $($ John, $x)$, Knows(John, Jane $))=\{x /$ Jane $\}$
Unify $($ Knows $(J o h n, x), \operatorname{Knows}(y, O J))=\{x / O J, y / J o h n\}$
Unify $($ Knows $(\operatorname{John}, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=\quad\{y / \operatorname{John}, x / \operatorname{Mother}(\operatorname{John})\}$
Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(x, O J))=$

- Different (implicitly-universally-quantified) formulas should use different variables
(Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$..k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify $($ Knows $($ John, $x)$, Knows(John, Jane) $)=\{x /$ Jane $\}$
Unify $($ Knows $(J o h n, x), \operatorname{Knows}(y, O J))=\{x / O J, y / J o h n\}$
Unify $($ Knows $(\operatorname{John}, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=\quad\{y / \operatorname{John}, x / \operatorname{Mother}(\operatorname{John})\}$
Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(x, O J))=$ FAlL : $x /$?

- Different (implicitly-universally-quantified) formulas should use different variables
(Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$..k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- Unify $(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify $($ Knows $($ John, $x)$, Knows(John, Jane) $)=\{x /$ Jane $\}$
Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, O J))=\{x / O J, y / J o h n\}$
Unify $($ Knows $(\operatorname{John}, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=\{y / \operatorname{John}, x / \operatorname{Mother}(\operatorname{John})\}$
Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(x, O J))=$ FAlL : $x /$?

- Different (implicitly-universally-quantified) formulas should use different variables
(Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$..k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify $($ Knows $($ John, $x)$, Knows(John, Jane $))=\{x /$ Jane $\}$
Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, O J))=\{x / O J, y / J o h n\}$
Unify $($ Knows $(\operatorname{John}, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=\{y / \operatorname{John}, x / \operatorname{Mother}(\operatorname{John})\}$
Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(x, O J))=$ FAlL : $x /$?

- Different (implicitly-universally-quantified) formulas should use different variables
\Longrightarrow (Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$..k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify (Knows(John, x), Knows(John, Jane)) $=\{x /$ Jane $\}$
Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, O J))=\{x / O J, y / J o h n\}$
$\operatorname{Unify}(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=\quad\{y / \operatorname{John}, x / \operatorname{Mother}(\operatorname{John})\}$
Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(x, O J))=$ FAlL : $x /$?

- Different (implicitly-universally-quantified) formulas should use different variables
\Longrightarrow (Standardizing apart): rename variables to avoid name clashes
$\operatorname{Unify}\left(\operatorname{Knows}\left(\operatorname{John}, x_{1}\right), \operatorname{Knows}\left(x_{2}, O J\right)\right)=$

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$..k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify $($ Knows $($ John, $x), \operatorname{Knows(John,~Jane)~})=\{x /$ Jane $\}$
Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, O J))=\{x / O J, y / J o h n\}$
$\operatorname{Unify}(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=\quad\{y / \operatorname{John}, x / \operatorname{Mother}(\operatorname{John})\}$
$\operatorname{Unify}(\operatorname{Knows}(J o h n, ~ x)$, Knows $(x, O J))=$ FAlL : $x /$?

- Different (implicitly-universally-quantified) formulas should use different variables
\Longrightarrow (Standardizing apart): rename variables to avoid name clashes
Unify (Knows(John, x_{1}), Knows $\left.\left(x_{2}, O J\right)\right)=\left\{x_{1} / O B J, x_{2} / J o h n\right\}$
- $\{\forall x . \alpha, \forall x . \beta\} \Longleftrightarrow\left\{\forall x_{1} \cdot \alpha\left\{x / x_{1}\right\}, \forall x_{2} . \beta\left\{x / x_{2}\right\}\right\}$, s.t. x_{1}, x_{2} new

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$..k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify (Knows(John, x), Knows(John, Jane)) $=\{x /$ Jane $\}$
Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, O J))=\{x / O J, y / J o h n\}$
$\operatorname{Unify}(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=\quad\{y / \operatorname{John}, x / \operatorname{Mother}(\operatorname{John})\}$
$\operatorname{Unify}(\operatorname{Knows}(J o h n, ~ x)$, Knows $(x, O J))=$ FAlL : $x /$?

- Different (implicitly-universally-quantified) formulas should use different variables
\Longrightarrow (Standardizing apart): rename variables to avoid name clashes
Unify $\left(\operatorname{Knows}\left(J o h n, x_{1}\right), \operatorname{Knows}\left(x_{2}, O J\right)\right)=\left\{x_{1} / O B J, x_{2} /\right.$ John $\}$
- $\{\forall x . \alpha, \forall x . \beta\} \Longleftrightarrow\left\{\forall x_{1} . \alpha\left\{x / x_{1}\right\}, \forall x_{2} . \beta\left\{x / x_{2}\right\}\right\}$, s.t. x_{1}, x_{2} new

Most-General Unifier (MGU)

- Unifiers are not unique
- ex: Unify(Knows(John, x), $\operatorname{Knows}(y, z)$)
could return $\{y / J o h n, x / z\}$ or $\{y / J o h n, x / J o h n, z / J o h n\}$
- Given α, β, the unifier θ_{1} is more general than the unifier θ_{2} for α, β if exists θ_{3} s.t. $\theta_{2}=\theta_{1} \theta_{3}$
- ex: $\{y / J o h n, x / z\}$ more general than $\{y / J o h n, x / J o h n, z / J o h n\}:$
$\{y /$ John, $x /$ John, $z /$ John $\}=\{y /$ John, $x / z\}\{z /$ John $\}$
- Theorem: If exists an unifier for α, β, then exists a most general unifier (MGU) θ for α, β
- Ex: $\{y / J o h n, x / z\}$ MGU for Knows(John, x), Knows (y, z)
- Ex: an MGU is unique modulo variable renaming
- UNIFY () returns the MGU between two (lists of) formulas
- efficiency optimizations based on predicate/term indexing techniques (see AIMA if interested)

Most-General Unifier (MGU)

- Unifiers are not unique
- ex: Unify(Knows(John, x), $\operatorname{Knows}(y, z)$)
could return $\{y / J o h n, x / z\}$ or $\{y / J o h n, x / J o h n, z / J o h n\}$
- Given α, β, the unifier θ_{1} is more general than the unifier θ_{2} for α, β if exists θ_{3} s.t. $\theta_{2}=\theta_{1} \theta_{3}$
- ex: $\{y / J o h n, x / z\}$ more general than $\{y / J o h n, x / J o h n, z / J o h n\}:$
$\{y /$ John, $x /$ John, $z /$ John $\}=\{y /$ John, $x / z\}\{z /$ John $\}$
- Theorem: If exists an unifier for α, β, then exists a most general unifier (MGU) θ for α, β
- Ex: $\{y / J o h n, x / z\}$ MGU for Knows(John, x), Knows (y, z)
- Ex: an MGU is unique modulo variable renaming
- UNIFY () returns the MGU between two (lists of) formulas
- efficiency optimizations based on predicate/term indexing techniques (see AIMA if interested)

Most-General Unifier (MGU)

- Unifiers are not unique
- ex: Unify(Knows(John, x), $\operatorname{Knows}(y, z)$)
could return $\{y / J o h n, x / z\}$ or $\{y / J o h n, x / J o h n, z / J o h n\}$
- Given α, β, the unifier θ_{1} is more general than the unifier θ_{2} for α, β if exists θ_{3} s.t. $\theta_{2}=\theta_{1} \theta_{3}$
- ex: $\{y / J o h n, x / z\}$ more general than $\{y / J o h n, x / J o h n, z / J o h n\}:$
$\{y /$ John, $x /$ John, $z /$ John $\}=\{y /$ John, $x / z\}\{z /$ John $\}$
- Theorem: If exists an unifier for α, β, then exists a most general unifier (MGU) θ for α, β
- Ex: $\{y / J o h n, x / z\}$ MGU for Knows(John, x), $\operatorname{Knows}(y, z)$
- Ex: an MGU is unique modulo variable renaming
- UNIFY () returns the MGU between two (lists of) formulas
- efficiency optimizations based on predicate/term indexing techniques (see AIMA if interested)

Most-General Unifier (MGU)

- Unifiers are not unique
- ex: Unify(Knows(John, x), $\operatorname{Knows}(y, z)$)
could return $\{y / J o h n, x / z\}$ or $\{y / J o h n, x / J o h n, z / J o h n\}$
- Given α, β, the unifier θ_{1} is more general than the unifier θ_{2} for α, β if exists θ_{3} s.t. $\theta_{2}=\theta_{1} \theta_{3}$
- ex: $\{y / J o h n, x / z\}$ more general than $\{y / J o h n, x / J o h n, z / J o h n\}:$
$\{y /$ John, $x /$ John, $z /$ John $\}=\{y /$ John, $x / z\}\{z /$ John $\}$
- Theorem: If exists an unifier for α, β, then exists a most general unifier (MGU) θ for α, β
- Ex: $\{y / J o h n, x / z\}$ MGU for Knows(John, x), $\operatorname{Knows~}(y, z)$
- Ex: an MGU is unique modulo variable renaming
- Unify () returns the MGU between two (lists of) formulas
- efficiency optimizations based on predicate/term indexing techniques (see AIMA if interested)

The Procedure Unify

```
function \(\operatorname{UnIFY}(x, y, \theta)\) returns a substitution to make \(x\) and \(y\) identical
    inputs: \(x\), a variable, constant, list, or compound expression
            \(y\), a variable, constant, list, or compound expression
            \(\theta\), the substitution built up so far (optional, defaults to empty)
    if \(\theta=\) failure then return failure
    else if \(x=y\) then return \(\theta\)
    else if Variable? \((x)\) then return \(\operatorname{Unify-Var}(x, y, \theta)\)
    else if Variable? \((y)\) then return \(\operatorname{Unify}-\operatorname{Var}(y, x, \theta)\)
    else if Compound? \((x)\) and Compound? ( \(y\) ) then
    return \(\operatorname{Unify}(x\).ARGS, \(y\).ArGS, \(\operatorname{UNIFY}(x\).Op, \(y\).Op, \(\theta)\) )
    else if List? \((x)\) and List? \((y)\) then
    return \(\operatorname{UNIFY}(x\).REST, \(y\).REST, \(\operatorname{UnIFY}(x\).FIRST, \(y\).FIRST, \(\theta)\) )
    else return failure
```

function UnIFY-VAR $(v a r, x, \theta)$ returns a substitution
if $\{$ var $/$ val $\} \in \theta$ then return $\operatorname{Unify}($ val $, x, \theta)$
else if $\{x /$ val $\} \in \theta$ then return $\operatorname{Unify}(v a r$, val, θ)
else if Occur-Check? $(v a r, x)$ then return failure
else return add $\{v a r / x\}$ to θ

Exercises

- Find the MGU of the following formulas by the Unify() procedure, or say there is none. (If needed, standardize apart them beforehand.)
- Knows(John, x), Knows(y, Mother(y))
- Knows(John, x), Knows(x, OJ)
- $R(f(x), z), R(f(g(B)), y)$
- $P(f(x)), P(g(f(y)))$
- $P(h(x), B), P(A, y)$
- Invent arbitrary pairs of (lists of) atomic FOL formulas and apply Unify() to them

Exercises

- Find the MGU of the following formulas by the Unify() procedure, or say there is none. (If needed, standardize apart them beforehand.)
- Knows(John, x), Knows(y, $\operatorname{Mother(y))}$
- Knows(John, x), Knows(x, OJ)
- $R(f(x), z), R(f(g(B)), y)$
- $P(f(x)), P(g(f(y)))$
- $P(h(x), B), P(A, y)$
- Invent arbitrary pairs of (lists of) atomic FOL formulas and apply Unify() to them

Outline

(1) Basic First-Order Reasoning

- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(2) Handling Definite FOL KBs \& Datalog
- Forward Chaining
- Backward Chaining
(3) Resolution for General FOL KBs
- CNF-Ization
- Resolution
- Dealing with Equalities [hints]
- A Complete Example

Outline

(1) Basic First-Order Reasoning

- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting

2) Handling Definite FOL KBs \& Datalog

- Forward Chaining
- Backward Chaining
(3) Resolution for General FOL KBs
- CNF-Ization
- Resolution
- Dealing with Equalities [hints]
- A Complete Example

First-Order Definite Clauses \& Datalog

- We assume no function symbol and no \exists under the scope of \forall (see later for general case)
- FOL Definite Clauses: clauses with exactly one positive literal
- we omit universal quantifiers
\rightarrow variables are (implicitly) universally quantified
- we remove existential quantifiers by El
existentially-quantified variables are substituted by fresh constants
- Represent implications of atomic formulas
- Ex: $\forall x .((\operatorname{King}(x) \wedge \operatorname{Greed}(x)) \rightarrow \operatorname{Evil}(x))$
- Important application: Datalog KBs: sets of FOL definite clauses without function symbols
- can represent statements typically made in relational databases
- makes inference much easier

