
Fundamentals of Artificial Intelligence
Chapter 06: Constraint Satisfaction Problems

Roberto Sebastiani

DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fai_2022/

Teaching assistant: Mauro Dragoni – dragoni@fbk.eu
http://www.maurodragoni.com/teaching/fai/

M.S. Course “Artificial Intelligence Systems”, academic year 2022-2023
Last update: Friday 21st October, 2022, 19:21

Copyright notice: Most examples and images displayed in the slides of this course are taken from [Russell & Norwig, “Artificial Intelligence, a Modern Approach”, 3rd ed., Pearson],
including explicitly figures from the above-mentioned book, so that their copyright is detained by the authors. A few other material (text, figures, examples) is authored by (in alphabetical

order): Pieter Abbeel, Bonnie J. Dorr, Anca Dragan, Dan Klein, Nikita Kitaev, Tom Lenaerts, Michela Milano, Dana Nau, Maria Simi, who detain its copyright.
These slides cannot can be displayed in public without the permission of the author.

1 / 63

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fai_2022/
dragoni@fbk.eu
http://www.maurodragoni.com/teaching/fai/

Outline

1 Constraint Satisfaction Problems (CSPs)

2 Search with CSPs
Inference: Constraint Propagation
Backtracking Search

3 Local Search with CSPs

4 Exploiting Structure of CSPs

2 / 63

Outline

1 Constraint Satisfaction Problems (CSPs)

2 Search with CSPs
Inference: Constraint Propagation
Backtracking Search

3 Local Search with CSPs

4 Exploiting Structure of CSPs

3 / 63

Recall: State Representations [Ch. 02]

Representations of states and transitions

Three ways to represent states and transitions between them:
atomic: a state is a black box with no internal structure
factored: a state consists of a vector of attribute values
structured: a state includes objects, each of which may have attributes of its own as well as
relationships to other objects

increasing expressive power and computational complexity
reality represented at different levels of abstraction

(© S. Russell & P. Norwig, AIMA)

4 / 63

Constraint Satisfaction Problems (CSPs): Generalities

Constraint Satisfaction Problems, CSPs (aka Constraint Satisfiability Problems)

Search problem so far: Atomic representation of states
black box with no internal structure
goal test as set inclusion

Henceforth: use a Factored representation of states
state is defined by a set of variables values from some domains
goal test is a set of constraints specifying allowable combinations of values for subsets of
variables

a set of variable values is a goal iff the values verify all constraints

CSP Search Algorithms
take advantage of the structure of states
use general-purpose heuristics rather than problem-specific ones
main idea: eliminate large portions of the search space all at once

identify variable/value combinations that violate the constraints

5 / 63

Constraint Satisfaction Problems (CSPs): Generalities

Constraint Satisfaction Problems, CSPs (aka Constraint Satisfiability Problems)

Search problem so far: Atomic representation of states
black box with no internal structure
goal test as set inclusion

Henceforth: use a Factored representation of states
state is defined by a set of variables values from some domains
goal test is a set of constraints specifying allowable combinations of values for subsets of
variables

a set of variable values is a goal iff the values verify all constraints

CSP Search Algorithms
take advantage of the structure of states
use general-purpose heuristics rather than problem-specific ones
main idea: eliminate large portions of the search space all at once

identify variable/value combinations that violate the constraints

5 / 63

Constraint Satisfaction Problems (CSPs): Generalities

Constraint Satisfaction Problems, CSPs (aka Constraint Satisfiability Problems)

Search problem so far: Atomic representation of states
black box with no internal structure
goal test as set inclusion

Henceforth: use a Factored representation of states
state is defined by a set of variables values from some domains
goal test is a set of constraints specifying allowable combinations of values for subsets of
variables

a set of variable values is a goal iff the values verify all constraints

CSP Search Algorithms
take advantage of the structure of states
use general-purpose heuristics rather than problem-specific ones
main idea: eliminate large portions of the search space all at once

identify variable/value combinations that violate the constraints

5 / 63

Constraint Satisfaction Problems (CSPs): Generalities

Constraint Satisfaction Problems, CSPs (aka Constraint Satisfiability Problems)

Search problem so far: Atomic representation of states
black box with no internal structure
goal test as set inclusion

Henceforth: use a Factored representation of states
state is defined by a set of variables values from some domains
goal test is a set of constraints specifying allowable combinations of values for subsets of
variables

a set of variable values is a goal iff the values verify all constraints

CSP Search Algorithms
take advantage of the structure of states
use general-purpose heuristics rather than problem-specific ones
main idea: eliminate large portions of the search space all at once

identify variable/value combinations that violate the constraints

5 / 63

CSPs: Definitions

CSPs

A Constraint Satisfaction Problem is a tuple 〈X ,D,C〉:
a set of variables X def

= {X1, ...,Xn}
a set of (non-empty) domains D def

= {D1, ...,Dn}, one for each Xi

a set of constraints C def
= {C1, ...,Cm}

specify allowable combinations of values for the variables in X

Each Di is a set of allowable values {vi , ..., vk} for variable Xi

Each Ci is a pair 〈scope, rel〉
scope is a tuple of variables that participate in the constraint
rel is a relation defining the values that such variables can take

A relation is
an explicit list of all tuples of values that satisfy the constraint (most often inconvenient), or
an abstract relation supporting two operations:

test if a tuple is a member of the relation
enumerate the members of the relation

We need a language to express constraint relations!

6 / 63

CSPs: Definitions

CSPs

A Constraint Satisfaction Problem is a tuple 〈X ,D,C〉:
a set of variables X def

= {X1, ...,Xn}
a set of (non-empty) domains D def

= {D1, ...,Dn}, one for each Xi

a set of constraints C def
= {C1, ...,Cm}

specify allowable combinations of values for the variables in X

Each Di is a set of allowable values {vi , ..., vk} for variable Xi

Each Ci is a pair 〈scope, rel〉
scope is a tuple of variables that participate in the constraint
rel is a relation defining the values that such variables can take

A relation is
an explicit list of all tuples of values that satisfy the constraint (most often inconvenient), or
an abstract relation supporting two operations:

test if a tuple is a member of the relation
enumerate the members of the relation

We need a language to express constraint relations!

6 / 63

CSPs: Definitions

CSPs

A Constraint Satisfaction Problem is a tuple 〈X ,D,C〉:
a set of variables X def

= {X1, ...,Xn}
a set of (non-empty) domains D def

= {D1, ...,Dn}, one for each Xi

a set of constraints C def
= {C1, ...,Cm}

specify allowable combinations of values for the variables in X

Each Di is a set of allowable values {vi , ..., vk} for variable Xi

Each Ci is a pair 〈scope, rel〉
scope is a tuple of variables that participate in the constraint
rel is a relation defining the values that such variables can take

A relation is
an explicit list of all tuples of values that satisfy the constraint (most often inconvenient), or
an abstract relation supporting two operations:

test if a tuple is a member of the relation
enumerate the members of the relation

We need a language to express constraint relations!

6 / 63

CSPs: Definitions

CSPs

A Constraint Satisfaction Problem is a tuple 〈X ,D,C〉:
a set of variables X def

= {X1, ...,Xn}
a set of (non-empty) domains D def

= {D1, ...,Dn}, one for each Xi

a set of constraints C def
= {C1, ...,Cm}

specify allowable combinations of values for the variables in X

Each Di is a set of allowable values {vi , ..., vk} for variable Xi

Each Ci is a pair 〈scope, rel〉
scope is a tuple of variables that participate in the constraint
rel is a relation defining the values that such variables can take

A relation is
an explicit list of all tuples of values that satisfy the constraint (most often inconvenient), or
an abstract relation supporting two operations:

test if a tuple is a member of the relation
enumerate the members of the relation

We need a language to express constraint relations!

6 / 63

CSPs: Definitions

CSPs

A Constraint Satisfaction Problem is a tuple 〈X ,D,C〉:
a set of variables X def

= {X1, ...,Xn}
a set of (non-empty) domains D def

= {D1, ...,Dn}, one for each Xi

a set of constraints C def
= {C1, ...,Cm}

specify allowable combinations of values for the variables in X

Each Di is a set of allowable values {vi , ..., vk} for variable Xi

Each Ci is a pair 〈scope, rel〉
scope is a tuple of variables that participate in the constraint
rel is a relation defining the values that such variables can take

A relation is
an explicit list of all tuples of values that satisfy the constraint (most often inconvenient), or
an abstract relation supporting two operations:

test if a tuple is a member of the relation
enumerate the members of the relation

We need a language to express constraint relations!

6 / 63

CSPs: Definitions [cont.]

States, Assignments and Solutions

A state in a CSP is an assignment of values to some or all of the variables {Xi = vxi}i s.t
Xi ∈ X and vxi ∈ Di

An assignment is
complete (aka total) if every variable is assigned a value
incomplete (aka partial) if some variable is assigned a value

An assignment that does not violate any constraints in the CSP is called a consistent or
legal assignment
A solution to a CSP is a consistent and complete assignment
A CSP consists in finding one solution (or state there is none)
Constraint Optimization Problems (COPs):
CSPs requiring solutions that maximize/minimize an objective function

7 / 63

CSPs: Definitions [cont.]

States, Assignments and Solutions

A state in a CSP is an assignment of values to some or all of the variables {Xi = vxi}i s.t
Xi ∈ X and vxi ∈ Di

An assignment is
complete (aka total) if every variable is assigned a value
incomplete (aka partial) if some variable is assigned a value

An assignment that does not violate any constraints in the CSP is called a consistent or
legal assignment
A solution to a CSP is a consistent and complete assignment
A CSP consists in finding one solution (or state there is none)
Constraint Optimization Problems (COPs):
CSPs requiring solutions that maximize/minimize an objective function

7 / 63

CSPs: Definitions [cont.]

States, Assignments and Solutions

A state in a CSP is an assignment of values to some or all of the variables {Xi = vxi}i s.t
Xi ∈ X and vxi ∈ Di

An assignment is
complete (aka total) if every variable is assigned a value
incomplete (aka partial) if some variable is assigned a value

An assignment that does not violate any constraints in the CSP is called a consistent or
legal assignment
A solution to a CSP is a consistent and complete assignment
A CSP consists in finding one solution (or state there is none)
Constraint Optimization Problems (COPs):
CSPs requiring solutions that maximize/minimize an objective function

7 / 63

CSPs: Definitions [cont.]

States, Assignments and Solutions

A state in a CSP is an assignment of values to some or all of the variables {Xi = vxi}i s.t
Xi ∈ X and vxi ∈ Di

An assignment is
complete (aka total) if every variable is assigned a value
incomplete (aka partial) if some variable is assigned a value

An assignment that does not violate any constraints in the CSP is called a consistent or
legal assignment
A solution to a CSP is a consistent and complete assignment
A CSP consists in finding one solution (or state there is none)
Constraint Optimization Problems (COPs):
CSPs requiring solutions that maximize/minimize an objective function

7 / 63

CSPs: Definitions [cont.]

States, Assignments and Solutions

A state in a CSP is an assignment of values to some or all of the variables {Xi = vxi}i s.t
Xi ∈ X and vxi ∈ Di

An assignment is
complete (aka total) if every variable is assigned a value
incomplete (aka partial) if some variable is assigned a value

An assignment that does not violate any constraints in the CSP is called a consistent or
legal assignment
A solution to a CSP is a consistent and complete assignment
A CSP consists in finding one solution (or state there is none)
Constraint Optimization Problems (COPs):
CSPs requiring solutions that maximize/minimize an objective function

7 / 63

CSPs: Definitions [cont.]

States, Assignments and Solutions

A state in a CSP is an assignment of values to some or all of the variables {Xi = vxi}i s.t
Xi ∈ X and vxi ∈ Di

An assignment is
complete (aka total) if every variable is assigned a value
incomplete (aka partial) if some variable is assigned a value

An assignment that does not violate any constraints in the CSP is called a consistent or
legal assignment
A solution to a CSP is a consistent and complete assignment
A CSP consists in finding one solution (or state there is none)
Constraint Optimization Problems (COPs):
CSPs requiring solutions that maximize/minimize an objective function

7 / 63

CSPs: Definitions [cont.]

States, Assignments and Solutions

A state in a CSP is an assignment of values to some or all of the variables {Xi = vxi}i s.t
Xi ∈ X and vxi ∈ Di

An assignment is
complete (aka total) if every variable is assigned a value
incomplete (aka partial) if some variable is assigned a value

An assignment that does not violate any constraints in the CSP is called a consistent or
legal assignment
A solution to a CSP is a consistent and complete assignment
A CSP consists in finding one solution (or state there is none)
Constraint Optimization Problems (COPs):
CSPs requiring solutions that maximize/minimize an objective function

7 / 63

Example: Sudoku

81 Variables: (each square) Xij ,
i = A, ..., I; j = 1...9
Domain: {1,2, ...,8,9}
Constraints:

AllDiff (Xi1, ...,Xi9) for each row i
AllDiff (XAj , ...,XIj) for each column j
AllDiff (XA1, ...,XA3,XB1...,XC3) for each 3× 3
square region

(alternatively, a long list of pairwise inequality
constraints: XA1 6= XA2,XA1 6= XA3, ...)
Solution: total value assignment satisfying all the
constraints: XA1 = 4,XA2 = 8,XA3 = 3, ...

(© S. Russell & P. Norwig, AIMA)

8 / 63

Example: Sudoku

81 Variables: (each square) Xij ,
i = A, ..., I; j = 1...9
Domain: {1,2, ...,8,9}
Constraints:

AllDiff (Xi1, ...,Xi9) for each row i
AllDiff (XAj , ...,XIj) for each column j
AllDiff (XA1, ...,XA3,XB1...,XC3) for each 3× 3
square region

(alternatively, a long list of pairwise inequality
constraints: XA1 6= XA2,XA1 6= XA3, ...)
Solution: total value assignment satisfying all the
constraints: XA1 = 4,XA2 = 8,XA3 = 3, ...

