
Fundamentals of Artificial Intelligence
Chapter 08: First-Order Logic

Roberto Sebastiani

DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fai_2022/

Teaching assistant: Mauro Dragoni – dragoni@fbk.eu
http://www.maurodragoni.com/teaching/fai/

M.S. Course “Artificial Intelligence Systems”, academic year 2022-2023
Last update: Friday 11th November, 2022, 14:20

Copyright notice: Most examples and images displayed in the slides of this course are taken from [Russell & Norwig, “Artificial Intelligence, a Modern Approach”, 3rd ed., Pearson],
including explicitly figures from the above-mentioned book, so that their copyright is detained by the authors. A few other material (text, figures, examples) is authored by (in alphabetical

order): Pieter Abbeel, Bonnie J. Dorr, Anca Dragan, Dan Klein, Nikita Kitaev, Tom Lenaerts, Michela Milano, Dana Nau, Maria Simi, who detain its copyright.
These slides cannot can be displayed in public without the permission of the author.

1 / 60

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fai_2022/
dragoni@fbk.eu
http://www.maurodragoni.com/teaching/fai/

Outline

1 Generalities

2 Syntax and Semantics of FOL
Syntax
Semantics
Satisfiability, Validity, Entailment

3 Using FOL
FOL Agents
Example: The Wumpus World

4 Knowledge Engineering in FOL

2 / 60

Outline

1 Generalities

2 Syntax and Semantics of FOL
Syntax
Semantics
Satisfiability, Validity, Entailment

3 Using FOL
FOL Agents
Example: The Wumpus World

4 Knowledge Engineering in FOL

3 / 60

Recall: State Representations [Ch. 02]

Representations of states and transitions

Three ways to represent states and transitions between them:
atomic: a state is a black box with no internal structure
factored: a state consists of a vector of attribute values
structured: a state includes objects, each of which may have attributes of its own as well as
relationships to other objects

increasing expressive power and computational complexity
reality represented at different levels of abstraction

(© S. Russell & P. Norwig, AIMA)

4 / 60

Pros of Propositional Logic

PL language is formal
non-ambiguous semantics
unlike natural language, which is intrinsically ambiguous (ex “key”)

PL is declarative
knowledge and inference are separate
inference is entirely domain independent

PL allows for partial/disjunctive/negated information
unlike, e.g., data bases

PL is compositional
the meaning of (A ∧ B)→ C derives from the meaning of A,B,C

The meaning of PL sentence is context independent
unlike with natural language, where meaning depends on context

5 / 60

Cons of Propositional Logic

Is “Atomic”: based on atomic events which cannot be decomposed
Assumes the world contains facts in the world that are either true or false, nothing else

ex: Man_Socrates, Man_Plato, Man_Aristotle, ... distinct atoms

=⇒ PL has has very limited expressive power
unlike natural language
cannot concisely describe an environment with many objects
e.g., cannot say “pits cause breezes in adjacent squares”
(need writing one sentence for each square)

6 / 60

Logics

A logic is a triple 〈L,S,R〉 where
L, the logic’s language: a class of sentences described by a formal grammar
S, the logic’s semantics: a formal specification of how to assign meaning in the “real world” to the
elements of L
R, the logic’s inference system: is a set of formal derivation rules over L

There are several logics:
propositional logic (PL)
first-order logic (FOL)
modal logics (MLs)
description logics (DLs)
temporal logics (TLs)
(fuzzy logics, probabilistic logics, ...)
...

7 / 60

Logics

A logic is a triple 〈L,S,R〉 where
L, the logic’s language: a class of sentences described by a formal grammar
S, the logic’s semantics: a formal specification of how to assign meaning in the “real world” to the
elements of L
R, the logic’s inference system: is a set of formal derivation rules over L

There are several logics:
propositional logic (PL)
first-order logic (FOL)
modal logics (MLs)
description logics (DLs)
temporal logics (TLs)
(fuzzy logics, probabilistic logics, ...)
...

7 / 60

First-Order Logic (FOL)

Is structured: a world/state includes objects, each of which may have attributes of its own as
well as relationships to other objects
Assumes the world contains:

Objects:
e.g., people, houses, numbers, theories, Jim Morrison, colors, basketball games, wars, centuries,
...
Relations:
e.g., red, round, bogus, prime, tall ...,
brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
Functions:
e.g., father of, best friend, one more than, end of, ...

Allows to quantify on objects
ex: “All man are equal”, “some persons are left-handed”, ...

8 / 60

First-Order Logic (FOL)

Is structured: a world/state includes objects, each of which may have attributes of its own as
well as relationships to other objects
Assumes the world contains:

Objects:
e.g., people, houses, numbers, theories, Jim Morrison, colors, basketball games, wars, centuries,
...
Relations:
e.g., red, round, bogus, prime, tall ...,
brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
Functions:
e.g., father of, best friend, one more than, end of, ...

Allows to quantify on objects
ex: “All man are equal”, “some persons are left-handed”, ...

8 / 60

First-Order Logic (FOL)

Is structured: a world/state includes objects, each of which may have attributes of its own as
well as relationships to other objects
Assumes the world contains:

Objects:
e.g., people, houses, numbers, theories, Jim Morrison, colors, basketball games, wars, centuries,
...
Relations:
e.g., red, round, bogus, prime, tall ...,
brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
Functions:
e.g., father of, best friend, one more than, end of, ...

Allows to quantify on objects
ex: “All man are equal”, “some persons are left-handed”, ...

8 / 60

First-Order Logic (FOL)

Is structured: a world/state includes objects, each of which may have attributes of its own as
well as relationships to other objects
Assumes the world contains:

Objects:
e.g., people, houses, numbers, theories, Jim Morrison, colors, basketball games, wars, centuries,
...
Relations:
e.g., red, round, bogus, prime, tall ...,
brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
Functions:
e.g., father of, best friend, one more than, end of, ...

Allows to quantify on objects
ex: “All man are equal”, “some persons are left-handed”, ...

8 / 60

First-Order Logic (FOL)

Is structured: a world/state includes objects, each of which may have attributes of its own as
well as relationships to other objects
Assumes the world contains:

Objects:
e.g., people, houses, numbers, theories, Jim Morrison, colors, basketball games, wars, centuries,
...
Relations:
e.g., red, round, bogus, prime, tall ...,
brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
Functions:
e.g., father of, best friend, one more than, end of, ...

Allows to quantify on objects
ex: “All man are equal”, “some persons are left-handed”, ...

8 / 60

First-Order Logic (FOL)

Is structured: a world/state includes objects, each of which may have attributes of its own as
well as relationships to other objects
Assumes the world contains:

Objects:
e.g., people, houses, numbers, theories, Jim Morrison, colors, basketball games, wars, centuries,
...
Relations:
e.g., red, round, bogus, prime, tall ...,
brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
Functions:
e.g., father of, best friend, one more than, end of, ...

Allows to quantify on objects
ex: “All man are equal”, “some persons are left-handed”, ...

8 / 60

Outline

1 Generalities

2 Syntax and Semantics of FOL
Syntax
Semantics
Satisfiability, Validity, Entailment

3 Using FOL
FOL Agents
Example: The Wumpus World

4 Knowledge Engineering in FOL

9 / 60

Outline

1 Generalities

2 Syntax and Semantics of FOL
Syntax
Semantics
Satisfiability, Validity, Entailment

3 Using FOL
FOL Agents
Example: The Wumpus World

4 Knowledge Engineering in FOL

10 / 60

Syntax of FOL: Basic Elements
Constant symbols: KingJohn, 2, UniversityofTrento,...
Predicate symbols: Man(.), Brother(.,.), (. > .), AllDifferent(...),...

may have different arities (1,2,3,...)
may be prefix (e.g. Brother(.,.)) or infix (e.g. (. > .))

Function symbols: Sqrt, LeftLeg, MotherOf
may have different arities (1,2,3,...)
may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+ .))

Variable symbols: x, y, a, b, ...
Propositional Connectives: ¬,∧,∨,→,←,↔,⊕
Equality: “=” (also “6=” s.t. “a 6= b” shortcut for “¬(a = b)”)
Quantifiers: “∀” (“forall”), “∃” (“exists”, aka “for some”)
Punctuation Symbols: “,”, “(”, “)”

Constants symbols are 0-ary function symbols
Propositions are 0-ary predicates =⇒ PL subcase of FOL
Signature: the set of predicate, function & constant symbols

11 / 60

Syntax of FOL: Basic Elements
Constant symbols: KingJohn, 2, UniversityofTrento,...
Predicate symbols: Man(.), Brother(.,.), (. > .), AllDifferent(...),...

may have different arities (1,2,3,...)
may be prefix (e.g. Brother(.,.)) or infix (e.g. (. > .))

Function symbols: Sqrt, LeftLeg, MotherOf
may have different arities (1,2,3,...)
may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+ .))

Variable symbols: x, y, a, b, ...
Propositional Connectives: ¬,∧,∨,→,←,↔,⊕
Equality: “=” (also “6=” s.t. “a 6= b” shortcut for “¬(a = b)”)
Quantifiers: “∀” (“forall”), “∃” (“exists”, aka “for some”)
Punctuation Symbols: “,”, “(”, “)”

Constants symbols are 0-ary function symbols
Propositions are 0-ary predicates =⇒ PL subcase of FOL
Signature: the set of predicate, function & constant symbols

11 / 60

Syntax of FOL: Basic Elements
Constant symbols: KingJohn, 2, UniversityofTrento,...
Predicate symbols: Man(.), Brother(.,.), (. > .), AllDifferent(...),...

may have different arities (1,2,3,...)
may be prefix (e.g. Brother(.,.)) or infix (e.g. (. > .))

Function symbols: Sqrt, LeftLeg, MotherOf
may have different arities (1,2,3,...)
may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+ .))

Variable symbols: x, y, a, b, ...
Propositional Connectives: ¬,∧,∨,→,←,↔,⊕
Equality: “=” (also “6=” s.t. “a 6= b” shortcut for “¬(a = b)”)
Quantifiers: “∀” (“forall”), “∃” (“exists”, aka “for some”)
Punctuation Symbols: “,”, “(”, “)”

Constants symbols are 0-ary function symbols
Propositions are 0-ary predicates =⇒ PL subcase of FOL
Signature: the set of predicate, function & constant symbols

11 / 60

Syntax of FOL: Basic Elements
Constant symbols: KingJohn, 2, UniversityofTrento,...
Predicate symbols: Man(.), Brother(.,.), (. > .), AllDifferent(...),...

may have different arities (1,2,3,...)
may be prefix (e.g. Brother(.,.)) or infix (e.g. (. > .))

Function symbols: Sqrt, LeftLeg, MotherOf
may have different arities (1,2,3,...)
may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+ .))

Variable symbols: x, y, a, b, ...
Propositional Connectives: ¬,∧,∨,→,←,↔,⊕
Equality: “=” (also “6=” s.t. “a 6= b” shortcut for “¬(a = b)”)
Quantifiers: “∀” (“forall”), “∃” (“exists”, aka “for some”)
Punctuation Symbols: “,”, “(”, “)”

Constants symbols are 0-ary function symbols
Propositions are 0-ary predicates =⇒ PL subcase of FOL
Signature: the set of predicate, function & constant symbols

11 / 60

Syntax of FOL: Basic Elements
Constant symbols: KingJohn, 2, UniversityofTrento,...
Predicate symbols: Man(.), Brother(.,.), (. > .), AllDifferent(...),...

may have different arities (1,2,3,...)
may be prefix (e.g. Brother(.,.)) or infix (e.g. (. > .))

Function symbols: Sqrt, LeftLeg, MotherOf
may have different arities (1,2,3,...)
may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+ .))

Variable symbols: x, y, a, b, ...
Propositional Connectives: ¬,∧,∨,→,←,↔,⊕
Equality: “=” (also “6=” s.t. “a 6= b” shortcut for “¬(a = b)”)
Quantifiers: “∀” (“forall”), “∃” (“exists”, aka “for some”)
Punctuation Symbols: “,”, “(”, “)”

Constants symbols are 0-ary function symbols
Propositions are 0-ary predicates =⇒ PL subcase of FOL
Signature: the set of predicate, function & constant symbols

11 / 60

Syntax of FOL: Basic Elements
Constant symbols: KingJohn, 2, UniversityofTrento,...
Predicate symbols: Man(.), Brother(.,.), (. > .), AllDifferent(...),...

may have different arities (1,2,3,...)
may be prefix (e.g. Brother(.,.)) or infix (e.g. (. > .))

Function symbols: Sqrt, LeftLeg, MotherOf
may have different arities (1,2,3,...)
may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+ .))

Variable symbols: x, y, a, b, ...
Propositional Connectives: ¬,∧,∨,→,←,↔,⊕
Equality: “=” (also “6=” s.t. “a 6= b” shortcut for “¬(a = b)”)
Quantifiers: “∀” (“forall”), “∃” (“exists”, aka “for some”)
Punctuation Symbols: “,”, “(”, “)”

Constants symbols are 0-ary function symbols
Propositions are 0-ary predicates =⇒ PL subcase of FOL
Signature: the set of predicate, function & constant symbols

11 / 60

Syntax of FOL: Basic Elements
Constant symbols: KingJohn, 2, UniversityofTrento,...
Predicate symbols: Man(.), Brother(.,.), (. > .), AllDifferent(...),...

may have different arities (1,2,3,...)
may be prefix (e.g. Brother(.,.)) or infix (e.g. (. > .))

Function symbols: Sqrt, LeftLeg, MotherOf
may have different arities (1,2,3,...)
may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+ .))

Variable symbols: x, y, a, b, ...
Propositional Connectives: ¬,∧,∨,→,←,↔,⊕
Equality: “=” (also “6=” s.t. “a 6= b” shortcut for “¬(a = b)”)
Quantifiers: “∀” (“forall”), “∃” (“exists”, aka “for some”)
Punctuation Symbols: “,”, “(”, “)”

Constants symbols are 0-ary function symbols
Propositions are 0-ary predicates =⇒ PL subcase of FOL
Signature: the set of predicate, function & constant symbols

11 / 60

Syntax of FOL: Basic Elements
Constant symbols: KingJohn, 2, UniversityofTrento,...
Predicate symbols: Man(.), Brother(.,.), (. > .), AllDifferent(...),...

may have different arities (1,2,3,...)
may be prefix (e.g. Brother(.,.)) or infix (e.g. (. > .))

Function symbols: Sqrt, LeftLeg, MotherOf
may have different arities (1,2,3,...)
may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+ .))

Variable symbols: x, y, a, b, ...
Propositional Connectives: ¬,∧,∨,→,←,↔,⊕
Equality: “=” (also “6=” s.t. “a 6= b” shortcut for “¬(a = b)”)
Quantifiers: “∀” (“forall”), “∃” (“exists”, aka “for some”)
Punctuation Symbols: “,”, “(”, “)”

Constants symbols are 0-ary function symbols
Propositions are 0-ary predicates =⇒ PL subcase of FOL
Signature: the set of predicate, function & constant symbols

11 / 60

Syntax of FOL: Basic Elements
Constant symbols: KingJohn, 2, UniversityofTrento,...
Predicate symbols: Man(.), Brother(.,.), (. > .), AllDifferent(...),...

may have different arities (1,2,3,...)
may be prefix (e.g. Brother(.,.)) or infix (e.g. (. > .))

Function symbols: Sqrt, LeftLeg, MotherOf
may have different arities (1,2,3,...)
may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+ .))

Variable symbols: x, y, a, b, ...
Propositional Connectives: ¬,∧,∨,→,←,↔,⊕
Equality: “=” (also “6=” s.t. “a 6= b” shortcut for “¬(a = b)”)
Quantifiers: “∀” (“forall”), “∃” (“exists”, aka “for some”)
Punctuation Symbols: “,”, “(”, “)”

Constants symbols are 0-ary function symbols
Propositions are 0-ary predicates =⇒ PL subcase of FOL
Signature: the set of predicate, function & constant symbols

11 / 60

Syntax of FOL: Basic Elements
Constant symbols: KingJohn, 2, UniversityofTrento,...
Predicate symbols: Man(.), Brother(.,.), (. > .), AllDifferent(...),...

may have different arities (1,2,3,...)
may be prefix (e.g. Brother(.,.)) or infix (e.g. (. > .))

Function symbols: Sqrt, LeftLeg, MotherOf
may have different arities (1,2,3,...)
may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+ .))

Variable symbols: x, y, a, b, ...
Propositional Connectives: ¬,∧,∨,→,←,↔,⊕
Equality: “=” (also “6=” s.t. “a 6= b” shortcut for “¬(a = b)”)
Quantifiers: “∀” (“forall”), “∃” (“exists”, aka “for some”)
Punctuation Symbols: “,”, “(”, “)”

Constants symbols are 0-ary function symbols
Propositions are 0-ary predicates =⇒ PL subcase of FOL
Signature: the set of predicate, function & constant symbols

11 / 60

Syntax of FOL: Basic Elements
Constant symbols: KingJohn, 2, UniversityofTrento,...
Predicate symbols: Man(.), Brother(.,.), (. > .), AllDifferent(...),...

may have different arities (1,2,3,...)
may be prefix (e.g. Brother(.,.)) or infix (e.g. (. > .))

Function symbols: Sqrt, LeftLeg, MotherOf
may have different arities (1,2,3,...)
may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+ .))