First-Order Definite Clauses \& Datalog

- We assume no function symbol and no \exists under the scope of \forall (see later for general case)
- FOL Definite Clauses: clauses with exactly one positive literal
- we omit universal quantifiers
\Longrightarrow variables are (implicitly) universally quantified
- we remove existential quantifiers by El
\Longrightarrow existentially-quantified variables are substituted by fresh constants
- Represent implications of atomic formulas
- Ex: $\forall x$. $((\operatorname{King}(x) \wedge \operatorname{Greed}(x)) \rightarrow \operatorname{Evil}(x))$
- Important application: Datalog KBs: sets of FOL definite clauses without function symbols
- can represent statements typically made in relational databases
- makes inference much easier

First-Order Definite Clauses \& Datalog

- We assume no function symbol and no \exists under the scope of \forall (see later for general case)
- FOL Definite Clauses: clauses with exactly one positive literal
- we omit universal quantifiers
\Longrightarrow variables are (implicitly) universally quantified
- we remove existential quantifiers by El
\Longrightarrow existentially-quantified variables are substituted by fresh constants
- Represent implications of atomic formulas
- Ex: $\forall x .((\operatorname{King}(x) \wedge \operatorname{Greed} y(x)) \rightarrow \operatorname{Evil}(x))$
$\Longrightarrow(\neg \operatorname{King}(x) \vee \neg \operatorname{Greed} y(x) \vee \operatorname{Evil}(x)$
- Important application: Datalog KBs: sets of FOL definite clauses without function symbols
- can represent statements typically made in relational databases
- makes inference much easier

First-Order Definite Clauses \& Datalog

- We assume no function symbol and no \exists under the scope of \forall (see later for general case)
- FOL Definite Clauses: clauses with exactly one positive literal
- we omit universal quantifiers
\Longrightarrow variables are (implicitly) universally quantified
- we remove existential quantifiers by El
\Longrightarrow existentially-quantified variables are substituted by fresh constants
- Represent implications of atomic formulas
- Ex: $\forall x .((\operatorname{King}(x) \wedge \operatorname{Greedy}(x)) \rightarrow \operatorname{Evil}(x))$
$\Longrightarrow(\neg \operatorname{King}(x) \vee \neg \operatorname{Greedy}(x) \vee \operatorname{Evil}(x)$
- Important application: Datalog KBs: sets of FOL definite clauses without function symbols
- can represent statements typically made in relational databases
- makes inference much easier

Example (Datalog)

```
KB:
The law says that it is a crime for an American to sell weapons to hostile nations.
The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it
by Colonel West, who is American.
Goal:
Prove that Colonel West is a criminal.
```


Example (Datalog) [cont.]

- it is a crime for an American to sell weapons to hostile nations:
$\forall x, y, z .(($ American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Hostile}(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow \operatorname{Criminal}(x))$
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg \operatorname{Hostile}(z) \vee \neg \operatorname{Sells}(x, y, z) \vee \operatorname{Criminal}(x)$
- Nono ... has some missiles
$\exists x .($ Owns $($ Nono, $x) \wedge \operatorname{Missile}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
- All of its missiles were sold to it by Colonel West
$\forall x .((\operatorname{Missile}(x) \wedge$ Owns $($ Nono,$x)) \rightarrow$ Sells(West, x, Nono) $)$
$\Rightarrow \neg \operatorname{Missile}(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)
- Missiles are weapons:
$\forall x .(\operatorname{Missile}(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg \operatorname{Missile}(x) \vee$ Weapon (x)
- An enemy of America counts as "hostile": $\forall x$.(Enemy $(x$, America $) \rightarrow$ Hostile $(x))$ Enemy (x, America) \vee Hostile (x)
- West, who is American ...: American(West)
- The country Nono, an enemy of America

Example (Datalog) [cont.]

- it is a crime for an American to sell weapons to hostile nations:
$\forall x, y, z .(($ American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Hostile}(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow \operatorname{Criminal}(x))$
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg \operatorname{Hostile}(z) \vee \neg \operatorname{Sells}(x, y, z) \vee \operatorname{Criminal}(x)$
- Nono ... has some missiles
$\exists x$. $(\operatorname{Owns}($ Nono, $x) \wedge \operatorname{Missile}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
- All of its missiles were sold to it by Colonel West
$\forall x .((\operatorname{Missile}(x) \wedge$ Owns(Nono, $x)) \rightarrow$ Sells(West, x, Nono))
$\neg \operatorname{Missile}(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)
- Missiles are weapons:
$\forall x$. $(\operatorname{Missile}(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg \operatorname{Missile}(x) \vee$ Weapon (x)
- An enemy of America counts as "hostile": $\forall x$. (Enemy $(x$. America) \rightarrow Hostile $(x))$ Enemy (x, America) \vee Hostile (x)
- West, who is American ...: American(West)
- The country Nono, an enemy of America

Example（Datalog）［cont．］

－it is a crime for an American to sell weapons to hostile nations：
$\forall x, y, z .(($ American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Hostile}(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow \operatorname{Criminal}(x))$
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Hostile $(z) \vee \neg \operatorname{Sells}(x, y, z) \vee \operatorname{Criminal}(x)$
－Nono ．．．has some missiles
$\exists x$ ．$(\operatorname{Owns}(\operatorname{Nono}, x) \wedge \operatorname{Missile}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono，$\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
－All of its missiles were sold to it by Colonel West $\forall x .(($ Missile $(x) \wedge$ Owns（Nono，$x)) \rightarrow$ Sells（West，x, Nono））
$\Longrightarrow \neg \operatorname{Missile}(x) \vee \neg \operatorname{Owns}$（Nono，$x) \vee$ Sells（West，x ，Nono）
－Missiles are weapons：
$\forall x . \operatorname{Missile}(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg \operatorname{Missile}(x) \vee$ Weapon (x)
－An enemy of America counts as＂hostile＂：$\forall x$ ．（Enemy $(x$, America $) \rightarrow$ Hostile $(x))$ Enemy（ x ，America）\vee Hostile（ x ）
－West，who is American ．．．：American（West）
－The country Nono，an enemy of America

Example (Datalog) [cont.]

- it is a crime for an American to sell weapons to hostile nations:
$\forall x, y, z .(($ American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Hostile}(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow \operatorname{Criminal}(x))$
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Hostile $(z) \vee \neg \operatorname{Sells}(x, y, z) \vee \operatorname{Criminal}(x)$
- Nono ... has some missiles
$\exists x$. $(\operatorname{Owns}(\operatorname{Nono}, x) \wedge \operatorname{Missile}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
- All of its missiles were sold to it by Colonel West $\forall x$. $((\operatorname{Missile}(x) \wedge$ Owns(Nono, $x)) \rightarrow$ Sells(West, x, Nono) $)$
$\Longrightarrow \neg \operatorname{Missile}(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)
- Missiles are weapons:
$\forall x .(\operatorname{Missile}(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg \operatorname{Missile}(x) \vee \operatorname{Weapon}(x)$
- An enemy of America counts as "hostile": $\forall x$. (Enemy $(x$, America $) \rightarrow$ Hostile $(x))$ Enemy (x, America) \vee Hostile (x)
- West, who is American ...: American(West)
- The country Nono, an enemy of America

Example (Datalog) [cont.]

- it is a crime for an American to sell weapons to hostile nations:
$\forall x, y, z .(($ American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Hostile}(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow \operatorname{Criminal}(x))$
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg \operatorname{Hostile}(z) \vee \neg \operatorname{Sells}(x, y, z) \vee \operatorname{Criminal}(x)$
- Nono ... has some missiles
$\exists x$. $(\operatorname{Owns}(\operatorname{Nono}, x) \wedge \operatorname{Missile}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
- All of its missiles were sold to it by Colonel West $\forall x .((\operatorname{Missile}(x) \wedge$ Owns(Nono, $x)) \rightarrow$ Sells(West, x, Nono))
$\Longrightarrow \neg \operatorname{Missile}(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)
- Missiles are weapons:
$\forall x$. $(\operatorname{Missile}(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg$ Missile $(x) \vee$ Weapon (x)
- An enemy of America counts as "hostile": $\forall x$.(Enemy (x, America) \rightarrow Hostile $(x))$
$\Longrightarrow \neg \operatorname{Enemy}(x$, America $) \vee \operatorname{Hostile}(x)$
- West, who is American ...: American(West)
- The country Nono, an enemy of America

Example (Datalog) [cont.]

- it is a crime for an American to sell weapons to hostile nations:
$\forall x, y, z .(($ American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Hostile}(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow \operatorname{Criminal}(x))$
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Hostile $(z) \vee \neg \operatorname{Sells}(x, y, z) \vee$ Criminal (x)
- Nono ... has some missiles
$\exists x$. $($ Owns $($ Nono,$x) \wedge \operatorname{Missile~}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
- All of its missiles were sold to it by Colonel West $\forall x .(($ Missile $(x) \wedge$ Owns(Nono, $x)) \rightarrow$ Sells(West, x, Nono))
$\Longrightarrow \neg \operatorname{Missile}(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)
- Missiles are weapons:
$\forall x$. $(\operatorname{Missile}(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg$ Missile $(x) \vee$ Weapon (x)
- An enemy of America counts as "hostile": $\forall x$.(Enemy $(x$, America $) \rightarrow$ Hostile $(x))$
$\Longrightarrow \neg$ Enemy (x, America) $\vee \operatorname{Hostile}(x)$
- West, who is American ...: American(West)
- The country Nono, an enemy of America

Example (Datalog) [cont.]

- it is a crime for an American to sell weapons to hostile nations:
$\forall x, y, z .(($ American $(x) \wedge$ Weapon $(y) \wedge$ Hostile $(z) \wedge$ Sells $(x, y, z)) \rightarrow$ Criminal $(x))$
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Hostile $(z) \vee \neg \operatorname{Sells}(x, y, z) \vee$ Criminal (x)
- Nono ... has some missiles
$\exists x$. $($ Owns $($ Nono,$x) \wedge \operatorname{Missile~}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
- All of its missiles were sold to it by Colonel West $\forall x .(($ Missile $(x) \wedge$ Owns(Nono, $x)) \rightarrow$ Sells(West, x, Nono))
$\Longrightarrow \neg \operatorname{Missile}(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)
- Missiles are weapons:
$\forall x$. $(\operatorname{Missile}(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg$ Missile $(x) \vee$ Weapon (x)
- An enemy of America counts as "hostile": $\forall x$.(Enemy $(x$, America $) \rightarrow$ Hostile $(x))$
$\Longrightarrow \neg \operatorname{Enemy}(x$, America) $\vee \operatorname{Hostile}(x)$
- West, who is American ...: American(West)
- The country Nono, an enemy of America ...: Enemy(Nono, America)

A (Very-Basic) Forward-Chaining Procerure

function FOL-FC-ASK $(K B, \alpha)$ returns a substitution or false
inputs: $K B$, the knowledge base, a set of first-order definite clauses
α, the query, an atomic sentence
local variables: new, the new sentences inferred on each iteration
repeat until new is empty
new $\leftarrow\}$
for each rule in $K B$ do
$\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \leftarrow$ Standardize-VARIABLES $($ rule $)$
for each θ such that $\operatorname{SubST}\left(\theta, p_{1} \wedge \ldots \wedge p_{n}\right)=\operatorname{SubST}\left(\theta, p_{1}^{\prime} \wedge \ldots \wedge p_{n}^{\prime}\right)$ for some $p_{1}^{\prime}, \ldots, p_{n}^{\prime}$ in $K B$
$q^{\prime} \leftarrow \operatorname{SUBST}(\theta, q)$
if q^{\prime} does not unify with some sentence already in $K B$ or new then
add q^{\prime} to new
$\phi \leftarrow \operatorname{Unify}\left(q^{\prime}, \alpha\right)$
if ϕ is not fail then return ϕ
add new to $K B$
return false

Example of Forward Chaining

```
American(West),Missile(M1), Owns(Nono, M1), Enemy(Nono,America) \forallx.(Missile(x) }->\mathrm{ Weapon(x))
\forallx.((Missile(x)^Owns(Nono, x)) }->\mathrm{ Sells(West, x, Nono)) }\forallx.(Enemy(x,America) -> Hostile(x)
\forallx,y,z.((American (x)^Weapon (y)^Hostile (z)^Sells (x,y,z)) -> Criminal(x))
```


Example of Forward Chaining

```
American(West),Missile(M1), Owns(Nono, M1), Enemy(Nono,America) }\forallx.(Missile(x) -> Weapon(x)
\forallx.((Missile(x) ^ Owns(Nono, x)) }->\mathrm{ Sells(West, x, Nono)) }\forallx.(Enemy(x,America) -> Hostile(x)
\forallx,y,z.((American (x)^Weapon (y)^Hostile (z)^Sells (x,y,z)) -> Criminal(x))
```


Example of Forward Chaining

American(West), Missile(M_{1}), Owns(Nono, M_{1}), Enemy (Nono, America) $\forall x$. (Missile $(x) \rightarrow$ Weapon (x)) $\forall x .(($ Missile $(x) \wedge$ Owns (Nono, $x)) \rightarrow$ Sells(West, x, Nono) $) \forall x$.(Enemy $(x$, America) \rightarrow Hostile $(x))$ $\forall x, y, z .((\operatorname{American}(x) \wedge$ Weapon $(y) \wedge$ Hostile $(z) \wedge$ Sells $(x, y, z)) \rightarrow$ Criminal $(x))$