(© S. Russell & P. Norwig, AIMA)

8 / 63

Example: Sudoku

81 Variables: (each square) Xij ,
i = A, ..., I; j = 1...9
Domain: {1,2, ...,8,9}
Constraints:

AllDiff (Xi1, ...,Xi9) for each row i
AllDiff (XAj , ...,XIj) for each column j
AllDiff (XA1, ...,XA3,XB1...,XC3) for each 3× 3
square region

(alternatively, a long list of pairwise inequality
constraints: XA1 6= XA2,XA1 6= XA3, ...)
Solution: total value assignment satisfying all the
constraints: XA1 = 4,XA2 = 8,XA3 = 3, ...

(© S. Russell & P. Norwig, AIMA)

8 / 63

Example: Sudoku

81 Variables: (each square) Xij ,
i = A, ..., I; j = 1...9
Domain: {1,2, ...,8,9}
Constraints:

AllDiff (Xi1, ...,Xi9) for each row i
AllDiff (XAj , ...,XIj) for each column j
AllDiff (XA1, ...,XA3,XB1...,XC3) for each 3× 3
square region

(alternatively, a long list of pairwise inequality
constraints: XA1 6= XA2,XA1 6= XA3, ...)
Solution: total value assignment satisfying all the
constraints: XA1 = 4,XA2 = 8,XA3 = 3, ...

(© S. Russell & P. Norwig, AIMA)

8 / 63

Example: Map-Coloring
Variables WA, NT, Q, NSW, V, SA, T
Domain Di = {red ,green,blue}, ∀i
Constraints: adjacent regions must have different colours

e.g. (explicit enumeration): 〈WA,NT 〉∈{〈red , green〉, 〈red , blue〉,}
or (implicit, if language allows it): WA 6= NT

A solution: {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

(© S. Russell & P. Norwig, AIMA)
9 / 63

Example: Map-Coloring
Variables WA, NT, Q, NSW, V, SA, T
Domain Di = {red ,green,blue}, ∀i
Constraints: adjacent regions must have different colours

e.g. (explicit enumeration): 〈WA,NT 〉∈{〈red , green〉, 〈red , blue〉,}
or (implicit, if language allows it): WA 6= NT

A solution: {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

(© S. Russell & P. Norwig, AIMA)
9 / 63

Example: Map-Coloring
Variables WA, NT, Q, NSW, V, SA, T
Domain Di = {red ,green,blue}, ∀i
Constraints: adjacent regions must have different colours

e.g. (explicit enumeration): 〈WA,NT 〉∈{〈red , green〉, 〈red , blue〉,}
or (implicit, if language allows it): WA 6= NT

A solution: {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

(© S. Russell & P. Norwig, AIMA)
9 / 63

Example: Map-Coloring
Variables WA, NT, Q, NSW, V, SA, T
Domain Di = {red ,green,blue}, ∀i
Constraints: adjacent regions must have different colours

e.g. (explicit enumeration): 〈WA,NT 〉∈{〈red , green〉, 〈red , blue〉,}
or (implicit, if language allows it): WA 6= NT

A solution: {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

(© S. Russell & P. Norwig, AIMA)
9 / 63

Constraint Graphs
Useful to visualize a CSP as a constraint graph (aka network)

the nodes of the graph correspond to variables of the problem
an edge connects any two variables that participate in a constraint

CSP algorithms use the graph structure to speed up search
Ex: Tasmania is an independent subproblem!

Example: Map Coloring
(a): map; (b) constraint graph

(© S. Russell & P. Norwig, AIMA)

10 / 63

Constraint Graphs
Useful to visualize a CSP as a constraint graph (aka network)

the nodes of the graph correspond to variables of the problem
an edge connects any two variables that participate in a constraint

CSP algorithms use the graph structure to speed up search
Ex: Tasmania is an independent subproblem!

Example: Map Coloring
(a): map; (b) constraint graph

(© S. Russell & P. Norwig, AIMA)

10 / 63

Constraint Graphs
Useful to visualize a CSP as a constraint graph (aka network)

the nodes of the graph correspond to variables of the problem
an edge connects any two variables that participate in a constraint

CSP algorithms use the graph structure to speed up search
Ex: Tasmania is an independent subproblem!

Example: Map Coloring
(a): map; (b) constraint graph

(© S. Russell & P. Norwig, AIMA)

10 / 63

Varieties of CSPs

Discrete variables
Finite domains (ex: Booleans, bounded integers, lists of values)

domain size d =⇒ dn complete assignments (candidate solutions)
e.g. Boolean CSPs, incl. Boolean satisfiability (NP-complete)
possible to define constraints by enumerating all combinations (although unpractical)

Infinite domains (ex: unbounded integers)
infinite domain size =⇒ infinite # of complete assignments
e.g. job scheduling: variables are start/end days for each job
need a constraint language (ex: StartJob1 + 5 ≤ StartJob3)
linear constraints =⇒ solvable (but NP-Hard)
non-linear constraints =⇒ undecidable (ex: xn + yn = zn, n > 2)

Continuous variables (ex: reals, rationals)
linear constraints solvable in poly time by LP methods
non-linear constraints solvable (e.g. by Cylindrical Algebraic Decomposition) but dramatically hard

The same problem may have distinct formulations as CSP!

11 / 63

Varieties of CSPs

Discrete variables
Finite domains (ex: Booleans, bounded integers, lists of values)

domain size d =⇒ dn complete assignments (candidate solutions)
e.g. Boolean CSPs, incl. Boolean satisfiability (NP-complete)
possible to define constraints by enumerating all combinations (although unpractical)

Infinite domains (ex: unbounded integers)
infinite domain size =⇒ infinite # of complete assignments
e.g. job scheduling: variables are start/end days for each job
need a constraint language (ex: StartJob1 + 5 ≤ StartJob3)
linear constraints =⇒ solvable (but NP-Hard)
non-linear constraints =⇒ undecidable (ex: xn + yn = zn, n > 2)

Continuous variables (ex: reals, rationals)
linear constraints solvable in poly time by LP methods
non-linear constraints solvable (e.g. by Cylindrical Algebraic Decomposition) but dramatically hard

The same problem may have distinct formulations as CSP!

11 / 63

Varieties of CSPs

Discrete variables
Finite domains (ex: Booleans, bounded integers, lists of values)

domain size d =⇒ dn complete assignments (candidate solutions)
e.g. Boolean CSPs, incl. Boolean satisfiability (NP-complete)
possible to define constraints by enumerating all combinations (although unpractical)

Infinite domains (ex: unbounded integers)
infinite domain size =⇒ infinite # of complete assignments
e.g. job scheduling: variables are start/end days for each job
need a constraint language (ex: StartJob1 + 5 ≤ StartJob3)
linear constraints =⇒ solvable (but NP-Hard)
non-linear constraints =⇒ undecidable (ex: xn + yn = zn, n > 2)

Continuous variables (ex: reals, rationals)
linear constraints solvable in poly time by LP methods
non-linear constraints solvable (e.g. by Cylindrical Algebraic Decomposition) but dramatically hard

The same problem may have distinct formulations as CSP!

11 / 63

Varieties of CSPs

Discrete variables
Finite domains (ex: Booleans, bounded integers, lists of values)

domain size d =⇒ dn complete assignments (candidate solutions)
e.g. Boolean CSPs, incl. Boolean satisfiability (NP-complete)
possible to define constraints by enumerating all combinations (although unpractical)

Infinite domains (ex: unbounded integers)
infinite domain size =⇒ infinite # of complete assignments
e.g. job scheduling: variables are start/end days for each job
need a constraint language (ex: StartJob1 + 5 ≤ StartJob3)
linear constraints =⇒ solvable (but NP-Hard)
non-linear constraints =⇒ undecidable (ex: xn + yn = zn, n > 2)

Continuous variables (ex: reals, rationals)
linear constraints solvable in poly time by LP methods
non-linear constraints solvable (e.g. by Cylindrical Algebraic Decomposition) but dramatically hard

The same problem may have distinct formulations as CSP!

11 / 63

Varieties of CSPs

Discrete variables
Finite domains (ex: Booleans, bounded integers, lists of values)

domain size d =⇒ dn complete assignments (candidate solutions)
e.g. Boolean CSPs, incl. Boolean satisfiability (NP-complete)
possible to define constraints by enumerating all combinations (although unpractical)

Infinite domains (ex: unbounded integers)
infinite domain size =⇒ infinite # of complete assignments
e.g. job scheduling: variables are start/end days for each job
need a constraint language (ex: StartJob1 + 5 ≤ StartJob3)
linear constraints =⇒ solvable (but NP-Hard)
non-linear constraints =⇒ undecidable (ex: xn + yn = zn, n > 2)

Continuous variables (ex: reals, rationals)
linear constraints solvable in poly time by LP methods
non-linear constraints solvable (e.g. by Cylindrical Algebraic Decomposition) but dramatically hard

The same problem may have distinct formulations as CSP!

11 / 63

Varieties of CSPs

Discrete variables
Finite domains (ex: Booleans, bounded integers, lists of values)

domain size d =⇒ dn complete assignments (candidate solutions)
e.g. Boolean CSPs, incl. Boolean satisfiability (NP-complete)
possible to define constraints by enumerating all combinations (although unpractical)

Infinite domains (ex: unbounded integers)
infinite domain size =⇒ infinite # of complete assignments
e.g. job scheduling: variables are start/end days for each job
need a constraint language (ex: StartJob1 + 5 ≤ StartJob3)
linear constraints =⇒ solvable (but NP-Hard)
non-linear constraints =⇒ undecidable (ex: xn + yn = zn, n > 2)

Continuous variables (ex: reals, rationals)
linear constraints solvable in poly time by LP methods
non-linear constraints solvable (e.g. by Cylindrical Algebraic Decomposition) but dramatically hard

The same problem may have distinct formulations as CSP!

11 / 63

Example: N-Queens

Formulation #1

variables Xij , i , j = 1..N (there is a queen i position i , j)
domains: {0,1} (false,true)
constraints (explicit):

∀i, j, k 〈Xij ,Xik 〉 ∈ {〈0, 0〉, 〈1, 0〉, 〈0, 1〉} (row)
∀i, j, k 〈Xij ,Xkj〉 ∈ {〈0, 0〉, 〈1, 0〉, 〈0, 1〉} (column)
∀i, j, k 〈Xij ,Xi+k,j+k 〉 ∈ {〈0, 0〉, 〈1, 0〉, 〈0, 1〉} (upward diagonal)
∀i, j, k 〈Xij ,Xi+k,j−k 〉 ∈ {〈0, 0〉, 〈1, 0〉, 〈0, 1〉} (downward diagonal)

explicit representation
very inefficient

12 / 63

Example: N-Queens

Formulation #1

variables Xij , i , j = 1..N (there is a queen i position i , j)
domains: {0,1} (false,true)
constraints (explicit):

∀i, j, k 〈Xij ,Xik 〉 ∈ {〈0, 0〉, 〈1, 0〉, 〈0, 1〉} (row)
∀i, j, k 〈Xij ,Xkj〉 ∈ {〈0, 0〉, 〈1, 0〉, 〈0, 1〉} (column)
∀i, j, k 〈Xij ,Xi+k,j+k 〉 ∈ {〈0, 0〉, 〈1, 0〉, 〈0, 1〉} (upward diagonal)
∀i, j, k 〈Xij ,Xi+k,j−k 〉 ∈ {〈0, 0〉, 〈1, 0〉, 〈0, 1〉} (downward diagonal)

explicit representation
very inefficient

12 / 63

Example: N-Queens

Formulation #1

variables Xij , i , j = 1..N (there is a queen i position i , j)
domains: {0,1} (false,true)
constraints (explicit):

∀i, j, k 〈Xij ,Xik 〉 ∈ {〈0, 0〉, 〈1, 0〉, 〈0, 1〉} (row)
∀i, j, k 〈Xij ,Xkj〉 ∈ {〈0, 0〉, 〈1, 0〉, 〈0, 1〉} (column)
∀i, j, k 〈Xij ,Xi+k,j+k 〉 ∈ {〈0, 0〉, 〈1, 0〉, 〈0, 1〉} (upward diagonal)
∀i, j, k 〈Xij ,Xi+k,j−k 〉 ∈ {〈0, 0〉, 〈1, 0〉, 〈0, 1〉} (downward diagonal)

explicit representation
very inefficient

12 / 63

Example: N-Queens

Formulation #1

variables Xij , i , j = 1..N (there is a queen i position i , j)
domains: {0,1} (false,true)
constraints (explicit):

∀i, j, k 〈Xij ,Xik 〉 ∈ {〈0, 0〉, 〈1, 0〉, 〈0, 1〉} (row)
∀i, j, k 〈Xij ,Xkj〉 ∈ {〈0, 0〉, 〈1, 0〉, 〈0, 1〉} (column)
∀i, j, k 〈Xij ,Xi+k,j+k 〉 ∈ {〈0, 0〉, 〈1, 0〉, 〈0, 1〉} (upward diagonal)
∀i, j, k 〈Xij ,Xi+k,j−k 〉 ∈ {〈0, 0〉, 〈1, 0〉, 〈0, 1〉} (downward diagonal)

explicit representation
very inefficient

12 / 63

Example: N-Queens [cont.]

Formulation #2

variables Qk , k = 1..N (row)
domains: {1..N} (column position)
constraints (implicit): Nonthreatening(Qk ,Qk ′):

none (row)
Qi 6= Qj (column)
Qi 6= Qj+k + k (downward diagonal)
Qi 6= Qj+k − k (upward diagonal)

implicit representation
much more efficient

(© S. Russell & P. Norwig, AIMA)

13 / 63

Example: N-Queens [cont.]

Formulation #2

variables Qk , k = 1..N (row)
domains: {1..N} (column position)
constraints (implicit): Nonthreatening(Qk ,Qk ′):

none (row)
Qi 6= Qj (column)
Qi 6= Qj+k + k (downward diagonal)
Qi 6= Qj+k − k (upward diagonal)

implicit representation
much more efficient

(© S. Russell & P. Norwig, AIMA)

13 / 63

Example: N-Queens [cont.]