Variable symbols: x, y, a, b, ...
Propositional Connectives: ¬,∧,∨,→,←,↔,⊕
Equality: “=” (also “6=” s.t. “a 6= b” shortcut for “¬(a = b)”)
Quantifiers: “∀” (“forall”), “∃” (“exists”, aka “for some”)
Punctuation Symbols: “,”, “(”, “)”

Constants symbols are 0-ary function symbols
Propositions are 0-ary predicates =⇒ PL subcase of FOL
Signature: the set of predicate, function & constant symbols

11 / 60

FOL: Syntax

Terms:
constant or variable or function(term1, ..., termn)
ex: KingJohn, x, LeftLeg(Richard), (z*log(2))
denote objects in the real world (aka domain)

Atomic sentences (aka atomic formulas):
>, ⊥
proposition or predicate(term1, ..., termn) or term1 = term2

(Length(LeftLeg(Richard)) > Length(LeftLeg(KingJohn)))
denote facts

Non-atomic sentences/formulas:
¬α, α ∧ β, α ∨ β, α→ β, α↔ β, α⊕ β,
∀x .α, ∃x .α s.t. x (typically) occurs in α
Ex: ∀y .(Italian(y)→ President(Mattarella, y))
∃x∀y .President(x , y)→ ∀y∃x .President(x , y)
∀x .(P(x) ∧Q(x))↔ ((∀x .P(x)) ∧ (∀x .Q(x)))
∀x .(((x ≥ 0) ∧ (x ≤ π))→ (sin(x) ≥ 0))
denote (complex) facts

12 / 60

FOL: Syntax

Terms:
constant or variable or function(term1, ..., termn)
ex: KingJohn, x, LeftLeg(Richard), (z*log(2))
denote objects in the real world (aka domain)

Atomic sentences (aka atomic formulas):
>, ⊥
proposition or predicate(term1, ..., termn) or term1 = term2

(Length(LeftLeg(Richard)) > Length(LeftLeg(KingJohn)))
denote facts

Non-atomic sentences/formulas:
¬α, α ∧ β, α ∨ β, α→ β, α↔ β, α⊕ β,
∀x .α, ∃x .α s.t. x (typically) occurs in α
Ex: ∀y .(Italian(y)→ President(Mattarella, y))
∃x∀y .President(x , y)→ ∀y∃x .President(x , y)
∀x .(P(x) ∧Q(x))↔ ((∀x .P(x)) ∧ (∀x .Q(x)))
∀x .(((x ≥ 0) ∧ (x ≤ π))→ (sin(x) ≥ 0))
denote (complex) facts

12 / 60

FOL: Syntax

Terms:
constant or variable or function(term1, ..., termn)
ex: KingJohn, x, LeftLeg(Richard), (z*log(2))
denote objects in the real world (aka domain)

Atomic sentences (aka atomic formulas):
>, ⊥
proposition or predicate(term1, ..., termn) or term1 = term2

(Length(LeftLeg(Richard)) > Length(LeftLeg(KingJohn)))
denote facts

Non-atomic sentences/formulas:
¬α, α ∧ β, α ∨ β, α→ β, α↔ β, α⊕ β,
∀x .α, ∃x .α s.t. x (typically) occurs in α
Ex: ∀y .(Italian(y)→ President(Mattarella, y))
∃x∀y .President(x , y)→ ∀y∃x .President(x , y)
∀x .(P(x) ∧Q(x))↔ ((∀x .P(x)) ∧ (∀x .Q(x)))
∀x .(((x ≥ 0) ∧ (x ≤ π))→ (sin(x) ≥ 0))
denote (complex) facts

12 / 60

FOL: Syntax

Terms:
constant or variable or function(term1, ..., termn)
ex: KingJohn, x, LeftLeg(Richard), (z*log(2))
denote objects in the real world (aka domain)

Atomic sentences (aka atomic formulas):
>, ⊥
proposition or predicate(term1, ..., termn) or term1 = term2

(Length(LeftLeg(Richard)) > Length(LeftLeg(KingJohn)))
denote facts

Non-atomic sentences/formulas:
¬α, α ∧ β, α ∨ β, α→ β, α↔ β, α⊕ β,
∀x .α, ∃x .α s.t. x (typically) occurs in α
Ex: ∀y .(Italian(y)→ President(Mattarella, y))
∃x∀y .President(x , y)→ ∀y∃x .President(x , y)
∀x .(P(x) ∧Q(x))↔ ((∀x .P(x)) ∧ (∀x .Q(x)))
∀x .(((x ≥ 0) ∧ (x ≤ π))→ (sin(x) ≥ 0))
denote (complex) facts

12 / 60

FOL: Ground and Closed Formulas

A term/formula is ground iff no variable occurs in it (ex: 2 ≥ 1)
A formula is closed iff all variables occurring in it (if any) are quantified
(ex: ∀x∃y .(x > y))

=⇒ Ground formulas are closed, but not vice versa.

13 / 60

FOL: Ground and Closed Formulas

A term/formula is ground iff no variable occurs in it (ex: 2 ≥ 1)
A formula is closed iff all variables occurring in it (if any) are quantified
(ex: ∀x∃y .(x > y))

=⇒ Ground formulas are closed, but not vice versa.

13 / 60

FOL: Ground and Closed Formulas

A term/formula is ground iff no variable occurs in it (ex: 2 ≥ 1)
A formula is closed iff all variables occurring in it (if any) are quantified
(ex: ∀x∃y .(x > y))

=⇒ Ground formulas are closed, but not vice versa.

13 / 60

FOL: Syntax (BNF)

〈Sentence〉 ::= 〈AtomicSentence〉 | 〈ComplexSentence〉
〈AtomicSentence〉 ::= > | ⊥ |

〈PredicateSymbol〉(〈Term〉, . . .) |
〈Term〉 = 〈Term〉

〈ComplexSentence〉 ::= ¬〈Sentence〉 |
〈Sentence〉 〈Connective〉 〈Sentence〉 |
〈Quantifier〉 〈Sentence〉

〈Term〉 ::= 〈ConstantSymbol〉 | 〈Variable〉 |
〈FunctionSymbol〉(〈Term〉, . . .)

〈Connective〉 ::= ∧ | ∨ | → | ← | ↔ | ⊕
〈Quantifier〉 ::= ∀ 〈Variable〉. | ∃ 〈Variable〉.
〈Variable〉 ::= a | b | · · · | x | y | · · ·
〈ConstantSymbol〉 ::= A | B | · · · | John | 0 | 1 | · · · | π | . . .
〈FunctionSymbol〉 ::= F | G | · · · | Cos | FatherOf | + | . . .
〈PredicateSymbol〉 ::= P | Q | · · · | Red | Brother | > | · · ·

14 / 60

POLARITY of subformulas

Polarity: the number of nested negations modulo 2.
Positive/negative occurrences

ϕ occurs positively in ϕ;
if ¬ϕ1 occurs positively [negatively] in ϕ,
then ϕ1 occurs negatively [positively] in ϕ
if ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2 occur positively [negatively] in ϕ,
then ϕ1 and ϕ2 occur positively [negatively] in ϕ;
if ϕ1 → ϕ2 occurs positively [negatively] in ϕ,
then ϕ1 occurs negatively [positively] in ϕ and ϕ2 occurs positively [negatively] in ϕ;
if ϕ1 ↔ ϕ2 or ϕ1 ⊕ ϕ2 occurs in ϕ,
then ϕ1 and ϕ2 occur positively and negatively in ϕ;
if ∀x .ϕ1 or ∃x .ϕ1 occurs positively [negatively] in ϕ,
then ϕ1 occurs positively [negatively] in ϕ

15 / 60

Outline

1 Generalities

2 Syntax and Semantics of FOL
Syntax
Semantics
Satisfiability, Validity, Entailment

3 Using FOL
FOL Agents
Example: The Wumpus World

4 Knowledge Engineering in FOL

16 / 60

Truth in FOL: Intuitions

Sentences are true with respect to a model
containing a domain and an interpretation

The domain contains ≥ 1 objects (domain elements) and relations and functions over them
An interpretation specifies referents for

variables→ objects
constant symbols→ objects
predicate symbols→ relations
function symbols→ functional relations

An atomic sentence P(t1, ..., tn) is true in an interpretation iff the objects referred to by
t1, ..., tn are in the relation referred to by P

17 / 60

Truth in FOL: Intuitions

Sentences are true with respect to a model
containing a domain and an interpretation

The domain contains ≥ 1 objects (domain elements) and relations and functions over them
An interpretation specifies referents for

variables→ objects
constant symbols→ objects
predicate symbols→ relations
function symbols→ functional relations

An atomic sentence P(t1, ..., tn) is true in an interpretation iff the objects referred to by
t1, ..., tn are in the relation referred to by P

17 / 60

Truth in FOL: Intuitions

Sentences are true with respect to a model
containing a domain and an interpretation

The domain contains ≥ 1 objects (domain elements) and relations and functions over them
An interpretation specifies referents for

variables→ objects
constant symbols→ objects
predicate symbols→ relations
function symbols→ functional relations

An atomic sentence P(t1, ..., tn) is true in an interpretation iff the objects referred to by
t1, ..., tn are in the relation referred to by P

17 / 60

Truth in FOL: Intuitions

Sentences are true with respect to a model
containing a domain and an interpretation

The domain contains ≥ 1 objects (domain elements) and relations and functions over them
An interpretation specifies referents for

variables→ objects
constant symbols→ objects
predicate symbols→ relations
function symbols→ functional relations

An atomic sentence P(t1, ..., tn) is true in an interpretation iff the objects referred to by
t1, ..., tn are in the relation referred to by P

17 / 60

FOL: Semantics

FOL Models (aka possible worlds)

A modelM is a pair 〈D, I〉 (〈domain, interpretation〉)
Domain D: a non-empty set of objects (aka domain elements)
Interpretation I: a (non-injective) map on elements of the signature

constant symbols 7−→ domain elements:
a constant symbol C is mapped into a particular object [C]I in D
predicate symbols 7−→ domain relations:
a k -ary predicate P(...) is mapped into a subset [P]I of Dk

(i.e., the set of object tuples satisfying the predicate in this world)
functions symbols 7−→ domain functions:
a k -ary function f is mapped into a domain function [f]I : Dk 7−→ D ([f]I must be total)

(we denote by [.]I the result of the interpretation I)

An Interpretation I is extended to assign domain values to variables, domain values to terms and
truth values to formulas.

18 / 60

FOL: Semantics

FOL Models (aka possible worlds)

A modelM is a pair 〈D, I〉 (〈domain, interpretation〉)
Domain D: a non-empty set of objects (aka domain elements)
Interpretation I: a (non-injective) map on elements of the signature

constant symbols 7−→ domain elements:
a constant symbol C is mapped into a particular object [C]I in D
predicate symbols 7−→ domain relations:
a k -ary predicate P(...) is mapped into a subset [P]I of Dk

(i.e., the set of object tuples satisfying the predicate in this world)
functions symbols 7−→ domain functions:
a k -ary function f is mapped into a domain function [f]I : Dk 7−→ D ([f]I must be total)

(we denote by [.]I the result of the interpretation I)

An Interpretation I is extended to assign domain values to variables, domain values to terms and
truth values to formulas.

18 / 60

FOL: Semantics

FOL Models (aka possible worlds)

A modelM is a pair 〈D, I〉 (〈domain, interpretation〉)
Domain D: a non-empty set of objects (aka domain elements)
Interpretation I: a (non-injective) map on elements of the signature

constant symbols 7−→ domain elements:
a constant symbol C is mapped into a particular object [C]I in D
predicate symbols 7−→ domain relations:
a k -ary predicate P(...) is mapped into a subset [P]I of Dk

(i.e., the set of object tuples satisfying the predicate in this world)
functions symbols 7−→ domain functions:
a k -ary function f is mapped into a domain function [f]I : Dk 7−→ D ([f]I must be total)

(we denote by [.]I the result of the interpretation I)

An Interpretation I is extended to assign domain values to variables, domain values to terms and
truth values to formulas.

18 / 60

FOL: Semantics

FOL Models (aka possible worlds)

A modelM is a pair 〈D, I〉 (〈domain, interpretation〉)
Domain D: a non-empty set of objects (aka domain elements)
Interpretation I: a (non-injective) map on elements of the signature

constant symbols 7−→ domain elements:
a constant symbol C is mapped into a particular object [C]I in D
predicate symbols 7−→ domain relations:
a k -ary predicate P(...) is mapped into a subset [P]I of Dk

(i.e., the set of object tuples satisfying the predicate in this world)
functions symbols 7−→ domain functions:
a k -ary function f is mapped into a domain function [f]I : Dk 7−→ D ([f]I must be total)

(we denote by [.]I the result of the interpretation I)

An Interpretation I is extended to assign domain values to variables, domain values to terms and
truth values to formulas.

18 / 60

FOL: Semantics [cont.]

Interpretation of terms

I maps terms into domain elements
Variables are assigned domain values

variables 7−→ domain elements:
a variable x is mapped into a particular object [x]I in D

A term f (t1, ..., tk) is mapped by I into the value [f (t1, ..., tk)]I returned by applying the
domain function [f]I , into which f is mapped, to the values [t1]I , ..., [tk]I obtained by applying
recursively I to the terms t1, ..., tk :

[f (t1, ..., tk)]I = [f]I([t1]I , ..., [tk]I)
Ex: if “Me, Mother, Father” are interpreted as usual, then “Mother(Father(Me))” is interpreted as
my (paternal) grandmother
Ex: if “+,−, ·, 0, 1, 2, 3, 4” are interpreted as usual, then “(3− 1) · (0 + 2)” is interpreted as 4

19 / 60

FOL: Semantics [cont.]

Interpretation of terms

I maps terms into domain elements
Variables are assigned domain values

variables 7−→ domain elements:
a variable x is mapped into a particular object [x]I in D

A term f (t1, ..., tk) is mapped by I into the value [f (t1, ..., tk)]I returned by applying the
domain function [f]I , into which f is mapped, to the values [t1]I , ..., [tk]I obtained by applying
recursively I to the terms t1, ..., tk :

[f (t1, ..., tk)]I = [f]I([t1]I , ..., [tk]I)
Ex: if “Me, Mother, Father” are interpreted as usual, then “Mother(Father(Me))” is interpreted as
my (paternal) grandmother
Ex: if “+,−, ·, 0, 1, 2, 3, 4” are interpreted as usual, then “(3− 1) · (0 + 2)” is interpreted as 4

19 / 60

FOL: Semantics [cont.]

Interpretation of terms

I maps terms into domain elements
Variables are assigned domain values

variables 7−→ domain elements:
a variable x is mapped into a particular object [x]I in D

A term f (t1, ..., tk) is mapped by I into the value [f (t1, ..., tk)]I returned by applying the
domain function [f]I , into which f is mapped, to the values [t1]I , ..., [tk]I obtained by applying
recursively I to the terms t1, ..., tk :

[f (t1, ..., tk)]I = [f]I([t1]I , ..., [tk]I)
Ex: if “Me, Mother, Father” are interpreted as usual, then “Mother(Father(Me))” is interpreted as
my (paternal) grandmother
Ex: if “+,−, ·, 0, 1, 2, 3, 4” are interpreted as usual, then “(3− 1) · (0 + 2)” is interpreted as 4

19 / 60

FOL: Semantics [cont.]

Interpretation of formulas

I maps formulas into truth values
An atomic formula P(t1, ..., tk) is true in I iff the objects into which the terms t1,...tk are
mapped by I comply to the relation into which P is mapped

[P(t1, ..., tk)]I is true iff 〈[t1]I , ..., [tk]I〉 ∈ [P]I

Ex: if “Me, Mother, Father, Married” are interpreted as traditon, then
“Married(Mother(Me),Father(Me))” is interpreted as true
Ex: if “+,−, >, 0, 1, 2, 3, 4” are interpreted as usual, then “(4− 0) > (1 + 2)” is interpreted as true

An atomic formula t1 = t2 is true in I iff the terms t1, t2 are mapped by I into the same
domain element

[t1 = t2]I is true iff [t1]I same as [t2]I

Ex: if “Mother” is interpreted as usual, Richard, John are brothers, then
“Mother(Richard)=Mother(John))” is interpreted as true
Ex: if “+,−, 0, 1, 2, 3, 4” are interpreted as usual, then “(4− 1) = (1 + 2)” is interpreted as true

¬,∧,∨,→,←,↔,⊕ interpreted by I as in PL

20 / 60

FOL: Semantics [cont.]

Interpretation of formulas

I maps formulas into truth values
An atomic formula P(t1, ..., tk) is true in I iff the objects into which the terms t1,...tk are
mapped by I comply to the relation into which P is mapped

[P(t1, ..., tk)]I is true iff 〈[t1]I , ..., [tk]I〉 ∈ [P]I

Ex: if “Me, Mother, Father, Married” are interpreted as traditon, then
“Married(Mother(Me),Father(Me))” is interpreted as true
Ex: if “+,−, >, 0, 1, 2, 3, 4” are interpreted as usual, then “(4− 0) > (1 + 2)” is interpreted as true

An atomic formula t1 = t2 is true in I iff the terms t1, t2 are mapped by I into the same
domain element

[t1 = t2]I is true iff [t1]I same as [t2]I

Ex: if “Mother” is interpreted as usual, Richard, John are brothers, then
“Mother(Richard)=Mother(John))” is interpreted as true
Ex: if “+,−, 0, 1, 2, 3, 4” are interpreted as usual, then “(4− 1) = (1 + 2)” is interpreted as true

¬,∧,∨,→,←,↔,⊕ interpreted by I as in PL

20 / 60

FOL: Semantics [cont.]

Interpretation of formulas

I maps formulas into truth values
An atomic formula P(t1, ..., tk) is true in I iff the objects into which the terms t1,...tk are
mapped by I comply to the relation into which P is mapped

[P(t1, ..., tk)]I is true iff 〈[t1]I , ..., [tk]I〉 ∈ [P]I

Ex: if “Me, Mother, Father, Married” are interpreted as traditon, then
“Married(Mother(Me),Father(Me))” is interpreted as true
Ex: if “+,−, >, 0, 1, 2, 3, 4” are interpreted as usual, then “(4− 0) > (1 + 2)” is interpreted as true

An atomic formula t1 = t2 is true in I iff the terms t1, t2 are mapped by I into the same
domain element

[t1 = t2]I is true iff [t1]I same as [t2]I

Ex: if “Mother” is interpreted as usual, Richard, John are brothers, then
“Mother(Richard)=Mother(John))” is interpreted as true
Ex: if “+,−, 0, 1, 2, 3, 4” are interpreted as usual, then “(4− 1) = (1 + 2)” is interpreted as true

¬,∧,∨,→,←,↔,⊕ interpreted by I as in PL

20 / 60

FOL: Semantics [cont.]

Interpretation of formulas

I maps formulas into truth values
An atomic formula P(t1, ..., tk) is true in I iff the objects into which the terms t1,...tk are
mapped by I comply to the relation into which P is mapped

[P(t1, ..., tk)]I is true iff 〈[t1]I , ..., [tk]I〉 ∈ [P]I

Ex: if “Me, Mother, Father, Married” are interpreted as traditon, then
“Married(Mother(Me),Father(Me))” is interpreted as true
Ex: if “+,−, >, 0, 1, 2, 3, 4” are interpreted as usual, then “(4− 0) > (1 + 2)” is interpreted as true

An atomic formula t1 = t2 is true in I iff the terms t1, t2 are mapped by I into the same
domain element

[t1 = t2]I is true iff [t1]I same as [t2]I

Ex: if “Mother” is interpreted as usual, Richard, John are brothers, then
“Mother(Richard)=Mother(John))” is interpreted as true
Ex: if “+,−, 0, 1, 2, 3, 4” are interpreted as usual, then “(4− 1) = (1 + 2)” is interpreted as true

¬,∧,∨,→,←,↔,⊕ interpreted by I as in PL

20 / 60

Models for FOL: Example

Richard Lionhearth and John Lackland

D: domain at right
I: s.t.

[Richard]I : Richard the Lionhearth
[John]I : evil King John
[Brother]I : brotherhood

[Brother(Richard , John)]I is true
[LeftLeg]I maps any individual to his
left leg
...

(© S. Russell & P. Norwig, AIMA)

21 / 60

Models for FOL: Example

Richard Lionhearth and John Lackland

D: domain at right
I: s.t.

[Richard]I : Richard the Lionhearth
[John]I : evil King John
[Brother]I : brotherhood

[Brother(Richard , John)]I is true
[LeftLeg]I maps any individual to his
left leg
...

(© S. Russell & P. Norwig, AIMA)

21 / 60

Models for FOL: Example

Richard Lionhearth and John Lackland

D: domain at right
I: s.t.

[Richard]I : Richard the Lionhearth
[John]I : evil King John
[Brother]I : brotherhood

[Brother(Richard , John)]I is true
[LeftLeg]I maps any individual to his
left leg
...

(© S. Russell & P. Norwig, AIMA)

21 / 60

Models for FOL: Example

Richard Lionhearth and John Lackland

D: domain at right
I: s.t.

[Richard]I : Richard the Lionhearth
[John]I : evil King John
[Brother]I : brotherhood

[Brother(Richard , John)]I is true
[LeftLeg]I maps any individual to his
left leg
...