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them against the goal

- Sound: every inference is just an application of GMP
- Complete (for definite KBs): answers every query entailed by KB
- if $K B \models \alpha$, it always terminates
- if $K B \not \vDash \alpha$, may not terminate (Semi-decidable)
- Solves always Datalog queries in time: $O\left(p \cdot n^{k}\right)$, s.t. $p=\#$ predicates, $n=\#$ number constants, $k=$ maximum arity
- Improvement: match a rule on iteration k only if a premise was added on iteration k -1 \Longrightarrow match each rule whose premise contains a newly added literal
- Matching can be expensive
- matching conjunctive premises against known facts is NP-hard (see AIMA bok for reduction of colorability to matching)
- Forward chaining is used in deductive databases and expert systems

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them against the goal

- Sound: every inference is just an application of GMP
- Complete (for definite KBs): answers every query entailed by KB
- if $K B \models \alpha$, it always terminates
- if $K B \not \vDash \alpha$, may not terminate (Seni-decidable)
- Solves always Datalog queries in time: $O\left(p \cdot n^{k}\right)$, s.t. $p=\#$ predicates, $n=\#$ number constants, $k=$ maximum arity
- Improvement: match a rule on iteration k only if a premise was added on iteration k -1 match each rule whose premise contains a newly added literal
- Matching can be expensive
- matching conjunctive premises against known facts is NP-hard (see AIMA bok for reduction of colorability to matching)
- Forward chaining is used in deductive databases and expert systems

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them against the goal

- Sound: every inference is just an application of GMP
- Complete (for definite KBs): answers every query entailed by KB
- if $K B=\alpha$, it always terminates
- if $K B \not \vDash \alpha$, may not terminate (Semi-decidable)
- Solves alwavs Datalog queries in time: $O\left(n \cdot n^{k}\right)$ s.t. $p=\#$ predicates, $n=\#$ number constants, $k=$ maximum arity
- Improvement: match a rule on iteration k only if a premise was added on iteration $\mathrm{k}-1$ match each rule whose premise contains a newly added literal
- Matching can be expensive
- matching conjunctive premises against known facts is NP-hard (see AIMA bok for reduction of colorability to matching)
- Forward chaining is used in deductive databases and expert systems

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them against the goal

- Sound: every inference is just an application of GMP
- Complete (for definite KBs): answers every query entailed by KB
- if $K B \models \alpha$, it always terminates
- if $K B \not \neq \alpha$, may not terminate (Semi-decidable)
- Solves always Datalog queries in time: $O\left(p \cdot n^{k}\right)$, s.t. $p=\#$ predicates,
$n=\#$ number constants, $k=$ maximum arity
- Improvement: match a rule on iteration k only if a premise was added on iteration k-1 match each rule whose premise contains a newly added literal
- Matching can be expensive
- matching conjunctive premises against known facts is NP-hard (see AIMA bok for reduction of colorability to matching)
- Forward chaining is used in deductive databases and expert systems

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them against the goal

- Sound: every inference is just an application of GMP
- Complete (for definite KBs): answers every query entailed by KB
- if $K B \models \alpha$, it always terminates
- if $K B \not \vDash \alpha$, may not terminate (Semi-decidable)
- Solves always Datalog queries in time: $O\left(p \cdot n^{k}\right)$, s.t. $p=\#$ predicates,
$n=\#$ number constants, $k=$ maximum arity
- Improvement: match a rule on iteration k only if a premise was added on iteration $k-1$ match each rule whose premise contains a newly added literal
- Matching can be expensive
- matching conjunctive premises against known facts is NP-hard
(see AIMA bok for reduction of colorability to matching)
- Forward chaining is used in deductive databases and expert systems

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them against the goal

- Sound: every inference is just an application of GMP
- Complete (for definite KBs): answers every query entailed by KB
- if $K B \models \alpha$, it always terminates
- if $K B \not \vDash \alpha$, may not terminate (Semi-decidable)
- Solves always Datalog queries in time: $O\left(p \cdot n^{k}\right)$, s.t. $p=\#$ predicates, $n=\#$ number constants, $k=$ maximum arity
- Improvement: match a rule on iteration k only if a premise was added on iteration k-1 match each rule whose premise contains a newly added literal
- Matching can be expensive
- matching conjunctive premises against known facts is NP-hard
(see AIMA bok for reduction of colorability to matching)
- Forward chaining is used in deductive databases and expert systems

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them against the goal

- Sound: every inference is just an application of GMP
- Complete (for definite KBs): answers every query entailed by KB
- if $K B \models \alpha$, it always terminates
- if $K B \not \vDash \alpha$, may not terminate (Semi-decidable)
- Solves always Datalog queries in time: $O\left(p \cdot n^{k}\right)$, s.t. $p=\#$ predicates, $n=\#$ number constants, $k=$ maximum arity
- Improvement: match a rule on iteration k only if a premise was added on iteration k -1 \Longrightarrow match each rule whose premise contains a newly added literal
- Matching can be expensive
- matching conjunctive premises against known facts is NP-hard (see AIMA bok for reduction of colorability to matching)
- Forward chaining is used in deductive databases and expert systems

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them against the goal

- Sound: every inference is just an application of GMP
- Complete (for definite KBs): answers every query entailed by KB
- if $K B \models \alpha$, it always terminates
- if $K B \not \vDash \alpha$, may not terminate (Semi-decidable)
- Solves always Datalog queries in time: $O\left(p \cdot n^{k}\right)$, s.t. $p=\#$ predicates, $n=\#$ number constants, $k=$ maximum arity
- Improvement: match a rule on iteration k only if a premise was added on iteration k -1
\Longrightarrow match each rule whose premise contains a newly added literal
- Matching can be expensive
- matching conjunctive premises against known facts is NP-hard (see AIMA bok for reduction of colorability to matching)
- Forward chaining is used in deductive databases and expert systems

Properties of Forward Chaining

Intuition: at every loop, add all new atomic sentences you can infer by GMP, checking them against the goal

- Sound: every inference is just an application of GMP
- Complete (for definite KBs): answers every query entailed by KB
- if $K B \models \alpha$, it always terminates
- if $K B \not \vDash \alpha$, may not terminate (Semi-decidable)
- Solves always Datalog queries in time: $O\left(p \cdot n^{k}\right)$, s.t. $p=\#$ predicates, $n=\#$ number constants, $k=$ maximum arity
- Improvement: match a rule on iteration k only if a premise was added on iteration k -1
\Longrightarrow match each rule whose premise contains a newly added literal
- Matching can be expensive
- matching conjunctive premises against known facts is NP-hard (see AIMA bok for reduction of colorability to matching)
- Forward chaining is used in deductive databases and expert systems

Outline

(1) Basic First-Order Reasoning

- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(2) Handling Definite FOL KBs \& Datalog
- Forward Chaining
- Backward Chaining
(3) Resolution for General FOL KBs
- CNF-Ization
- Resolution
- Dealing with Equalities [hints]
- A Complete Example

A (Very-Basic) Backward-Chaining Procerure

```
function FOL-BC-Ask ( \(K B\), goals, \(\theta\) ) returns a set of substitutions
    inputs: \(K B\), a knowledge base
    goals, a list of conjuncts forming a query ( \(\theta\) already applied)
    \(\theta\), the current substitution, initially the empty substitution \(\}\)
    local variables: answers, a set of substitutions, initially empty
    if goals is empty then return \(\{\theta\}\)
    \(q^{\prime} \leftarrow \operatorname{Subst}(\theta, \operatorname{First}(\) goals \())\)
    for each sentence \(r\) in \(K B\)
    where \(\operatorname{Standardize-\operatorname {Apart}}(r)=\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right)\)
    and \(\theta^{\prime} \leftarrow \operatorname{Unify}\left(q, q^{\prime}\right)\) succeeds
    new_goals \(\leftarrow\left[p_{1}, \ldots, p_{n} \mid \operatorname{REST}(\right.\) goals \(\left.)\right]\)
    answers \(\leftarrow \operatorname{FOL}-\mathrm{BC}-\operatorname{Ask}\left(K B\right.\), new_goals, \(\left.\operatorname{ComPOSE}\left(\theta^{\prime}, \theta\right)\right) \cup\) answers
    return answers
```

Note: goals are unified with θ only when explicitly analized, the premises p_{i} s are not unified

Backward Chaining: Example

```
American(West),Missile(M1), Owns(Nono, M1), Enemy(Nono, America)
\forallx,y,z.((American(x)\wedge Weapon(y)^Hostile(z)\wedge Sells(x,y,z)) ->Criminal(x))
\forallx.(Missile (x) -> Weapon(x)) \forallx.((Missile(x) ^ Owns(Nono, x)) }->\mathrm{ Sells(West, x, Nono))
\forallx.(Enemy(x,America) }->\mathrm{ Hostile(x))
```


Backward Chaining: Example

```
American(West),Missile(M1), Owns(Nono, M1), Enemy(Nono, America)
\forallx,y, z.((American(x)\wedge Weapon (y)\wedge Hostile(z)\wedge Sells(x,y,z)) ->Criminal(x))
\forallx.(Missile (x) -> Weapon (x)) \forallx.((Missile(x) ^ Owns(Nono, x)) }->\mathrm{ Sells(West, x, Nono))
\forallx.(Enemy(x,America) }->\mathrm{ Hostile(x))
```


Backward Chaining: Example

```
American(West),Missile(M1), Owns(Nono, M1), Enemy(Nono, America)
\forallx,y,z.((American(x)^Weapon(y)^Hostile(z)\wedge Sells(x,y,z)) ->Criminal(x))
\forallx.(Missile (x) -> Weapon(x)) \forallx.((Missile(x) ^ Owns(Nono, x)) }->\mathrm{ Sells(West, x, Nono))
\forallx.(Enemy(x,America) }->\mathrm{ Hostile(x))
```


Backward Chaining: Example

```
American(West),Missile(M1), Owns(Nono, M1), Enemy(Nono, America)
\forallx,y,z.((American(x)^Weapon(y)\wedge Hostile (z)\wedge Sells (x, y, z)) -> Criminal(x))
\forallx.(Missile (x) -> Weapon (x)) \forallx.((Missile(x) ^ Owns(Nono, x)) }->\mathrm{ Sells(West, x, Nono))
\forallx.(Enemy(x,America) }->\mathrm{ Hostile(x))
```


Backward Chaining: Example

```
American(West),Missile(M1), Owns(Nono, M1 ), Enemy(Nono, America)
\forallx,y,z.((American(x)^Weapon(y)^Hostile(z)\wedge Sells(x,y,z)) ->Criminal(x))
\forallx.(Missile (x) -> Weapon(x)) \forallx.((Missile(x) ^ Owns(Nono, x)) }->\mathrm{ Sells(West, x, Nono))
\forallx.(Enemy(x,America) }->\mathrm{ Hostile(x))
```


Backward Chaining: Example

```
American(West),Missile(M1), Owns(Nono, M1 ), Enemy(Nono, America)
\forallx,y,z.((American (x)^Weapon(y)^Hostile (z)^Sells (x, y,z)) -> Criminal(x))
\forallx.(Missile(x) -> Weapon(x)) \forallx.((Missile(x) ^ Owns(Nono, x)) }->\mathrm{ Sells(West, x, Nono))
\forallx.(Enemy(x,America) }->\mathrm{ Hostile(x))
```


Backward Chaining: Example

```
American(West),Missile(M1), Owns(Nono, M1 ), Enemy(Nono, America)
\forallx,y,z.((American (x)^Weapon(y)^Hostile (z)^Sells (x, y, z)) -> Criminal(x))
\forallx.(Missile (x) -> Weapon(x)) \forallx.((Missile(x) ^ Owns(Nono, x)) }->\mathrm{ Sells(West, x, Nono))
\forallx.(Enemy(x,America) }->\mathrm{ Hostile(x))
```


Properties of Backward Chaining

- Depth-first recursive proof search: space is linear in size of proof
- Incomplete due to infinite loops
- e.g., $P(x) \rightarrow P(x) \Longrightarrow P(c), P(c), P(c) \ldots$ (easy to fix)
- e.g., $Q(f(x)) \rightarrow Q(x) \Longrightarrow Q(c), Q(f(c)), Q(f(f(c))))$,
- Inefficient due to repeated subgoals
- fix using caching of previous results \Longrightarrow need extra space!
- Widely used for logic programming (e.g. prolog)

Properties of Backward Chaining

- Depth-first recursive proof search: space is linear in size of proof
- Incomplete due to infinite loops
- e.g., $P(x) \rightarrow P(x) \Longrightarrow P(c), P(c), P(c) \ldots$ (easy to fix)
- e.g., $Q(f(x)) \rightarrow Q(x) \Longrightarrow Q(c), Q(f(c)), Q(f(f(c))))$,
- Inefficient due to repeated subgoals
- fix using caching of previous results \Longrightarrow need extra space!
- Widely used for Iogic nrogramming (e a prolog)