Formulation #2

variables Qk , k = 1..N (row)
domains: {1..N} (column position)
constraints (implicit): Nonthreatening(Qk ,Qk ′):

none (row)
Qi 6= Qj (column)
Qi 6= Qj+k + k (downward diagonal)
Qi 6= Qj+k − k (upward diagonal)

implicit representation
much more efficient

(© S. Russell & P. Norwig, AIMA)

13 / 63

Example: N-Queens [cont.]

Formulation #2

variables Qk , k = 1..N (row)
domains: {1..N} (column position)
constraints (implicit): Nonthreatening(Qk ,Qk ′):

none (row)
Qi 6= Qj (column)
Qi 6= Qj+k + k (downward diagonal)
Qi 6= Qj+k − k (upward diagonal)

implicit representation
much more efficient

(© S. Russell & P. Norwig, AIMA)

13 / 63

Varieties of Constraints
Unary constraints: involve one single variable

ex: (SA 6= green)

Binary constraints: involve pairs of variables
ex: (SA 6= WA)

Higher-order constraints: involve ≥ 3 variables
ex: cryptarithmetic column constraints
can be represented by constraint hypergraphs (hypernodes represent n-ary constraints, squares
in cryptarithmetic example)

Global constraints: involve an arbitrary number of variables
ex: AllDiff (X1, ...,Xk)
note: maximum domain size ≥ k , otherwise AllDiff () unsatisfiable
compact, specialized routines for handling them

Preference constraints (aka soft constraints): describe preferences between/among
solutions

ex: “I’d rather WA in red than in blue or green”
can often be encoded as costs/rewards for variables/constraints:

=⇒ solved by cost-optimization search techniques (Constraint Optimization Problems (COPs))

14 / 63

Varieties of Constraints
Unary constraints: involve one single variable

ex: (SA 6= green)

Binary constraints: involve pairs of variables
ex: (SA 6= WA)

Higher-order constraints: involve ≥ 3 variables
ex: cryptarithmetic column constraints
can be represented by constraint hypergraphs (hypernodes represent n-ary constraints, squares
in cryptarithmetic example)

Global constraints: involve an arbitrary number of variables
ex: AllDiff (X1, ...,Xk)
note: maximum domain size ≥ k , otherwise AllDiff () unsatisfiable
compact, specialized routines for handling them

Preference constraints (aka soft constraints): describe preferences between/among
solutions

ex: “I’d rather WA in red than in blue or green”
can often be encoded as costs/rewards for variables/constraints:

=⇒ solved by cost-optimization search techniques (Constraint Optimization Problems (COPs))

14 / 63

Varieties of Constraints
Unary constraints: involve one single variable

ex: (SA 6= green)

Binary constraints: involve pairs of variables
ex: (SA 6= WA)

Higher-order constraints: involve ≥ 3 variables
ex: cryptarithmetic column constraints
can be represented by constraint hypergraphs (hypernodes represent n-ary constraints, squares
in cryptarithmetic example)

Global constraints: involve an arbitrary number of variables
ex: AllDiff (X1, ...,Xk)
note: maximum domain size ≥ k , otherwise AllDiff () unsatisfiable
compact, specialized routines for handling them

Preference constraints (aka soft constraints): describe preferences between/among
solutions

ex: “I’d rather WA in red than in blue or green”
can often be encoded as costs/rewards for variables/constraints:

=⇒ solved by cost-optimization search techniques (Constraint Optimization Problems (COPs))

14 / 63

Varieties of Constraints
Unary constraints: involve one single variable

ex: (SA 6= green)

Binary constraints: involve pairs of variables
ex: (SA 6= WA)

Higher-order constraints: involve ≥ 3 variables
ex: cryptarithmetic column constraints
can be represented by constraint hypergraphs (hypernodes represent n-ary constraints, squares
in cryptarithmetic example)

Global constraints: involve an arbitrary number of variables
ex: AllDiff (X1, ...,Xk)
note: maximum domain size ≥ k , otherwise AllDiff () unsatisfiable
compact, specialized routines for handling them

Preference constraints (aka soft constraints): describe preferences between/among
solutions

ex: “I’d rather WA in red than in blue or green”
can often be encoded as costs/rewards for variables/constraints:

=⇒ solved by cost-optimization search techniques (Constraint Optimization Problems (COPs))

14 / 63

Varieties of Constraints
Unary constraints: involve one single variable

ex: (SA 6= green)

Binary constraints: involve pairs of variables
ex: (SA 6= WA)

Higher-order constraints: involve ≥ 3 variables
ex: cryptarithmetic column constraints
can be represented by constraint hypergraphs (hypernodes represent n-ary constraints, squares
in cryptarithmetic example)

Global constraints: involve an arbitrary number of variables
ex: AllDiff (X1, ...,Xk)
note: maximum domain size ≥ k , otherwise AllDiff () unsatisfiable
compact, specialized routines for handling them

Preference constraints (aka soft constraints): describe preferences between/among
solutions

ex: “I’d rather WA in red than in blue or green”
can often be encoded as costs/rewards for variables/constraints:

=⇒ solved by cost-optimization search techniques (Constraint Optimization Problems (COPs))

14 / 63

Varieties of Constraints
Unary constraints: involve one single variable

ex: (SA 6= green)

Binary constraints: involve pairs of variables
ex: (SA 6= WA)

Higher-order constraints: involve ≥ 3 variables
ex: cryptarithmetic column constraints
can be represented by constraint hypergraphs (hypernodes represent n-ary constraints, squares
in cryptarithmetic example)

Global constraints: involve an arbitrary number of variables
ex: AllDiff (X1, ...,Xk)
note: maximum domain size ≥ k , otherwise AllDiff () unsatisfiable
compact, specialized routines for handling them

Preference constraints (aka soft constraints): describe preferences between/among
solutions

ex: “I’d rather WA in red than in blue or green”
can often be encoded as costs/rewards for variables/constraints:

=⇒ solved by cost-optimization search techniques (Constraint Optimization Problems (COPs))

14 / 63

Example: Cryptarithmetic Puzzle

Variables: F ,T ,U,W ,R,O, plus C1,C2,C3 (carry)
Domains: F ,T ,U,W ,R,O ∈ {0,1, ...,9}; C1,C2,C3 ∈ {0,1}

Constraints:

AllDiff (F ,T ,U,W ,R,O),
O + O = R + 10 · C1
W + W + C1 = U + 10 · C2
T + T + C2 = 10 · C3 + O
F = C3,F 6= 0,T 6= 0

(one) solution: {F=1,T=7,U=2,W=1,R=8,O=4} (714+714=1428)

(© S. Russell & P. Norwig, AIMA)
15 / 63

Example: Cryptarithmetic Puzzle

Variables: F ,T ,U,W ,R,O, plus C1,C2,C3 (carry)
Domains: F ,T ,U,W ,R,O ∈ {0,1, ...,9}; C1,C2,C3 ∈ {0,1}

Constraints:

AllDiff (F ,T ,U,W ,R,O),
O + O = R + 10 · C1
W + W + C1 = U + 10 · C2
T + T + C2 = 10 · C3 + O
F = C3,F 6= 0,T 6= 0

(one) solution: {F=1,T=7,U=2,W=1,R=8,O=4} (714+714=1428)

(© S. Russell & P. Norwig, AIMA)
15 / 63

Example: Cryptarithmetic Puzzle

Variables: F ,T ,U,W ,R,O, plus C1,C2,C3 (carry)
Domains: F ,T ,U,W ,R,O ∈ {0,1, ...,9}; C1,C2,C3 ∈ {0,1}

Constraints:

AllDiff (F ,T ,U,W ,R,O),
O + O = R + 10 · C1
W + W + C1 = U + 10 · C2
T + T + C2 = 10 · C3 + O
F = C3,F 6= 0,T 6= 0

(one) solution: {F=1,T=7,U=2,W=1,R=8,O=4} (714+714=1428)

(© S. Russell & P. Norwig, AIMA)
15 / 63

Example: Cryptarithmetic Puzzle

Variables: F ,T ,U,W ,R,O, plus C1,C2,C3 (carry)
Domains: F ,T ,U,W ,R,O ∈ {0,1, ...,9}; C1,C2,C3 ∈ {0,1}

Constraints:

AllDiff (F ,T ,U,W ,R,O),
O + O = R + 10 · C1
W + W + C1 = U + 10 · C2
T + T + C2 = 10 · C3 + O
F = C3,F 6= 0,T 6= 0

(one) solution: {F=1,T=7,U=2,W=1,R=8,O=4} (714+714=1428)

(© S. Russell & P. Norwig, AIMA)
15 / 63

Example: Cryptarithmetic Puzzle

Variables: F ,T ,U,W ,R,O, plus C1,C2,C3 (carry)
Domains: F ,T ,U,W ,R,O ∈ {0,1, ...,9}; C1,C2,C3 ∈ {0,1}

Constraints:

AllDiff (F ,T ,U,W ,R,O),
O + O = R + 10 · C1
W + W + C1 = U + 10 · C2
T + T + C2 = 10 · C3 + O
F = C3,F 6= 0,T 6= 0

(one) solution: {F=1,T=7,U=2,W=1,R=8,O=4} (714+714=1428)

(© S. Russell & P. Norwig, AIMA)
15 / 63

Example: Job-Shop Scheduling

Scheduling the assembling of a car requires several tasks
ex: installing axles, installing wheels, tightening nuts, put on hubcap, inspect

Variables Xt (for each task t): starting times of the tasks
Domain: (bounded) integers (time units)
Constraints:

Precedence: (XT + durationT ≤ XT ′) (task T precedes task T’)
durationT constant value (ex: (XaxleA + 10 ≤ Xaxleb))

Alternative precedence (combine arithmetic and logic):
(XT + durationT ≤ XT ′) or (XT ′ + durationT ′ ≤ XT)

16 / 63

Example: Job-Shop Scheduling

Scheduling the assembling of a car requires several tasks
ex: installing axles, installing wheels, tightening nuts, put on hubcap, inspect

Variables Xt (for each task t): starting times of the tasks
Domain: (bounded) integers (time units)
Constraints:

Precedence: (XT + durationT ≤ XT ′) (task T precedes task T’)
durationT constant value (ex: (XaxleA + 10 ≤ Xaxleb))

Alternative precedence (combine arithmetic and logic):
(XT + durationT ≤ XT ′) or (XT ′ + durationT ′ ≤ XT)

16 / 63

Example: Job-Shop Scheduling

Scheduling the assembling of a car requires several tasks
ex: installing axles, installing wheels, tightening nuts, put on hubcap, inspect

Variables Xt (for each task t): starting times of the tasks
Domain: (bounded) integers (time units)
Constraints:

Precedence: (XT + durationT ≤ XT ′) (task T precedes task T’)
durationT constant value (ex: (XaxleA + 10 ≤ Xaxleb))

Alternative precedence (combine arithmetic and logic):
(XT + durationT ≤ XT ′) or (XT ′ + durationT ′ ≤ XT)

16 / 63

Example: Job-Shop Scheduling

Scheduling the assembling of a car requires several tasks
ex: installing axles, installing wheels, tightening nuts, put on hubcap, inspect

Variables Xt (for each task t): starting times of the tasks
Domain: (bounded) integers (time units)
Constraints:

Precedence: (XT + durationT ≤ XT ′) (task T precedes task T’)
durationT constant value (ex: (XaxleA + 10 ≤ Xaxleb))

Alternative precedence (combine arithmetic and logic):
(XT + durationT ≤ XT ′) or (XT ′ + durationT ′ ≤ XT)

16 / 63

Example: Job-Shop Scheduling

Scheduling the assembling of a car requires several tasks
ex: installing axles, installing wheels, tightening nuts, put on hubcap, inspect

Variables Xt (for each task t): starting times of the tasks
Domain: (bounded) integers (time units)
Constraints:

Precedence: (XT + durationT ≤ XT ′) (task T precedes task T’)
durationT constant value (ex: (XaxleA + 10 ≤ Xaxleb))

Alternative precedence (combine arithmetic and logic):
(XT + durationT ≤ XT ′) or (XT ′ + durationT ′ ≤ XT)

16 / 63

Remark

k-ary constraints can be transformed into sets of binary constraints
hint: add enough auxiliary variables (see ex. 6.6 in AIMA book)

=⇒ often CSP solvers work with binary constraints only
In the rest of this chapter (unless specified otherwise) we assume we have only binary
constraints in the CSP
We call neighbours two variables sharing a binary constraint

17 / 63

Remark

k-ary constraints can be transformed into sets of binary constraints
hint: add enough auxiliary variables (see ex. 6.6 in AIMA book)

=⇒ often CSP solvers work with binary constraints only
In the rest of this chapter (unless specified otherwise) we assume we have only binary
constraints in the CSP
We call neighbours two variables sharing a binary constraint

17 / 63

Remark

k-ary constraints can be transformed into sets of binary constraints
hint: add enough auxiliary variables (see ex. 6.6 in AIMA book)

=⇒ often CSP solvers work with binary constraints only
In the rest of this chapter (unless specified otherwise) we assume we have only binary
constraints in the CSP
We call neighbours two variables sharing a binary constraint

17 / 63

Real-World CSPs

Task-Assignment problems
Ex: who teaches which class?

Timetabling problems
Ex: which class is offered when and where?

Hardware configuration
Ex: which component is placed where? with which connections?

Transportation scheduling
Ex: which van goes where?

Factory scheduling
Ex: which machine/worker takes which task? in which order?

...

Remarks
many real-world problems involve real/rational-valued variables
many real-world problems involve combinatorics and logic
many real-world problems require optimization

18 / 63

Real-World CSPs

Task-Assignment problems
Ex: who teaches which class?

Timetabling problems
Ex: which class is offered when and where?

Hardware configuration
Ex: which component is placed where? with which connections?

Transportation scheduling
Ex: which van goes where?

Factory scheduling
Ex: which machine/worker takes which task? in which order?

...

Remarks
many real-world problems involve real/rational-valued variables
many real-world problems involve combinatorics and logic
many real-world problems require optimization

18 / 63

Real-World CSPs

Task-Assignment problems
Ex: who teaches which class?

Timetabling problems
Ex: which class is offered when and where?

Hardware configuration
Ex: which component is placed where? with which connections?

Transportation scheduling
Ex: which van goes where?