(© S. Russell & P. Norwig, AIMA)

21 / 60

Models for FOL: Remark

[f]I total: must provide an output for every input
e.g.: [LeftLeg(crown)]I?
possible solution: assume “null” object ([LeftLeg(crown) = null]I

(other solution, sorts, not considered here)

22 / 60

Universal Quantification

∀x .α(x , ...) (x variable, typically occurs in x)
ex: ∀x .(King(x)→ Person(x)) (“all kings are persons”)

∀x .α(x , ...) true inM iff
α is true inM for every possible domain value x is mapped to
Roughly speaking, can be seen as a conjunction over all (typically infinite) possible
instantiations of x in α

(King(John) → Person(John))∧
(King(Richard) → Person(Richard))∧
(King(crown) → Person(crown))∧
(King(LeftLeg(John)) → Person(LeftLeg(John)))∧
(King(LeftLeg(LeftLeg(John))) → Person(LeftLeg(LeftLeg(John))))∧
... ...

23 / 60

Universal Quantification

∀x .α(x , ...) (x variable, typically occurs in x)
ex: ∀x .(King(x)→ Person(x)) (“all kings are persons”)

∀x .α(x , ...) true inM iff
α is true inM for every possible domain value x is mapped to
Roughly speaking, can be seen as a conjunction over all (typically infinite) possible
instantiations of x in α

(King(John) → Person(John))∧
(King(Richard) → Person(Richard))∧
(King(crown) → Person(crown))∧
(King(LeftLeg(John)) → Person(LeftLeg(John)))∧
(King(LeftLeg(LeftLeg(John))) → Person(LeftLeg(LeftLeg(John))))∧
... ...

23 / 60

Universal Quantification

∀x .α(x , ...) (x variable, typically occurs in x)
ex: ∀x .(King(x)→ Person(x)) (“all kings are persons”)

∀x .α(x , ...) true inM iff
α is true inM for every possible domain value x is mapped to
Roughly speaking, can be seen as a conjunction over all (typically infinite) possible
instantiations of x in α

(King(John) → Person(John))∧
(King(Richard) → Person(Richard))∧
(King(crown) → Person(crown))∧
(King(LeftLeg(John)) → Person(LeftLeg(John)))∧
(King(LeftLeg(LeftLeg(John))) → Person(LeftLeg(LeftLeg(John))))∧
... ...

23 / 60

Universal Quantification

∀x .α(x , ...) (x variable, typically occurs in x)
ex: ∀x .(King(x)→ Person(x)) (“all kings are persons”)

∀x .α(x , ...) true inM iff
α is true inM for every possible domain value x is mapped to
Roughly speaking, can be seen as a conjunction over all (typically infinite) possible
instantiations of x in α

(King(John) → Person(John))∧
(King(Richard) → Person(Richard))∧
(King(crown) → Person(crown))∧
(King(LeftLeg(John)) → Person(LeftLeg(John)))∧
(King(LeftLeg(LeftLeg(John))) → Person(LeftLeg(LeftLeg(John))))∧
... ...

23 / 60

Universal Quantification [cont.]
One may want to restrict the domain of universal quantification to elements of some kind P

ex “forall kings ...”, “forall integer numbers...”

Idea: use an implication, with restrictive predicate as implicant:
∀x .(P(x)→ α(x , ...))

ex “∀x .(King(x)→ ...)”, “∀x .(Integer(x)→ ...)”,

Beware of typical mistake: do not use “∧” instead of “→”
ex: “∀x .(King(x) ∧ Person(x))” means “everything/one is a King and is a Person”
ex: “∀x .(King(x)→ Person(x))” means “everything/one who is a King is a Person
(i.e. “every king is a person”)”

“∀” distributes with “∧”, but not with “∨”
∀x .(P(x) ∧Q(x)) equivalent to (∀x .P(x)) ∧ (∀x .Q(x))
“Everybody is a king and is a person” same as
“Everybody is a king and everybody is a person”
∀x .(P(x) ∨Q(x)) not equivalent to (∀x .P(x)) ∨ (∀x .Q(x)):
“Everybody is a king or is a peasant” much weaker than
“Everybody is a king or everybody is a peasant”
(∀x .P(x)) ∨ (∀x .Q(x)) |= ∀x .(P(x) ∨Q(x)),
∀x .(P(x) ∨Q(x)) 6|= (∀x .P(x)) ∨ (∀x .Q(x))

24 / 60

Universal Quantification [cont.]
One may want to restrict the domain of universal quantification to elements of some kind P

ex “forall kings ...”, “forall integer numbers...”

Idea: use an implication, with restrictive predicate as implicant:
∀x .(P(x)→ α(x , ...))

ex “∀x .(King(x)→ ...)”, “∀x .(Integer(x)→ ...)”,

Beware of typical mistake: do not use “∧” instead of “→”
ex: “∀x .(King(x) ∧ Person(x))” means “everything/one is a King and is a Person”
ex: “∀x .(King(x)→ Person(x))” means “everything/one who is a King is a Person
(i.e. “every king is a person”)”

“∀” distributes with “∧”, but not with “∨”
∀x .(P(x) ∧Q(x)) equivalent to (∀x .P(x)) ∧ (∀x .Q(x))
“Everybody is a king and is a person” same as
“Everybody is a king and everybody is a person”
∀x .(P(x) ∨Q(x)) not equivalent to (∀x .P(x)) ∨ (∀x .Q(x)):
“Everybody is a king or is a peasant” much weaker than
“Everybody is a king or everybody is a peasant”
(∀x .P(x)) ∨ (∀x .Q(x)) |= ∀x .(P(x) ∨Q(x)),
∀x .(P(x) ∨Q(x)) 6|= (∀x .P(x)) ∨ (∀x .Q(x))

24 / 60

Universal Quantification [cont.]
One may want to restrict the domain of universal quantification to elements of some kind P

ex “forall kings ...”, “forall integer numbers...”

Idea: use an implication, with restrictive predicate as implicant:
∀x .(P(x)→ α(x , ...))

ex “∀x .(King(x)→ ...)”, “∀x .(Integer(x)→ ...)”,

Beware of typical mistake: do not use “∧” instead of “→”
ex: “∀x .(King(x) ∧ Person(x))” means “everything/one is a King and is a Person”
ex: “∀x .(King(x)→ Person(x))” means “everything/one who is a King is a Person
(i.e. “every king is a person”)”

“∀” distributes with “∧”, but not with “∨”
∀x .(P(x) ∧Q(x)) equivalent to (∀x .P(x)) ∧ (∀x .Q(x))
“Everybody is a king and is a person” same as
“Everybody is a king and everybody is a person”
∀x .(P(x) ∨Q(x)) not equivalent to (∀x .P(x)) ∨ (∀x .Q(x)):
“Everybody is a king or is a peasant” much weaker than
“Everybody is a king or everybody is a peasant”
(∀x .P(x)) ∨ (∀x .Q(x)) |= ∀x .(P(x) ∨Q(x)),
∀x .(P(x) ∨Q(x)) 6|= (∀x .P(x)) ∨ (∀x .Q(x))

24 / 60

Universal Quantification [cont.]
One may want to restrict the domain of universal quantification to elements of some kind P

ex “forall kings ...”, “forall integer numbers...”

Idea: use an implication, with restrictive predicate as implicant:
∀x .(P(x)→ α(x , ...))

ex “∀x .(King(x)→ ...)”, “∀x .(Integer(x)→ ...)”,

Beware of typical mistake: do not use “∧” instead of “→”
ex: “∀x .(King(x) ∧ Person(x))” means “everything/one is a King and is a Person”
ex: “∀x .(King(x)→ Person(x))” means “everything/one who is a King is a Person
(i.e. “every king is a person”)”

“∀” distributes with “∧”, but not with “∨”
∀x .(P(x) ∧Q(x)) equivalent to (∀x .P(x)) ∧ (∀x .Q(x))
“Everybody is a king and is a person” same as
“Everybody is a king and everybody is a person”
∀x .(P(x) ∨Q(x)) not equivalent to (∀x .P(x)) ∨ (∀x .Q(x)):
“Everybody is a king or is a peasant” much weaker than
“Everybody is a king or everybody is a peasant”
(∀x .P(x)) ∨ (∀x .Q(x)) |= ∀x .(P(x) ∨Q(x)),
∀x .(P(x) ∨Q(x)) 6|= (∀x .P(x)) ∨ (∀x .Q(x))

24 / 60

Universal Quantification [cont.]
One may want to restrict the domain of universal quantification to elements of some kind P

ex “forall kings ...”, “forall integer numbers...”

Idea: use an implication, with restrictive predicate as implicant:
∀x .(P(x)→ α(x , ...))

ex “∀x .(King(x)→ ...)”, “∀x .(Integer(x)→ ...)”,

Beware of typical mistake: do not use “∧” instead of “→”
ex: “∀x .(King(x) ∧ Person(x))” means “everything/one is a King and is a Person”
ex: “∀x .(King(x)→ Person(x))” means “everything/one who is a King is a Person
(i.e. “every king is a person”)”

“∀” distributes with “∧”, but not with “∨”
∀x .(P(x) ∧Q(x)) equivalent to (∀x .P(x)) ∧ (∀x .Q(x))
“Everybody is a king and is a person” same as
“Everybody is a king and everybody is a person”
∀x .(P(x) ∨Q(x)) not equivalent to (∀x .P(x)) ∨ (∀x .Q(x)):
“Everybody is a king or is a peasant” much weaker than
“Everybody is a king or everybody is a peasant”
(∀x .P(x)) ∨ (∀x .Q(x)) |= ∀x .(P(x) ∨Q(x)),
∀x .(P(x) ∨Q(x)) 6|= (∀x .P(x)) ∨ (∀x .Q(x))

24 / 60

Universal Quantification [cont.]
One may want to restrict the domain of universal quantification to elements of some kind P

ex “forall kings ...”, “forall integer numbers...”

Idea: use an implication, with restrictive predicate as implicant:
∀x .(P(x)→ α(x , ...))

ex “∀x .(King(x)→ ...)”, “∀x .(Integer(x)→ ...)”,

Beware of typical mistake: do not use “∧” instead of “→”
ex: “∀x .(King(x) ∧ Person(x))” means “everything/one is a King and is a Person”
ex: “∀x .(King(x)→ Person(x))” means “everything/one who is a King is a Person
(i.e. “every king is a person”)”

“∀” distributes with “∧”, but not with “∨”
∀x .(P(x) ∧Q(x)) equivalent to (∀x .P(x)) ∧ (∀x .Q(x))
“Everybody is a king and is a person” same as
“Everybody is a king and everybody is a person”
∀x .(P(x) ∨Q(x)) not equivalent to (∀x .P(x)) ∨ (∀x .Q(x)):
“Everybody is a king or is a peasant” much weaker than
“Everybody is a king or everybody is a peasant”
(∀x .P(x)) ∨ (∀x .Q(x)) |= ∀x .(P(x) ∨Q(x)),
∀x .(P(x) ∨Q(x)) 6|= (∀x .P(x)) ∨ (∀x .Q(x))

24 / 60

Existential Quantification

∃x .α(x , ...) (x variable, typically occurs in x)
ex: ∃x .(King(x) ∧ Evil(x)) (“there is an evil king”)
pronounced “exists x s.t. ...” or “for some x ...”

∃x .α(x , ...) true inM iff
α is true inM for some possible domain value x is mapped to
Roughly speaking, can be seen as a disjunction over all (typically infinite) possible
instantiations of x in α

(King(Richard) ∧Evil(Richard))∨
(King(John) ∧Evil(John))∨
(King(crown) ∧Evil(crown))∨
(King(LeftLeg(John)) ∧Evil(LeftLeg(John)))∨
(King(LeftLeg(LeftLeg(John))) ∧Evil(LeftLeg(LeftLeg(John))))∨
... ...

25 / 60

Existential Quantification

∃x .α(x , ...) (x variable, typically occurs in x)
ex: ∃x .(King(x) ∧ Evil(x)) (“there is an evil king”)
pronounced “exists x s.t. ...” or “for some x ...”

∃x .α(x , ...) true inM iff
α is true inM for some possible domain value x is mapped to
Roughly speaking, can be seen as a disjunction over all (typically infinite) possible
instantiations of x in α

(King(Richard) ∧Evil(Richard))∨
(King(John) ∧Evil(John))∨
(King(crown) ∧Evil(crown))∨
(King(LeftLeg(John)) ∧Evil(LeftLeg(John)))∨
(King(LeftLeg(LeftLeg(John))) ∧Evil(LeftLeg(LeftLeg(John))))∨
... ...

25 / 60

Existential Quantification

∃x .α(x , ...) (x variable, typically occurs in x)
ex: ∃x .(King(x) ∧ Evil(x)) (“there is an evil king”)
pronounced “exists x s.t. ...” or “for some x ...”

∃x .α(x , ...) true inM iff
α is true inM for some possible domain value x is mapped to
Roughly speaking, can be seen as a disjunction over all (typically infinite) possible
instantiations of x in α

(King(Richard) ∧Evil(Richard))∨
(King(John) ∧Evil(John))∨
(King(crown) ∧Evil(crown))∨
(King(LeftLeg(John)) ∧Evil(LeftLeg(John)))∨
(King(LeftLeg(LeftLeg(John))) ∧Evil(LeftLeg(LeftLeg(John))))∨
... ...

25 / 60

Existential Quantification [cont.]
One may want to restrict the domain of existential quantification to elements of some kind P

ex “exists a king s.t. ...”, “for some integer numbers...”

Idea: use a conjunction with restrictive predicate:
∃x .(P(x) ∧ α(x , ...))

ex “∃x .(King(x) ∧ ...)”, “∃x .(Integer(x) ∧ ...)”,
Beware of typical mistake: do not use “→” instead of “∧”

ex: “∃x .(King(x)→ Evil(x))” means “Someone is not a king or is evil”
ex: “∃x .(King(x) ∧ Evil(x))” means “Someone is king and is evil”
(i.e., “Some king is evil”)

“∃” distributes with “∨”, but not with “∧”
∃x .(P(x) ∨Q(x)) equivalent to (∃x .P(x)) ∨ (∃x .Q(x))
“Somebody is a king or is a knight” same as
“Somebody is a king or somebody is a knight”
∃x .(P(x) ∧Q(x)) not equivalent to (∃x .P(x)) ∧ (∃x .Q(x))
“Somebody is a king and is evil” much stronger than
“Somebody is a king and somebody is evil”
∃x .(P(x) ∧Q(x)) |= (∃x .P(x)) ∧ (∃x .Q(x))
(∃x .P(x)) ∧ (∃x .Q(x)) 6|= ∃x .(P(x) ∧Q(x))

26 / 60

Existential Quantification [cont.]
One may want to restrict the domain of existential quantification to elements of some kind P

ex “exists a king s.t. ...”, “for some integer numbers...”

Idea: use a conjunction with restrictive predicate:
∃x .(P(x) ∧ α(x , ...))

ex “∃x .(King(x) ∧ ...)”, “∃x .(Integer(x) ∧ ...)”,
Beware of typical mistake: do not use “→” instead of “∧”

ex: “∃x .(King(x)→ Evil(x))” means “Someone is not a king or is evil”
ex: “∃x .(King(x) ∧ Evil(x))” means “Someone is king and is evil”
(i.e., “Some king is evil”)

“∃” distributes with “∨”, but not with “∧”
∃x .(P(x) ∨Q(x)) equivalent to (∃x .P(x)) ∨ (∃x .Q(x))
“Somebody is a king or is a knight” same as
“Somebody is a king or somebody is a knight”
∃x .(P(x) ∧Q(x)) not equivalent to (∃x .P(x)) ∧ (∃x .Q(x))
“Somebody is a king and is evil” much stronger than
“Somebody is a king and somebody is evil”
∃x .(P(x) ∧Q(x)) |= (∃x .P(x)) ∧ (∃x .Q(x))
(∃x .P(x)) ∧ (∃x .Q(x)) 6|= ∃x .(P(x) ∧Q(x))

26 / 60

Existential Quantification [cont.]
One may want to restrict the domain of existential quantification to elements of some kind P

ex “exists a king s.t. ...”, “for some integer numbers...”

Idea: use a conjunction with restrictive predicate:
∃x .(P(x) ∧ α(x , ...))

ex “∃x .(King(x) ∧ ...)”, “∃x .(Integer(x) ∧ ...)”,
Beware of typical mistake: do not use “→” instead of “∧”

ex: “∃x .(King(x)→ Evil(x))” means “Someone is not a king or is evil”
ex: “∃x .(King(x) ∧ Evil(x))” means “Someone is king and is evil”
(i.e., “Some king is evil”)

“∃” distributes with “∨”, but not with “∧”
∃x .(P(x) ∨Q(x)) equivalent to (∃x .P(x)) ∨ (∃x .Q(x))
“Somebody is a king or is a knight” same as
“Somebody is a king or somebody is a knight”
∃x .(P(x) ∧Q(x)) not equivalent to (∃x .P(x)) ∧ (∃x .Q(x))
“Somebody is a king and is evil” much stronger than
“Somebody is a king and somebody is evil”
∃x .(P(x) ∧Q(x)) |= (∃x .P(x)) ∧ (∃x .Q(x))
(∃x .P(x)) ∧ (∃x .Q(x)) 6|= ∃x .(P(x) ∧Q(x))

26 / 60

Existential Quantification [cont.]
One may want to restrict the domain of existential quantification to elements of some kind P

ex “exists a king s.t. ...”, “for some integer numbers...”

Idea: use a conjunction with restrictive predicate:
∃x .(P(x) ∧ α(x , ...))

ex “∃x .(King(x) ∧ ...)”, “∃x .(Integer(x) ∧ ...)”,
Beware of typical mistake: do not use “→” instead of “∧”

ex: “∃x .(King(x)→ Evil(x))” means “Someone is not a king or is evil”
ex: “∃x .(King(x) ∧ Evil(x))” means “Someone is king and is evil”
(i.e., “Some king is evil”)

“∃” distributes with “∨”, but not with “∧”
∃x .(P(x) ∨Q(x)) equivalent to (∃x .P(x)) ∨ (∃x .Q(x))
“Somebody is a king or is a knight” same as
“Somebody is a king or somebody is a knight”
∃x .(P(x) ∧Q(x)) not equivalent to (∃x .P(x)) ∧ (∃x .Q(x))
“Somebody is a king and is evil” much stronger than
“Somebody is a king and somebody is evil”
∃x .(P(x) ∧Q(x)) |= (∃x .P(x)) ∧ (∃x .Q(x))
(∃x .P(x)) ∧ (∃x .Q(x)) 6|= ∃x .(P(x) ∧Q(x))

26 / 60

Existential Quantification [cont.]
One may want to restrict the domain of existential quantification to elements of some kind P

ex “exists a king s.t. ...”, “for some integer numbers...”