Properties of Backward Chaining

- Depth-first recursive proof search: space is linear in size of proof
- Incomplete due to infinite loops
- e.g., $P(x) \rightarrow P(x) \Longrightarrow P(c), P(c), P(c)$... (easy to fix)
- e.g., $Q(f(x)) \rightarrow Q(x) \Longrightarrow Q(c), Q(f(c)), Q(f(f(c)))), \ldots$
- Inefficient due to repeated subgoals
- fix using caching of previous results \Longrightarrow need extra space!
- Widely used for logic proaramming (e.g. prolog)

Properties of Backward Chaining

- Depth-first recursive proof search: space is linear in size of proof
- Incomplete due to infinite loops
- e.g., $P(x) \rightarrow P(x) \Longrightarrow P(c), P(c), P(c)$... (easy to fix)
- e.g., $Q(f(x)) \rightarrow Q(x) \Longrightarrow Q(c), Q(f(c)), Q(f(f(c)))), \ldots$
- Inefficient due to repeated subgoals
- fix using caching of previous results \Longrightarrow need extra space!
- Widely used for logic programming (e.g. prolog)

Properties of Backward Chaining

- Depth-first recursive proof search: space is linear in size of proof
- Incomplete due to infinite loops
- e.g., $P(x) \rightarrow P(x) \Longrightarrow P(c), P(c), P(c)$... (easy to fix)
- e.g., $Q(f(x)) \rightarrow Q(x) \Longrightarrow Q(c), Q(f(c)), Q(f(f(c)))), \ldots$
- Inefficient due to repeated subgoals
- fix using caching of previous results \Longrightarrow need extra space!
- Widely used for logic programming (e.g. prolog)

Outline

(1) Basic First-Order Reasoning

- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(2) Handling Definite FOL KBs \& Datalog
- Forward Chaining
- Backward Chaining
(3) Resolution for General FOL KBs
- CNF-Ization
- Resolution
- Dealing with Equalities [hints]
- A Complete Example

Outline

(1) Basic First-Order Reasoning

- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(2) Handling Definite FOL KBs \& Datalog
- Forward Chaining
- Backward Chaining
(3) Resolution for General FOL KBs
- CNF-Ization
- Resolution
- Dealing with Equalities [hints]
- A Complete Example

Conjunctive Normal Form (CNF)

- A FOL formula φ is in Conjunctive normal form iff it is a conjunction of disjunctions of quantifier-free literal:

- the disjunctions of literals $\bigvee_{j_{i}=1}^{K_{i}} J_{j i}$ are called clauses
- every literal is a quantifier-free atom or its negation
- free variables implicitly universally quantified
- Easier to handle: list of lists of literals.
\Longrightarrow no reasoning on the recursive structure of the formula
- Ex: $\neg \operatorname{Missile}(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)

FOL CNF Conversion $\operatorname{CNF}(\varphi)$

Convert into NNF

Every FOL formula φ can be reduced into CNF:
(1) Eliminate implications and biconditionals:
$\alpha \rightarrow \beta \quad \Longrightarrow \quad \neg \alpha \vee \beta$
$\alpha \leftrightarrow \beta \quad \Longrightarrow \quad(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)$
(2) Push inwards negations recursively:
$\neg(\alpha \wedge \beta) \Longrightarrow \neg \alpha \vee \neg \beta$
$\neg(\alpha \vee \beta) \Longrightarrow \quad \neg \alpha \wedge \neg \beta$
$\neg \neg \alpha$
$\neg \forall x . \alpha$
$\neg \exists x . \alpha \quad \longrightarrow$
Negation normal form: negations only in front of atomic formulae
quantified subformulas occur only with positive polarity

FOL CNF Conversion $\operatorname{CNF}(\varphi)$

Convert into NNF

Every FOL formula φ can be reduced into CNF:
(1) Eliminate implications and biconditionals:

$$
\begin{aligned}
& \alpha \rightarrow \beta \\
& \alpha \leftrightarrow \beta
\end{aligned} \Rightarrow \neg \alpha \vee \beta=(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
$$

(2) Push inwards negations recursively:

$$
\begin{aligned}
\neg(\alpha \wedge \beta) & \Longrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \Longrightarrow \neg \alpha \wedge \neg \beta \\
\neg \neg \alpha & \Longrightarrow \alpha \\
\neg \forall x \cdot \alpha & \Longrightarrow \exists x \cdot \neg \alpha \\
\neg \exists x \cdot \alpha & \Longrightarrow \forall x \cdot \neg \alpha
\end{aligned}
$$

\Longrightarrow Negation normal form: negations only in front of atomic formulae
\Longrightarrow quantified subformulas occur only with positive polarity

FOL CNF Conversion $\operatorname{CNF}(\varphi)$ [cont.]

Remove quantifiers

(C) Standardize variables: each quantifier should use a different var
$(\forall x \cdot \exists y \cdot \alpha) \wedge \exists y \cdot \beta \wedge \forall x \cdot \gamma \Longrightarrow(\forall x \cdot \exists y \cdot \alpha) \wedge \exists y_{1} \cdot \beta\left\{y / y_{1}\right\} \wedge \forall x_{1} \cdot \gamma\left\{x / x_{1}\right\}$
C Skolemize (a generalization of EI):
Each existential variable is replaced by a fresh Skolem function applied to the enclosing universally-quantified variables
$\exists y . \alpha$
$\Longrightarrow \alpha\{y / c$
Vx.(...ヨy.a...)
$\longrightarrow \quad \forall x \cdot\left(\ldots a\left\{y / F_{1}(x)\right\} \ldots\right)$
$\forall x_{1} x_{2} \cdot(\ldots \exists y . \alpha \ldots) \quad \Longrightarrow \quad \forall x_{1} x_{2} \cdot\left(\ldots \alpha\left\{y / F_{1}\left(x_{1}, x_{2}\right) \ldots\right)\right\}$
$\exists y_{1} \forall x_{1} x_{2} \exists y_{2} \forall x_{3} \exists y_{3} \cdot \alpha \Longrightarrow \forall x_{1} x_{2} x_{3} \cdot \alpha\left\{y_{1} / c, y_{2} / F_{1}\left(x_{1}, x_{2}\right), y_{3} / F_{2}\left(x_{1}, x_{2}, x_{3}\right)\right\}$
Ex: $\forall x \exists y$.Father $(y, x) \Longrightarrow \forall x$.Father $(s(x), x)$
$(s(x)$ implictly means "father of x " although $s()$ is a fresh function)
(5) Drop universal quantifiers
\Longrightarrow free variables implicitly universally quantified

FOL CNF Conversion $\operatorname{CNF}(\varphi)$ [cont.]

Remove quantifiers

(3) Standardize variables: each quantifier should use a different var

$$
(\forall x . \exists y \cdot \alpha) \wedge \exists y \cdot \beta \wedge \forall x \cdot \gamma \Longrightarrow(\forall x \cdot \exists y \cdot \alpha) \wedge \exists y_{1} \cdot \beta\left\{y / y_{1}\right\} \wedge \forall x_{1} \cdot \gamma\left\{x / x_{1}\right\}
$$

© Skolemize (a generalization of El):
Each existential variable is replaced by a fresh Skolem function applied to the enclosing universally-quantified variables

```
\existsy.\alpha
\forallx.(\ldots\existsy.\alpha\ldots)
\forallx1 和.(..\existsy.\alpha\ldots)
\existsy, \forall\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\exists\mp@subsup{y}{2}{}\forall\mp@subsup{x}{3}{}\exists\mp@subsup{y}{3}{}.
\Longrightarrow \quad \forall x _ { 1 } x _ { 2 } x _ { 3 } . \alpha \{ y _ { 1 } / c , y _ { 2 } / F _ { 1 } ( x _ { 1 } , x _ { 2 } ) , y _ { 3 } / F _ { 2 } ( x _ { 1 } , x _ { 2 } , x _ { 3 } ) \}
```

Ex: $\forall x \exists y$. Fathe $(y, x) \Longrightarrow \forall x$. Father $(s(x), x)$
$(s(x)$ implictly means "father of x " although $s()$ is a fresh function)
(5) Drop universal quantifiers:
\Longrightarrow free variables implicitly universally quantified

FOL CNF Conversion $\operatorname{CNF}(\varphi)$ [cont.]

Remove quantifiers

(3) Standardize variables: each quantifier should use a different var

$$
(\forall x \cdot \exists y \cdot \alpha) \wedge \exists y \cdot \beta \wedge \forall x \cdot \gamma \Longrightarrow(\forall x \cdot \exists y \cdot \alpha) \wedge \exists y_{1} \cdot \beta\left\{y / y_{1}\right\} \wedge \forall x_{1} \cdot \gamma\left\{x / x_{1}\right\}
$$

(9) Skolemize (a generalization of EI):

Each existential variable is replaced by a fresh Skolem function applied to the enclosing universally-quantified variables
$\exists y . \alpha \quad \Longrightarrow \quad \alpha\{y / c\}$
$\forall x \cdot(\ldots \exists y . \alpha \ldots) \quad \Longrightarrow \quad \forall x \cdot\left(\ldots \alpha\left\{y / F_{1}(x)\right\} \ldots\right)$
$\forall x_{1} x_{2} \cdot(\ldots \exists y . \alpha \ldots) \quad \Longrightarrow \quad \forall x_{1} x_{2} \cdot\left(\ldots \alpha\left\{y / F_{1}\left(x_{1}, x_{2}\right) \ldots\right)\right\}$
$\exists y_{1} \forall x_{1} x_{2} \exists y_{2} \forall x_{3} \exists y_{3} \cdot \alpha \quad \Longrightarrow \quad \forall x_{1} x_{2} x_{3} \cdot \alpha\left\{y_{1} / c, y_{2} / F_{1}\left(x_{1}, x_{2}\right), y_{3} / F_{2}\left(x_{1}, x_{2}, x_{3}\right)\right\}$
Ex: $\forall x \exists y$.Father $(y, x) \Longrightarrow \forall x$.Father $(s(x), x)$
$(s(x)$ implictly means "father of x " although $s()$ is a fresh function)

(5) Drop universal quantifiers:

\Longrightarrow free variables implicitly universally quantified

FOL CNF Conversion $\operatorname{CNF}(\varphi)$ [cont.]

Remove quantifiers

(3) Standardize variables: each quantifier should use a different var

$$
(\forall x . \exists y \cdot \alpha) \wedge \exists y \cdot \beta \wedge \forall x \cdot \gamma \Longrightarrow(\forall x \cdot \exists y \cdot \alpha) \wedge \exists y_{1} \cdot \beta\left\{y / y_{1}\right\} \wedge \forall x_{1} \cdot \gamma\left\{x / x_{1}\right\}
$$

(9) Skolemize (a generalization of EI):

Each existential variable is replaced by a fresh Skolem function applied to the enclosing universally-quantified variables
$\exists y . \alpha \quad \Longrightarrow \alpha\{y / c\}$
$\forall x \cdot(\ldots \exists y . \alpha \ldots) \quad \Longrightarrow \quad \forall x \cdot\left(\ldots \alpha\left\{y / F_{1}(x)\right\} \ldots\right)$
$\forall x_{1} x_{2} \cdot(\ldots \exists y . \alpha \ldots) \quad \Longrightarrow \quad \forall x_{1} x_{2} \cdot\left(\ldots \alpha\left\{y / F_{1}\left(x_{1}, x_{2}\right) \ldots\right)\right\}$
$\exists y_{1} \forall x_{1} x_{2} \exists y_{2} \forall x_{3} \exists y_{3} \cdot \alpha \quad \Longrightarrow \quad \forall x_{1} x_{2} x_{3} \cdot \alpha\left\{y_{1} / c, y_{2} / F_{1}\left(x_{1}, x_{2}\right), y_{3} / F_{2}\left(x_{1}, x_{2}, x_{3}\right)\right\}$
Ex: $\forall x \exists y$.Father $(y, x) \Longrightarrow \forall x$.Father $(s(x), x)$
$(s(x)$ implictly means "father of x " although s() is a fresh function)
(0) Drop universal quantifiers: $\forall x_{1} \ldots x_{k} \cdot \alpha \Longrightarrow \alpha$
\Longrightarrow free variables implicitly universally quantified

FOL CNF Conversion $\operatorname{CNF}(\varphi)$ [cont.]

CNF-ize propositionally

(5) CNF-ize propositionally (see previous chapters)
either apply recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \Rightarrow(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$ or rename subformulas and add definitions: $(\alpha \wedge \beta) \vee \gamma \Longrightarrow(B \vee \gamma) \wedge \operatorname{CNF}(B \leftrightarrow(\alpha \wedge \beta))$
(0) Standardize Apart (again) (Personal suggestion, not in AIMA book): prevent the same (implicitly universally-quantified) variable to occur in distinct clauses (correct because $\forall x .(\alpha \wedge \beta)$ equivalent to $\forall x . \alpha \wedge \forall y . \beta)$

Properties of FOL CNF-ization

- Preserves satisfiability: $M(\varphi) \neq \emptyset$ iff $M(C N F(\varphi)) \neq \emptyset$
Preserves entailment: $\varphi \vDash \alpha$ iff $\operatorname{CNF}(\varphi) \models \alpha$ (in fact, $\varphi \wedge \neg \alpha$ unsat iff $\varphi \wedge \neg \operatorname{CNF}(\alpha)$ unsat)
- Does not preserve validity (but we do not need it)

FOL CNF Conversion $\operatorname{CNF}(\varphi)$ [cont.]