Factory scheduling
Ex: which machine/worker takes which task? in which order?

...

Remarks
many real-world problems involve real/rational-valued variables
many real-world problems involve combinatorics and logic
many real-world problems require optimization

18 / 63

Real-World CSPs

Task-Assignment problems
Ex: who teaches which class?

Timetabling problems
Ex: which class is offered when and where?

Hardware configuration
Ex: which component is placed where? with which connections?

Transportation scheduling
Ex: which van goes where?

Factory scheduling
Ex: which machine/worker takes which task? in which order?

...

Remarks
many real-world problems involve real/rational-valued variables
many real-world problems involve combinatorics and logic
many real-world problems require optimization

18 / 63

Real-World CSPs

Task-Assignment problems
Ex: who teaches which class?

Timetabling problems
Ex: which class is offered when and where?

Hardware configuration
Ex: which component is placed where? with which connections?

Transportation scheduling
Ex: which van goes where?

Factory scheduling
Ex: which machine/worker takes which task? in which order?

...

Remarks
many real-world problems involve real/rational-valued variables
many real-world problems involve combinatorics and logic
many real-world problems require optimization

18 / 63

Real-World CSPs

Task-Assignment problems
Ex: who teaches which class?

Timetabling problems
Ex: which class is offered when and where?

Hardware configuration
Ex: which component is placed where? with which connections?

Transportation scheduling
Ex: which van goes where?

Factory scheduling
Ex: which machine/worker takes which task? in which order?

...

Remarks
many real-world problems involve real/rational-valued variables
many real-world problems involve combinatorics and logic
many real-world problems require optimization

18 / 63

Real-World CSPs

Task-Assignment problems
Ex: who teaches which class?

Timetabling problems
Ex: which class is offered when and where?

Hardware configuration
Ex: which component is placed where? with which connections?

Transportation scheduling
Ex: which van goes where?

Factory scheduling
Ex: which machine/worker takes which task? in which order?

...

Remarks
many real-world problems involve real/rational-valued variables
many real-world problems involve combinatorics and logic
many real-world problems require optimization

18 / 63

Real-World CSPs

Task-Assignment problems
Ex: who teaches which class?

Timetabling problems
Ex: which class is offered when and where?

Hardware configuration
Ex: which component is placed where? with which connections?

Transportation scheduling
Ex: which van goes where?

Factory scheduling
Ex: which machine/worker takes which task? in which order?

...

Remarks
many real-world problems involve real/rational-valued variables
many real-world problems involve combinatorics and logic
many real-world problems require optimization

18 / 63

Outline

1 Constraint Satisfaction Problems (CSPs)

2 Search with CSPs
Inference: Constraint Propagation
Backtracking Search

3 Local Search with CSPs

4 Exploiting Structure of CSPs

19 / 63

Search & Constraint Propagation with CSPs

In state-space search, an algorithm can only search
move from complete state to complete state,

A CSPs interleaves search with constraint propagation:
search: pick a new variable assignment (and backtrack when needed)

does not move from complete state to complete state,
rather builds a complete state by progressively extending partial ones

constraint propagation (aka inference):
use the constraints to reduce the set of legal candidate values for a variable
forces next variable assignment when candidate values are reduced to one
forces backtracking when candidate values are reduced to zero

Constraint propagation can either:
be interleaved with search
be performed as a preprocessing step

20 / 63

Search & Constraint Propagation with CSPs

In state-space search, an algorithm can only search
move from complete state to complete state,

A CSPs interleaves search with constraint propagation:
search: pick a new variable assignment (and backtrack when needed)

does not move from complete state to complete state,
rather builds a complete state by progressively extending partial ones

constraint propagation (aka inference):
use the constraints to reduce the set of legal candidate values for a variable
forces next variable assignment when candidate values are reduced to one
forces backtracking when candidate values are reduced to zero

Constraint propagation can either:
be interleaved with search
be performed as a preprocessing step

20 / 63

Search & Constraint Propagation with CSPs

In state-space search, an algorithm can only search
move from complete state to complete state,

A CSPs interleaves search with constraint propagation:
search: pick a new variable assignment (and backtrack when needed)

does not move from complete state to complete state,
rather builds a complete state by progressively extending partial ones

constraint propagation (aka inference):
use the constraints to reduce the set of legal candidate values for a variable
forces next variable assignment when candidate values are reduced to one
forces backtracking when candidate values are reduced to zero

Constraint propagation can either:
be interleaved with search
be performed as a preprocessing step

20 / 63

Search & Constraint Propagation with CSPs

In state-space search, an algorithm can only search
move from complete state to complete state,

A CSPs interleaves search with constraint propagation:
search: pick a new variable assignment (and backtrack when needed)

does not move from complete state to complete state,
rather builds a complete state by progressively extending partial ones

constraint propagation (aka inference):
use the constraints to reduce the set of legal candidate values for a variable
forces next variable assignment when candidate values are reduced to one
forces backtracking when candidate values are reduced to zero

Constraint propagation can either:
be interleaved with search
be performed as a preprocessing step

20 / 63

Search & Constraint Propagation with CSPs

In state-space search, an algorithm can only search
move from complete state to complete state,

A CSPs interleaves search with constraint propagation:
search: pick a new variable assignment (and backtrack when needed)

does not move from complete state to complete state,
rather builds a complete state by progressively extending partial ones

constraint propagation (aka inference):
use the constraints to reduce the set of legal candidate values for a variable
forces next variable assignment when candidate values are reduced to one
forces backtracking when candidate values are reduced to zero

Constraint propagation can either:
be interleaved with search
be performed as a preprocessing step

20 / 63

Search & Constraint Propagation with CSPs

In state-space search, an algorithm can only search
move from complete state to complete state,

A CSPs interleaves search with constraint propagation:
search: pick a new variable assignment (and backtrack when needed)

does not move from complete state to complete state,
rather builds a complete state by progressively extending partial ones

constraint propagation (aka inference):
use the constraints to reduce the set of legal candidate values for a variable
forces next variable assignment when candidate values are reduced to one
forces backtracking when candidate values are reduced to zero

Constraint propagation can either:
be interleaved with search
be performed as a preprocessing step

20 / 63

Outline

1 Constraint Satisfaction Problems (CSPs)

2 Search with CSPs
Inference: Constraint Propagation
Backtracking Search

3 Local Search with CSPs

4 Exploiting Structure of CSPs

21 / 63

Constraint Propagation

Use the constraints to reduce the set of legal candidate values for variables
Intuition: preserve and propagate local consistency

enforcing local consistency in each part of the constraint graph
=⇒ inconsistent values eliminated throughout the graph

Different types of local consistency:
node consistency (aka 1-consistency)
arc consistency (aka 2-consistency)
path consistency (aka 3-consistency)
k-consistency k ≥ 1

22 / 63

Constraint Propagation

Use the constraints to reduce the set of legal candidate values for variables
Intuition: preserve and propagate local consistency

enforcing local consistency in each part of the constraint graph
=⇒ inconsistent values eliminated throughout the graph

Different types of local consistency:
node consistency (aka 1-consistency)
arc consistency (aka 2-consistency)
path consistency (aka 3-consistency)
k-consistency k ≥ 1

22 / 63

Constraint Propagation

Use the constraints to reduce the set of legal candidate values for variables
Intuition: preserve and propagate local consistency

enforcing local consistency in each part of the constraint graph
=⇒ inconsistent values eliminated throughout the graph

Different types of local consistency:
node consistency (aka 1-consistency)
arc consistency (aka 2-consistency)
path consistency (aka 3-consistency)
k-consistency k ≥ 1

22 / 63

Node Consistency (aka 1-Consistency)

Xi is node-consistent if all the values in the variable’s domain satisfy its unary constraints
A CSP is node-consistent if every variable is node-consistent
Node-consistency propagation:
remove all values from the domain Di of Xi which violate unary constraints on Xi

ex: if the constraint WA 6= green is added to map-coloring problem
then WA domain {red , green, blue} is reduced to {red , blue}
ex: if the constraint WA = green is added to map-coloring problem
then WA domain {red , green, blue} is reduced to {green}

Unary constraints can be removed a priori by node consistency propagation

23 / 63

Node Consistency (aka 1-Consistency)

Xi is node-consistent if all the values in the variable’s domain satisfy its unary constraints
A CSP is node-consistent if every variable is node-consistent
Node-consistency propagation:
remove all values from the domain Di of Xi which violate unary constraints on Xi

ex: if the constraint WA 6= green is added to map-coloring problem
then WA domain {red , green, blue} is reduced to {red , blue}
ex: if the constraint WA = green is added to map-coloring problem
then WA domain {red , green, blue} is reduced to {green}

Unary constraints can be removed a priori by node consistency propagation

23 / 63

Node Consistency (aka 1-Consistency)

Xi is node-consistent if all the values in the variable’s domain satisfy its unary constraints
A CSP is node-consistent if every variable is node-consistent
Node-consistency propagation:
remove all values from the domain Di of Xi which violate unary constraints on Xi

ex: if the constraint WA 6= green is added to map-coloring problem
then WA domain {red , green, blue} is reduced to {red , blue}
ex: if the constraint WA = green is added to map-coloring problem
then WA domain {red , green, blue} is reduced to {green}

Unary constraints can be removed a priori by node consistency propagation

23 / 63

Node Consistency (aka 1-Consistency)

Xi is node-consistent if all the values in the variable’s domain satisfy its unary constraints
A CSP is node-consistent if every variable is node-consistent
Node-consistency propagation:
remove all values from the domain Di of Xi which violate unary constraints on Xi

ex: if the constraint WA 6= green is added to map-coloring problem
then WA domain {red , green, blue} is reduced to {red , blue}
ex: if the constraint WA = green is added to map-coloring problem
then WA domain {red , green, blue} is reduced to {green}

Unary constraints can be removed a priori by node consistency propagation

23 / 63

Node Consistency (aka 1-Consistency)

Xi is node-consistent if all the values in the variable’s domain satisfy its unary constraints
A CSP is node-consistent if every variable is node-consistent
Node-consistency propagation:
remove all values from the domain Di of Xi which violate unary constraints on Xi

ex: if the constraint WA 6= green is added to map-coloring problem
then WA domain {red , green, blue} is reduced to {red , blue}
ex: if the constraint WA = green is added to map-coloring problem
then WA domain {red , green, blue} is reduced to {green}

Unary constraints can be removed a priori by node consistency propagation

23 / 63

Arc Consistency (aka 2-Consistency)

Xi is arc-consistent wrt. Xj iff for every value di of Xi in Di exists a value dj for Xj in Dj which
satisfy all binary constraints on 〈Xi ,Xj〉
A CSP is arc-consistent if every variable is arc consistent with every other variable
Forward Checking: remove values from unassigned variables which are not arc consistent
with assigned variables

i.e., remove values which are non consistent with the assigned values of neighbour variables
=⇒ ensure arcs from assigned to unassigned variables are arc consistent

Limitation: If X loses a value, neighbors of X are not rechecked

Arc-consistency propagation: remove all values from the domains of every variable which
are not arc-consistent with these of some other variables

Idea: If X loses a value, neighbors of X are rechecked
=⇒ ensure all arcs are arc consistent!

A well-known algorithm: AC-3
=⇒ every arc is arc-consistent, or some variable domain is empty

complexity: O(|C| · |D|3) worst-case
AC-4 is O(|C| · |D|2) worst-case, but worse than AC-3 on average

=⇒ Can be interleaved with search or used as a preprocessing step
24 / 63

Arc Consistency (aka 2-Consistency)

Xi is arc-consistent wrt. Xj iff for every value di of Xi in Di exists a value dj for Xj in Dj which
satisfy all binary constraints on 〈Xi ,Xj〉
A CSP is arc-consistent if every variable is arc consistent with every other variable
Forward Checking: remove values from unassigned variables which are not arc consistent
with assigned variables

i.e., remove values which are non consistent with the assigned values of neighbour variables
=⇒ ensure arcs from assigned to unassigned variables are arc consistent

Limitation: If X loses a value, neighbors of X are not rechecked

Arc-consistency propagation: remove all values from the domains of every variable which
are not arc-consistent with these of some other variables

Idea: If X loses a value, neighbors of X are rechecked
=⇒ ensure all arcs are arc consistent!

A well-known algorithm: AC-3
=⇒ every arc is arc-consistent, or some variable domain is empty

complexity: O(|C| · |D|3) worst-case
AC-4 is O(|C| · |D|2) worst-case, but worse than AC-3 on average

=⇒ Can be interleaved with search or used as a preprocessing step
24 / 63

Arc Consistency (aka 2-Consistency)

Xi is arc-consistent wrt. Xj iff for every value di of Xi in Di exists a value dj for Xj in Dj which
satisfy all binary constraints on 〈Xi ,Xj〉
A CSP is arc-consistent if every variable is arc consistent with every other variable
Forward Checking: remove values from unassigned variables which are not arc consistent
with assigned variables

i.e., remove values which are non consistent with the assigned values of neighbour variables
=⇒ ensure arcs from assigned to unassigned variables are arc consistent

Limitation: If X loses a value, neighbors of X are not rechecked

Arc-consistency propagation: remove all values from the domains of every variable which
are not arc-consistent with these of some other variables

Idea: If X loses a value, neighbors of X are rechecked
=⇒ ensure all arcs are arc consistent!

A well-known algorithm: AC-3
=⇒ every arc is arc-consistent, or some variable domain is empty

complexity: O(|C| · |D|3) worst-case
AC-4 is O(|C| · |D|2) worst-case, but worse than AC-3 on average

=⇒ Can be interleaved with search or used as a preprocessing step
24 / 63

Arc Consistency (aka 2-Consistency)

Xi is arc-consistent wrt. Xj iff for every value di of Xi in Di exists a value dj for Xj in Dj which
satisfy all binary constraints on 〈Xi ,Xj〉
A CSP is arc-consistent if every variable is arc consistent with every other variable
Forward Checking: remove values from unassigned variables which are not arc consistent
with assigned variables

i.e., remove values which are non consistent with the assigned values of neighbour variables
=⇒ ensure arcs from assigned to unassigned variables are arc consistent

Limitation: If X loses a value, neighbors of X are not rechecked

Arc-consistency propagation: remove all values from the domains of every variable which
are not arc-consistent with these of some other variables

Idea: If X loses a value, neighbors of X are rechecked
=⇒ ensure all arcs are arc consistent!