Idea: use a conjunction with restrictive predicate:
∃x .(P(x) ∧ α(x , ...))

ex “∃x .(King(x) ∧ ...)”, “∃x .(Integer(x) ∧ ...)”,
Beware of typical mistake: do not use “→” instead of “∧”

ex: “∃x .(King(x)→ Evil(x))” means “Someone is not a king or is evil”
ex: “∃x .(King(x) ∧ Evil(x))” means “Someone is king and is evil”
(i.e., “Some king is evil”)

“∃” distributes with “∨”, but not with “∧”
∃x .(P(x) ∨Q(x)) equivalent to (∃x .P(x)) ∨ (∃x .Q(x))
“Somebody is a king or is a knight” same as
“Somebody is a king or somebody is a knight”
∃x .(P(x) ∧Q(x)) not equivalent to (∃x .P(x)) ∧ (∃x .Q(x))
“Somebody is a king and is evil” much stronger than
“Somebody is a king and somebody is evil”
∃x .(P(x) ∧Q(x)) |= (∃x .P(x)) ∧ (∃x .Q(x))
(∃x .P(x)) ∧ (∃x .Q(x)) 6|= ∃x .(P(x) ∧Q(x))

26 / 60

Existential Quantification [cont.]
One may want to restrict the domain of existential quantification to elements of some kind P

ex “exists a king s.t. ...”, “for some integer numbers...”

Idea: use a conjunction with restrictive predicate:
∃x .(P(x) ∧ α(x , ...))

ex “∃x .(King(x) ∧ ...)”, “∃x .(Integer(x) ∧ ...)”,
Beware of typical mistake: do not use “→” instead of “∧”

ex: “∃x .(King(x)→ Evil(x))” means “Someone is not a king or is evil”
ex: “∃x .(King(x) ∧ Evil(x))” means “Someone is king and is evil”
(i.e., “Some king is evil”)

“∃” distributes with “∨”, but not with “∧”
∃x .(P(x) ∨Q(x)) equivalent to (∃x .P(x)) ∨ (∃x .Q(x))
“Somebody is a king or is a knight” same as
“Somebody is a king or somebody is a knight”
∃x .(P(x) ∧Q(x)) not equivalent to (∃x .P(x)) ∧ (∃x .Q(x))
“Somebody is a king and is evil” much stronger than
“Somebody is a king and somebody is evil”
∃x .(P(x) ∧Q(x)) |= (∃x .P(x)) ∧ (∃x .Q(x))
(∃x .P(x)) ∧ (∃x .Q(x)) 6|= ∃x .(P(x) ∧Q(x))

26 / 60

Examples

Brothers are siblings
∀ x , y . (Brothers(x , y)→ Siblings(x , y))

“Siblings” is symmetric
∀ x , y . (Siblings(x , y) ↔ Siblings(y , x))

One’s mother is one’s female parent
∀ x , y . (Mother(x , y) ↔ (Female(x) ∧ Parent(x , y)))

A first cousin is a child of a parent’s sibling
∀ x1, x2. (FirstCousin(x1, x2) ↔
∃ p1, p2. (Siblings(p1, p2) ∧ Parent(p1, x1) ∧ Parent(p2, x2)))

Dogs are mammals
∀ x . (Dog(x)→ Mammal(x))

27 / 60

Examples

Brothers are siblings
∀ x , y . (Brothers(x , y)→ Siblings(x , y))

“Siblings” is symmetric
∀ x , y . (Siblings(x , y) ↔ Siblings(y , x))

One’s mother is one’s female parent
∀ x , y . (Mother(x , y) ↔ (Female(x) ∧ Parent(x , y)))

A first cousin is a child of a parent’s sibling
∀ x1, x2. (FirstCousin(x1, x2) ↔
∃ p1, p2. (Siblings(p1, p2) ∧ Parent(p1, x1) ∧ Parent(p2, x2)))

Dogs are mammals
∀ x . (Dog(x)→ Mammal(x))

27 / 60

Examples

Brothers are siblings
∀ x , y . (Brothers(x , y)→ Siblings(x , y))

“Siblings” is symmetric
∀ x , y . (Siblings(x , y) ↔ Siblings(y , x))

One’s mother is one’s female parent
∀ x , y . (Mother(x , y) ↔ (Female(x) ∧ Parent(x , y)))

A first cousin is a child of a parent’s sibling
∀ x1, x2. (FirstCousin(x1, x2) ↔
∃ p1, p2. (Siblings(p1, p2) ∧ Parent(p1, x1) ∧ Parent(p2, x2)))

Dogs are mammals
∀ x . (Dog(x)→ Mammal(x))

27 / 60

Examples

Brothers are siblings
∀ x , y . (Brothers(x , y)→ Siblings(x , y))

“Siblings” is symmetric
∀ x , y . (Siblings(x , y) ↔ Siblings(y , x))

One’s mother is one’s female parent
∀ x , y . (Mother(x , y) ↔ (Female(x) ∧ Parent(x , y)))

A first cousin is a child of a parent’s sibling
∀ x1, x2. (FirstCousin(x1, x2) ↔
∃ p1, p2. (Siblings(p1, p2) ∧ Parent(p1, x1) ∧ Parent(p2, x2)))

Dogs are mammals
∀ x . (Dog(x)→ Mammal(x))

27 / 60

Examples

Brothers are siblings
∀ x , y . (Brothers(x , y)→ Siblings(x , y))

“Siblings” is symmetric
∀ x , y . (Siblings(x , y) ↔ Siblings(y , x))

One’s mother is one’s female parent
∀ x , y . (Mother(x , y) ↔ (Female(x) ∧ Parent(x , y)))

A first cousin is a child of a parent’s sibling
∀ x1, x2. (FirstCousin(x1, x2) ↔
∃ p1, p2. (Siblings(p1, p2) ∧ Parent(p1, x1) ∧ Parent(p2, x2)))

Dogs are mammals
∀ x . (Dog(x)→ Mammal(x))

27 / 60

Equality

Equality is a special predicate: t1 = t2 is true under a given interpretation if and only if t1 and
t2 refer to the same object

Ex: 1 = 2 and x ∗ x = x are satisfiable (!)
Ex: 2 = 2 is valid

Ex: definition of Sibling in terms of Parent
∀ x , y . (Siblings(x , y) ↔ [¬(x = y) ∧ ∃m, f . (¬(m = f) ∧

Parent(m, x) ∧ Parent(f , x) ∧ Parent(m, y) ∧ Parent(f , y)]))

28 / 60

Equality

Equality is a special predicate: t1 = t2 is true under a given interpretation if and only if t1 and
t2 refer to the same object

Ex: 1 = 2 and x ∗ x = x are satisfiable (!)
Ex: 2 = 2 is valid

Ex: definition of Sibling in terms of Parent
∀ x , y . (Siblings(x , y) ↔ [¬(x = y) ∧ ∃m, f . (¬(m = f) ∧

Parent(m, x) ∧ Parent(f , x) ∧ Parent(m, y) ∧ Parent(f , y)]))

28 / 60

Example

No one is his/her own sibling
∀ x . ¬Siblings(x , x)

Sisters are female, brothers are male
∀ x , y . ((Sisters(x , y)→ (Female(x) ∧ Female(y))) ∧

(Brothers(x , y)→ (Male(x) ∧Male(y))))

Every married person has a spouse
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Married people have spouses
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Only married people have spouses
∀ x , y . ((Person(x) ∧ Person(y) ∧ Spouse(x , y))→ (Married(x) ∧Married(y)))

People cannot be married to their siblings
∀ x , y . (Spouse(x , y)→ ¬Siblings(x , y))

29 / 60

Example

No one is his/her own sibling
∀ x . ¬Siblings(x , x)

Sisters are female, brothers are male
∀ x , y . ((Sisters(x , y)→ (Female(x) ∧ Female(y))) ∧

(Brothers(x , y)→ (Male(x) ∧Male(y))))

Every married person has a spouse
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Married people have spouses
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Only married people have spouses
∀ x , y . ((Person(x) ∧ Person(y) ∧ Spouse(x , y))→ (Married(x) ∧Married(y)))

People cannot be married to their siblings
∀ x , y . (Spouse(x , y)→ ¬Siblings(x , y))

29 / 60

Example

No one is his/her own sibling
∀ x . ¬Siblings(x , x)

Sisters are female, brothers are male
∀ x , y . ((Sisters(x , y)→ (Female(x) ∧ Female(y))) ∧

(Brothers(x , y)→ (Male(x) ∧Male(y))))

Every married person has a spouse
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Married people have spouses
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Only married people have spouses
∀ x , y . ((Person(x) ∧ Person(y) ∧ Spouse(x , y))→ (Married(x) ∧Married(y)))

People cannot be married to their siblings
∀ x , y . (Spouse(x , y)→ ¬Siblings(x , y))

29 / 60

Example

No one is his/her own sibling
∀ x . ¬Siblings(x , x)

Sisters are female, brothers are male
∀ x , y . ((Sisters(x , y)→ (Female(x) ∧ Female(y))) ∧

(Brothers(x , y)→ (Male(x) ∧Male(y))))

Every married person has a spouse
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Married people have spouses
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Only married people have spouses
∀ x , y . ((Person(x) ∧ Person(y) ∧ Spouse(x , y))→ (Married(x) ∧Married(y)))

People cannot be married to their siblings
∀ x , y . (Spouse(x , y)→ ¬Siblings(x , y))

29 / 60

Example

No one is his/her own sibling
∀ x . ¬Siblings(x , x)

Sisters are female, brothers are male
∀ x , y . ((Sisters(x , y)→ (Female(x) ∧ Female(y))) ∧

(Brothers(x , y)→ (Male(x) ∧Male(y))))

Every married person has a spouse
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Married people have spouses
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Only married people have spouses
∀ x , y . ((Person(x) ∧ Person(y) ∧ Spouse(x , y))→ (Married(x) ∧Married(y)))

People cannot be married to their siblings
∀ x , y . (Spouse(x , y)→ ¬Siblings(x , y))

29 / 60

Example

No one is his/her own sibling
∀ x . ¬Siblings(x , x)

Sisters are female, brothers are male
∀ x , y . ((Sisters(x , y)→ (Female(x) ∧ Female(y))) ∧

(Brothers(x , y)→ (Male(x) ∧Male(y))))

Every married person has a spouse
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Married people have spouses
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Only married people have spouses
∀ x , y . ((Person(x) ∧ Person(y) ∧ Spouse(x , y))→ (Married(x) ∧Married(y)))

People cannot be married to their siblings
∀ x , y . (Spouse(x , y)→ ¬Siblings(x , y))

29 / 60

Example

No one is his/her own sibling
∀ x . ¬Siblings(x , x)

Sisters are female, brothers are male
∀ x , y . ((Sisters(x , y)→ (Female(x) ∧ Female(y))) ∧

(Brothers(x , y)→ (Male(x) ∧Male(y))))

Every married person has a spouse
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Married people have spouses
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Only married people have spouses
∀ x , y . ((Person(x) ∧ Person(y) ∧ Spouse(x , y))→ (Married(x) ∧Married(y)))

People cannot be married to their siblings
∀ x , y . (Spouse(x , y)→ ¬Siblings(x , y))

29 / 60

Example

No one is his/her own sibling
∀ x . ¬Siblings(x , x)

Sisters are female, brothers are male
∀ x , y . ((Sisters(x , y)→ (Female(x) ∧ Female(y))) ∧

(Brothers(x , y)→ (Male(x) ∧Male(y))))

Every married person has a spouse
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Married people have spouses
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Only married people have spouses
∀ x , y . ((Person(x) ∧ Person(y) ∧ Spouse(x , y))→ (Married(x) ∧Married(y)))

People cannot be married to their siblings
∀ x , y . (Spouse(x , y)→ ¬Siblings(x , y))

29 / 60

Example

No one is his/her own sibling
∀ x . ¬Siblings(x , x)

Sisters are female, brothers are male
∀ x , y . ((Sisters(x , y)→ (Female(x) ∧ Female(y))) ∧

(Brothers(x , y)→ (Male(x) ∧Male(y))))

Every married person has a spouse
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Married people have spouses
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Only married people have spouses
∀ x , y . ((Person(x) ∧ Person(y) ∧ Spouse(x , y))→ (Married(x) ∧Married(y)))

People cannot be married to their siblings
∀ x , y . (Spouse(x , y)→ ¬Siblings(x , y))

29 / 60

Example

No one is his/her own sibling
∀ x . ¬Siblings(x , x)

Sisters are female, brothers are male
∀ x , y . ((Sisters(x , y)→ (Female(x) ∧ Female(y))) ∧

(Brothers(x , y)→ (Male(x) ∧Male(y))))

Every married person has a spouse
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Married people have spouses
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Only married people have spouses
∀ x , y . ((Person(x) ∧ Person(y) ∧ Spouse(x , y))→ (Married(x) ∧Married(y)))

People cannot be married to their siblings
∀ x , y . (Spouse(x , y)→ ¬Siblings(x , y))

29 / 60

Example

No one is his/her own sibling
∀ x . ¬Siblings(x , x)

Sisters are female, brothers are male
∀ x , y . ((Sisters(x , y)→ (Female(x) ∧ Female(y))) ∧

(Brothers(x , y)→ (Male(x) ∧Male(y))))

Every married person has a spouse
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Married people have spouses
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Only married people have spouses
∀ x , y . ((Person(x) ∧ Person(y) ∧ Spouse(x , y))→ (Married(x) ∧Married(y)))

People cannot be married to their siblings
∀ x , y . (Spouse(x , y)→ ¬Siblings(x , y))

29 / 60

Example

No one is his/her own sibling
∀ x . ¬Siblings(x , x)

Sisters are female, brothers are male
∀ x , y . ((Sisters(x , y)→ (Female(x) ∧ Female(y))) ∧

(Brothers(x , y)→ (Male(x) ∧Male(y))))

Every married person has a spouse
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Married people have spouses
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Only married people have spouses
∀ x , y . ((Person(x) ∧ Person(y) ∧ Spouse(x , y))→ (Married(x) ∧Married(y)))

People cannot be married to their siblings
∀ x , y . (Spouse(x , y)→ ¬Siblings(x , y))

29 / 60

Example (cont.)

Not everybody has a spouse
¬∀ x . (Person(x)→ ∃ y . Spouse(x , y)) or
∃ x . (Person(x) ∧ ¬∃ y . Spouse(x , y))

Everybody has a mother
∀ x . (Person(x)→ ∃ y . Mother(y , x))

Everybody has a mother and only one
∀ x . Person(x)→ (∃ y . Mother(y , x) ∧ ¬∃ z. (¬(y = z) ∧Mother(z, x)))

30 / 60

Example (cont.)

Not everybody has a spouse
¬∀ x . (Person(x)→ ∃ y . Spouse(x , y)) or
∃ x . (Person(x) ∧ ¬∃ y . Spouse(x , y))

Everybody has a mother
∀ x . (Person(x)→ ∃ y . Mother(y , x))

Everybody has a mother and only one
∀ x . Person(x)→ (∃ y . Mother(y , x) ∧ ¬∃ z. (¬(y = z) ∧Mother(z, x)))

30 / 60

Example (cont.)

Not everybody has a spouse
¬∀ x . (Person(x)→ ∃ y . Spouse(x , y)) or
∃ x . (Person(x) ∧ ¬∃ y . Spouse(x , y))

Everybody has a mother
∀ x . (Person(x)→ ∃ y . Mother(y , x))

Everybody has a mother and only one
∀ x . Person(x)→ (∃ y . Mother(y , x) ∧ ¬∃ z. (¬(y = z) ∧Mother(z, x)))

30 / 60

Example (cont.)

Not everybody has a spouse
¬∀ x . (Person(x)→ ∃ y . Spouse(x , y)) or
∃ x . (Person(x) ∧ ¬∃ y . Spouse(x , y))

Everybody has a mother
∀ x . (Person(x)→ ∃ y . Mother(y , x))

Everybody has a mother and only one
∀ x . Person(x)→ (∃ y . Mother(y , x) ∧ ¬∃ z. (¬(y = z) ∧Mother(z, x)))

30 / 60

Example (cont.)

Not everybody has a spouse
¬∀ x . (Person(x)→ ∃ y . Spouse(x , y)) or
∃ x . (Person(x) ∧ ¬∃ y . Spouse(x , y))

Everybody has a mother
∀ x . (Person(x)→ ∃ y . Mother(y , x))

Everybody has a mother and only one
∀ x . Person(x)→ (∃ y . Mother(y , x) ∧ ¬∃ z. (¬(y = z) ∧Mother(z, x)))

30 / 60

Example (cont.)

Not everybody has a spouse
¬∀ x . (Person(x)→ ∃ y . Spouse(x , y)) or
∃ x . (Person(x) ∧ ¬∃ y . Spouse(x , y))

Everybody has a mother
∀ x . (Person(x)→ ∃ y . Mother(y , x))

Everybody has a mother and only one
∀ x . Person(x)→ (∃ y . Mother(y , x) ∧ ¬∃ z. (¬(y = z) ∧Mother(z, x)))

30 / 60

Example (cont.)