CNF-ize propositionally

(6) CNF-ize propositionally (see previous chapters):
either apply recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \quad \Longrightarrow \quad(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$ or rename subformulas and add definitions: $(\alpha \wedge \beta) \vee \gamma \Longrightarrow \quad(B \vee \gamma) \wedge \operatorname{CNF}(B \leftrightarrow(\alpha \wedge \beta))$Standardize Apart (again) (Personal suggestion, not in AIMA book):
prevent the same (implicitly universally-quantified) variable to occur in distinct clauses
(correct because $\forall x \cdot(\alpha \wedge \beta)$ equivalent to $\forall x . \alpha \wedge \forall y . \beta)$

Properties of FOL CNF-ization

- Preserves satisfiability: $M(\varphi) \neq \emptyset$ iff $M(\operatorname{CNF}(\varphi)) \neq \emptyset$

Preserves entailment: $\varphi \models \alpha$ iff $\operatorname{CNF}(\varphi) \models \alpha$ (in fact, $\varphi \wedge \neg \alpha$ unsat iff $\varphi \wedge \neg \operatorname{CNF}(\alpha)$ unsat)

- Does not preserve validity (but we do not need it)

FOL CNF Conversion $\operatorname{CNF}(\varphi)$ [cont.]

CNF-ize propositionally

© CNF-ize propositionally (see previous chapters):
either apply recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \quad \Longrightarrow \quad(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$ or rename subformulas and add definitions: $(\alpha \wedge \beta) \vee \gamma \Longrightarrow(B \vee \gamma) \wedge \operatorname{CNF}(B \leftrightarrow(\alpha \wedge \beta))$
(3 Standardize Apart (again) (Personal suggestion, not in AIMA book): prevent the same (implicitly universally-quantified) variable to occur in distinct clauses (correct because $\forall x .(\alpha \wedge \beta)$ equivalent to $\forall x . \alpha \wedge \forall y . \beta)$

Properties of FOL CNF-ization

- Preserves satisfiability: M Preserves entailment: $\varphi \vDash \alpha$ iff $C N F(\varphi) \vDash \alpha$ (in fact, $\varphi \wedge \neg \alpha$ unsat iff $\varphi \wedge \neg C N F(\alpha)$ unsat)
- Does not preserve validity (but we do not need it)

FOL CNF Conversion $\operatorname{CNF}(\varphi)$ [cont.]

CNF-ize propositionally
© CNF-ize propositionally (see previous chapters): either apply recursively the DeMorgan's Rule: $(\alpha \wedge \beta) \vee \gamma \quad \Longrightarrow \quad(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$ or rename subformulas and add definitions: $(\alpha \wedge \beta) \vee \gamma \Longrightarrow(B \vee \gamma) \wedge \operatorname{CNF}(B \leftrightarrow(\alpha \wedge \beta))$
(3 Standardize Apart (again) (Personal suggestion, not in AIMA book): prevent the same (implicitly universally-quantified) variable to occur in distinct clauses (correct because $\forall x .(\alpha \wedge \beta)$ equivalent to $\forall x . \alpha \wedge \forall y . \beta)$

Properties of FOL CNF-ization

- Preserves satisfiability: $M(\varphi) \neq \emptyset$ iff $M(\operatorname{CNF}(\varphi)) \neq \emptyset$
\Longrightarrow Preserves entailment: $\varphi \models \alpha$ iff $\operatorname{CNF}(\varphi) \models \alpha$ (in fact, $\varphi \wedge \neg \alpha$ unsat iff $\varphi \wedge \neg \operatorname{CNF}(\alpha)$ unsat)
- Does not preserve validity (but we do not need it)

Conversion to CNF: Example

Consider: "Everyone who loves all animals is loved by someone" $\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y \cdot \operatorname{Loves}(y, x)])$
© Eliminate implications and biconditionals:
$\forall x .(\neg[\forall y \cdot(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \cdot \operatorname{Loves}(y, x)])$
(3) Push inwards neqations recursively (NNF)
$\forall x .([\exists y \cdot \neg(\neg$ Animal $(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \cdot \operatorname{Loves}(y, x)])$
$\forall x .([\exists y \cdot(\neg \neg$ Animal $(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
$\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y \cdot \operatorname{Loves}(y, x)])$
(1) Standardize variables:
$\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists z . \operatorname{Loves}(z, x)])$Skolemize:
$\forall x .([$ Anim $l(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)])$
($F(x)$: "an animal unloved by x "; $G(x)$: "someone who loves x")
(5) Drop universal quantifiers::
$[$ Animal $(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)]$
(6) CNF-ize propositionally
$(\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)) \wedge(\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x))$

Conversion to CNF: Example

Consider: "Everyone who loves all animals is loved by someone" $\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y . \operatorname{Loves}(y, x)])$
(1) Eliminate implications and biconditionals:

$$
\forall x .(\neg[\forall y \cdot(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])
$$

(2) Push inwards negations recursively (NNF)
$\forall x .([\exists y . \neg(\neg$ Animal $(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \cdot \operatorname{Loves}(y, x)])$
$\forall x .([\exists y \cdot(\neg \neg$ Animal $(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
(0) Standardize valia'o'es:
$\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists z . \operatorname{Loves}(z, x)])$

Skolemize:
$\forall x .([$ Animal $(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)])$
($F(x)$: "an animal unloved by x "; $G(x)$: "someone who loves x")
(5) Drop universal quantifiers::
$[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)]$
(6) CNF-ize propositionally
$(\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)) \wedge(\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x))$

Conversion to CNF: Example

Consider: "Everyone who loves all animals is loved by someone" $\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y . \operatorname{Loves}(y, x)])$
(1) Eliminate implications and biconditionals:

$$
\forall x .(\neg[\forall y .(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])
$$

(2) Push inwards negations recursively (NNF)
$\forall x .([\exists y . \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
$\forall x .([\exists y .(\neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
$\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$

Standardize variables:

$\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists z . \operatorname{Loves}(z, x)])$
\square Skolemize:
$\forall x .([$ Animal $(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)])$
($\mathrm{F}(\mathrm{x})$: "an animal unloved by x "; $\mathrm{G}(\mathrm{x})$: "someone who loves x ")Drop universal quantifiers:
$[$ Animal $(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)]$

(6) CNF-ize propositionally

$(\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)) \wedge(\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x))$

Conversion to CNF: Example

Consider: "Everyone who loves all animals is loved by someone" $\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y . \operatorname{Loves}(y, x)])$
(1) Eliminate implications and biconditionals:

$$
\forall x .(\neg[\forall y .(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \cdot \operatorname{Loves}(y, x)])
$$

(2) Push inwards negations recursively (NNF)
$\forall x .([\exists y . \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
$\forall x .([\exists y .(\neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
$\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
(3) Standardize variables:
$\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists z . \operatorname{Loves}(z, x)])$
(4) Skolemize:
$\forall x .([\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)])$
$(F(x)$: "an animal unloved by x "; $G(x)$: "someone who loves x ")
(3) Drop universal quantifiers:
$[$ Animal $(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)]$

- NF-ize propositionally
$(\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)) \wedge(\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x))$

Conversion to CNF: Example

Consider: "Everyone who loves all animals is loved by someone" $\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y . \operatorname{Loves}(y, x)])$
(1) Eliminate implications and biconditionals:

$$
\forall x \cdot(\neg \forall \forall y \cdot(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \cdot \operatorname{Loves}(y, x)])
$$

(2) Push inwards negations recursively (NNF)
$\forall x .([\exists y . \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
$\forall x .([\exists y .(\neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
$\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
(3) Standardize variables:
$\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists z . \operatorname{Loves}(z, x)])$
(1) Skolemize:
$\forall x .([\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)])$
$(F(x)$: "an animal unloved by x "; $G(x)$: "someone who loves $x ")$

- Drop universal quantifiers::
$[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)]$
(1) NF-ize propositionally
$(\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)) \wedge(\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x))$

Conversion to CNF: Example

Consider: "Everyone who loves all animals is loved by someone" $\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y . \operatorname{Loves}(y, x)])$
(1) Eliminate implications and biconditionals:

$$
\forall x \cdot(\neg \forall \forall y \cdot(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \cdot \operatorname{Loves}(y, x)])
$$

(2) Push inwards negations recursively (NNF)
$\forall x .([\exists y . \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
$\forall x .([\exists y .(\neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
$\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
(3) Standardize variables:
$\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists z . \operatorname{Loves}(z, x)])$
(1) Skolemize:
$\forall x .([\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)])$
($\mathrm{F}(\mathrm{x})$: "an animal unloved by x "; $\mathrm{G}(\mathrm{x})$: "someone who loves x ")
(6) Drop universal quantifiers::
$[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)]$

Conversion to CNF: Example

Consider: "Everyone who loves all animals is loved by someone" $\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y . \operatorname{Loves}(y, x)])$
(1) Eliminate implications and biconditionals:

$$
\forall x \cdot(\neg \forall \forall y \cdot(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \cdot \operatorname{Loves}(y, x)])
$$

(2) Push inwards negations recursively (NNF)
$\forall x .([\exists y . \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
$\forall x .([\exists y .(\neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
$\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
(3) Standardize variables:
$\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists z . \operatorname{Loves}(z, x)])$
(9) Skolemize:
$\forall x .([\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)])$
($\mathrm{F}(\mathrm{x})$: "an animal unloved by x "; $\mathrm{G}(\mathrm{x})$: "someone who loves x ")
(क) Drop universal quantifiers::
$[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)]$
(6) CNF-ize propositionally (and standardize apart the result)
$(\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)) \wedge\left(\neg \operatorname{Loves}\left(x^{\prime}, F\left(x_{1}\right)\right) \vee \operatorname{Loves}\left(G\left(x_{1}\right), x_{1}\right)\right)$

Conversion to CNF: Example

Consider: "Everyone who loves all animals is loved by someone" $\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y . \operatorname{Loves}(y, x)])$
(1) Eliminate implications and biconditionals:

$$
\forall x \cdot(\neg \forall \forall y \cdot(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \cdot \operatorname{Loves}(y, x)])
$$

(2) Push inwards negations recursively (NNF)
$\forall x .([\exists y . \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
$\forall x .([\exists y .(\neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
$\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])$
(3) Standardize variables:
$\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists z . \operatorname{Loves}(z, x)])$
(9) Skolemize:
$\forall x .([\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)])$
$(F(x)$: "an animal unloved by x "; $G(x)$: "someone who loves x ")
(6) Drop universal quantifiers::
$[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)]$
(6) CNF-ize propositionally (and standardize apart the result):
$(\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)) \wedge\left(\neg \operatorname{Loves}\left(x_{1}, F\left(x_{1}\right)\right) \vee \operatorname{Loves}\left(G\left(x_{1}\right), x_{1}\right)\right)$

Remark about Skolemization

Common mistake to avoid

- Do not
- apply Skolemization or
- drop universal quantifiers
before converting into NNF \& standardize apart variables!
- Polarity of quantified subformulas affects Skolemization!