A well-known algorithm: AC-3
=⇒ every arc is arc-consistent, or some variable domain is empty

complexity: O(|C| · |D|3) worst-case
AC-4 is O(|C| · |D|2) worst-case, but worse than AC-3 on average

=⇒ Can be interleaved with search or used as a preprocessing step
24 / 63

Arc Consistency (aka 2-Consistency)

Xi is arc-consistent wrt. Xj iff for every value di of Xi in Di exists a value dj for Xj in Dj which
satisfy all binary constraints on 〈Xi ,Xj〉
A CSP is arc-consistent if every variable is arc consistent with every other variable
Forward Checking: remove values from unassigned variables which are not arc consistent
with assigned variables

i.e., remove values which are non consistent with the assigned values of neighbour variables
=⇒ ensure arcs from assigned to unassigned variables are arc consistent

Limitation: If X loses a value, neighbors of X are not rechecked

Arc-consistency propagation: remove all values from the domains of every variable which
are not arc-consistent with these of some other variables

Idea: If X loses a value, neighbors of X are rechecked
=⇒ ensure all arcs are arc consistent!

A well-known algorithm: AC-3
=⇒ every arc is arc-consistent, or some variable domain is empty

complexity: O(|C| · |D|3) worst-case
AC-4 is O(|C| · |D|2) worst-case, but worse than AC-3 on average

=⇒ Can be interleaved with search or used as a preprocessing step
24 / 63

Arc Consistency (aka 2-Consistency)

Xi is arc-consistent wrt. Xj iff for every value di of Xi in Di exists a value dj for Xj in Dj which
satisfy all binary constraints on 〈Xi ,Xj〉
A CSP is arc-consistent if every variable is arc consistent with every other variable
Forward Checking: remove values from unassigned variables which are not arc consistent
with assigned variables

i.e., remove values which are non consistent with the assigned values of neighbour variables
=⇒ ensure arcs from assigned to unassigned variables are arc consistent

Limitation: If X loses a value, neighbors of X are not rechecked

Arc-consistency propagation: remove all values from the domains of every variable which
are not arc-consistent with these of some other variables

Idea: If X loses a value, neighbors of X are rechecked
=⇒ ensure all arcs are arc consistent!

A well-known algorithm: AC-3
=⇒ every arc is arc-consistent, or some variable domain is empty

complexity: O(|C| · |D|3) worst-case
AC-4 is O(|C| · |D|2) worst-case, but worse than AC-3 on average

=⇒ Can be interleaved with search or used as a preprocessing step
24 / 63

Forward Checking
Simplest form of propagation
Idea: propagate information from assigned to unassigned variables

pick (novel) variable assignment
update remaining legal values for unassigned variables

Does not provide early detection for all failures
Limitation: If X loses a value, neighbors of X are not rechecked!

ex: SA single value is incompatible with NT single value

Can we conclude anything?
NT and SA cannot both be blue!

Why didn’t we detect this inconsistency yet?

(© S. Russell & P. Norwig, AIMA)
25 / 63

Forward Checking
Simplest form of propagation
Idea: propagate information from assigned to unassigned variables

pick (novel) variable assignment
update remaining legal values for unassigned variables

Does not provide early detection for all failures
Limitation: If X loses a value, neighbors of X are not rechecked!

ex: SA single value is incompatible with NT single value

Can we conclude anything?
NT and SA cannot both be blue!

Why didn’t we detect this inconsistency yet?

(© S. Russell & P. Norwig, AIMA)
25 / 63

Forward Checking
Simplest form of propagation
Idea: propagate information from assigned to unassigned variables

pick (novel) variable assignment
update remaining legal values for unassigned variables

Does not provide early detection for all failures
Limitation: If X loses a value, neighbors of X are not rechecked!

ex: SA single value is incompatible with NT single value

Can we conclude anything?
NT and SA cannot both be blue!

Why didn’t we detect this inconsistency yet?

(© S. Russell & P. Norwig, AIMA)
25 / 63

Forward Checking
Simplest form of propagation
Idea: propagate information from assigned to unassigned variables

pick (novel) variable assignment
update remaining legal values for unassigned variables

Does not provide early detection for all failures
Limitation: If X loses a value, neighbors of X are not rechecked!

ex: SA single value is incompatible with NT single value

Can we conclude anything?
NT and SA cannot both be blue!

Why didn’t we detect this inconsistency yet?

(© S. Russell & P. Norwig, AIMA)
25 / 63

Forward Checking
Simplest form of propagation
Idea: propagate information from assigned to unassigned variables

pick (novel) variable assignment
update remaining legal values for unassigned variables

Does not provide early detection for all failures
Limitation: If X loses a value, neighbors of X are not rechecked!

ex: SA single value is incompatible with NT single value

Can we conclude anything?
NT and SA cannot both be blue!

Why didn’t we detect this inconsistency yet?

(© S. Russell & P. Norwig, AIMA)
25 / 63

Forward Checking
Simplest form of propagation
Idea: propagate information from assigned to unassigned variables

pick (novel) variable assignment
update remaining legal values for unassigned variables

Does not provide early detection for all failures
Limitation: If X loses a value, neighbors of X are not rechecked!

ex: SA single value is incompatible with NT single value

Can we conclude anything?
NT and SA cannot both be blue!

Why didn’t we detect this inconsistency yet?

(© S. Russell & P. Norwig, AIMA)
25 / 63

Forward Checking
Simplest form of propagation
Idea: propagate information from assigned to unassigned variables

pick (novel) variable assignment
update remaining legal values for unassigned variables

Does not provide early detection for all failures
Limitation: If X loses a value, neighbors of X are not rechecked!

ex: SA single value is incompatible with NT single value

Can we conclude anything?
NT and SA cannot both be blue!

Why didn’t we detect this inconsistency yet?

(© S. Russell & P. Norwig, AIMA)
25 / 63

The Arc-Consistency Propagation Algorithm AC-3

(© S. Russell & P. Norwig, AIMA)

note: “queue” is LIFO =⇒ revises first the neighbours of revised vars
26 / 63

Arc-Consistency Propagation AC-3: Example

Idea: If X loses a value, neighbors of X need to be rechecked
Ex:

Revise(SA,NSW) =⇒ DSA unchanged
...
Revise(NSW,SA) =⇒ DNSW revised
Revise(V,NSW) =⇒ DV revised
...
Revise(SA,NT) =⇒ DSA revised

Empty domain!
=⇒ Arc-consistency propagation detects failure earlier than forward checking

(© S. Russell & P. Norwig, AIMA)

27 / 63

Arc-Consistency Propagation AC-3: Example

Idea: If X loses a value, neighbors of X need to be rechecked
Ex:

Revise(SA,NSW) =⇒ DSA unchanged
...
Revise(NSW,SA) =⇒ DNSW revised
Revise(V,NSW) =⇒ DV revised
...
Revise(SA,NT) =⇒ DSA revised

Empty domain!
=⇒ Arc-consistency propagation detects failure earlier than forward checking

(© S. Russell & P. Norwig, AIMA)

27 / 63

Arc-Consistency Propagation AC-3: Example

Idea: If X loses a value, neighbors of X need to be rechecked
Ex:

Revise(SA,NSW) =⇒ DSA unchanged
...
Revise(NSW,SA) =⇒ DNSW revised
Revise(V,NSW) =⇒ DV revised
...
Revise(SA,NT) =⇒ DSA revised

Empty domain!
=⇒ Arc-consistency propagation detects failure earlier than forward checking

(© S. Russell & P. Norwig, AIMA)

27 / 63

Arc-Consistency Propagation AC-3: Example

Idea: If X loses a value, neighbors of X need to be rechecked
Ex:

Revise(SA,NSW) =⇒ DSA unchanged
...
Revise(NSW,SA) =⇒ DNSW revised
Revise(V,NSW) =⇒ DV revised
...
Revise(SA,NT) =⇒ DSA revised

Empty domain!
=⇒ Arc-consistency propagation detects failure earlier than forward checking

(© S. Russell & P. Norwig, AIMA)

27 / 63

Arc-Consistency Propagation AC-3: Example

Idea: If X loses a value, neighbors of X need to be rechecked
Ex:

Revise(SA,NSW) =⇒ DSA unchanged
...
Revise(NSW,SA) =⇒ DNSW revised
Revise(V,NSW) =⇒ DV revised
...
Revise(SA,NT) =⇒ DSA revised

Empty domain!
=⇒ Arc-consistency propagation detects failure earlier than forward checking

(© S. Russell & P. Norwig, AIMA)

27 / 63

Remark

Notice the differences between:
(a) an assigned variable Xi , with value vj , and
(b) an unassigned variable Xi whose domain is reduced to a singleton {vj}:

With (b) Xi is not (yet) assigned the value vj

(although it will be likely assigned soon the value vj by next search steps)
With Forward Checking, (a) forces checking the domain of Xi ’s unassigned neighbours wrt.
Xi , whereas (b) does not
With ARC-Consistency Propagation, both (a) and (b) force checking the domain of Xi ’s
unassigned neighbours wrt. Xi

28 / 63

Remark

Notice the differences between:
(a) an assigned variable Xi , with value vj , and
(b) an unassigned variable Xi whose domain is reduced to a singleton {vj}:

With (b) Xi is not (yet) assigned the value vj

(although it will be likely assigned soon the value vj by next search steps)
With Forward Checking, (a) forces checking the domain of Xi ’s unassigned neighbours wrt.
Xi , whereas (b) does not
With ARC-Consistency Propagation, both (a) and (b) force checking the domain of Xi ’s
unassigned neighbours wrt. Xi

28 / 63

Remark

Notice the differences between:
(a) an assigned variable Xi , with value vj , and
(b) an unassigned variable Xi whose domain is reduced to a singleton {vj}:

With (b) Xi is not (yet) assigned the value vj

(although it will be likely assigned soon the value vj by next search steps)
With Forward Checking, (a) forces checking the domain of Xi ’s unassigned neighbours wrt.
Xi , whereas (b) does not
With ARC-Consistency Propagation, both (a) and (b) force checking the domain of Xi ’s
unassigned neighbours wrt. Xi

28 / 63

Example: Sudoku

(consider AllDiff () as a set of binary constraints)
Apply arc-consistency propagation:

What about E6?
arc-consistency propagation on column 6:
drop 2,3,5,6,8,9
arc-consistency propagation on square:
drop 1,7 =⇒ Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)

What about I6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,8,9
arc-consistency propagation on square:
drop 1 =⇒ Domain(I6)={7}

What about A6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,7.8,9 =⇒ Domain(A6)={1}

...
(© S. Russell & P. Norwig, AIMA)

Exercise: Show that AC-3 solves the whole puzzle

29 / 63

Example: Sudoku

(consider AllDiff () as a set of binary constraints)
Apply arc-consistency propagation:

What about E6?
arc-consistency propagation on column 6:
drop 2,3,5,6,8,9
arc-consistency propagation on square:
drop 1,7 =⇒ Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)

What about I6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,8,9
arc-consistency propagation on square:
drop 1 =⇒ Domain(I6)={7}

What about A6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,7.8,9 =⇒ Domain(A6)={1}

...
(© S. Russell & P. Norwig, AIMA)

Exercise: Show that AC-3 solves the whole puzzle

29 / 63

Example: Sudoku

(consider AllDiff () as a set of binary constraints)
Apply arc-consistency propagation:

What about E6?
arc-consistency propagation on column 6:
drop 2,3,5,6,8,9
arc-consistency propagation on square:
drop 1,7 =⇒ Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)

What about I6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,8,9
arc-consistency propagation on square:
drop 1 =⇒ Domain(I6)={7}

What about A6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,7.8,9 =⇒ Domain(A6)={1}

...
(© S. Russell & P. Norwig, AIMA)

Exercise: Show that AC-3 solves the whole puzzle

29 / 63

Example: Sudoku

(consider AllDiff () as a set of binary constraints)
Apply arc-consistency propagation:

What about E6?
arc-consistency propagation on column 6:
drop 2,3,5,6,8,9
arc-consistency propagation on square:
drop 1,7 =⇒ Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)

What about I6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,8,9
arc-consistency propagation on square:
drop 1 =⇒ Domain(I6)={7}

What about A6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,7.8,9 =⇒ Domain(A6)={1}

...
(© S. Russell & P. Norwig, AIMA)

Exercise: Show that AC-3 solves the whole puzzle

29 / 63

Example: Sudoku

(consider AllDiff () as a set of binary constraints)
Apply arc-consistency propagation:

What about E6?
arc-consistency propagation on column 6:
drop 2,3,5,6,8,9
arc-consistency propagation on square:
drop 1,7 =⇒ Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)

What about I6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,8,9
arc-consistency propagation on square:
drop 1 =⇒ Domain(I6)={7}

What about A6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,7.8,9 =⇒ Domain(A6)={1}

...
(© S. Russell & P. Norwig, AIMA)

Exercise: Show that AC-3 solves the whole puzzle

29 / 63

Example: Sudoku

(consider AllDiff () as a set of binary constraints)
Apply arc-consistency propagation:

What about E6?
arc-consistency propagation on column 6:
drop 2,3,5,6,8,9
arc-consistency propagation on square:
drop 1,7 =⇒ Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)

What about I6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,8,9
arc-consistency propagation on square:
drop 1 =⇒ Domain(I6)={7}

What about A6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,7.8,9 =⇒ Domain(A6)={1}

...
(© S. Russell & P. Norwig, AIMA)

Exercise: Show that AC-3 solves the whole puzzle

29 / 63

Example: Sudoku

(consider AllDiff () as a set of binary constraints)
Apply arc-consistency propagation:

What about E6?
arc-consistency propagation on column 6:
drop 2,3,5,6,8,9
arc-consistency propagation on square:
drop 1,7 =⇒ Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)

What about I6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,8,9
arc-consistency propagation on square:
drop 1 =⇒ Domain(I6)={7}