Not everybody has a spouse
¬∀ x . (Person(x)→ ∃ y . Spouse(x , y)) or
∃ x . (Person(x) ∧ ¬∃ y . Spouse(x , y))

Everybody has a mother
∀ x . (Person(x)→ ∃ y . Mother(y , x))

Everybody has a mother and only one
∀ x . Person(x)→ (∃ y . Mother(y , x) ∧ ¬∃ z. (¬(y = z) ∧Mother(z, x)))

30 / 60

Properties of Quantifiers

Notation variants: ∀x(∀y .α)⇐⇒ ∀x∀y .α⇐⇒ ∀x , y .α⇐⇒ ∀xy .α
(same with ∃)

if x does not occur in ϕ, ∀x .ϕ equivalent to ∃x .ϕ equivalent to ϕ
∀xy .P(x , y) equivalent to ∀yx .P(x , y)

ex: ∀xy .(x < y) same as ∀yx .(x < y)

∃xy .P(x , y) equivalent to ∃yx .P(x , y)

ex: ∃xy .Twins(x , y) same as ∃yx .Twins(x , y)

∃x∀y .P(x , y) not equivalent to ∀y∃x .P(x , y)

ex: ∀y∃x .Father(x , y) much weaker than ∃x∀y .Father(x , y)
“everybody has a father” vs. “exists a father of everybody”
∃x∀y .P(x , y) |= ∀y∃x .P(x , y)
∀y∃x .P(x , y) 6|= ∃x∀y .P(x , y)

Remark

Variable names are irrelevant: e.g., ∀x .P(x) is the same as ∀y .P(y)

... provided there are no name conflicts: e.g., ∀x .∃yP(x , y) is not the same as ∀y .∃yP(y , y)!
31 / 60

Properties of Quantifiers

Notation variants: ∀x(∀y .α)⇐⇒ ∀x∀y .α⇐⇒ ∀x , y .α⇐⇒ ∀xy .α
(same with ∃)

if x does not occur in ϕ, ∀x .ϕ equivalent to ∃x .ϕ equivalent to ϕ
∀xy .P(x , y) equivalent to ∀yx .P(x , y)

ex: ∀xy .(x < y) same as ∀yx .(x < y)

∃xy .P(x , y) equivalent to ∃yx .P(x , y)

ex: ∃xy .Twins(x , y) same as ∃yx .Twins(x , y)

∃x∀y .P(x , y) not equivalent to ∀y∃x .P(x , y)

ex: ∀y∃x .Father(x , y) much weaker than ∃x∀y .Father(x , y)
“everybody has a father” vs. “exists a father of everybody”
∃x∀y .P(x , y) |= ∀y∃x .P(x , y)
∀y∃x .P(x , y) 6|= ∃x∀y .P(x , y)

Remark

Variable names are irrelevant: e.g., ∀x .P(x) is the same as ∀y .P(y)

... provided there are no name conflicts: e.g., ∀x .∃yP(x , y) is not the same as ∀y .∃yP(y , y)!
31 / 60

Properties of Quantifiers

Notation variants: ∀x(∀y .α)⇐⇒ ∀x∀y .α⇐⇒ ∀x , y .α⇐⇒ ∀xy .α
(same with ∃)

if x does not occur in ϕ, ∀x .ϕ equivalent to ∃x .ϕ equivalent to ϕ
∀xy .P(x , y) equivalent to ∀yx .P(x , y)

ex: ∀xy .(x < y) same as ∀yx .(x < y)

∃xy .P(x , y) equivalent to ∃yx .P(x , y)

ex: ∃xy .Twins(x , y) same as ∃yx .Twins(x , y)

∃x∀y .P(x , y) not equivalent to ∀y∃x .P(x , y)

ex: ∀y∃x .Father(x , y) much weaker than ∃x∀y .Father(x , y)
“everybody has a father” vs. “exists a father of everybody”
∃x∀y .P(x , y) |= ∀y∃x .P(x , y)
∀y∃x .P(x , y) 6|= ∃x∀y .P(x , y)

Remark

Variable names are irrelevant: e.g., ∀x .P(x) is the same as ∀y .P(y)

... provided there are no name conflicts: e.g., ∀x .∃yP(x , y) is not the same as ∀y .∃yP(y , y)!
31 / 60

Properties of Quantifiers

Notation variants: ∀x(∀y .α)⇐⇒ ∀x∀y .α⇐⇒ ∀x , y .α⇐⇒ ∀xy .α
(same with ∃)

if x does not occur in ϕ, ∀x .ϕ equivalent to ∃x .ϕ equivalent to ϕ
∀xy .P(x , y) equivalent to ∀yx .P(x , y)

ex: ∀xy .(x < y) same as ∀yx .(x < y)

∃xy .P(x , y) equivalent to ∃yx .P(x , y)

ex: ∃xy .Twins(x , y) same as ∃yx .Twins(x , y)

∃x∀y .P(x , y) not equivalent to ∀y∃x .P(x , y)

ex: ∀y∃x .Father(x , y) much weaker than ∃x∀y .Father(x , y)
“everybody has a father” vs. “exists a father of everybody”
∃x∀y .P(x , y) |= ∀y∃x .P(x , y)
∀y∃x .P(x , y) 6|= ∃x∀y .P(x , y)

Remark

Variable names are irrelevant: e.g., ∀x .P(x) is the same as ∀y .P(y)

... provided there are no name conflicts: e.g., ∀x .∃yP(x , y) is not the same as ∀y .∃yP(y , y)!
31 / 60

Properties of Quantifiers

Notation variants: ∀x(∀y .α)⇐⇒ ∀x∀y .α⇐⇒ ∀x , y .α⇐⇒ ∀xy .α
(same with ∃)

if x does not occur in ϕ, ∀x .ϕ equivalent to ∃x .ϕ equivalent to ϕ
∀xy .P(x , y) equivalent to ∀yx .P(x , y)

ex: ∀xy .(x < y) same as ∀yx .(x < y)

∃xy .P(x , y) equivalent to ∃yx .P(x , y)

ex: ∃xy .Twins(x , y) same as ∃yx .Twins(x , y)

∃x∀y .P(x , y) not equivalent to ∀y∃x .P(x , y)

ex: ∀y∃x .Father(x , y) much weaker than ∃x∀y .Father(x , y)
“everybody has a father” vs. “exists a father of everybody”
∃x∀y .P(x , y) |= ∀y∃x .P(x , y)
∀y∃x .P(x , y) 6|= ∃x∀y .P(x , y)

Remark

Variable names are irrelevant: e.g., ∀x .P(x) is the same as ∀y .P(y)

... provided there are no name conflicts: e.g., ∀x .∃yP(x , y) is not the same as ∀y .∃yP(y , y)!
31 / 60

Properties of Quantifiers

Notation variants: ∀x(∀y .α)⇐⇒ ∀x∀y .α⇐⇒ ∀x , y .α⇐⇒ ∀xy .α
(same with ∃)

if x does not occur in ϕ, ∀x .ϕ equivalent to ∃x .ϕ equivalent to ϕ
∀xy .P(x , y) equivalent to ∀yx .P(x , y)

ex: ∀xy .(x < y) same as ∀yx .(x < y)

∃xy .P(x , y) equivalent to ∃yx .P(x , y)

ex: ∃xy .Twins(x , y) same as ∃yx .Twins(x , y)

∃x∀y .P(x , y) not equivalent to ∀y∃x .P(x , y)

ex: ∀y∃x .Father(x , y) much weaker than ∃x∀y .Father(x , y)
“everybody has a father” vs. “exists a father of everybody”
∃x∀y .P(x , y) |= ∀y∃x .P(x , y)
∀y∃x .P(x , y) 6|= ∃x∀y .P(x , y)

Remark

Variable names are irrelevant: e.g., ∀x .P(x) is the same as ∀y .P(y)

... provided there are no name conflicts: e.g., ∀x .∃yP(x , y) is not the same as ∀y .∃yP(y , y)!
31 / 60

Properties of Quantifiers

Notation variants: ∀x(∀y .α)⇐⇒ ∀x∀y .α⇐⇒ ∀x , y .α⇐⇒ ∀xy .α
(same with ∃)

if x does not occur in ϕ, ∀x .ϕ equivalent to ∃x .ϕ equivalent to ϕ
∀xy .P(x , y) equivalent to ∀yx .P(x , y)

ex: ∀xy .(x < y) same as ∀yx .(x < y)

∃xy .P(x , y) equivalent to ∃yx .P(x , y)

ex: ∃xy .Twins(x , y) same as ∃yx .Twins(x , y)

∃x∀y .P(x , y) not equivalent to ∀y∃x .P(x , y)

ex: ∀y∃x .Father(x , y) much weaker than ∃x∀y .Father(x , y)
“everybody has a father” vs. “exists a father of everybody”
∃x∀y .P(x , y) |= ∀y∃x .P(x , y)
∀y∃x .P(x , y) 6|= ∃x∀y .P(x , y)

Remark

Variable names are irrelevant: e.g., ∀x .P(x) is the same as ∀y .P(y)

... provided there are no name conflicts: e.g., ∀x .∃yP(x , y) is not the same as ∀y .∃yP(y , y)!
31 / 60

Duality of Universal and Existential Quantification

∀ and ∃ are dual
∀x .α⇐⇒ ¬∃x .¬α
¬∀x .α⇐⇒ ∃x .¬α
∃x .α⇐⇒ ¬∀x .¬α
¬∃x .α⇐⇒ ∀x .¬α

Examples
∀x .Likes(x , Icecream) equivalent to ¬∃x .¬Likes(x , Icecream)
∃x .Likes(x ,Broccoli) equivalent to ¬∀x .¬Likes(x ,Broccoli)

Negated restricted quantifiers switch “→” with “∧”
∀x .(P(x)→ α)⇐⇒ ¬∃x .(P(x) ∧ ¬α)
¬∀x .(P(x)→ α)⇐⇒ ∃x .(P(x) ∧ ¬α)
...

Ex: “not all kings are evil” same as “some king is not evil”
¬∀x .(King(x)→ Evil(x)) ⇐⇒ ∃x .(King(x) ∧ ¬Evil(x))

Unsurprising, since 〈∀,∃〉 are 〈∧,∨〉 over infinite instantiations

32 / 60

Duality of Universal and Existential Quantification

∀ and ∃ are dual
∀x .α⇐⇒ ¬∃x .¬α
¬∀x .α⇐⇒ ∃x .¬α
∃x .α⇐⇒ ¬∀x .¬α
¬∃x .α⇐⇒ ∀x .¬α

Examples
∀x .Likes(x , Icecream) equivalent to ¬∃x .¬Likes(x , Icecream)
∃x .Likes(x ,Broccoli) equivalent to ¬∀x .¬Likes(x ,Broccoli)

Negated restricted quantifiers switch “→” with “∧”
∀x .(P(x)→ α)⇐⇒ ¬∃x .(P(x) ∧ ¬α)
¬∀x .(P(x)→ α)⇐⇒ ∃x .(P(x) ∧ ¬α)
...

Ex: “not all kings are evil” same as “some king is not evil”
¬∀x .(King(x)→ Evil(x)) ⇐⇒ ∃x .(King(x) ∧ ¬Evil(x))

Unsurprising, since 〈∀,∃〉 are 〈∧,∨〉 over infinite instantiations

32 / 60

Duality of Universal and Existential Quantification

∀ and ∃ are dual
∀x .α⇐⇒ ¬∃x .¬α
¬∀x .α⇐⇒ ∃x .¬α
∃x .α⇐⇒ ¬∀x .¬α
¬∃x .α⇐⇒ ∀x .¬α

Examples
∀x .Likes(x , Icecream) equivalent to ¬∃x .¬Likes(x , Icecream)
∃x .Likes(x ,Broccoli) equivalent to ¬∀x .¬Likes(x ,Broccoli)

Negated restricted quantifiers switch “→” with “∧”
∀x .(P(x)→ α)⇐⇒ ¬∃x .(P(x) ∧ ¬α)
¬∀x .(P(x)→ α)⇐⇒ ∃x .(P(x) ∧ ¬α)
...

Ex: “not all kings are evil” same as “some king is not evil”
¬∀x .(King(x)→ Evil(x)) ⇐⇒ ∃x .(King(x) ∧ ¬Evil(x))

Unsurprising, since 〈∀,∃〉 are 〈∧,∨〉 over infinite instantiations

32 / 60

Duality of Universal and Existential Quantification

∀ and ∃ are dual
∀x .α⇐⇒ ¬∃x .¬α
¬∀x .α⇐⇒ ∃x .¬α
∃x .α⇐⇒ ¬∀x .¬α
¬∃x .α⇐⇒ ∀x .¬α

Examples
∀x .Likes(x , Icecream) equivalent to ¬∃x .¬Likes(x , Icecream)
∃x .Likes(x ,Broccoli) equivalent to ¬∀x .¬Likes(x ,Broccoli)

Negated restricted quantifiers switch “→” with “∧”
∀x .(P(x)→ α)⇐⇒ ¬∃x .(P(x) ∧ ¬α)
¬∀x .(P(x)→ α)⇐⇒ ∃x .(P(x) ∧ ¬α)
...

Ex: “not all kings are evil” same as “some king is not evil”
¬∀x .(King(x)→ Evil(x)) ⇐⇒ ∃x .(King(x) ∧ ¬Evil(x))

Unsurprising, since 〈∀,∃〉 are 〈∧,∨〉 over infinite instantiations

32 / 60

Duality of Universal and Existential Quantification

∀ and ∃ are dual
∀x .α⇐⇒ ¬∃x .¬α
¬∀x .α⇐⇒ ∃x .¬α
∃x .α⇐⇒ ¬∀x .¬α
¬∃x .α⇐⇒ ∀x .¬α

Examples
∀x .Likes(x , Icecream) equivalent to ¬∃x .¬Likes(x , Icecream)
∃x .Likes(x ,Broccoli) equivalent to ¬∀x .¬Likes(x ,Broccoli)

Negated restricted quantifiers switch “→” with “∧”
∀x .(P(x)→ α)⇐⇒ ¬∃x .(P(x) ∧ ¬α)
¬∀x .(P(x)→ α)⇐⇒ ∃x .(P(x) ∧ ¬α)
...

Ex: “not all kings are evil” same as “some king is not evil”
¬∀x .(King(x)→ Evil(x)) ⇐⇒ ∃x .(King(x) ∧ ¬Evil(x))

Unsurprising, since 〈∀,∃〉 are 〈∧,∨〉 over infinite instantiations

32 / 60

Outline

1 Generalities

2 Syntax and Semantics of FOL
Syntax
Semantics
Satisfiability, Validity, Entailment

3 Using FOL
FOL Agents
Example: The Wumpus World

4 Knowledge Engineering in FOL

33 / 60

Satisfiability, Validity, Entailment

A modelM def
= 〈D, I〉 satisfies ϕ (M |= ϕ) iff [ϕ]I is true

M(ϕ)
def
= {M | M |= ϕ} (the set of models of ϕ)

ϕ is satisfiable iffM |= ϕ for someM (i.e. M(ϕ) 6= ∅)
α entails β (α |= β) iff, for allM,M |= α =⇒M |= β
(i.e., M(α) ⊆ M(β))
ϕ is valid (|= ϕ) iffM |= ϕ forallMs (i.e.,M∈ M(ϕ) forallMs)
α, β are equivalent iff α |= β and β |= α (i.e. M(α) = M(β))

Sets of formulas as conjunctions

Let Γ
def
= {ϕ1, ..., ϕn}. Then:

Γ satisfiable iff
∧n

i=1 ϕi satisfiable
Γ |= φ iff

∧n
i=1 ϕi |= φ

Γ valid iff
∧n

i=1 ϕi valid

34 / 60

Satisfiability, Validity, Entailment

A modelM def
= 〈D, I〉 satisfies ϕ (M |= ϕ) iff [ϕ]I is true

M(ϕ)
def
= {M | M |= ϕ} (the set of models of ϕ)

ϕ is satisfiable iffM |= ϕ for someM (i.e. M(ϕ) 6= ∅)
α entails β (α |= β) iff, for allM,M |= α =⇒M |= β
(i.e., M(α) ⊆ M(β))
ϕ is valid (|= ϕ) iffM |= ϕ forallMs (i.e.,M∈ M(ϕ) forallMs)
α, β are equivalent iff α |= β and β |= α (i.e. M(α) = M(β))

Sets of formulas as conjunctions

Let Γ
def
= {ϕ1, ..., ϕn}. Then:

Γ satisfiable iff
∧n

i=1 ϕi satisfiable
Γ |= φ iff

∧n
i=1 ϕi |= φ

Γ valid iff
∧n

i=1 ϕi valid

34 / 60

Satisfiability, Validity, Entailment

A modelM def
= 〈D, I〉 satisfies ϕ (M |= ϕ) iff [ϕ]I is true

M(ϕ)
def
= {M | M |= ϕ} (the set of models of ϕ)

ϕ is satisfiable iffM |= ϕ for someM (i.e. M(ϕ) 6= ∅)
α entails β (α |= β) iff, for allM,M |= α =⇒M |= β
(i.e., M(α) ⊆ M(β))
ϕ is valid (|= ϕ) iffM |= ϕ forallMs (i.e.,M∈ M(ϕ) forallMs)
α, β are equivalent iff α |= β and β |= α (i.e. M(α) = M(β))

Sets of formulas as conjunctions

Let Γ
def
= {ϕ1, ..., ϕn}. Then:

Γ satisfiable iff
∧n

i=1 ϕi satisfiable
Γ |= φ iff

∧n
i=1 ϕi |= φ

Γ valid iff
∧n

i=1 ϕi valid

34 / 60

Satisfiability, Validity, Entailment

A modelM def
= 〈D, I〉 satisfies ϕ (M |= ϕ) iff [ϕ]I is true

M(ϕ)
def
= {M | M |= ϕ} (the set of models of ϕ)

ϕ is satisfiable iffM |= ϕ for someM (i.e. M(ϕ) 6= ∅)
α entails β (α |= β) iff, for allM,M |= α =⇒M |= β
(i.e., M(α) ⊆ M(β))
ϕ is valid (|= ϕ) iffM |= ϕ forallMs (i.e.,M∈ M(ϕ) forallMs)
α, β are equivalent iff α |= β and β |= α (i.e. M(α) = M(β))

Sets of formulas as conjunctions

Let Γ
def
= {ϕ1, ..., ϕn}. Then:

Γ satisfiable iff
∧n

i=1 ϕi satisfiable
Γ |= φ iff

∧n
i=1 ϕi |= φ

Γ valid iff
∧n

i=1 ϕi valid

34 / 60

Satisfiability, Validity, Entailment

A modelM def
= 〈D, I〉 satisfies ϕ (M |= ϕ) iff [ϕ]I is true

M(ϕ)
def
= {M | M |= ϕ} (the set of models of ϕ)

ϕ is satisfiable iffM |= ϕ for someM (i.e. M(ϕ) 6= ∅)
α entails β (α |= β) iff, for allM,M |= α =⇒M |= β
(i.e., M(α) ⊆ M(β))
ϕ is valid (|= ϕ) iffM |= ϕ forallMs (i.e.,M∈ M(ϕ) forallMs)
α, β are equivalent iff α |= β and β |= α (i.e. M(α) = M(β))

Sets of formulas as conjunctions

Let Γ
def
= {ϕ1, ..., ϕn}. Then:

Γ satisfiable iff
∧n

i=1 ϕi satisfiable
Γ |= φ iff

∧n
i=1 ϕi |= φ

Γ valid iff
∧n

i=1 ϕi valid

34 / 60

Satisfiability, Validity, Entailment

A modelM def
= 〈D, I〉 satisfies ϕ (M |= ϕ) iff [ϕ]I is true

M(ϕ)
def
= {M | M |= ϕ} (the set of models of ϕ)

ϕ is satisfiable iffM |= ϕ for someM (i.e. M(ϕ) 6= ∅)
α entails β (α |= β) iff, for allM,M |= α =⇒M |= β
(i.e., M(α) ⊆ M(β))
ϕ is valid (|= ϕ) iffM |= ϕ forallMs (i.e.,M∈ M(ϕ) forallMs)
α, β are equivalent iff α |= β and β |= α (i.e. M(α) = M(β))

Sets of formulas as conjunctions

Let Γ
def
= {ϕ1, ..., ϕn}. Then:

Γ satisfiable iff
∧n

i=1 ϕi satisfiable
Γ |= φ iff

∧n
i=1 ϕi |= φ

Γ valid iff
∧n

i=1 ϕi valid

34 / 60

Properties & Results

Property

ϕ is valid iff ¬ϕ is unsatisfiable

Deduction Theorem

α |= β iff α→ β is valid (|= α→ β)

Corollary

α |= β iff α ∧ ¬β is unsatisfiable

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!

35 / 60

Properties & Results

Property

ϕ is valid iff ¬ϕ is unsatisfiable

Deduction Theorem

α |= β iff α→ β is valid (|= α→ β)

Corollary

α |= β iff α ∧ ¬β is unsatisfiable

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!

35 / 60

Properties & Results

Property

ϕ is valid iff ¬ϕ is unsatisfiable

Deduction Theorem

α |= β iff α→ β is valid (|= α→ β)

Corollary

α |= β iff α ∧ ¬β is unsatisfiable

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!

35 / 60

Properties & Results

Property

ϕ is valid iff ¬ϕ is unsatisfiable

Deduction Theorem

α |= β iff α→ β is valid (|= α→ β)

Corollary

α |= β iff α ∧ ¬β is unsatisfiable

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!