NNF-ization may convert J's into \forall 's, and vice versa

- Same-name quantified variable may cause errors
standardize variable may rename variables
(which, e.g., could me wrongly be Skolemized into the same function)

Remark about Skolemization

Common mistake to avoid

- Do not
- apply Skolemization or
- drop universal quantifiers
before converting into NNF \& standardize apart variables!
- Polarity of quantified subformulas affects Skolemization!
\Longrightarrow NNF-ization may convert \exists 's into \forall 's, and vice versa
- Same-name quantified variable may cause errors
standardize variable may rename variables
(which, e.g., could me wrongly be Skolemized into the same function)

Remark about Skolemization

Common mistake to avoid

- Do not
- apply Skolemization or
- drop universal quantifiers
before converting into NNF \& standardize apart variables!
- Polarity of quantified subformulas affects Skolemization!
\Longrightarrow NNF-ization may convert \exists 's into \forall 's, and vice versa
- Same-name quantified variable may cause errors
\Longrightarrow standardize variable may rename variables (which, e.g., could me wrongly be Skolemized into the same function)

Remark about Skolemization: Example

```
Wrong CNF-ization
\forallx.([\forally.(Animal(y) }->\mathrm{ Loves }(x,y))]->[\existsy.\operatorname{Loves}(y,x)]
    O Too-early Skolemization & universal-quantifier dropping:
    \forallx.([\forally.(Animal(y) }->\mathrm{ Loves( }x,y))]->[\operatorname{Loves(G(x),x)])
    ([(Animal(y) -> Loves(x,y))] }->[\operatorname{Loves(G(x),x)])
(C) NNF-ization and CNF-ization ([(Animal(y)^\negLoves(x,y))]\vee [Loves(G(x),x)])
    ((Animal(y)\veeLoves(G(x),x))^((\negLoves(x,y))\veeLoves(G(x),x)))
" " should be a Skolem function F(x) instead
because "\forally.(...)" occurred negatively
\Longrightarrow \text { should become " } \exists \mathrm { y } . \neg ( \ldots ) \text { ", and hence y Skolemized into } F ( x )
(compare with previous slide)
```


Remark about Skolemization: Example

```
Wrong CNF-ization
\forallx.([\forally.(Animal(y)}->\mathrm{ Loves (x,y))] }->[\existsy.Loves(y,x)]
(1) Too-early Skolemization \& universal-quantifier dropping:
\(\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\operatorname{Loves}(G(x), x)])\)
\(([(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\operatorname{Loves}(G(x), x)])\)
(2) NNF-ization and CNF-ization \(([(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\operatorname{Loves}(G(x), x)])\)
\(((\) Animal \((y) \vee \operatorname{Loves}(G(x), x)) \wedge((\neg \operatorname{Loves}(x, y)) \vee \operatorname{Loves}(G(x), x)))\)
```


y" should be a Skolem function F(x) instead

```
because " \(\forall y\).(...)" occurred negatively
\(\Longrightarrow\) should become " \(\exists y . \neg(\ldots)\) ", and hence y Skolemized into \(F(x)\)
```


(compare with previous slide)

Remark about Skolemization: Example

$$
\begin{aligned}
& \text { Wrong CNF-ization } \\
& \forall x .([\forall y .(\text { Animal }(y) \rightarrow \text { Loves }(x, y))] \rightarrow[\exists y \text {.Loves }(y, x)]) \\
& \text { Too-early Skolemization \& universal-quantifier dropping: } \\
& \forall x .([\forall y .(\text { Animal }(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\operatorname{Loves}(G(x), x)]) \\
& \quad([(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\operatorname{Loves}(G(x), x)])
\end{aligned}
$$

(2) NNF-ization and CNF-ization $([(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\operatorname{Loves}(G(x), x)])$ $((\operatorname{Animal}(y) \vee \operatorname{Loves}(G(x), x)) \wedge((\neg \operatorname{Loves}(x, y)) \vee \operatorname{Loves}(G(x), x)))$

" should be a Skolem function $F(x)$ instead

because " $\forall y$.(...)" occurred negatively
\Longrightarrow should become " $\exists y . \neg(\ldots)$ ", and hence y Skolemized into $F(x)$

(compare with previous slide)

Remark about Skolemization: Example

```
Wrong CNF-ization
\forallx.([\forally.(Animal(y)}->\mathrm{ Loves (x,y))] }->[\existsy.Loves(y,x)]
(1) Too-early Skolemization \& universal-quantifier dropping:
\(\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\operatorname{Loves}(G(x), x)])\)
\(([(\) Animal \((y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\operatorname{Loves}(G(x), x)])\)
```

(2) NNF-ization and CNF-ization $([(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\operatorname{Loves}(G(x), x)])$ $((\operatorname{Animal}(y) \vee \operatorname{Loves}(G(x), x)) \wedge((\neg \operatorname{Loves}(x, y)) \vee \operatorname{Loves}(G(x), x)))$
" y " should be a Skolem function $\mathrm{F}(\mathrm{x})$ instead because " $\forall y .(\ldots)$ " occurred negatively
\Longrightarrow should become " $\exists y . \neg(\ldots)$ ", and hence y Skolemized into $F(x)$ (compare with previous slide)

Exercise

Did Curiosity kill the cat?

Formalize and CNF-ize the following:
Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by no one.
Jack loves all animals.
Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?
(See also AIMA book for FOL formalization and CNF-ization)

Outline

(1) Basic First-Order Reasoning

- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(2) Handling Definite FOL KBs \& Datalog
- Forward Chaining
- Backward Chaining
(3) Resolution for General FOL KBs
- CNF-Ization
- Resolution
- Dealing with Equalities [hints]
- A Complete Example

Resolution

- FOL resolution rule let $\theta=$ mgu($\left.h,-m_{j}\right)$, s.t. $1, \theta=-m_{\theta}$:
$\frac{\left(I_{1} \vee \ldots \vee I_{i} \vee \ldots \vee I_{k}\right) \quad\left(m_{1} \vee \ldots \vee m_{j} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i}+1 \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}$

Man(Socrates) $\quad(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))$
Ex: Mortal(Socrates) s.t. $\theta \stackrel{\text { del }}{=}\{x /$ Socrates $\}$

- To prove that $\Gamma=\alpha$ in FOL:
- Refutation-Complete:
- If there is a substitution θ such that $\Gamma=\theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate
- Many strategies and tools available

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:
$\frac{\left(I_{1} \vee \ldots \vee I_{i} \vee \ldots \vee I_{k}\right) \quad\left(m_{1} \vee \ldots \vee m_{j} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}$

Man(Socrates) $\quad(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))$

- Ex:
- To prove that $\Gamma=\alpha$ in FOL:
- Refutation-Complete:
- If there is a substitution θ such that $\Gamma=\theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate
- Many strategies and tools available

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:

$$
\frac{\left(I_{1} \vee \ldots \vee I_{i} \vee \ldots \vee I_{k}\right)\left(m_{1} \vee \ldots \vee m_{j} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}
$$

Man(Socrates) $\quad(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))$

- Ex: Mortal(Socrates) s.t. $\theta \stackrel{\text { del }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- Refutation-Complete:
- If there is a substitution θ such that $\Gamma=\theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate
- Many strategies and tools available

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:

$$
\frac{\left(I_{1} \vee \ldots \vee I_{i} \vee \ldots \vee I_{k}\right)\left(m_{1} \vee \ldots \vee m_{j} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}
$$

- Ex: $\frac{\operatorname{Man}(\text { Socrates })(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))}{\text { Mortal(Socrates) }}$ s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma=\alpha$ in FOL:
- Refutation-Complete:
- If there is a substitution θ such that $\Gamma=\theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate
- Many strategies and tools available

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(I_{i}, \neg m_{j}\right)$, s.t. $I_{i} \theta=\neg m_{j} \theta$:

$$
\frac{\left(I_{1} \vee \ldots \vee I_{i} \vee \ldots \vee I_{k}\right)\left(m_{1} \vee \ldots \vee m_{j} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}
$$

- Ex: $\frac{\operatorname{Man}(\text { Socrates })(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))}{\text { Mortal(Socrates) }}$ s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert 「 $\wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\Gamma \wedge \neg \alpha)$ until either
- Hint: apply resolution first to unit clauses (unit resolution)
- unit resolution alone complete for definite clauses
- Refutation-Complete:
- If there is a substitution θ such that $\Gamma \models \theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate
- Many strategies and tools available

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(I_{i}, \neg m_{j}\right)$, s.t. $I_{i} \theta=\neg m_{j} \theta$:

$$
\frac{\left(I_{1} \vee \ldots \vee I_{i} \vee \ldots \vee I_{k}\right) \quad\left(m_{1} \vee \ldots \vee m_{j} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}
$$

- Ex: $\frac{\operatorname{Man}(\text { Socrates })(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))}{\text { Mortal(Socrates) }}$ s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert $\Gamma \wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\Gamma \wedge \neg \alpha)$ until either
- Hint: apply resolution first to unit clauses (unit resolution)
- unit resolution alone complete for definite clauses
- Refutation-Complete:
- If there is a substitution θ such that $\Gamma \models \theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate
- Many strategies and tools available

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:

$$
\frac{\left(I_{1} \vee \ldots \vee I_{i} \vee \ldots \vee I_{k}\right) \quad\left(m_{1} \vee \ldots \vee m_{j} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}
$$

- Ex: $\frac{\operatorname{Man}(\text { Socrates })(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))}{\text { Mortal(Socrates) }}$ s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert $\Gamma \wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\Gamma \wedge \neg \alpha)$ until either
- the empty clause is generated
- no more resolution step is applicable \Longrightarrow
- resource (time, memory) exhausted \Longrightarrow ?
- Hint: apply resolution first to unit clauses (unit resolution)
- unit resolution alone complete for definite clauses
- Refutation-Complete:
- If there is a substitution θ such that $\Gamma=\theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:

$$
\frac{\left(I_{1} \vee \ldots \vee I_{i} \vee \ldots \vee I_{k}\right) \quad\left(m_{1} \vee \ldots \vee m_{j} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}
$$

- Ex: $\frac{\operatorname{Man}(\text { Socrates })(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))}{\text { Mortal }(\operatorname{Socrates)}}$ s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert $\Gamma \wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\Gamma \wedge \neg \alpha)$ until either
- the empty clause is generated $\Longrightarrow \Gamma \models \alpha$
- no more resolution step is applicable
- resource (time, memory) exhausted $=$
- Hint: apply resolution first to unit clauses (unit resolution)
- unit resolution alone complete for definite clauses
- Refutation-Complete:
- If there is a substitution θ such that $\Gamma \models \theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(I_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:

$$
\frac{\left(I_{1} \vee \ldots \vee I_{i} \vee \ldots \vee I_{k}\right) \quad\left(m_{1} \vee \ldots \vee m_{j} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}
$$

- Ex: $\frac{\operatorname{Man}(\text { Socrates })(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))}{\text { Mortal(Socrates) }}$ s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert $\Gamma \wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\Gamma \wedge \neg \alpha)$ until either
- the empty clause is generated $\Longrightarrow \Gamma \models \alpha$
- no more resolution step is applicable $\Longrightarrow \Gamma \not \models \alpha$
- resource (time, memory) exhausted \Longrightarrow ??
- Hint: apply resolution first to unit clauses (unit resolution)
- unit resolution alone complete for definite clauses
- Refutation-Complete:
- If there is a substitution θ such that $\Gamma \models \theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(I_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:

$$
\frac{\left(I_{1} \vee \ldots \vee I_{i} \vee \ldots \vee I_{k}\right) \quad\left(m_{1} \vee \ldots \vee m_{j} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}
$$

- Ex: $\frac{\operatorname{Man}(\text { Socrates })(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))}{\text { Mortal(Socrates) }}$ s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert $\Gamma \wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\Gamma \wedge \neg \alpha)$ until either
- the empty clause is generated $\Longrightarrow \Gamma \models \alpha$
- no more resolution step is applicable $\Longrightarrow \Gamma \not \vDash \alpha$
- resource (time, memory) exhausted \Longrightarrow ??
- Hint: apply resolution first to unit clauses (unit resolution)
- unit resolution alone complete for definite clauses
- Refutation-Complete:
- If there is a substitution θ such that $\Gamma \models \theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:
$\frac{\left(I_{1} \vee \ldots \vee I_{i} \vee \ldots \vee I_{k}\right) \quad\left(m_{1} \vee \ldots \vee m_{j} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}$
- Ex: $\frac{\operatorname{Man}(\text { Socrates })(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))}{\text { Mortal(Socrates) }}$ s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert $\Gamma \wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\Gamma \wedge \neg \alpha)$ until either
- the empty clause is generated $\Longrightarrow \Gamma \models \alpha$
- no more resolution step is applicable $\Longrightarrow \Gamma \not \vDash \alpha$
- resource (time, memory) exhausted \Longrightarrow ??
- Hint: apply resolution first to unit clauses (unit resolution)
- unit resolution alone complete for definite clauses
- Refutation-Complete:
- If there is a substitution θ such that $\Gamma \models \theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:

$$
\frac{\left(I_{1} \vee \ldots \vee I_{i} \vee \ldots \vee I_{k}\right) \quad\left(m_{1} \vee \ldots \vee m_{j} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}
$$

- Ex: $\frac{\operatorname{Man}(\text { Socrates })(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))}{\text { Mortal(Socrates) }}$ s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert $\Gamma \wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\Gamma \wedge \neg \alpha)$ until either
- the empty clause is generated $\Longrightarrow \Gamma \models \alpha$
- no more resolution step is applicable $\Longrightarrow \Gamma \not \vDash \alpha$
- resource (time, memory) exhausted \Longrightarrow ??
- Hint: apply resolution first to unit clauses (unit resolution)
- unit resolution alone complete for definite clauses
- Refutation-Complete:
- If there is a substitution θ such that $\Gamma \models \theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:

$$
\frac{\left(I_{1} \vee \ldots \vee I_{i} \vee \ldots \vee I_{k}\right) \quad\left(m_{1} \vee \ldots \vee m_{j} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}
$$

Man(Socrates) $\quad(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))$

- Ex: Mortal(Socrates) s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert $\Gamma \wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\Gamma \wedge \neg \alpha)$ until either
- the empty clause is generated $\Longrightarrow \Gamma \models \alpha$
- no more resolution step is applicable $\Longrightarrow \Gamma \not \vDash \alpha$
- resource (time, memory) exhausted \Longrightarrow ??
- Hint: apply resolution first to unit clauses (unit resolution)
- unit resolution alone complete for definite clauses
- Refutation-Complete:
- If there is a substitution θ such that $\Gamma \models \theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate
- Many strategies and tools available

Example: Resolution with Definite Clauses

KB:

The law says that it is a crime for an American to sell weapons to hostile nations.
The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
Goal: Prove that Colonel West is a criminal.