What about A6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,7.8,9 =⇒ Domain(A6)={1}

...
(© S. Russell & P. Norwig, AIMA)

Exercise: Show that AC-3 solves the whole puzzle

29 / 63

Example: Sudoku

(consider AllDiff () as a set of binary constraints)
Apply arc-consistency propagation:

What about E6?
arc-consistency propagation on column 6:
drop 2,3,5,6,8,9
arc-consistency propagation on square:
drop 1,7 =⇒ Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)

What about I6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,8,9
arc-consistency propagation on square:
drop 1 =⇒ Domain(I6)={7}

What about A6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,7.8,9 =⇒ Domain(A6)={1}

...
(© S. Russell & P. Norwig, AIMA)

Exercise: Show that AC-3 solves the whole puzzle

29 / 63

Example: Sudoku

(consider AllDiff () as a set of binary constraints)
Apply arc-consistency propagation:

What about E6?
arc-consistency propagation on column 6:
drop 2,3,5,6,8,9
arc-consistency propagation on square:
drop 1,7 =⇒ Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)

What about I6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,8,9
arc-consistency propagation on square:
drop 1 =⇒ Domain(I6)={7}

What about A6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,7.8,9 =⇒ Domain(A6)={1}

...
(© S. Russell & P. Norwig, AIMA)

Exercise: Show that AC-3 solves the whole puzzle

29 / 63

Example: Sudoku

(consider AllDiff () as a set of binary constraints)
Apply arc-consistency propagation:

What about E6?
arc-consistency propagation on column 6:
drop 2,3,5,6,8,9
arc-consistency propagation on square:
drop 1,7 =⇒ Domain(E6)={4}
(will be assigned to 4 at next search step, but
triggers next propagations)

What about I6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,8,9
arc-consistency propagation on square:
drop 1 =⇒ Domain(I6)={7}

What about A6?
arc-consistency propagation on column 6:
drop 2,3,4,5,6,7.8,9 =⇒ Domain(A6)={1}

...
(© S. Russell & P. Norwig, AIMA)

Exercise: Show that AC-3 solves the whole puzzle

29 / 63

Path Consistency & K-Consistency

Path Consistency

A two-variable set {Xi ,Xj} is path-consistent wrt. a third variable Xm if,
for every assignment {Xi = a,Xj = b} consistent with the constraints on {Xi ,Xj},
there is an assignment to Xm that satisfies the constraints on {Xi ,Xm} and {Xm,Xj}.

K-Consistency

A CSP is k-consistent iff for any set of k − 1 variables and for any consistent assignment to
those variables, a consistent value can always be assigned to any other k-th variable

1-consistency is node consistency
2-consistency is arc consistency
3-consistency is path consistency

Algorithm for 3-consistency available: PC-2
generalization of AC-3

Time and space complexity grow exponentially with k

30 / 63

Path Consistency & K-Consistency

Path Consistency

A two-variable set {Xi ,Xj} is path-consistent wrt. a third variable Xm if,
for every assignment {Xi = a,Xj = b} consistent with the constraints on {Xi ,Xj},
there is an assignment to Xm that satisfies the constraints on {Xi ,Xm} and {Xm,Xj}.

K-Consistency

A CSP is k-consistent iff for any set of k − 1 variables and for any consistent assignment to
those variables, a consistent value can always be assigned to any other k-th variable

1-consistency is node consistency
2-consistency is arc consistency
3-consistency is path consistency

Algorithm for 3-consistency available: PC-2
generalization of AC-3

Time and space complexity grow exponentially with k

30 / 63

Path Consistency & K-Consistency

Path Consistency

A two-variable set {Xi ,Xj} is path-consistent wrt. a third variable Xm if,
for every assignment {Xi = a,Xj = b} consistent with the constraints on {Xi ,Xj},
there is an assignment to Xm that satisfies the constraints on {Xi ,Xm} and {Xm,Xj}.

K-Consistency

A CSP is k-consistent iff for any set of k − 1 variables and for any consistent assignment to
those variables, a consistent value can always be assigned to any other k-th variable

1-consistency is node consistency
2-consistency is arc consistency
3-consistency is path consistency

Algorithm for 3-consistency available: PC-2
generalization of AC-3

Time and space complexity grow exponentially with k

30 / 63

Path Consistency & K-Consistency

Path Consistency

A two-variable set {Xi ,Xj} is path-consistent wrt. a third variable Xm if,
for every assignment {Xi = a,Xj = b} consistent with the constraints on {Xi ,Xj},
there is an assignment to Xm that satisfies the constraints on {Xi ,Xm} and {Xm,Xj}.

K-Consistency

A CSP is k-consistent iff for any set of k − 1 variables and for any consistent assignment to
those variables, a consistent value can always be assigned to any other k-th variable

1-consistency is node consistency
2-consistency is arc consistency
3-consistency is path consistency

Algorithm for 3-consistency available: PC-2
generalization of AC-3

Time and space complexity grow exponentially with k

30 / 63

Arc vs. Path Consistency

Can we say anything about X1?
We can drop red & blue from D1

=⇒ Infers the assignment C1=green
Can arc-consistency propagation reveal it?
NO!
Can path-consistency propagation reveal it?
YES!

31 / 63

Arc vs. Path Consistency

Can we say anything about X1?
We can drop red & blue from D1

=⇒ Infers the assignment C1=green
Can arc-consistency propagation reveal it?
NO!
Can path-consistency propagation reveal it?
YES!

31 / 63

Arc vs. Path Consistency

Can we say anything about X1?
We can drop red & blue from D1

=⇒ Infers the assignment C1=green
Can arc-consistency propagation reveal it?
NO!
Can path-consistency propagation reveal it?
YES!

31 / 63

Arc vs. Path Consistency

Can we say anything about X1?
We can drop red & blue from D1

=⇒ Infers the assignment C1=green
Can arc-consistency propagation reveal it?
NO!
Can path-consistency propagation reveal it?
YES!

31 / 63

Arc vs. Path Consistency

Can we say anything about X1?
We can drop red & blue from D1

=⇒ Infers the assignment C1=green
Can arc-consistency propagation reveal it?
NO!
Can path-consistency propagation reveal it?
YES!

31 / 63

Arc vs. Path Consistency

Can we say anything about X1?
We can drop red & blue from D1

=⇒ Infers the assignment C1=green
Can arc-consistency propagation reveal it?
NO!
Can path-consistency propagation reveal it?
YES!

31 / 63

Arc vs. Path Consistency [cont.]

Can we say anything?
The triplet is inconsistent
Can arc-consistency propagation reveal it?
NO!
Can path-consistency propagation reveal it?
YES!

32 / 63

Arc vs. Path Consistency [cont.]

Can we say anything?
The triplet is inconsistent
Can arc-consistency propagation reveal it?
NO!
Can path-consistency propagation reveal it?
YES!

32 / 63

Arc vs. Path Consistency [cont.]

Can we say anything?
The triplet is inconsistent
Can arc-consistency propagation reveal it?
NO!
Can path-consistency propagation reveal it?
YES!

32 / 63

Arc vs. Path Consistency [cont.]

Can we say anything?
The triplet is inconsistent
Can arc-consistency propagation reveal it?
NO!
Can path-consistency propagation reveal it?
YES!

32 / 63

Arc vs. Path Consistency [cont.]

Can we say anything?
The triplet is inconsistent
Can arc-consistency propagation reveal it?
NO!
Can path-consistency propagation reveal it?
YES!

32 / 63

Arc vs. Path Consistency [cont.]

Can we say anything?
The triplet is inconsistent
Can arc-consistency propagation reveal it?
NO!
Can path-consistency propagation reveal it?
YES!

32 / 63

Outline

1 Constraint Satisfaction Problems (CSPs)

2 Search with CSPs
Inference: Constraint Propagation
Backtracking Search

3 Local Search with CSPs

4 Exploiting Structure of CSPs

33 / 63

Backtracking Search: Generalities

Backtracking Search

Basic uninformed algorithm for solving CSPs
Idea 1: Pick one variable at a time

variable assignments are commutative =⇒ fix an ordering
ex: {WA = red ,NT = green} same as {NT = green,WA = red}

=⇒ can consider assignments to a single variable at each step
reasons on partial assignments

Idea 2: Check constraints as long as you proceed
pick only values which do not conflict with previous assignments
requires some computation to check the constraints

=⇒ “incremental goal test”
can detect if a partial assignments violate a goal
=⇒ early detection of inconsistencies

Backtracking search: DFS with the two above improvements

34 / 63

Backtracking Search: Generalities

Backtracking Search

Basic uninformed algorithm for solving CSPs
Idea 1: Pick one variable at a time

variable assignments are commutative =⇒ fix an ordering
ex: {WA = red ,NT = green} same as {NT = green,WA = red}

=⇒ can consider assignments to a single variable at each step
reasons on partial assignments

Idea 2: Check constraints as long as you proceed
pick only values which do not conflict with previous assignments
requires some computation to check the constraints

=⇒ “incremental goal test”
can detect if a partial assignments violate a goal
=⇒ early detection of inconsistencies

Backtracking search: DFS with the two above improvements

34 / 63

Backtracking Search: Generalities

Backtracking Search

Basic uninformed algorithm for solving CSPs
Idea 1: Pick one variable at a time

variable assignments are commutative =⇒ fix an ordering
ex: {WA = red ,NT = green} same as {NT = green,WA = red}

=⇒ can consider assignments to a single variable at each step
reasons on partial assignments

Idea 2: Check constraints as long as you proceed
pick only values which do not conflict with previous assignments
requires some computation to check the constraints

=⇒ “incremental goal test”
can detect if a partial assignments violate a goal
=⇒ early detection of inconsistencies

Backtracking search: DFS with the two above improvements

34 / 63

Backtracking Search: Generalities

Backtracking Search

Basic uninformed algorithm for solving CSPs
Idea 1: Pick one variable at a time

variable assignments are commutative =⇒ fix an ordering
ex: {WA = red ,NT = green} same as {NT = green,WA = red}

=⇒ can consider assignments to a single variable at each step
reasons on partial assignments

Idea 2: Check constraints as long as you proceed
pick only values which do not conflict with previous assignments
requires some computation to check the constraints

=⇒ “incremental goal test”
can detect if a partial assignments violate a goal
=⇒ early detection of inconsistencies

Backtracking search: DFS with the two above improvements

34 / 63

Backtracking Search: Generalities

Backtracking Search

Basic uninformed algorithm for solving CSPs
Idea 1: Pick one variable at a time

variable assignments are commutative =⇒ fix an ordering
ex: {WA = red ,NT = green} same as {NT = green,WA = red}

=⇒ can consider assignments to a single variable at each step
reasons on partial assignments

Idea 2: Check constraints as long as you proceed
pick only values which do not conflict with previous assignments
requires some computation to check the constraints

=⇒ “incremental goal test”
can detect if a partial assignments violate a goal
=⇒ early detection of inconsistencies

Backtracking search: DFS with the two above improvements

34 / 63

Backtracking Search: Example

(Part of) Search Tree for Map-Coloring

(© S. Russell & P. Norwig, AIMA)

35 / 63

Backtracking Search Algorithm

(© S. Russell & P. Norwig, AIMA)

36 / 63

Backtracking Search Algorithm [cont.]

General-purpose algorithm for generic CSPs
The representation of CSPs is standardized
=⇒ no need to provide a domain-specific initial state, action function, transition model, or goal test

BACKTRACKING-SEARCH() keeps a single representation of a state
alters such representation rather than creating new ones

We can add some sophistication to the unspecified functions:
SELECT-UNASSIGNED-VARIABLE(): which variable should be assigned next?
ORDER-DOMAIN-VALUES(): in what order should its values be tried?
INFERENCE(): what inferences should be performed at each step?

We can also wonder: when an assignment violates a constraint
where should we backtrack s.t. to avoid usuless search?
how can we avoid repeating the same failure in the future?

37 / 63

Backtracking Search Algorithm [cont.]

General-purpose algorithm for generic CSPs
The representation of CSPs is standardized
=⇒ no need to provide a domain-specific initial state, action function, transition model, or goal test

BACKTRACKING-SEARCH() keeps a single representation of a state
alters such representation rather than creating new ones

We can add some sophistication to the unspecified functions:
SELECT-UNASSIGNED-VARIABLE(): which variable should be assigned next?
ORDER-DOMAIN-VALUES(): in what order should its values be tried?
INFERENCE(): what inferences should be performed at each step?

We can also wonder: when an assignment violates a constraint
where should we backtrack s.t. to avoid usuless search?
how can we avoid repeating the same failure in the future?

37 / 63

Backtracking Search Algorithm [cont.]

General-purpose algorithm for generic CSPs
The representation of CSPs is standardized
=⇒ no need to provide a domain-specific initial state, action function, transition model, or goal test

BACKTRACKING-SEARCH() keeps a single representation of a state
alters such representation rather than creating new ones

We can add some sophistication to the unspecified functions:
SELECT-UNASSIGNED-VARIABLE(): which variable should be assigned next?
ORDER-DOMAIN-VALUES(): in what order should its values be tried?
INFERENCE(): what inferences should be performed at each step?

We can also wonder: when an assignment violates a constraint
where should we backtrack s.t. to avoid usuless search?
how can we avoid repeating the same failure in the future?

37 / 63

Backtracking Search Algorithm [cont.]

General-purpose algorithm for generic CSPs
The representation of CSPs is standardized
=⇒ no need to provide a domain-specific initial state, action function, transition model, or goal test

BACKTRACKING-SEARCH() keeps a single representation of a state
alters such representation rather than creating new ones

We can add some sophistication to the unspecified functions:
SELECT-UNASSIGNED-VARIABLE(): which variable should be assigned next?
ORDER-DOMAIN-VALUES(): in what order should its values be tried?
INFERENCE(): what inferences should be performed at each step?

We can also wonder: when an assignment violates a constraint
where should we backtrack s.t. to avoid usuless search?
how can we avoid repeating the same failure in the future?

37 / 63

Backtracking Search Algorithm [cont.]