35 / 60

Examples

P(x), ∀x .(x ≥ y), {∀x .(x ≥ 0),∀x .(x + 1 > x)} satisfiable
P(x) ∧ ¬P(x), ¬(x = x), (∀x , y .Q(x , y))→¬Q(a,b) unsatisfiable
∀x .P(x)→ ∃x .P(x) valid
∀x .P(x) |= ∃x .P(x)

¬(∀x .P(x))→ ∃x .P(x)) unsatisfiable
∀x .P(x) ∧ ¬∃x .P(x)) unsatisfiable

(1 > 2) is satisfiable. Why?

36 / 60

Examples

P(x), ∀x .(x ≥ y), {∀x .(x ≥ 0),∀x .(x + 1 > x)} satisfiable
P(x) ∧ ¬P(x), ¬(x = x), (∀x , y .Q(x , y))→¬Q(a,b) unsatisfiable
∀x .P(x)→ ∃x .P(x) valid
∀x .P(x) |= ∃x .P(x)

¬(∀x .P(x))→ ∃x .P(x)) unsatisfiable
∀x .P(x) ∧ ¬∃x .P(x)) unsatisfiable

(1 > 2) is satisfiable. Why?

36 / 60

Examples

P(x), ∀x .(x ≥ y), {∀x .(x ≥ 0),∀x .(x + 1 > x)} satisfiable
P(x) ∧ ¬P(x), ¬(x = x), (∀x , y .Q(x , y))→¬Q(a,b) unsatisfiable
∀x .P(x)→ ∃x .P(x) valid
∀x .P(x) |= ∃x .P(x)

¬(∀x .P(x))→ ∃x .P(x)) unsatisfiable
∀x .P(x) ∧ ¬∃x .P(x)) unsatisfiable

(1 > 2) is satisfiable. Why?

36 / 60

Examples

P(x), ∀x .(x ≥ y), {∀x .(x ≥ 0),∀x .(x + 1 > x)} satisfiable
P(x) ∧ ¬P(x), ¬(x = x), (∀x , y .Q(x , y))→¬Q(a,b) unsatisfiable
∀x .P(x)→ ∃x .P(x) valid
∀x .P(x) |= ∃x .P(x)

¬(∀x .P(x))→ ∃x .P(x)) unsatisfiable
∀x .P(x) ∧ ¬∃x .P(x)) unsatisfiable

(1 > 2) is satisfiable. Why?

36 / 60

Examples

P(x), ∀x .(x ≥ y), {∀x .(x ≥ 0),∀x .(x + 1 > x)} satisfiable
P(x) ∧ ¬P(x), ¬(x = x), (∀x , y .Q(x , y))→¬Q(a,b) unsatisfiable
∀x .P(x)→ ∃x .P(x) valid
∀x .P(x) |= ∃x .P(x)

¬(∀x .P(x))→ ∃x .P(x)) unsatisfiable
∀x .P(x) ∧ ¬∃x .P(x)) unsatisfiable

(1 > 2) is satisfiable. Why?

36 / 60

Examples

P(x), ∀x .(x ≥ y), {∀x .(x ≥ 0),∀x .(x + 1 > x)} satisfiable
P(x) ∧ ¬P(x), ¬(x = x), (∀x , y .Q(x , y))→¬Q(a,b) unsatisfiable
∀x .P(x)→ ∃x .P(x) valid
∀x .P(x) |= ∃x .P(x)

¬(∀x .P(x))→ ∃x .P(x)) unsatisfiable
∀x .P(x) ∧ ¬∃x .P(x)) unsatisfiable

(1 > 2) is satisfiable. Why?

36 / 60

Examples

P(x), ∀x .(x ≥ y), {∀x .(x ≥ 0),∀x .(x + 1 > x)} satisfiable
P(x) ∧ ¬P(x), ¬(x = x), (∀x , y .Q(x , y))→¬Q(a,b) unsatisfiable
∀x .P(x)→ ∃x .P(x) valid
∀x .P(x) |= ∃x .P(x)

¬(∀x .P(x))→ ∃x .P(x)) unsatisfiable
∀x .P(x) ∧ ¬∃x .P(x)) unsatisfiable

(1 > 2) is satisfiable. Why?

36 / 60

Exercises

Is ∀x .P(x) equivalent to ∀y .P(y)?
Is ∀xy .P(x , y) equivalent to ∀yx .P(y , x)?
∀x .∃x .P(x) is equivalent to:

∃x .P(x)
∀x .P(x)
neither

∃x .∀x .P(x) is equivalent to:
∃x .P(x)
∀x .P(x)
neither

37 / 60

Enumeration of Models?

We can enumerate the models for a given FOL sentence:
For each number of universe elements n from 1 to∞

For each k -ary predicate Pk in the sentence
For each possible k -ary relation on n objects

For each constant symbol C in the sentence
For each one of n objects C is mapped to
. . .

=⇒ Enumerating models is not going to be easy!

38 / 60

Enumeration of Models?

We can enumerate the models for a given FOL sentence:
For each number of universe elements n from 1 to∞

For each k -ary predicate Pk in the sentence
For each possible k -ary relation on n objects

For each constant symbol C in the sentence
For each one of n objects C is mapped to
. . .

=⇒ Enumerating models is not going to be easy!

38 / 60

Semi-decidability of FOL
Theorem
Entailment (validity, unsatisfiability) in FOL is only semi-decidable:

if Γ |= α, this can be checked in finite time
if Γ 6|= α, no algorithm is guaranteed to check it in finite time

©Munch Museum, Oslo

39 / 60

Semi-decidability of FOL
Theorem
Entailment (validity, unsatisfiability) in FOL is only semi-decidable:

if Γ |= α, this can be checked in finite time
if Γ 6|= α, no algorithm is guaranteed to check it in finite time

©Munch Museum, Oslo 39 / 60

Outline

1 Generalities

2 Syntax and Semantics of FOL
Syntax
Semantics
Satisfiability, Validity, Entailment

3 Using FOL
FOL Agents
Example: The Wumpus World

4 Knowledge Engineering in FOL

40 / 60

Outline

1 Generalities

2 Syntax and Semantics of FOL
Syntax
Semantics
Satisfiability, Validity, Entailment

3 Using FOL
FOL Agents
Example: The Wumpus World

4 Knowledge Engineering in FOL

41 / 60

[Recall:] Knowledge-Based Agent: General Schema

Given a percept, the agent
Tells the KB of the percept at time step t
ASKs the KB for the best action to do at time step t
Tells the KB that it has in fact taken that action

Details hidden in three functions:
MAKE-PERCEPT-SENTENCE, MAKE-ACTION-QUERY, MAKE-ACTION-SENTENCE

construct logic sentences
implement the interface between sensors/actuators and KRR core

Tell and Ask may require complex logical inference

(© S. Russell & P. Norwig, AIMA)
42 / 60

FOL Knowledge-Based Agent

We can assert FOL sentences (assertions) into the KB. Ex:
ex: Tell(KB,King(John))
ex: Tell(KB,Person(Richard))
ex: Tell(KB,∀x .(King(x)→ Person(x)))

We can ask queries (aka goals) to the KB. Ex:
ex: Ask(KB,King(John))
ex: Ask(KB,Person(John))
ex: Ask(KB,∃x .Person(x))

=⇒ Ask(KB,α) returns true only if KB |= α

Other queries: AskVars, asking for variable values
=⇒ returns one (or more) binding lists (aka substitutions) {var/term; var/term, ...}

ex: AskVars(KB, ∃x .Person(x)) =⇒ {x/John}; {x/Richard}
typical for Horn clauses
(e.g. with King(John) ∨ King(Richard),
the query AskVars(KB, ∃x .King(x)) would not cause a binding list)

43 / 60

FOL Knowledge-Based Agent

We can assert FOL sentences (assertions) into the KB. Ex:
ex: Tell(KB,King(John))
ex: Tell(KB,Person(Richard))
ex: Tell(KB,∀x .(King(x)→ Person(x)))

We can ask queries (aka goals) to the KB. Ex:
ex: Ask(KB,King(John))
ex: Ask(KB,Person(John))
ex: Ask(KB,∃x .Person(x))

=⇒ Ask(KB,α) returns true only if KB |= α

Other queries: AskVars, asking for variable values
=⇒ returns one (or more) binding lists (aka substitutions) {var/term; var/term, ...}

ex: AskVars(KB, ∃x .Person(x)) =⇒ {x/John}; {x/Richard}
typical for Horn clauses
(e.g. with King(John) ∨ King(Richard),
the query AskVars(KB, ∃x .King(x)) would not cause a binding list)

43 / 60

FOL Knowledge-Based Agent

We can assert FOL sentences (assertions) into the KB. Ex:
ex: Tell(KB,King(John))
ex: Tell(KB,Person(Richard))
ex: Tell(KB,∀x .(King(x)→ Person(x)))

We can ask queries (aka goals) to the KB. Ex:
ex: Ask(KB,King(John))
ex: Ask(KB,Person(John))
ex: Ask(KB,∃x .Person(x))

=⇒ Ask(KB,α) returns true only if KB |= α

Other queries: AskVars, asking for variable values
=⇒ returns one (or more) binding lists (aka substitutions) {var/term; var/term, ...}

ex: AskVars(KB, ∃x .Person(x)) =⇒ {x/John}; {x/Richard}
typical for Horn clauses
(e.g. with King(John) ∨ King(Richard),
the query AskVars(KB, ∃x .King(x)) would not cause a binding list)

43 / 60

FOL Knowledge-Based Agent

We can assert FOL sentences (assertions) into the KB. Ex:
ex: Tell(KB,King(John))
ex: Tell(KB,Person(Richard))
ex: Tell(KB,∀x .(King(x)→ Person(x)))

We can ask queries (aka goals) to the KB. Ex:
ex: Ask(KB,King(John))
ex: Ask(KB,Person(John))
ex: Ask(KB,∃x .Person(x))

=⇒ Ask(KB,α) returns true only if KB |= α

Other queries: AskVars, asking for variable values
=⇒ returns one (or more) binding lists (aka substitutions) {var/term; var/term, ...}

ex: AskVars(KB, ∃x .Person(x)) =⇒ {x/John}; {x/Richard}
typical for Horn clauses
(e.g. with King(John) ∨ King(Richard),
the query AskVars(KB, ∃x .King(x)) would not cause a binding list)

43 / 60

Example: The Kinship Domain

Domain of family relationships

Binary predicate symbols (family relationships):
Parent , Sibling, Brother, Sister, Child , Daughter, Son, Spouse, Wife, Husband, Grandparent,
Grandchild, Cousin, Aunt, Uncle

function symbols:
Mother, Father

Knowledge base KB:
1 ∀x , y .(x = Mother(y)↔ (Female(x) ∧ Parent(x , y)))
2 ∀x , y .(Brother(x , y)↔ (Male(x) ∧ Sibling(x , y)))
3 ∀x , y .(Grandparent(x , y)↔ ∃z.(Parent(x , z) ∧ Parent(z, y)))
4 ∀x , y .(Sibling(x , y)↔ ((x 6= y) ∧ ∃m, f .((m 6= f)∧

Parent(m, x) ∧ Parent(m, y) ∧ (Parent(f , x) ∧ Parent(f , y))))
5 ...

Queries inferred from KB
ex: (4) |= ∀x , y .(Sibling(x , y)↔ Sibling(y , x))

Notation: “t 6= s” shortcut for “¬(t = s)”

44 / 60

Example: The Kinship Domain

Domain of family relationships

Binary predicate symbols (family relationships):
Parent , Sibling, Brother, Sister, Child , Daughter, Son, Spouse, Wife, Husband, Grandparent,
Grandchild, Cousin, Aunt, Uncle

function symbols:
Mother, Father

Knowledge base KB:
1 ∀x , y .(x = Mother(y)↔ (Female(x) ∧ Parent(x , y)))
2 ∀x , y .(Brother(x , y)↔ (Male(x) ∧ Sibling(x , y)))
3 ∀x , y .(Grandparent(x , y)↔ ∃z.(Parent(x , z) ∧ Parent(z, y)))
4 ∀x , y .(Sibling(x , y)↔ ((x 6= y) ∧ ∃m, f .((m 6= f)∧

Parent(m, x) ∧ Parent(m, y) ∧ (Parent(f , x) ∧ Parent(f , y))))
5 ...

Queries inferred from KB
ex: (4) |= ∀x , y .(Sibling(x , y)↔ Sibling(y , x))

Notation: “t 6= s” shortcut for “¬(t = s)”

44 / 60

Example: The Kinship Domain

Domain of family relationships

Binary predicate symbols (family relationships):
Parent , Sibling, Brother, Sister, Child , Daughter, Son, Spouse, Wife, Husband, Grandparent,
Grandchild, Cousin, Aunt, Uncle

function symbols:
Mother, Father

Knowledge base KB:
1 ∀x , y .(x = Mother(y)↔ (Female(x) ∧ Parent(x , y)))
2 ∀x , y .(Brother(x , y)↔ (Male(x) ∧ Sibling(x , y)))
3 ∀x , y .(Grandparent(x , y)↔ ∃z.(Parent(x , z) ∧ Parent(z, y)))
4 ∀x , y .(Sibling(x , y)↔ ((x 6= y) ∧ ∃m, f .((m 6= f)∧

Parent(m, x) ∧ Parent(m, y) ∧ (Parent(f , x) ∧ Parent(f , y))))
5 ...

Queries inferred from KB
ex: (4) |= ∀x , y .(Sibling(x , y)↔ Sibling(y , x))

Notation: “t 6= s” shortcut for “¬(t = s)”

44 / 60

Example: The Kinship Domain

Domain of family relationships

Binary predicate symbols (family relationships):
Parent , Sibling, Brother, Sister, Child , Daughter, Son, Spouse, Wife, Husband, Grandparent,
Grandchild, Cousin, Aunt, Uncle

function symbols:
Mother, Father

Knowledge base KB:
1 ∀x , y .(x = Mother(y)↔ (Female(x) ∧ Parent(x , y)))
2 ∀x , y .(Brother(x , y)↔ (Male(x) ∧ Sibling(x , y)))
3 ∀x , y .(Grandparent(x , y)↔ ∃z.(Parent(x , z) ∧ Parent(z, y)))
4 ∀x , y .(Sibling(x , y)↔ ((x 6= y) ∧ ∃m, f .((m 6= f)∧

Parent(m, x) ∧ Parent(m, y) ∧ (Parent(f , x) ∧ Parent(f , y))))
5 ...

Queries inferred from KB
ex: (4) |= ∀x , y .(Sibling(x , y)↔ Sibling(y , x))

Notation: “t 6= s” shortcut for “¬(t = s)”

44 / 60

Example: Integer Numbers
Peano Arithmetic

Basic symbols
Unary predicate symbol: NatNum (natural number)
Unary function symbol: S (Successor)
Constant symbol: 0

Defined symbols:
Binary function symbols: +,* (infix)
Constant symbols: 1,2,3,4,5,6,...

Knowledge base KB:
1 NatNum(0)
2 ∀x .(NatNum(x)→ NatNum(S(x)))
3 ∀x .(NatNum(x)→ (0 6= S(x)))
4 ∀x , y .((NatNum(x) ∧ NatNum(y))→ ((x 6= y)→ (S(x) 6= S(y))))
5 ∀x .(NatNum(x)→ (x = (0 + x)))
6 ∀x , y .((NatNum(x) ∧ NatNum(y))→ (S(x) + y) = S(x + y))
7 1 = S(0), 2 = S(1), 3 = S(2), ...

Queries inferred from KB
ex: (4) |= ∀x , y .((NatNum(x) ∧ (NatNum(y)))→ ((x + y) = (y + x)))

45 / 60

Example: Integer Numbers
Peano Arithmetic

Basic symbols
Unary predicate symbol: NatNum (natural number)
Unary function symbol: S (Successor)
Constant symbol: 0

Defined symbols:
Binary function symbols: +,* (infix)
Constant symbols: 1,2,3,4,5,6,...

Knowledge base KB:
1 NatNum(0)
2 ∀x .(NatNum(x)→ NatNum(S(x)))
3 ∀x .(NatNum(x)→ (0 6= S(x)))
4 ∀x , y .((NatNum(x) ∧ NatNum(y))→ ((x 6= y)→ (S(x) 6= S(y))))
5 ∀x .(NatNum(x)→ (x = (0 + x)))
6 ∀x , y .((NatNum(x) ∧ NatNum(y))→ (S(x) + y) = S(x + y))
7 1 = S(0), 2 = S(1), 3 = S(2), ...

Queries inferred from KB
ex: (4) |= ∀x , y .((NatNum(x) ∧ (NatNum(y)))→ ((x + y) = (y + x)))

45 / 60

Example: Integer Numbers
Peano Arithmetic

Basic symbols
Unary predicate symbol: NatNum (natural number)
Unary function symbol: S (Successor)
Constant symbol: 0

Defined symbols:
Binary function symbols: +,* (infix)
Constant symbols: 1,2,3,4,5,6,...

Knowledge base KB:
1 NatNum(0)
2 ∀x .(NatNum(x)→ NatNum(S(x)))
3 ∀x .(NatNum(x)→ (0 6= S(x)))
4 ∀x , y .((NatNum(x) ∧ NatNum(y))→ ((x 6= y)→ (S(x) 6= S(y))))
5 ∀x .(NatNum(x)→ (x = (0 + x)))
6 ∀x , y .((NatNum(x) ∧ NatNum(y))→ (S(x) + y) = S(x + y))
7 1 = S(0), 2 = S(1), 3 = S(2), ...

Queries inferred from KB
ex: (4) |= ∀x , y .((NatNum(x) ∧ (NatNum(y)))→ ((x + y) = (y + x)))

45 / 60

Example: Integer Numbers
Peano Arithmetic

Basic symbols
Unary predicate symbol: NatNum (natural number)
Unary function symbol: S (Successor)
Constant symbol: 0

Defined symbols:
Binary function symbols: +,* (infix)
Constant symbols: 1,2,3,4,5,6,...

Knowledge base KB:
1 NatNum(0)
2 ∀x .(NatNum(x)→ NatNum(S(x)))
3 ∀x .(NatNum(x)→ (0 6= S(x)))
4 ∀x , y .((NatNum(x) ∧ NatNum(y))→ ((x 6= y)→ (S(x) 6= S(y))))
5 ∀x .(NatNum(x)→ (x = (0 + x)))
6 ∀x , y .((NatNum(x) ∧ NatNum(y))→ (S(x) + y) = S(x + y))
7 1 = S(0), 2 = S(1), 3 = S(2), ...

Queries inferred from KB
ex: (4) |= ∀x , y .((NatNum(x) ∧ (NatNum(y)))→ ((x + y) = (y + x)))

45 / 60

Exercises

About the Kinship domain

Try to add the axioms defining other predicates or functions
(e.g. Brother, Sister, Child , Daughter, Son, Spouse, Wife, Husband, Grandparent,
Grandchild, Cousin, Aunt, Uncle, ...)
Add some ground atom or its negation to the KB
(ex: Brother(Steve,Mary), Mary=Mother(Paul),...)
Try to solve some query by entailment
(e.g. Uncle(Steve,Paul), ∃x .Uncle(x ,Paul), ...)

About the Peano Arithmetic domain
Try to add the axioms defining other predicate or functions
(e.g. “n ≤ m” or “m ∗ n”, “nm”)
Add some ground atom or its negation to the KB
(ex: 1 = S(0),2 = S(1), ...)

Try to solve some query by entailment
(e.g. 3 + 2 = 5, 2 ∗ 3 = 6, ...)