Example: Resolution with Definite Clauses [cont.]

- it is a crime for an American to sell weapons to hostile nations:
$\forall x, y, z .(($ American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Hostile}(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow \operatorname{Criminal}(x))$
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg \operatorname{Hostile}(z) \vee \neg \operatorname{Sells}(x, y, z) \vee \operatorname{Criminal}(x)$
- Nono ... has some missiles
$\exists x .($ Owns $($ Nono, $x) \wedge \operatorname{Missile}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
- All of its missiles were sold to it by Colonel West
$\forall x .((\operatorname{Missile}(x) \wedge$ Owns $($ Nono,$x)) \rightarrow$ Sells(West, x, Nono $))$
$\neg \operatorname{Missile}(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)
- Missiles are weapons:
$\forall x .(\operatorname{Missile}(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg \operatorname{Missile}(x) \vee$ Weapon (x)
- An enemy of America counts as "hostile": $\forall x$.(Enemy $(x$, America $) \rightarrow$ Hostile $(x))$ Enemy (x, America) \vee Hostile (x)
- West, who is American ...: American(West)
- The country Nono, an enemy of America

Example：Resolution with Definite Clauses［cont．］

－it is a crime for an American to sell weapons to hostile nations：
$\forall x, y, z .(($ American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Hostile}(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow \operatorname{Criminal}(x))$
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg \operatorname{Hostile}(z) \vee \neg \operatorname{Sells}(x, y, z) \vee \operatorname{Criminal}(x)$
－Nono ．．．has some missiles
$\exists x$ ．$(\operatorname{Owns}($ Nono，$x) \wedge \operatorname{Missile}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono，$\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
－All of its missiles were sold to it by Colonel West
$\forall x$ ．$((\operatorname{Missile}(x) \wedge$ Owns（Nono，$x)) \rightarrow$ Sells（West，x, Nono））
$\neg \operatorname{Missile}(x) \vee \neg$ Owns（Nono，$x) \vee$ Sells（West，x, Nono）
－Missiles are weapons：
$\forall x$ ．$(\operatorname{Missile}(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg \operatorname{Missile}(x) \vee$ Weapon (x)
－An enemy of America counts as＂hostile＂：$\forall x$ ．（Enemy $(x$. America）\rightarrow Hostile $(x))$ Enemy（x，America）v Hostile（ x ）
－West，who is American ．．．：American（West）
－The country Nono，an enemy of America

Example：Resolution with Definite Clauses［cont．］

－it is a crime for an American to sell weapons to hostile nations：
$\forall x, y, z .(($ American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Hostile}(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow \operatorname{Criminal}(x))$
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Hostile $(z) \vee \neg \operatorname{Sells}(x, y, z) \vee \operatorname{Criminal}(x)$
－Nono ．．．has some missiles
$\exists x$ ．$(\operatorname{Owns}(\operatorname{Nono}, x) \wedge \operatorname{Missile}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono，$\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
－All of its missiles were sold to it by Colonel West $\forall x .(($ Missile $(x) \wedge$ Owns（Nono，$x)) \rightarrow$ Sells（West，x, Nono））
$\Longrightarrow \neg \operatorname{Missile}(x) \vee \neg \operatorname{Owns}$（Nono，$x) \vee$ Sells（West，x ，Nono）
－Missiles are weapons：
$\forall x$ ．$(\operatorname{Missile}(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg \operatorname{Missile}(x) \vee$ Weapon (x)
－An enemy of America counts as＂hostile＂：$\forall x$ ．（Enemy $(x$, America $) \rightarrow$ Hostile $(x))$ Enemy（x，America）V Hostile（ x ）
－West，who is American ．．．：American（West）
－The country Nono，an enemy of America

Example: Resolution with Definite Clauses [cont.]

- it is a crime for an American to sell weapons to hostile nations:
$\forall x, y, z .(($ American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Hostile}(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow \operatorname{Criminal}(x))$
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Hostile $(z) \vee \neg \operatorname{Sells}(x, y, z) \vee \operatorname{Criminal}(x)$
- Nono ... has some missiles
$\exists x$. $(\operatorname{Owns}(\operatorname{Nono}, x) \wedge \operatorname{Missile}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
- All of its missiles were sold to it by Colonel West $\forall x$. $((\operatorname{Missile}(x) \wedge$ Owns(Nono, $x)) \rightarrow$ Sells(West, x, Nono) $)$
$\Longrightarrow \neg \operatorname{Missile}(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)
- Missiles are weapons:
$\forall x .(\operatorname{Missile}(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg \operatorname{Missile}(x) \vee$ Weapon (x)
- An enemy of America counts as "hostile": $\forall x$. (Enemy $(x$, America $) \rightarrow$ Hostile $(x))$ Enemy (x, America) \vee Hostile (x)
- West, who is American ...: American(West)
- The country Nono, an enemy of America

Example: Resolution with Definite Clauses [cont.]

- it is a crime for an American to sell weapons to hostile nations:
$\forall x, y, z .(($ American $(x) \wedge$ Weapon $(y) \wedge$ Hostile $(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow$ Criminal $(x))$
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Hostile $(z) \vee \neg \operatorname{Sells}(x, y, z) \vee$ Criminal (x)
- Nono ... has some missiles
$\exists x$. $($ Owns $($ Nono,$x) \wedge \operatorname{Missile~}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
- All of its missiles were sold to it by Colonel West $\forall x .(($ Missile $(x) \wedge$ Owns(Nono, $x)) \rightarrow$ Sells(West, x, Nono))
$\Longrightarrow \neg \operatorname{Missile}(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)
- Missiles are weapons:
$\forall x$. $(\operatorname{Missile}(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg$ Missile $(x) \vee$ Weapon (x)
- An enemy of America counts as "hostile": $\forall x$.(Enemy (x, America) \rightarrow Hostile $(x))$
$\Longrightarrow \neg E n e m y(x$, America $) \vee \operatorname{Hostile}(x)$
- West, who is American ...: American(West)
- The country Nono, an enemy of America

Example: Resolution with Definite Clauses [cont.]

- it is a crime for an American to sell weapons to hostile nations:
$\forall x, y, z .(($ American $(x) \wedge$ Weapon $(y) \wedge$ Hostile $(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow$ Criminal $(x))$
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Hostile $(z) \vee \neg \operatorname{Sells}(x, y, z) \vee$ Criminal (x)
- Nono ... has some missiles
$\exists x$. $($ Owns $($ Nono,$x) \wedge \operatorname{Missile~}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
- All of its missiles were sold to it by Colonel West $\forall x .(($ Missile $(x) \wedge$ Owns(Nono, $x)) \rightarrow$ Sells(West, x, Nono))
$\Longrightarrow \neg \operatorname{Missile}(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)
- Missiles are weapons:
$\forall x$. $($ Missile $(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg$ Missile $(x) \vee$ Weapon (x)
- An enemy of America counts as "hostile": $\forall x$.(Enemy (x, America) \rightarrow Hostile $(x))$
$\Longrightarrow \neg$ Enemy (x, America) $\vee \operatorname{Hostile}(x)$
- West, who is American ...: American(West)
- The country Nono, an enemy of America

Example：Resolution with Definite Clauses［cont．］

－it is a crime for an American to sell weapons to hostile nations：
$\forall x, y, z .(($ American $(x) \wedge$ Weapon $(y) \wedge$ Hostile $(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow$ Criminal $(x))$
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Hostile $(z) \vee \neg \operatorname{Sells}(x, y, z) \vee$ Criminal (x)
－Nono ．．．has some missiles
$\exists x$ ．$($ Owns $($ Nono,$x) \wedge \operatorname{Missile~}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono，$\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
－All of its missiles were sold to it by Colonel West $\forall x .(($ Missile $(x) \wedge$ Owns（Nono，$x)) \rightarrow$ Sells（West，x, Nono））
$\Longrightarrow \neg \operatorname{Missile}(x) \vee \neg$ Owns（Nono，$x) \vee$ Sells（West，x ，Nono）
－Missiles are weapons：
$\forall x$ ．$(\operatorname{Missile}(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg \operatorname{Missile}(x) \vee$ Weapon (x)
－An enemy of America counts as＂hostile＂：$\forall x .($ Enemy $(x$, America $) \rightarrow$ Hostile $(x))$
$\Longrightarrow \neg \operatorname{Enemy}(x$, America）$\vee \operatorname{Hostile}(x)$
－West，who is American ．．．：American（West）
－The country Nono，an enemy of America ．．．：Enemy（Nono，America）

Example: Resolution with Definite Clauses

Example: Resolution with General Clauses

Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by no one.
Jack loves all animals.
Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?
(See previous exercise or AIMA book for FOL formalization and CNF-ization.)

Resolution Strategies

Saturation Calculus:

- Given N_{0} : set of (implicitly universally quantified) clauses.
- Derive $N_{0}, N_{1}, N_{2}, N_{3}, \ldots$ s.t. $N_{i+1}=N_{i} \cup\{C\}$
- where C is the conclusion of a resolution step from premises in N_{i}
- (under reasonable restrictions) is refutationallv complete

Problem

- The resolution rule is prolific.
- it generates many useless intermediate results
- it may generate the same clauses in many different ways
- This motivates the introduction of resolution restrictions.

Resolution Strategies

Saturation Calculus:

- Given N_{0} : set of (implicitly universally quantified) clauses.
- Derive $N_{0}, N_{1}, N_{2}, N_{3}, \ldots$ s.t. $N_{i+1}=N_{i} \cup\{C\}$,
- where C is the conclusion of a resolution step from premises in N_{i}
- (under reasonable restrictions) is refutationally complete

Problem

- The resolution rule is prolific.
- it generates many useless intermediate results
- it may generate the same clauses in many different ways
- This motivates the introduction of resolution restrictions.

Resolution Strategies

Saturation Calculus:

- Given N_{0} : set of (implicitly universally quantified) clauses.
- Derive $N_{0}, N_{1}, N_{2}, N_{3}, \ldots$ s.t. $N_{i+1}=N_{i} \cup\{C\}$,
- where C is the conclusion of a resolution step from premises in N_{i}
- (under reasonable restrictions) is refutationally complete :

$$
N_{0} \models \perp \Longrightarrow \perp \in N_{i} \text { for some i }
$$

```
Problem
- The resolution rule is prolific
- it generates many useless intermediate results
- it may generate the same clauses in many different ways
- This motivates the introduction of resolution restrictions.
```


Resolution Strategies

Saturation Calculus:

- Given N_{0} : set of (implicitly universally quantified) clauses.
- Derive $N_{0}, N_{1}, N_{2}, N_{3}, \ldots$ s.t. $N_{i+1}=N_{i} \cup\{C\}$,
- where C is the conclusion of a resolution step from premises in N_{i}
- (under reasonable restrictions) is refutationally complete :

$$
N_{0} \models \perp \Longrightarrow \perp \in N_{i} \text { for some i }
$$

Problem

- The resolution rule is prolific.
- it generates many useless intermediate results
- it may generate the same clauses in many different ways
- This motivates the introduction of resolution restrictions.