General-purpose algorithm for generic CSPs
The representation of CSPs is standardized
=⇒ no need to provide a domain-specific initial state, action function, transition model, or goal test

BACKTRACKING-SEARCH() keeps a single representation of a state
alters such representation rather than creating new ones

We can add some sophistication to the unspecified functions:
SELECT-UNASSIGNED-VARIABLE(): which variable should be assigned next?
ORDER-DOMAIN-VALUES(): in what order should its values be tried?
INFERENCE(): what inferences should be performed at each step?

We can also wonder: when an assignment violates a constraint
where should we backtrack s.t. to avoid usuless search?
how can we avoid repeating the same failure in the future?

37 / 63

Backtracking Search Algorithm [cont.]

General-purpose algorithm for generic CSPs
The representation of CSPs is standardized
=⇒ no need to provide a domain-specific initial state, action function, transition model, or goal test

BACKTRACKING-SEARCH() keeps a single representation of a state
alters such representation rather than creating new ones

We can add some sophistication to the unspecified functions:
SELECT-UNASSIGNED-VARIABLE(): which variable should be assigned next?
ORDER-DOMAIN-VALUES(): in what order should its values be tried?
INFERENCE(): what inferences should be performed at each step?

We can also wonder: when an assignment violates a constraint
where should we backtrack s.t. to avoid usuless search?
how can we avoid repeating the same failure in the future?

37 / 63

Backtracking Search Algorithm [cont.]

General-purpose algorithm for generic CSPs
The representation of CSPs is standardized
=⇒ no need to provide a domain-specific initial state, action function, transition model, or goal test

BACKTRACKING-SEARCH() keeps a single representation of a state
alters such representation rather than creating new ones

We can add some sophistication to the unspecified functions:
SELECT-UNASSIGNED-VARIABLE(): which variable should be assigned next?
ORDER-DOMAIN-VALUES(): in what order should its values be tried?
INFERENCE(): what inferences should be performed at each step?

We can also wonder: when an assignment violates a constraint
where should we backtrack s.t. to avoid usuless search?
how can we avoid repeating the same failure in the future?

37 / 63

Backtracking Search Algorithm [cont.]

General-purpose algorithm for generic CSPs
The representation of CSPs is standardized
=⇒ no need to provide a domain-specific initial state, action function, transition model, or goal test

BACKTRACKING-SEARCH() keeps a single representation of a state
alters such representation rather than creating new ones

We can add some sophistication to the unspecified functions:
SELECT-UNASSIGNED-VARIABLE(): which variable should be assigned next?
ORDER-DOMAIN-VALUES(): in what order should its values be tried?
INFERENCE(): what inferences should be performed at each step?

We can also wonder: when an assignment violates a constraint
where should we backtrack s.t. to avoid usuless search?
how can we avoid repeating the same failure in the future?

37 / 63

Backtracking Search Algorithm [cont.]

General-purpose algorithm for generic CSPs
The representation of CSPs is standardized
=⇒ no need to provide a domain-specific initial state, action function, transition model, or goal test

BACKTRACKING-SEARCH() keeps a single representation of a state
alters such representation rather than creating new ones

We can add some sophistication to the unspecified functions:
SELECT-UNASSIGNED-VARIABLE(): which variable should be assigned next?
ORDER-DOMAIN-VALUES(): in what order should its values be tried?
INFERENCE(): what inferences should be performed at each step?

We can also wonder: when an assignment violates a constraint
where should we backtrack s.t. to avoid usuless search?
how can we avoid repeating the same failure in the future?

37 / 63

Variable Selection Heuristics

Minimum Remaining Values (MRV) heuristic

Aka most constrained variable or fail-first heuristic
MRV: Choose the variable with the fewest legal values
=⇒ pick a variable that is most likely to cause a failure soon

If X has no legal values left, MRV heuristic selects X
=⇒ failure detected immediately

avoid pointless search through other variables

(Otherwise) If X has one legal value left, MRV selects X
=⇒ performs deterministic choices first!

postpones nondeterministic steps as much as possible

Pick (WA = red), (NT = green) =⇒ (SA = blue) (deterministic)
Next? (Q = red)

(© S. Russell & P. Norwig, AIMA)

38 / 63

Variable Selection Heuristics

Minimum Remaining Values (MRV) heuristic

Aka most constrained variable or fail-first heuristic
MRV: Choose the variable with the fewest legal values
=⇒ pick a variable that is most likely to cause a failure soon

If X has no legal values left, MRV heuristic selects X
=⇒ failure detected immediately

avoid pointless search through other variables

(Otherwise) If X has one legal value left, MRV selects X
=⇒ performs deterministic choices first!

postpones nondeterministic steps as much as possible

Pick (WA = red), (NT = green) =⇒ (SA = blue) (deterministic)
Next? (Q = red)

(© S. Russell & P. Norwig, AIMA)

38 / 63

Variable Selection Heuristics

Minimum Remaining Values (MRV) heuristic

Aka most constrained variable or fail-first heuristic
MRV: Choose the variable with the fewest legal values
=⇒ pick a variable that is most likely to cause a failure soon

If X has no legal values left, MRV heuristic selects X
=⇒ failure detected immediately

avoid pointless search through other variables

(Otherwise) If X has one legal value left, MRV selects X
=⇒ performs deterministic choices first!

postpones nondeterministic steps as much as possible

Pick (WA = red), (NT = green) =⇒ (SA = blue) (deterministic)
Next? (Q = red)

(© S. Russell & P. Norwig, AIMA)

38 / 63

Variable Selection Heuristics

Minimum Remaining Values (MRV) heuristic

Aka most constrained variable or fail-first heuristic
MRV: Choose the variable with the fewest legal values
=⇒ pick a variable that is most likely to cause a failure soon

If X has no legal values left, MRV heuristic selects X
=⇒ failure detected immediately

avoid pointless search through other variables

(Otherwise) If X has one legal value left, MRV selects X
=⇒ performs deterministic choices first!

postpones nondeterministic steps as much as possible

Pick (WA = red), (NT = green) =⇒ (SA = blue) (deterministic)
Next? (Q = red)

(© S. Russell & P. Norwig, AIMA)

38 / 63

Variable Selection Heuristics

Minimum Remaining Values (MRV) heuristic

Aka most constrained variable or fail-first heuristic
MRV: Choose the variable with the fewest legal values
=⇒ pick a variable that is most likely to cause a failure soon

If X has no legal values left, MRV heuristic selects X
=⇒ failure detected immediately

avoid pointless search through other variables

(Otherwise) If X has one legal value left, MRV selects X
=⇒ performs deterministic choices first!

postpones nondeterministic steps as much as possible

Pick (WA = red), (NT = green) =⇒ (SA = blue) (deterministic)
Next? (Q = red)

(© S. Russell & P. Norwig, AIMA)
38 / 63

Variable Selection Heuristics

Minimum Remaining Values (MRV) heuristic

Aka most constrained variable or fail-first heuristic
MRV: Choose the variable with the fewest legal values
=⇒ pick a variable that is most likely to cause a failure soon

If X has no legal values left, MRV heuristic selects X
=⇒ failure detected immediately

avoid pointless search through other variables

(Otherwise) If X has one legal value left, MRV selects X
=⇒ performs deterministic choices first!

postpones nondeterministic steps as much as possible

Pick (WA = red), (NT = green) =⇒ (SA = blue) (deterministic)
Next? (Q = red)

(© S. Russell & P. Norwig, AIMA)
38 / 63

Variable Selection Heuristics

Minimum Remaining Values (MRV) heuristic

Aka most constrained variable or fail-first heuristic
MRV: Choose the variable with the fewest legal values
=⇒ pick a variable that is most likely to cause a failure soon

If X has no legal values left, MRV heuristic selects X
=⇒ failure detected immediately

avoid pointless search through other variables

(Otherwise) If X has one legal value left, MRV selects X
=⇒ performs deterministic choices first!

postpones nondeterministic steps as much as possible

Pick (WA = red), (NT = green) =⇒ (SA = blue) (deterministic)
Next? (Q = red)

(© S. Russell & P. Norwig, AIMA)
38 / 63

Variable Selection Heuristics [cont.]

Degree heuristic

Used as tie-breaker in combination with MRV
apply MRV; if ties, apply DH to these variables

Pick the variable with most constraints on remaining variables
=⇒ attempts to reduce the branching factor on future choices

Example: MRV+DH

Pick (SA = blue), (NT = green)=⇒ (Q = red) (deterministic)
Next? (NSW=green)... (deterministic MRV+DH),

(© S. Russell & P. Norwig, AIMA)

39 / 63

Variable Selection Heuristics [cont.]

Degree heuristic

Used as tie-breaker in combination with MRV
apply MRV; if ties, apply DH to these variables

Pick the variable with most constraints on remaining variables
=⇒ attempts to reduce the branching factor on future choices

Example: MRV+DH

Pick (SA = blue), (NT = green)=⇒ (Q = red) (deterministic)
Next? (NSW=green)... (deterministic MRV+DH),

(© S. Russell & P. Norwig, AIMA)

39 / 63

Variable Selection Heuristics [cont.]

Degree heuristic

Used as tie-breaker in combination with MRV
apply MRV; if ties, apply DH to these variables

Pick the variable with most constraints on remaining variables
=⇒ attempts to reduce the branching factor on future choices

Example: MRV+DH

Pick (SA = blue), (NT = green)=⇒ (Q = red) (deterministic)
Next? (NSW=green)... (deterministic MRV+DH),

(© S. Russell & P. Norwig, AIMA)

39 / 63

Variable Selection Heuristics [cont.]

Degree heuristic

Used as tie-breaker in combination with MRV
apply MRV; if ties, apply DH to these variables

Pick the variable with most constraints on remaining variables
=⇒ attempts to reduce the branching factor on future choices

Example: MRV+DH

Pick (SA = blue), (NT = green)=⇒ (Q = red) (deterministic)
Next? (NSW=green)... (deterministic MRV+DH),

(© S. Russell & P. Norwig, AIMA)
39 / 63

Variable Selection Heuristics [cont.]

Degree heuristic

Used as tie-breaker in combination with MRV
apply MRV; if ties, apply DH to these variables

Pick the variable with most constraints on remaining variables
=⇒ attempts to reduce the branching factor on future choices

Example: MRV+DH

Pick (SA = blue), (NT = green)=⇒ (Q = red) (deterministic)
Next? (NSW=green)... (deterministic MRV+DH),

(© S. Russell & P. Norwig, AIMA)
39 / 63

Variable Selection Heuristics [cont.]

Degree heuristic

Used as tie-breaker in combination with MRV
apply MRV; if ties, apply DH to these variables

Pick the variable with most constraints on remaining variables
=⇒ attempts to reduce the branching factor on future choices

Example: MRV+DH

Pick (SA = blue), (NT = green)=⇒ (Q = red) (deterministic)
Next? (NSW=green)... (deterministic MRV+DH),

(© S. Russell & P. Norwig, AIMA)
39 / 63

Value Selection Heuristics
Least Constraining Value (LCS) heuristic

Pick the value that rules out the fewest choices for the neighboring variables
=⇒ tries maximum flexibility for subsequent variable assignments

Look for the most likely values first
=⇒ improve chances of finding solutions earlier

Ex: MRV+DH+LCS allow for solving 1000-queens

LCS

Pick (SA = red), (NT = green) =⇒ (Q = red) (preferred)
Next? (SA=blue)

(© S. Russell & P. Norwig, AIMA)

40 / 63

Value Selection Heuristics
Least Constraining Value (LCS) heuristic

Pick the value that rules out the fewest choices for the neighboring variables
=⇒ tries maximum flexibility for subsequent variable assignments

Look for the most likely values first
=⇒ improve chances of finding solutions earlier

Ex: MRV+DH+LCS allow for solving 1000-queens

LCS

Pick (SA = red), (NT = green) =⇒ (Q = red) (preferred)
Next? (SA=blue)

(© S. Russell & P. Norwig, AIMA)

40 / 63

Value Selection Heuristics
Least Constraining Value (LCS) heuristic

Pick the value that rules out the fewest choices for the neighboring variables
=⇒ tries maximum flexibility for subsequent variable assignments

Look for the most likely values first
=⇒ improve chances of finding solutions earlier

Ex: MRV+DH+LCS allow for solving 1000-queens

LCS

Pick (SA = red), (NT = green) =⇒ (Q = red) (preferred)
Next? (SA=blue)

(© S. Russell & P. Norwig, AIMA)

40 / 63

Value Selection Heuristics
Least Constraining Value (LCS) heuristic

Pick the value that rules out the fewest choices for the neighboring variables
=⇒ tries maximum flexibility for subsequent variable assignments

Look for the most likely values first
=⇒ improve chances of finding solutions earlier

Ex: MRV+DH+LCS allow for solving 1000-queens

LCS

Pick (SA = red), (NT = green) =⇒ (Q = red) (preferred)
Next? (SA=blue)

(© S. Russell & P. Norwig, AIMA)
40 / 63

Value Selection Heuristics
Least Constraining Value (LCS) heuristic

Pick the value that rules out the fewest choices for the neighboring variables
=⇒ tries maximum flexibility for subsequent variable assignments

Look for the most likely values first
=⇒ improve chances of finding solutions earlier

Ex: MRV+DH+LCS allow for solving 1000-queens

LCS

Pick (SA = red), (NT = green) =⇒ (Q = red) (preferred)
Next? (SA=blue)

(© S. Russell & P. Norwig, AIMA)
40 / 63

Value Selection Heuristics
Least Constraining Value (LCS) heuristic

Pick the value that rules out the fewest choices for the neighboring variables
=⇒ tries maximum flexibility for subsequent variable assignments

Look for the most likely values first
=⇒ improve chances of finding solutions earlier

Ex: MRV+DH+LCS allow for solving 1000-queens

LCS

Pick (SA = red), (NT = green) =⇒ (Q = red) (preferred)
Next? (SA=blue)

(© S. Russell & P. Norwig, AIMA)
40 / 63

Inference

Interleaving search and inference

After a choice, infer new domain reductions on other variables
detect inconsistencies earlier
reduce search spaces
may produce unary domains (deterministic steps)
=⇒ returned as assignments (“inferences”)