46 / 60

Exercises

About the Kinship domain

Try to add the axioms defining other predicates or functions
(e.g. Brother, Sister, Child , Daughter, Son, Spouse, Wife, Husband, Grandparent,
Grandchild, Cousin, Aunt, Uncle, ...)
Add some ground atom or its negation to the KB
(ex: Brother(Steve,Mary), Mary=Mother(Paul),...)
Try to solve some query by entailment
(e.g. Uncle(Steve,Paul), ∃x .Uncle(x ,Paul), ...)

About the Peano Arithmetic domain
Try to add the axioms defining other predicate or functions
(e.g. “n ≤ m” or “m ∗ n”, “nm”)
Add some ground atom or its negation to the KB
(ex: 1 = S(0),2 = S(1), ...)

Try to solve some query by entailment
(e.g. 3 + 2 = 5, 2 ∗ 3 = 6, ...)

46 / 60

Outline

1 Generalities

2 Syntax and Semantics of FOL
Syntax
Semantics
Satisfiability, Validity, Entailment

3 Using FOL
FOL Agents
Example: The Wumpus World

4 Knowledge Engineering in FOL

47 / 60

Example: The Wumpus World
The FOL KB

Perception: binary predicate Percept([s, b, g, b, sc],t)
(recall: perception is [Stench,Breeze,Glitter,Bump,Scream])
Stench, Breeze, Glitter, Bump, Scream constant symbols
time step t represented as integer

Percepts imply facts about the current state.
∀t , s, g,m, c.(Percept([s,Breeze, g,m, c], t)→ Breeze(t))
∀t , s, g,m, c.(Percept([s,Null, g,m, c], t)→ ¬Breeze(t))
...

Environment:
Square: term (pair of integers): [1, 2]
Adjacency: binary predicate Adjacent:
∀x , y , a, b.(Adjacent([x , y], [a, b])↔

(x = a ∧ (y = b − 1 ∨ y = b + 1)) ∨ (y = b ∧ (x = a− 1 ∨ x = a + 1)))
Position: predicate At(Agent , s, t), ex: At(Agent , [1, 1], 1)
Unique position: ∀x , s1, s2, t .((At(x , s1, t) ∧ At(x , s2, t))→ s1 = s2)
Wumpus: predicate Wumpus(s), ex: Wumpus([3, 1])
Pits: predicate Pit(s), ex: Pit([3, 1])

48 / 60

Example: The Wumpus World
The FOL KB

Perception: binary predicate Percept([s, b, g, b, sc],t)
(recall: perception is [Stench,Breeze,Glitter,Bump,Scream])
Stench, Breeze, Glitter, Bump, Scream constant symbols
time step t represented as integer

Percepts imply facts about the current state.
∀t , s, g,m, c.(Percept([s,Breeze, g,m, c], t)→ Breeze(t))
∀t , s, g,m, c.(Percept([s,Null, g,m, c], t)→ ¬Breeze(t))
...

Environment:
Square: term (pair of integers): [1, 2]
Adjacency: binary predicate Adjacent:
∀x , y , a, b.(Adjacent([x , y], [a, b])↔

(x = a ∧ (y = b − 1 ∨ y = b + 1)) ∨ (y = b ∧ (x = a− 1 ∨ x = a + 1)))
Position: predicate At(Agent , s, t), ex: At(Agent , [1, 1], 1)
Unique position: ∀x , s1, s2, t .((At(x , s1, t) ∧ At(x , s2, t))→ s1 = s2)
Wumpus: predicate Wumpus(s), ex: Wumpus([3, 1])
Pits: predicate Pit(s), ex: Pit([3, 1])

48 / 60

Example: The Wumpus World
The FOL KB

Perception: binary predicate Percept([s, b, g, b, sc],t)
(recall: perception is [Stench,Breeze,Glitter,Bump,Scream])
Stench, Breeze, Glitter, Bump, Scream constant symbols
time step t represented as integer

Percepts imply facts about the current state.
∀t , s, g,m, c.(Percept([s,Breeze, g,m, c], t)→ Breeze(t))
∀t , s, g,m, c.(Percept([s,Null, g,m, c], t)→ ¬Breeze(t))
...

Environment:
Square: term (pair of integers): [1, 2]
Adjacency: binary predicate Adjacent:
∀x , y , a, b.(Adjacent([x , y], [a, b])↔

(x = a ∧ (y = b − 1 ∨ y = b + 1)) ∨ (y = b ∧ (x = a− 1 ∨ x = a + 1)))
Position: predicate At(Agent , s, t), ex: At(Agent , [1, 1], 1)
Unique position: ∀x , s1, s2, t .((At(x , s1, t) ∧ At(x , s2, t))→ s1 = s2)
Wumpus: predicate Wumpus(s), ex: Wumpus([3, 1])
Pits: predicate Pit(s), ex: Pit([3, 1])

48 / 60

Personal Remark

For Wumpus, AIMA suggests;
Wumpus: constant, ex ∀t .At(Wumpus, [2, 2], t)

Simplification: assume Wumpus status does not evolve with time
predicate Wumpus(s), ex: Wumpus([3, 1])

=⇒ makes inference much easier
if we consider the case the Wumpus is killed by arrow, then we need reintroducing the “At”
formalization

49 / 60

Personal Remark

For Wumpus, AIMA suggests;
Wumpus: constant, ex ∀t .At(Wumpus, [2, 2], t)

Simplification: assume Wumpus status does not evolve with time
predicate Wumpus(s), ex: Wumpus([3, 1])

=⇒ makes inference much easier
if we consider the case the Wumpus is killed by arrow, then we need reintroducing the “At”
formalization

49 / 60

Example: The Wumpus World [cont.]

The FOL KB [cont.]

Infer properties from percepts:
∀s, t .((At(Agent , s, t) ∧ Breeze(t))→ Breezy(s))
∀s, t .((At(Agent , s, t) ∧ ¬Breeze(t))→ ¬Breezy(s))

Infer information about pits & Wumpus
∀s. (Breezy(s)↔ ∃r .(Adjacent(r , s) ∧ Pit(r)))
∀s. (Stench(s)↔ ∃r .(Adjacent(r , s) ∧Wumpus(r)))

Evolution on time: successor states:
∀t .(HaveArrow(t + 1)↔ (HaveArrow(t) ∧ ¬Action(Shoot , t)))

Actions: terms Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb
simple reflex action: ∀t .(Glitter(t)→ BestAction(Grab, t))
Query: AskVars(∃a.BestAction(a, 5)) =⇒ {a/Grab}

Personal remark

Simplified action axiomatization: “Move(...)” instead of “Turn(...),Forward”

50 / 60

Example: The Wumpus World [cont.]

The FOL KB [cont.]

Infer properties from percepts:
∀s, t .((At(Agent , s, t) ∧ Breeze(t))→ Breezy(s))
∀s, t .((At(Agent , s, t) ∧ ¬Breeze(t))→ ¬Breezy(s))

Infer information about pits & Wumpus
∀s. (Breezy(s)↔ ∃r .(Adjacent(r , s) ∧ Pit(r)))
∀s. (Stench(s)↔ ∃r .(Adjacent(r , s) ∧Wumpus(r)))

Evolution on time: successor states:
∀t .(HaveArrow(t + 1)↔ (HaveArrow(t) ∧ ¬Action(Shoot , t)))

Actions: terms Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb
simple reflex action: ∀t .(Glitter(t)→ BestAction(Grab, t))
Query: AskVars(∃a.BestAction(a, 5)) =⇒ {a/Grab}

Personal remark

Simplified action axiomatization: “Move(...)” instead of “Turn(...),Forward”

50 / 60

Example: The Wumpus World [cont.]

The FOL KB [cont.]

Infer properties from percepts:
∀s, t .((At(Agent , s, t) ∧ Breeze(t))→ Breezy(s))
∀s, t .((At(Agent , s, t) ∧ ¬Breeze(t))→ ¬Breezy(s))

Infer information about pits & Wumpus
∀s. (Breezy(s)↔ ∃r .(Adjacent(r , s) ∧ Pit(r)))
∀s. (Stench(s)↔ ∃r .(Adjacent(r , s) ∧Wumpus(r)))

Evolution on time: successor states:
∀t .(HaveArrow(t + 1)↔ (HaveArrow(t) ∧ ¬Action(Shoot , t)))

Actions: terms Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb
simple reflex action: ∀t .(Glitter(t)→ BestAction(Grab, t))
Query: AskVars(∃a.BestAction(a, 5)) =⇒ {a/Grab}

Personal remark

Simplified action axiomatization: “Move(...)” instead of “Turn(...),Forward”

50 / 60

Example: The Wumpus World [cont.]

The FOL KB [cont.]

Infer properties from percepts:
∀s, t .((At(Agent , s, t) ∧ Breeze(t))→ Breezy(s))
∀s, t .((At(Agent , s, t) ∧ ¬Breeze(t))→ ¬Breezy(s))

Infer information about pits & Wumpus
∀s. (Breezy(s)↔ ∃r .(Adjacent(r , s) ∧ Pit(r)))
∀s. (Stench(s)↔ ∃r .(Adjacent(r , s) ∧Wumpus(r)))

Evolution on time: successor states:
∀t .(HaveArrow(t + 1)↔ (HaveArrow(t) ∧ ¬Action(Shoot , t)))

Actions: terms Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb
simple reflex action: ∀t .(Glitter(t)→ BestAction(Grab, t))
Query: AskVars(∃a.BestAction(a, 5)) =⇒ {a/Grab}

Personal remark

Simplified action axiomatization: “Move(...)” instead of “Turn(...),Forward”

50 / 60

Example: The Wumpus World [cont.]

The FOL KB [cont.]

Infer properties from percepts:
∀s, t .((At(Agent , s, t) ∧ Breeze(t))→ Breezy(s))
∀s, t .((At(Agent , s, t) ∧ ¬Breeze(t))→ ¬Breezy(s))

Infer information about pits & Wumpus
∀s. (Breezy(s)↔ ∃r .(Adjacent(r , s) ∧ Pit(r)))
∀s. (Stench(s)↔ ∃r .(Adjacent(r , s) ∧Wumpus(r)))

Evolution on time: successor states:
∀t .(HaveArrow(t + 1)↔ (HaveArrow(t) ∧ ¬Action(Shoot , t)))

Actions: terms Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb
simple reflex action: ∀t .(Glitter(t)→ BestAction(Grab, t))
Query: AskVars(∃a.BestAction(a, 5)) =⇒ {a/Grab}

Personal remark

Simplified action axiomatization: “Move(...)” instead of “Turn(...),Forward”

50 / 60

Example: Exploring the Wumpus World

KB initially contains:
∀x , y , a, b.(Adjacent([x , y], [a, b])↔ (x = a∧ (y = b− 1∨ y = b + 1))∨ (y = b ∧ (x = a− 1∨ x = a + 1)))
∀t , s, g,m, c.(Percept([s,Null, g,m, c], t)→ ¬Breeze(t))
∀t , b, g,m, c.(Percept([Null, b, g,m, c], t)→ ¬Stench(t))
∀s, t .((At(Agent , s, t) ∧ ¬Breeze(t))→ ¬Breezy(s))
∀s, t .((At(Agent , s, t) ∧ ¬Stench(t))→ ¬Stenchy(s))
∀s. (Breezy(s)↔ ∃r .(Adjacent(r , s) ∧ Pit(r)))
∀s. (Stench(s)↔ ∃r .(Adjacent(r , s) ∧Wumpus(r)))
∀s.(Ok(s)↔ (¬Pit(s) ∧ ¬Wumpus(s)))

A is initially in 1,1: At(A, [1, 1], 0)
Perceives no stench, no breeze:
Tell(KB,Percept([Null,Null,Null,Null,Null], 0))
=⇒ ¬Breeze(0), ¬Stench(0),
=⇒ ¬Breezy([1, 1]), ¬Stenchy([1, 1]),
=⇒ ¬Pit([1, 2]), ¬Pit([2, 1] ¬Wumpus([1, 2]), ¬Wumpus([2, 1]),
=⇒ Ok([1, 2]), Ok([2, 1])
AskVars(KB, ∃a.BestAction(a, 0))
=⇒{a/Move([1, 2])},{a/Move([2, 1])}

51 / 60

Example: Exploring the Wumpus World

KB initially contains:
¬Pit([1, 1]),¬Wumpus([1, 1]), ...
∀x , y , a, b.(Adjacent([x , y], [a, b])↔ (x = a∧ (y = b− 1∨ y = b + 1))∨ (y = b ∧ (x = a− 1∨ x = a + 1)))
∀t , s, g,m, c.(Percept([s,Breeze, g,m, c], t)→ Breeze(t))
∀t , b, g,m, c.(Percept([Null, b, g,m, c], t)→ ¬Stench(t))
∀s, t .((At(Agent , s, t) ∧ Breeze(t))→ Breezy(s))
∀s, t .((At(Agent , s, t) ∧ ¬Stench(t))→ ¬Stenchy(s))
∀s. (Breezy(s)↔ ∃r .(Adjacent(r , s) ∧ Pit(r)))
∀s. (Stench(s)↔ ∃r .(Adjacent(r , s) ∧Wumpus(r)))

Agent moves to [2,1]: At(A, [2, 1], 1)
Perceives a breeze and no stench:
Tell(KB,Percept([Null,Breeze,Null,Null,Null], 1))
=⇒ Breeze(1), ¬Stench(1),
=⇒ Breezy([2, 1]), ¬Stenchy([2, 1]),
=⇒ ∃r .(Adjacent(r , [2, 1]) ∧ Pit(r)),
¬Wumpus([3, 1]), ¬Wumpus([2, 2]),

=⇒ (Pit([3, 1]) ∨ Pit([2, 2]))
AskVars(KB, ∃a.Action(a, 1)) =⇒{a/Move([1, 1])}

51 / 60

Example: Exploring the Wumpus World

KB initially contains:
¬Pit([1, 1]),¬Wumpus([1, 1]), ...
∀x , y , a, b.(Adjacent([x , y], [a, b])↔ (x = a∧ (y = b− 1∨ y = b + 1))∨ (y = b ∧ (x = a− 1∨ x = a + 1)))
∀t , s, g,m, c.(Percept([s,Breeze, g,m, c], t)→ Breeze(t))
∀t , b, g,m, c.(Percept([Null, b, g,m, c], t)→ ¬Stench(t))
∀s, t .((At(Agent , s, t) ∧ Breeze(t))→ Breezy(s))
∀s, t .((At(Agent , s, t) ∧ ¬Stench(t))→ ¬Stenchy(s))
∀s. (Breezy(s)↔ ∃r .(Adjacent(r , s) ∧ Pit(r)))
∀s. (Stench(s)↔ ∃r .(Adjacent(r , s) ∧Wumpus(r)))

Agent moves to [2,1]: At(A, [2, 1], 1)
Perceives a breeze and no stench:
Tell(KB,Percept([Null,Breeze,Null,Null,Null], 1))
=⇒ Breeze(1), ¬Stench(1),
=⇒ Breezy([2, 1]), ¬Stenchy([2, 1]),
=⇒ ∃r .(Adjacent(r , [2, 1]) ∧ Pit(r)),
¬Wumpus([3, 1]), ¬Wumpus([2, 2]),

=⇒ (Pit([3, 1]) ∨ Pit([2, 2]))
AskVars(KB, ∃a.Action(a, 1)) =⇒{a/Move([1, 1])}

51 / 60

Exercise

Complete the example in the FOL case (see the PL case).

52 / 60

Outline

1 Generalities

2 Syntax and Semantics of FOL
Syntax
Semantics
Satisfiability, Validity, Entailment

3 Using FOL
FOL Agents
Example: The Wumpus World

4 Knowledge Engineering in FOL

53 / 60

Knowledge Engineering in FOL

The knowledge-engineering process
1 Identify the task (analogous to PEAS process to design agents)

determine what knowledge must be represented in order to connect problem instances to
answers

2 Assemble the relevant knowledge (aka knowledge acquisition)
(either by own domain knowledge or by experts interviews)
understand the scope of the knowledge base
understand how the domain actually works

3 Decide on a vocabulary of predicates, functions, and constants
translate relevant domain-level concepts into logic-level names
what should be represented as predicate/function/constant?

=⇒ define the ontology of the domain
4 Encode into FOL general knowledge about the domain

write down the axioms for all the vocabulary terms
=⇒ should enable the domain expert to check the content

5 ...
54 / 60

Knowledge Engineering in FOL

The knowledge-engineering process
1 Identify the task (analogous to PEAS process to design agents)

determine what knowledge must be represented in order to connect problem instances to
answers

2 Assemble the relevant knowledge (aka knowledge acquisition)
(either by own domain knowledge or by experts interviews)
understand the scope of the knowledge base
understand how the domain actually works

3 Decide on a vocabulary of predicates, functions, and constants
translate relevant domain-level concepts into logic-level names
what should be represented as predicate/function/constant?

=⇒ define the ontology of the domain
4 Encode into FOL general knowledge about the domain

write down the axioms for all the vocabulary terms
=⇒ should enable the domain expert to check the content

5 ...
54 / 60

Knowledge Engineering in FOL

The knowledge-engineering process
1 Identify the task (analogous to PEAS process to design agents)

determine what knowledge must be represented in order to connect problem instances to
answers

2 Assemble the relevant knowledge (aka knowledge acquisition)
(either by own domain knowledge or by experts interviews)
understand the scope of the knowledge base
understand how the domain actually works

3 Decide on a vocabulary of predicates, functions, and constants
translate relevant domain-level concepts into logic-level names
what should be represented as predicate/function/constant?

=⇒ define the ontology of the domain
4 Encode into FOL general knowledge about the domain

write down the axioms for all the vocabulary terms
=⇒ should enable the domain expert to check the content

5 ...
54 / 60

Knowledge Engineering in FOL

The knowledge-engineering process
1 Identify the task (analogous to PEAS process to design agents)

determine what knowledge must be represented in order to connect problem instances to
answers

2 Assemble the relevant knowledge (aka knowledge acquisition)
(either by own domain knowledge or by experts interviews)
understand the scope of the knowledge base
understand how the domain actually works

3 Decide on a vocabulary of predicates, functions, and constants
translate relevant domain-level concepts into logic-level names
what should be represented as predicate/function/constant?

=⇒ define the ontology of the domain
4 Encode into FOL general knowledge about the domain

write down the axioms for all the vocabulary terms
=⇒ should enable the domain expert to check the content

5 ...
54 / 60

Knowledge Engineering in FOL

The knowledge-engineering process
1 Identify the task (analogous to PEAS process to design agents)

determine what knowledge must be represented in order to connect problem instances to
answers

2 Assemble the relevant knowledge (aka knowledge acquisition)
(either by own domain knowledge or by experts interviews)
understand the scope of the knowledge base
understand how the domain actually works

3 Decide on a vocabulary of predicates, functions, and constants
translate relevant domain-level concepts into logic-level names
what should be represented as predicate/function/constant?

=⇒ define the ontology of the domain
4 Encode into FOL general knowledge about the domain

write down the axioms for all the vocabulary terms
=⇒ should enable the domain expert to check the content

5 ...
54 / 60

Knowledge Engineering in FOL [cont.]