Resolution Restrictions

Ordered resolution

- define stable atom ordering;
- resolve only maximal literals

Resolution Restrictions

Ordered resolution

- define stable atom ordering;
- resolve only maximal literals

Hyper-Resolution

- Clauses are divided into
- "nuclei": those with ≥ 1 negative literals
- "electrons" : those with positive literals only
- Resolution can occur only among one nucleus and one electron
-

Ex: $\frac{\square P(x) \vee \neg Q(x) \vee R(x) \vee Q(A) \vee C}{P(A) \vee D} P$

- Multiple resolution steps are merged into one step
-

Resolution Restrictions

Ordered resolution

- define stable atom ordering;
- resolve only maximal literals

Hyper-Resolution

- Clauses are divided into
- "nuclei": those with ≥ 1 negative literals
- "electrons" : those with positive literals only
- Resolution can occur only among one nucleus and one electron
-
- Multiple resolution steps are merged into one step
-

Resolution Restrictions

Ordered resolution

- define stable atom ordering;
- resolve only maximal literals

Hyper-Resolution

- Clauses are divided into
- "nuclei": those with ≥ 1 negative literals
- "electrons" : those with positive literals only
- Resolution can occur only among one nucleus and one electron
- Multiple resolution steps are merged into one step
-

Resolution Restrictions

Ordered resolution

- define stable atom ordering;
- resolve only maximal literals

Hyper-Resolution

- Clauses are divided into
- "nuclei": those with ≥ 1 negative literals
- "electrons" : those with positive literals only
- Resolution can occur only among one nucleus and one electron

$$
E x: \quad \frac{\neg P(x) \vee \neg Q(x) \vee R(x) Q(A) \vee C}{\neg P(A) \vee R(A) \vee C} P(A) \vee D
$$

- Multiple resolution steps are merged into one step

Resolution Restrictions

Ordered resolution

- define stable atom ordering;
- resolve only maximal literals

Hyper-Resolution

- Clauses are divided into
- "nuclei": those with ≥ 1 negative literals
- "electrons" : those with positive literals only
- Resolution can occur only among one nucleus and one electron

$$
E x: \quad \frac{\neg P(x) \vee \neg Q(x) \vee R(x) Q(A) \vee C}{} \quad \frac{\neg P(A) \vee R(A) \vee C}{R(A) \vee C \vee D} P(A) \vee D
$$

- Multiple resolution steps are merged into one step

Resolution Restrictions

Ordered resolution

- define stable atom ordering;
- resolve only maximal literals

Hyper-Resolution

- Clauses are divided into
- "nuclei": those with ≥ 1 negative literals
- "electrons" : those with positive literals only
- Resolution can occur only among one nucleus and one electron

$$
\frac{\neg P(x) \vee \neg Q(x) \vee R(x) \quad Q(A) \vee C}{\frac{\neg P(A) \vee R(A) \vee C}{R(A) \vee C \vee D}} P(A) \vee D
$$

- Multiple resolution steps are merged into one step

$$
E x: \frac{\neg P(x) \vee \neg Q(x) \vee R(x) \quad Q(A) \vee C \quad P(A) \vee D}{R(A) \vee C \vee D}
$$

Resolution Restrictions

Ordered resolution

- define stable atom ordering;
- resolve only maximal literals

Hyper-Resolution

- Clauses are divided into
- "nuclei": those with ≥ 1 negative literals
- "electrons" : those with positive literals only
- Resolution can occur only among one nucleus and one electron

$$
\frac{\neg P(x) \vee \neg Q(x) \vee R(x) Q(A) \vee C}{\frac{\neg P(A) \vee R(A) \vee C}{R(A) \vee C \vee D}} P(A) \vee D
$$

- Multiple resolution steps are merged into one step

$$
E x: \frac{\neg P(x) \vee \neg Q(x) \vee R(x) \quad Q(A) \vee C \quad P(A) \vee D}{R(A) \vee C \vee D}
$$

\Longrightarrow Globally, can produce only electrons

Exercise

- Solve the example of Colonel West using Hyper-Resolution strategy
- Solve the example of Curiosity \& Tuna using Hyper-Resolution Strategy

Exercise

- Solve the example of Colonel West using Hyper-Resolution strategy
- Solve the example of Curiosity \& Tuna using Hyper-Resolution Strategy

Outline

(1) Basic First-Order Reasoning

- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(2) Handling Definite FOL KBs \& Datalog
- Forward Chaining
- Backward Chaining
(3) Resolution for General FOL KBs
- CNF-Ization
- Resolution
- Dealing with Equalities [hints]
- A Complete Example

Dealing with Term Equalities [hints.]

To deal with equality formulas $\left(t_{1}=t_{2}\right)$

- Combine resolution with Equal-term substitution rule
- Ex:

- Very inefficient
- Ad-hoc rules rule for equality: Paramodulation

Dealing with Term Equalities [hints.]

To deal with equality formulas $\left(t_{1}=t_{2}\right)$

- Combine resolution with Equal-term substitution rule
- Ex:

- Very inefficient
- Ad-hoc rules rule for equality: Paramodulation

Dealing with Term Equalities [hints.]

To deal with equality formulas $\left(t_{1}=t_{2}\right)$

- Combine resolution with Equal-term substitution rule
- Ex:

$$
(4 \geq 3) \frac{\frac{(S(x)=x+1) \quad(\neg(y \geq z) \vee(S(y) \geq S(z)))}{(\neg(y \geq z) \vee(y+1 \geq z+1))}}{4+1 \geq 3+1}
$$

- Very inefficient
- Ad-hoc rules rule for equality: Paramodulation

Dealing with Term Equalities [hints.]

To deal with equality formulas $\left(t_{1}=t_{2}\right)$

- Combine resolution with Equal-term substitution rule
- Ex:

$$
(4 \geq 3) \frac{\frac{(S(x)=x+1) \quad(\neg(y \geq z) \vee(S(y) \geq S(z)))}{(\neg(y \geq z) \vee(y+1 \geq z+1))}}{4+1 \geq 3+1}
$$

- Very inefficient
- Ad-hoc rules rule for equality: Paramodulation

Dealing with Term Equalities [hints.]

To deal with equality formulas $\left(t_{1}=t_{2}\right)$

- Combine resolution with Equal-term substitution rule
- Ex:

$$
(4 \geq 3) \frac{\frac{(S(x)=x+1) \quad(\neg(y \geq z) \vee(S(y) \geq S(z)))}{(\neg(y \geq z) \vee(y+1 \geq z+1))}}{4+1 \geq 3+1}
$$

- Very inefficient
- Ad-hoc rules rule for equality: Paramodulation

Paramodulation

- Ground case:

$$
\frac{D \vee\left(t=t^{\prime}\right) \quad C \vee L}{D \vee C \vee L\left\{t / t^{\prime}\right\}} \text { if } t, t^{\prime} \text { ground, L literal }
$$

- Example:
$\frac{R(b) \vee(a=b) Q(c) \vee P(a)}{R(b) \vee Q(c) \vee P(b)}$
- General case:
- Examples:
where $\theta \stackrel{\text { det }}{=} m g u(t, u)$
$R(b) \vee(a=b) \quad(c) \vee P(x)$
$R(b) \vee Q(c) \vee P(b)$

Paramodulation

- Ground case:

$$
\frac{D \vee\left(t=t^{\prime}\right) \quad C \vee L}{D \vee C \vee L\left\{t / t^{\prime}\right\}} \text { if } t, t^{\prime} \text { ground, } L \text { literal }
$$

- Example:

$$
\frac{R(b) \vee(a=b) \quad Q(c) \vee P(a)}{R(b) \vee Q(c) \vee P(b)}
$$

- General case:
- Examples:

Paramodulation

- Ground case:

$$
\frac{D \vee\left(t=t^{\prime}\right) \quad C \vee L}{D \vee C \vee L\left\{t / t^{\prime}\right\}} \text { if } t, t^{\prime} \text { ground, } L \text { literal }
$$

- Example:

$$
\frac{R(b) \vee(a=b) \quad Q(c) \vee P(a)}{R(b) \vee Q(c) \vee P(b)}
$$

- General case:

$$
\frac{D \vee\left(t=t^{\prime}\right) \quad C \vee L}{\left(D \vee C \vee L\left\{u / t^{\prime}\right\}\right) \theta} \quad \text { where } \theta \stackrel{\text { det }}{=} m g u(t, u)
$$

- Examples:

Paramodulation

- Ground case:

$$
\frac{D \vee\left(t=t^{\prime}\right) \quad C \vee L}{D \vee C \vee L\left\{t / t^{\prime}\right\}} \text { if } t, t^{\prime} \text { ground, } L \text { literal }
$$

- Example:

$$
\frac{R(b) \vee(a=b) \quad Q(c) \vee P(a)}{R(b) \vee Q(c) \vee P(b)}
$$

- General case:
- Examples:

$$
\frac{D \vee\left(t=t^{\prime}\right) \quad C \vee L}{\left(D \vee C \vee L\left\{u / t^{\prime}\right\}\right) \theta} \quad \text { where } \theta \stackrel{\text { def }}{=} m g u(t, u)
$$

$$
\frac{R(b) \vee(a=b) \quad Q(c) \vee P(x)}{R(b) \vee Q(c) \vee P(b)} \quad \theta=\{x / a\}
$$

Paramodulation

- Ground case:

$$
\frac{D \vee\left(t=t^{\prime}\right) \quad C \vee L}{D \vee C \vee L\left\{t / t^{\prime}\right\}} \text { if } t, t^{\prime} \text { ground, } L \text { literal }
$$

- Example:

$$
\frac{R(b) \vee(a=b) \quad Q(c) \vee P(a)}{R(b) \vee Q(c) \vee P(b)}
$$

- General case:
- Examples:

$$
\frac{D \vee\left(t=t^{\prime}\right) \quad C \vee L}{\left(D \vee C \vee L\left\{u / t^{\prime}\right\}\right) \theta} \quad \text { where } \theta \stackrel{\text { def }}{=} m g u(t, u)
$$

$$
\frac{R(b) \vee(a=b) \quad Q(c) \vee P(x)}{R(b) \vee Q(c) \vee P(b)} \quad \theta=\{x / a\}
$$

$$
\frac{R(g(c)) \vee(\overbrace{f(g(b))}^{t}=a) \quad Q(x) \vee P(g(\overbrace{f(x)}^{u}))}{R(g(c)) \vee Q(g(b)) \vee P(g(a))} \quad \theta=\{x / g(b)\}
$$

Outline

(1) Basic First-Order Reasoning

- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(2) Handling Definite FOL KBs \& Datalog
- Forward Chaining
- Backward Chaining
(3) Resolution for General FOL KBs
- CNF-Ization
- Resolution
- Dealing with Equalities [hints]
- A Complete Example

Example

Problem

Consider the following FOL formula set Γ :
(1) $\forall x$. $\{[\forall y$. $(\operatorname{Child}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y . \operatorname{Loves}(y, x)]\}$
(2) $\forall x$.[Child $(x) \rightarrow$ Loves(Mark, $x)]$
(3) Beats(Mark, Paul) \vee Beats(John, Paul)
(9) Child(Paul)
(6) $\forall x .\{[\exists z .(\operatorname{Child}(z) \wedge \operatorname{Beats}(x, z))] \rightarrow[\forall y . \neg \operatorname{Loves}(y, x)]\}$
(a) Compute the CNF-ization of Γ, Skolemize \& standardize variables
(b) Write a FOL-resolution inference of the query Beats(John, Paul) from the CNF-ized KB

Example

CNF-ization

(a) Compute the CNF-ization of Γ, Skolemize \& standardize variables
(1) $\forall x$. $\{\forall y$. $(\operatorname{Child}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y . \operatorname{Loves}(y, x)]\}$
$\forall x .\{[\neg \forall y$. $(\operatorname{Child}(y) \rightarrow \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)]\}$
$\forall x .\{[\exists y$. (Child $(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y$.Loves $(y, x)]\}$
$\{[(\operatorname{Child}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x)))] \vee[\operatorname{Loves}(G(x), x)]\}$

1. Child $(F(x)) \vee \operatorname{Loves}(G(x), x)$
2. $\neg \operatorname{Loves}(y, F(y)) \vee \operatorname{Loves}(G(y), y)$
(2) \neg Child $(z) \vee$ Loves (Mark, z)
(3) Beats(Mark, Paul) \vee Beats(John, Paul)
(9) Child(Paul)
(6) $\forall x$. $\{[\exists z$. $(\operatorname{Child}(z) \wedge \operatorname{Beats}(x, z))] \rightarrow[\forall y . \neg \operatorname{Loves}(y, x)]\}$
$\forall x .\{[\neg \exists z .(\operatorname{Child}(z) \wedge \operatorname{Beats}(x, z))] \vee[\forall y . \neg \operatorname{Loves}(y, x)]\}$
$\forall x .\{[\forall z .(\neg \operatorname{Child}(z) \vee \neg \operatorname{Beats}(x, z))] \vee[\forall y . \neg \operatorname{Loves}(y, x)]\}$
\neg Child $\left(z_{2}\right) \vee \neg \operatorname{Beats}\left(x_{2}, z_{2}\right) \vee \neg \operatorname{Loves}\left(y_{2}, x_{2}\right)$
where $F(), G()$ are Skolem unary functions.

Example

Resolution

(b) Write a FOL-resolution inference of the query Beats(John, Paul) from the CNF-ized KB:
(6) [1.2, 2.] $\Longrightarrow \neg \operatorname{Child}(F($ Mark $)) \vee \operatorname{Loves}(G($ Mark $)$, Mark);
© [1.1, 6.] $\Longrightarrow \operatorname{Loves(G(Mark),~Mark);~}$
(8) $[4,5.] \Longrightarrow \neg \operatorname{Beats}\left(x_{2}\right.$, Paul $) \vee \neg \operatorname{Loves}\left(y_{2}, x_{2}\right)$;
(0 [7, 8.] $\Longrightarrow \neg$ Beats(Mark, Paul);
(10) $[3,9.] \Longrightarrow$ Beats(John, Paul);

[^0]: Copyright notice: Most examples and images displayed in the slides of this course are taken from [Russell \& Norwig, "Artificial Intelligence, a Modern Approach", $3^{\text {rd }}$ ed., Pearson], including explicitly figures from the above-mentioned book, so that their copyright is detained by the authors. A few other material (text, figures, examples) is authored by (in alphabetical order): Pieter Abbeel, Bonnie J. Dorr, Anca Dragan, Dan Klein, Nikita Kitaev, Tom Lenaerts, Michela Milano, Dana Nau, Maria Simi, who detain its copyright.

 These slides cannot can be displayed in public without the permission of the author.