The knowledge-engineering process [cont.]
4 ...
5 Encode into FOL a description of the specific problem instance

(straightforward iff the ontology is well-conceived)
mostly assertions of (possibly negated) ground atomic formulas
for a logical agent, problem instances are supplied by the sensors
general knowledge base is supplied with additional sentences

6 Pose queries to the inference procedure and get answers
the final outcome
check the queries

7 Debug the knowledge base
detect un-answered/wrong queries
identify too-weak or missing axioms by backward-analysis

No need for writing an application-specific solution algorithm!

55 / 60

Knowledge Engineering in FOL [cont.]

The knowledge-engineering process [cont.]
4 ...
5 Encode into FOL a description of the specific problem instance

(straightforward iff the ontology is well-conceived)
mostly assertions of (possibly negated) ground atomic formulas
for a logical agent, problem instances are supplied by the sensors
general knowledge base is supplied with additional sentences

6 Pose queries to the inference procedure and get answers
the final outcome
check the queries

7 Debug the knowledge base
detect un-answered/wrong queries
identify too-weak or missing axioms by backward-analysis

No need for writing an application-specific solution algorithm!

55 / 60

Knowledge Engineering in FOL [cont.]

The knowledge-engineering process [cont.]
4 ...
5 Encode into FOL a description of the specific problem instance

(straightforward iff the ontology is well-conceived)
mostly assertions of (possibly negated) ground atomic formulas
for a logical agent, problem instances are supplied by the sensors
general knowledge base is supplied with additional sentences

6 Pose queries to the inference procedure and get answers
the final outcome
check the queries

7 Debug the knowledge base
detect un-answered/wrong queries
identify too-weak or missing axioms by backward-analysis

No need for writing an application-specific solution algorithm!

55 / 60

Knowledge Engineering in FOL [cont.]

The knowledge-engineering process [cont.]
4 ...
5 Encode into FOL a description of the specific problem instance

(straightforward iff the ontology is well-conceived)
mostly assertions of (possibly negated) ground atomic formulas
for a logical agent, problem instances are supplied by the sensors
general knowledge base is supplied with additional sentences

6 Pose queries to the inference procedure and get answers
the final outcome
check the queries

7 Debug the knowledge base
detect un-answered/wrong queries
identify too-weak or missing axioms by backward-analysis

No need for writing an application-specific solution algorithm!

55 / 60

Knowledge Engineering in FOL [cont.]

The knowledge-engineering process [cont.]
4 ...
5 Encode into FOL a description of the specific problem instance

(straightforward iff the ontology is well-conceived)
mostly assertions of (possibly negated) ground atomic formulas
for a logical agent, problem instances are supplied by the sensors
general knowledge base is supplied with additional sentences

6 Pose queries to the inference procedure and get answers
the final outcome
check the queries

7 Debug the knowledge base
detect un-answered/wrong queries
identify too-weak or missing axioms by backward-analysis

No need for writing an application-specific solution algorithm!

55 / 60

Example: The Electronic Circuits Domain

Task: Develop (an ontology and) a knowledge base allowing to reason about digital circuits
(e.g., that shown in Figure)

Ex: One-bit full adder:
first two inputs are to be added, the third input is a carry bit
first output is the sum, the second output is a carry bit

(© S. Russell & P. Norwig, AIMA)

56 / 60

Example: The Electronic Circuits Domain [cont.]
1 Identify the task

At the highest level, analyze the circuit’s functionality
ex: does the circuit contain feedback loops?
...

2 Assemble the relevant knowledge
signals flow along wires to the input terminals of gates
each gate produces a signal on the output
AND, OR, XOR gates have two inputs, NOT gates have one
...

3 Decide on a vocabulary of predicates, functions, and constants
e.g. each gate instance represented as constant (ex “X1”)
each gate type represented as constant (ex “AND”)
a function Type (ex: Type(X1) = XOR)
gate terminals represented as integer constants,
two functions In, Out, and one predicate Connected
(ex: Connected(In(1,X1), In(1,A2)),
two values 0,1, a predicate Signal(t) (ex: Signal(In(1,X1)) = 1)
...

57 / 60

Example: The Electronic Circuits Domain [cont.]
1 Identify the task

At the highest level, analyze the circuit’s functionality
ex: does the circuit contain feedback loops?
...

2 Assemble the relevant knowledge
signals flow along wires to the input terminals of gates
each gate produces a signal on the output
AND, OR, XOR gates have two inputs, NOT gates have one
...

3 Decide on a vocabulary of predicates, functions, and constants
e.g. each gate instance represented as constant (ex “X1”)
each gate type represented as constant (ex “AND”)
a function Type (ex: Type(X1) = XOR)
gate terminals represented as integer constants,
two functions In, Out, and one predicate Connected
(ex: Connected(In(1,X1), In(1,A2)),
two values 0,1, a predicate Signal(t) (ex: Signal(In(1,X1)) = 1)
...

57 / 60

Example: The Electronic Circuits Domain [cont.]
1 Identify the task

At the highest level, analyze the circuit’s functionality
ex: does the circuit contain feedback loops?
...

2 Assemble the relevant knowledge
signals flow along wires to the input terminals of gates
each gate produces a signal on the output
AND, OR, XOR gates have two inputs, NOT gates have one
...

3 Decide on a vocabulary of predicates, functions, and constants
e.g. each gate instance represented as constant (ex “X1”)
each gate type represented as constant (ex “AND”)
a function Type (ex: Type(X1) = XOR)
gate terminals represented as integer constants,
two functions In, Out, and one predicate Connected
(ex: Connected(In(1,X1), In(1,A2)),
two values 0,1, a predicate Signal(t) (ex: Signal(In(1,X1)) = 1)
...

57 / 60

Example: The Electronic Circuits Domain [cont.]
1 Identify the task

At the highest level, analyze the circuit’s functionality
ex: does the circuit contain feedback loops?
...

2 Assemble the relevant knowledge
signals flow along wires to the input terminals of gates
each gate produces a signal on the output
AND, OR, XOR gates have two inputs, NOT gates have one
...

3 Decide on a vocabulary of predicates, functions, and constants
e.g. each gate instance represented as constant (ex “X1”)
each gate type represented as constant (ex “AND”)
a function Type (ex: Type(X1) = XOR)
gate terminals represented as integer constants,
two functions In, Out, and one predicate Connected
(ex: Connected(In(1,X1), In(1,A2)),
two values 0,1, a predicate Signal(t) (ex: Signal(In(1,X1)) = 1)
...

57 / 60

Example: The Electronic Circuits Domain [cont.]

4 Encode general knowledge about the domain
∀t1, t2.((Terminal(t1) ∧ Terminal(t2) ∧ Connected(t1, t2)))→ (Signal(t1) = Signal(t2))
∀t .(Terminal(t)→ ((Signal(t) = 1) ∨ (Signal(t) = 0)))
∀t1, t2.(Connected(t1, t2)↔ Connected(t2, t1))
∀g.(Gate(g)→ ((Type(g) = AND) ∨ (Type(g) = OR) ∨ (Type(g) = XOR) ∨ (Type(g) = NOT)))
∀g.((Gate(g) ∧ Type(g) = AND)→ ((Signal(Out(1, g)) = 0)↔ ∃n.(Signal(In(n, g)) = 0)))
... analogous definitions for OR, XOR, NOT
∀g.((Gate(g) ∧ (Type(g) = NOT))→ Arity(g, 1, 1))
∀g.((Gate(g) ∧ ((Type(g) = AND) ∨ (Type(g) = OR) ∨ (Type(g) = XOR)))→ Arity(g, 2, 1))
∀c, i, j.((Circuit(c) ∧ Arity(c, i, j))→
∀n.((n ≤ i → Terminal(In(c, n))) ∧ (n > i → In(c, n) = Nothing))∧
∀n.((n ≤ j → Terminal(Out(c, n))) ∧ (n > j → Out(c, n) = Nothing)))
∀g, t .((Gate(g) ∧ Terminal(t))→ (g 6= t 6= 1 6= 0 6= OR 6= AND 6= XOR 6= NOT 6= Nothing))
forallg.(Gate(g)→ Circuit(g))

Notation: (t1 6= t2 6= t3 6= ... 6= tn): shortcut for ¬(t1 = t2) ∧ ¬(t1 = t3) ∧ ...¬(tn−1 = tn).

58 / 60

Example: The Electronic Circuits Domain [cont.]
5 Encode a description of the specific problem instance

Circuit(C1) ∧ Arity(C1, 3, 2) ∧
Gate(X1) ∧ Type(X1) = XOR ∧ Gate(X2) ∧ Type(X2) = XOR ∧ ...∧
Gate(O1) ∧ Type(O1) = OR
Connected(Out(1,X1), In(1,X2)) ∧
... ∧
Connected(In(3,C1), In(1,A2))

6 Pose queries to the inference procedure and get answers
Ex: Which inputs would cause the first output of C1 (the sum bit) to be 0 and the second output of
C1 (the carry bit) to be 1?
AskVars(KB,∃i1, i2, i3.(Signal(In(1,C1)) = i1∧

Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3∧
Signal(Out(1,C1)) = 0 ∧ Signal(Out(2,C1)) = 1))

=⇒ {i1/1, i2/1, i3/0} or {i1/1, i2/0, i3/1} or {i1/0, i2/1, i3/1}
What are the possible value sets of all terminals?
AskVars(KB,∃i1, i2, i3, o1, o2.(Signal(In(1,C1)) = i1∧

Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3∧
Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2))

=⇒ {i1/1, i2/1, i3/1, o1/1, o2/1} or {i1/1, i2/1, i3/0, o1/0, o2/1} or ...
59 / 60

Example: The Electronic Circuits Domain [cont.]
5 Encode a description of the specific problem instance

Circuit(C1) ∧ Arity(C1, 3, 2) ∧
Gate(X1) ∧ Type(X1) = XOR ∧ Gate(X2) ∧ Type(X2) = XOR ∧ ...∧
Gate(O1) ∧ Type(O1) = OR
Connected(Out(1,X1), In(1,X2)) ∧
... ∧
Connected(In(3,C1), In(1,A2))

6 Pose queries to the inference procedure and get answers
Ex: Which inputs would cause the first output of C1 (the sum bit) to be 0 and the second output of
C1 (the carry bit) to be 1?
AskVars(KB,∃i1, i2, i3.(Signal(In(1,C1)) = i1∧

Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3∧
Signal(Out(1,C1)) = 0 ∧ Signal(Out(2,C1)) = 1))

=⇒ {i1/1, i2/1, i3/0} or {i1/1, i2/0, i3/1} or {i1/0, i2/1, i3/1}
What are the possible value sets of all terminals?
AskVars(KB,∃i1, i2, i3, o1, o2.(Signal(In(1,C1)) = i1∧

Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3∧
Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2))

=⇒ {i1/1, i2/1, i3/1, o1/1, o2/1} or {i1/1, i2/1, i3/0, o1/0, o2/1} or ...
59 / 60

Example: The Electronic Circuits Domain [cont.]
5 Encode a description of the specific problem instance

Circuit(C1) ∧ Arity(C1, 3, 2) ∧
Gate(X1) ∧ Type(X1) = XOR ∧ Gate(X2) ∧ Type(X2) = XOR ∧ ...∧
Gate(O1) ∧ Type(O1) = OR
Connected(Out(1,X1), In(1,X2)) ∧
... ∧
Connected(In(3,C1), In(1,A2))

6 Pose queries to the inference procedure and get answers
Ex: Which inputs would cause the first output of C1 (the sum bit) to be 0 and the second output of
C1 (the carry bit) to be 1?
AskVars(KB,∃i1, i2, i3.(Signal(In(1,C1)) = i1∧

Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3∧
Signal(Out(1,C1)) = 0 ∧ Signal(Out(2,C1)) = 1))

=⇒ {i1/1, i2/1, i3/0} or {i1/1, i2/0, i3/1} or {i1/0, i2/1, i3/1}
What are the possible value sets of all terminals?
AskVars(KB,∃i1, i2, i3, o1, o2.(Signal(In(1,C1)) = i1∧

Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3∧
Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2))

=⇒ {i1/1, i2/1, i3/1, o1/1, o2/1} or {i1/1, i2/1, i3/0, o1/0, o2/1} or ...
59 / 60

Example: The Electronic Circuits Domain [cont.]
5 Encode a description of the specific problem instance

Circuit(C1) ∧ Arity(C1, 3, 2) ∧
Gate(X1) ∧ Type(X1) = XOR ∧ Gate(X2) ∧ Type(X2) = XOR ∧ ...∧
Gate(O1) ∧ Type(O1) = OR
Connected(Out(1,X1), In(1,X2)) ∧
... ∧
Connected(In(3,C1), In(1,A2))

6 Pose queries to the inference procedure and get answers
Ex: Which inputs would cause the first output of C1 (the sum bit) to be 0 and the second output of
C1 (the carry bit) to be 1?
AskVars(KB,∃i1, i2, i3.(Signal(In(1,C1)) = i1∧

Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3∧
Signal(Out(1,C1)) = 0 ∧ Signal(Out(2,C1)) = 1))

=⇒ {i1/1, i2/1, i3/0} or {i1/1, i2/0, i3/1} or {i1/0, i2/1, i3/1}
What are the possible value sets of all terminals?
AskVars(KB,∃i1, i2, i3, o1, o2.(Signal(In(1,C1)) = i1∧

Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3∧
Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2))

=⇒ {i1/1, i2/1, i3/1, o1/1, o2/1} or {i1/1, i2/1, i3/0, o1/0, o2/1} or ...
59 / 60

Example: The Electronic Circuits Domain [cont.]
5 Encode a description of the specific problem instance

Circuit(C1) ∧ Arity(C1, 3, 2) ∧
Gate(X1) ∧ Type(X1) = XOR ∧ Gate(X2) ∧ Type(X2) = XOR ∧ ...∧
Gate(O1) ∧ Type(O1) = OR
Connected(Out(1,X1), In(1,X2)) ∧
... ∧
Connected(In(3,C1), In(1,A2))

6 Pose queries to the inference procedure and get answers
Ex: Which inputs would cause the first output of C1 (the sum bit) to be 0 and the second output of
C1 (the carry bit) to be 1?
AskVars(KB,∃i1, i2, i3.(Signal(In(1,C1)) = i1∧

Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3∧
Signal(Out(1,C1)) = 0 ∧ Signal(Out(2,C1)) = 1))

=⇒ {i1/1, i2/1, i3/0} or {i1/1, i2/0, i3/1} or {i1/0, i2/1, i3/1}
What are the possible value sets of all terminals?
AskVars(KB,∃i1, i2, i3, o1, o2.(Signal(In(1,C1)) = i1∧

Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3∧
Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2))

=⇒ {i1/1, i2/1, i3/1, o1/1, o2/1} or {i1/1, i2/1, i3/0, o1/0, o2/1} or ...
59 / 60

Example: The Electronic Circuits Domain [cont.]
5 Encode a description of the specific problem instance

Circuit(C1) ∧ Arity(C1, 3, 2) ∧
Gate(X1) ∧ Type(X1) = XOR ∧ Gate(X2) ∧ Type(X2) = XOR ∧ ...∧
Gate(O1) ∧ Type(O1) = OR
Connected(Out(1,X1), In(1,X2)) ∧
... ∧
Connected(In(3,C1), In(1,A2))

6 Pose queries to the inference procedure and get answers
Ex: Which inputs would cause the first output of C1 (the sum bit) to be 0 and the second output of
C1 (the carry bit) to be 1?
AskVars(KB,∃i1, i2, i3.(Signal(In(1,C1)) = i1∧

Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3∧
Signal(Out(1,C1)) = 0 ∧ Signal(Out(2,C1)) = 1))

=⇒ {i1/1, i2/1, i3/0} or {i1/1, i2/0, i3/1} or {i1/0, i2/1, i3/1}
What are the possible value sets of all terminals?
AskVars(KB,∃i1, i2, i3, o1, o2.(Signal(In(1,C1)) = i1∧

Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3∧
Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2))

=⇒ {i1/1, i2/1, i3/1, o1/1, o2/1} or {i1/1, i2/1, i3/0, o1/0, o2/1} or ...
59 / 60

Example: The Electronic Circuits Domain [cont.]
5 Encode a description of the specific problem instance

Circuit(C1) ∧ Arity(C1, 3, 2) ∧
Gate(X1) ∧ Type(X1) = XOR ∧ Gate(X2) ∧ Type(X2) = XOR ∧ ...∧
Gate(O1) ∧ Type(O1) = OR
Connected(Out(1,X1), In(1,X2)) ∧
... ∧
Connected(In(3,C1), In(1,A2))

6 Pose queries to the inference procedure and get answers
Ex: Which inputs would cause the first output of C1 (the sum bit) to be 0 and the second output of
C1 (the carry bit) to be 1?
AskVars(KB,∃i1, i2, i3.(Signal(In(1,C1)) = i1∧

Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3∧
Signal(Out(1,C1)) = 0 ∧ Signal(Out(2,C1)) = 1))

=⇒ {i1/1, i2/1, i3/0} or {i1/1, i2/0, i3/1} or {i1/0, i2/1, i3/1}
What are the possible value sets of all terminals?
AskVars(KB,∃i1, i2, i3, o1, o2.(Signal(In(1,C1)) = i1∧

Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3∧
Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2))

=⇒ {i1/1, i2/1, i3/1, o1/1, o2/1} or {i1/1, i2/1, i3/0, o1/0, o2/1} or ...
59 / 60

Example: The Electronic Circuits Domain [cont.]
5 Encode a description of the specific problem instance

Circuit(C1) ∧ Arity(C1, 3, 2) ∧
Gate(X1) ∧ Type(X1) = XOR ∧ Gate(X2) ∧ Type(X2) = XOR ∧ ...∧
Gate(O1) ∧ Type(O1) = OR
Connected(Out(1,X1), In(1,X2)) ∧
... ∧
Connected(In(3,C1), In(1,A2))

6 Pose queries to the inference procedure and get answers
Ex: Which inputs would cause the first output of C1 (the sum bit) to be 0 and the second output of
C1 (the carry bit) to be 1?
AskVars(KB,∃i1, i2, i3.(Signal(In(1,C1)) = i1∧

Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3∧
Signal(Out(1,C1)) = 0 ∧ Signal(Out(2,C1)) = 1))

=⇒ {i1/1, i2/1, i3/0} or {i1/1, i2/0, i3/1} or {i1/0, i2/1, i3/1}
What are the possible value sets of all terminals?
AskVars(KB,∃i1, i2, i3, o1, o2.(Signal(In(1,C1)) = i1∧

Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3∧
Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2))

=⇒ {i1/1, i2/1, i3/1, o1/1, o2/1} or {i1/1, i2/1, i3/0, o1/0, o2/1} or ...
59 / 60

Example: The Electronic Circuits Domain [cont.]

7 Debug the knowledge base
Suppose no output produced by previous query
We progressively try to restrict our analysis my more local queries, until we pinpoint the problem.
Ex: ∃i1, i2, o.(Signal(In(1,C1)) = i1 ∧ Signal(In(2,C1)) = i2 ∧

Signal(Out(1,X1)) = o)
(see AIMA book for a detailed example)

60 / 60

	Generalities
	Syntax and Semantics of FOL
	Syntax
	Semantics
	Satisfiability, Validity, Entailment

	Using FOL
	FOL Agents
	Example: The Wumpus World

	Knowledge Engineering in FOL