Tradeoff between effectiveness and efficiency
Forward checking

cheap
ensures arc consistency of 〈assigned , unassigned〉 variable pairs only

AC-3
more expensive
ensure arc consistency of all variable pairs
strategy (MAC):

after Xi is assigned, start AC-3 with only the arcs 〈Xj ,Xi 〉 s.t. Xj unassigned neighbour variables of Xi
=⇒ much more effective than forward checking, more expensive

41 / 63

Inference

Interleaving search and inference

After a choice, infer new domain reductions on other variables
detect inconsistencies earlier
reduce search spaces
may produce unary domains (deterministic steps)
=⇒ returned as assignments (“inferences”)

Tradeoff between effectiveness and efficiency
Forward checking

cheap
ensures arc consistency of 〈assigned , unassigned〉 variable pairs only

AC-3
more expensive
ensure arc consistency of all variable pairs
strategy (MAC):

after Xi is assigned, start AC-3 with only the arcs 〈Xj ,Xi 〉 s.t. Xj unassigned neighbour variables of Xi
=⇒ much more effective than forward checking, more expensive

41 / 63

Inference

Interleaving search and inference

After a choice, infer new domain reductions on other variables
detect inconsistencies earlier
reduce search spaces
may produce unary domains (deterministic steps)
=⇒ returned as assignments (“inferences”)

Tradeoff between effectiveness and efficiency
Forward checking

cheap
ensures arc consistency of 〈assigned , unassigned〉 variable pairs only

AC-3
more expensive
ensure arc consistency of all variable pairs
strategy (MAC):

after Xi is assigned, start AC-3 with only the arcs 〈Xj ,Xi 〉 s.t. Xj unassigned neighbour variables of Xi
=⇒ much more effective than forward checking, more expensive

41 / 63

Inference

Interleaving search and inference

After a choice, infer new domain reductions on other variables
detect inconsistencies earlier
reduce search spaces
may produce unary domains (deterministic steps)
=⇒ returned as assignments (“inferences”)

Tradeoff between effectiveness and efficiency
Forward checking

cheap
ensures arc consistency of 〈assigned , unassigned〉 variable pairs only

AC-3
more expensive
ensure arc consistency of all variable pairs
strategy (MAC):

after Xi is assigned, start AC-3 with only the arcs 〈Xj ,Xi 〉 s.t. Xj unassigned neighbour variables of Xi
=⇒ much more effective than forward checking, more expensive

41 / 63

Inference

Interleaving search and inference

After a choice, infer new domain reductions on other variables
detect inconsistencies earlier
reduce search spaces
may produce unary domains (deterministic steps)
=⇒ returned as assignments (“inferences”)

Tradeoff between effectiveness and efficiency
Forward checking

cheap
ensures arc consistency of 〈assigned , unassigned〉 variable pairs only

AC-3
more expensive
ensure arc consistency of all variable pairs
strategy (MAC):

after Xi is assigned, start AC-3 with only the arcs 〈Xj ,Xi 〉 s.t. Xj unassigned neighbour variables of Xi
=⇒ much more effective than forward checking, more expensive

41 / 63

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md & Tom Lenaerts, IRIDIA)

...(after trying X2 = 4,X3 = 2, failing and backtracking) assign X1 = 2 ...

42 / 63

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md & Tom Lenaerts, IRIDIA)

...(after trying X2 = 4,X3 = 2, failing and backtracking) assign X1 = 2 ...

42 / 63

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md & Tom Lenaerts, IRIDIA)

...(after trying X2 = 4,X3 = 2, failing and backtracking) assign X1 = 2 ...

42 / 63

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md & Tom Lenaerts, IRIDIA)

...(after trying X2 = 4,X3 = 2, failing and backtracking) assign X1 = 2 ...

42 / 63

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md & Tom Lenaerts, IRIDIA)

...(after trying X2 = 4,X3 = 2, failing and backtracking) assign X1 = 2 ...

42 / 63

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md & Tom Lenaerts, IRIDIA)

...(after trying X2 = 4,X3 = 2, failing and backtracking) assign X1 = 2 ...

42 / 63

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md & Tom Lenaerts, IRIDIA)

...(after trying X2 = 4,X3 = 2, failing and backtracking) assign X1 = 2 ...

42 / 63

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md & Tom Lenaerts, IRIDIA)

...(after trying X2 = 4,X3 = 2, failing and backtracking) assign X1 = 2 ...

42 / 63

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md & Tom Lenaerts, IRIDIA)

...(after trying X2 = 4,X3 = 2, failing and backtracking) assign X1 = 2 ...

42 / 63

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md & Tom Lenaerts, IRIDIA)

...(after trying X2 = 4,X3 = 2, failing and backtracking) assign X1 = 2 ...

42 / 63

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md & Tom Lenaerts, IRIDIA)

...(after trying X2 = 4,X3 = 2, failing and backtracking) assign X1 = 2 ...

42 / 63

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md & Tom Lenaerts, IRIDIA)

...(after trying X2 = 4,X3 = 2, failing and backtracking) assign X1 = 2 ...

42 / 63

Standard Chronological Backtracking

When a branch fails (empty domain for variable Xi):
1 back up to the preceding variable (who still has an untried value)

forward-propagated assignments and rightmost choices are skipped
2 try a different value for it

Problem: lots of search wasted!

(© S. Russell & P. Norwig, AIMA)
43 / 63

Standard Chronological Backtracking

When a branch fails (empty domain for variable Xi):
1 back up to the preceding variable (who still has an untried value)

forward-propagated assignments and rightmost choices are skipped
2 try a different value for it

Problem: lots of search wasted!

(© S. Russell & P. Norwig, AIMA)
43 / 63

Standard Chronological Backtracking: Example
Assume variable selection order: WA,NSW,T,NT,Q,V,SA

failed branch:

step assignment [domain]
(1) pick WA = r [rbg]
(2) pick NSW = r [rbg]
(3) pick T = r [rbg]
(4) pick NT = g [bg]
(5) fc

=⇒ Q = b [b]
(6) pick V = b [b, g]
(7) fc

=⇒ SA = {} []

backtrack to (5), pick V = g =⇒ (7) again

backtrack to (3), pick NT = b fc
=⇒ Q = g =⇒ same subtree (6)...

backtrack to (2), pick T = b =⇒ same subtree (4)...
backtrack to (2), pick T = g =⇒ same subtree (4)...

=⇒ backtrack to (1), then assign NSW another value
=⇒ lots of useless search on T and V values

source of inconsistency not identified: {WA = r ,NSW = r}
44 / 63

Standard Chronological Backtracking: Example
Assume variable selection order: WA,NSW,T,NT,Q,V,SA

failed branch:

step assignment [domain]
(1) pick WA = r [rbg]
(2) pick NSW = r [rbg]
(3) pick T = r [rbg]
(4) pick NT = g [bg]
(5) fc

=⇒ Q = b [b]
(6) pick V = b [b, g]
(7) fc

=⇒ SA = {} []

backtrack to (5), pick V = g =⇒ (7) again

backtrack to (3), pick NT = b fc
=⇒ Q = g =⇒ same subtree (6)...

backtrack to (2), pick T = b =⇒ same subtree (4)...
backtrack to (2), pick T = g =⇒ same subtree (4)...

=⇒ backtrack to (1), then assign NSW another value
=⇒ lots of useless search on T and V values

source of inconsistency not identified: {WA = r ,NSW = r}
44 / 63

Standard Chronological Backtracking: Example
Assume variable selection order: WA,NSW,T,NT,Q,V,SA

failed branch:

step assignment [domain]
(1) pick WA = r [rbg]
(2) pick NSW = r [rbg]
(3) pick T = r [rbg]
(4) pick NT = g [bg]
(5) fc

=⇒ Q = b [b]
(6) pick V = b [b, g]
(7) fc

=⇒ SA = {} []

backtrack to (5), pick V = g =⇒ (7) again

backtrack to (3), pick NT = b fc
=⇒ Q = g =⇒ same subtree (6)...

backtrack to (2), pick T = b =⇒ same subtree (4)...
backtrack to (2), pick T = g =⇒ same subtree (4)...

=⇒ backtrack to (1), then assign NSW another value
=⇒ lots of useless search on T and V values

source of inconsistency not identified: {WA = r ,NSW = r}
44 / 63

Standard Chronological Backtracking: Example
Assume variable selection order: WA,NSW,T,NT,Q,V,SA

failed branch:

step assignment [domain]
(1) pick WA = r [rbg]
(2) pick NSW = r [rbg]
(3) pick T = r [rbg]
(4) pick NT = g [bg]
(5) fc

=⇒ Q = b [b]
(6) pick V = b [b, g]
(7) fc

=⇒ SA = {} []

backtrack to (5), pick V = g =⇒ (7) again

backtrack to (3), pick NT = b fc
=⇒ Q = g =⇒ same subtree (6)...

backtrack to (2), pick T = b =⇒ same subtree (4)...
backtrack to (2), pick T = g =⇒ same subtree (4)...

=⇒ backtrack to (1), then assign NSW another value
=⇒ lots of useless search on T and V values

source of inconsistency not identified: {WA = r ,NSW = r}
44 / 63

Standard Chronological Backtracking: Example
Assume variable selection order: WA,NSW,T,NT,Q,V,SA

failed branch:

step assignment [domain]
(1) pick WA = r [rbg]
(2) pick NSW = r [rbg]
(3) pick T = r [rbg]
(4) pick NT = g [bg]
(5) fc

=⇒ Q = b [b]
(6) pick V = b [b, g]
(7) fc

=⇒ SA = {} []

backtrack to (5), pick V = g =⇒ (7) again

backtrack to (3), pick NT = b fc
=⇒ Q = g =⇒ same subtree (6)...

backtrack to (2), pick T = b =⇒ same subtree (4)...
backtrack to (2), pick T = g =⇒ same subtree (4)...

=⇒ backtrack to (1), then assign NSW another value
=⇒ lots of useless search on T and V values

source of inconsistency not identified: {WA = r ,NSW = r}
44 / 63

Standard Chronological Backtracking: Example
Assume variable selection order: WA,NSW,T,NT,Q,V,SA

failed branch:

step assignment [domain]
(1) pick WA = r [rbg]
(2) pick NSW = r [rbg]
(3) pick T = r [rbg]
(4) pick NT = g [bg]
(5) fc

=⇒ Q = b [b]
(6) pick V = b [b, g]
(7) fc

=⇒ SA = {} []

backtrack to (5), pick V = g =⇒ (7) again

backtrack to (3), pick NT = b fc
=⇒ Q = g =⇒ same subtree (6)...

backtrack to (2), pick T = b =⇒ same subtree (4)...
backtrack to (2), pick T = g =⇒ same subtree (4)...

=⇒ backtrack to (1), then assign NSW another value
=⇒ lots of useless search on T and V values

source of inconsistency not identified: {WA = r ,NSW = r}
44 / 63

Standard Chronological Backtracking: Example
Assume variable selection order: WA,NSW,T,NT,Q,V,SA

failed branch:

step assignment [domain]
(1) pick WA = r [rbg]
(2) pick NSW = r [rbg]
(3) pick T = r [rbg]
(4) pick NT = g [bg]
(5) fc

=⇒ Q = b [b]
(6) pick V = b [b, g]
(7) fc

=⇒ SA = {} []

backtrack to (5), pick V = g =⇒ (7) again

backtrack to (3), pick NT = b fc
=⇒ Q = g =⇒ same subtree (6)...

backtrack to (2), pick T = b =⇒ same subtree (4)...
backtrack to (2), pick T = g =⇒ same subtree (4)...

=⇒ backtrack to (1), then assign NSW another value
=⇒ lots of useless search on T and V values

source of inconsistency not identified: {WA = r ,NSW = r}
44 / 63

Standard Chronological Backtracking: Example
Assume variable selection order: WA,NSW,T,NT,Q,V,SA

failed branch:

step assignment [domain]
(1) pick WA = r [rbg]
(2) pick NSW = r [rbg]
(3) pick T = r [rbg]
(4) pick NT = g [bg]
(5) fc

=⇒ Q = b [b]
(6) pick V = b [b, g]
(7) fc

=⇒ SA = {} []

backtrack to (5), pick V = g =⇒ (7) again

backtrack to (3), pick NT = b fc
=⇒ Q = g =⇒ same subtree (6)...

backtrack to (2), pick T = b =⇒ same subtree (4)...
backtrack to (2), pick T = g =⇒ same subtree (4)...

=⇒ backtrack to (1), then assign NSW another value
=⇒ lots of useless search on T and V values

source of inconsistency not identified: {WA = r ,NSW = r}
44 / 63

Standard Chronological Backtracking: Example [cont.]
Search Tree

SA?SA?

Tree1

Like Tree1

switched

with NT and Q

values

Tree2

(7)

(6)

(5)

(4)

(3)

(2)

(1)

Like Tree2 Like Tree2

with T=bluewith T=green

. . . .

V

SAWA

NT

NSW

Q

T

V

SAWA

NT

NSW

Q

T

V

SAWA

NT

NSW

Q

T V

SAWA

NT

NSW

Q

T

V

SAWA

NT

NSW

Q

T

V

SAWA

NT

NSW

Q

T

V

SAWA

NT

NSW

Q

T V

SAWA

NT

NSW

Q

T

V

SAWA

NT

NSW

Q

T

V

SAWA

NT

NSW

Q

T

45 / 63

Nogoods & Conflict Sets

Nogood: subassignment which cannot be part of any solution
ex: {WA = r ,NSW = r} (see previous example)

Conflict set for Xj (aka explanations):
(minimal) set of value assignments which caused the reduction of Dj via forward checking
(i.e., in direct conflict with some values of Xj)

ex: NSW=r,NT=g in conflict with r and g values for Q resp.
=⇒ domain of Q reduced to {b} via f.c.
a conflict set of an empty-domain variable is a nogood

46 / 63

Nogoods & Conflict Sets

Nogood: subassignment which cannot be part of any solution
ex: {WA = r ,NSW = r} (see previous example)

Conflict set for Xj (aka explanations):
(minimal) set of value assignments which caused the reduction of Dj via forward checking
(i.e., in direct conflict with some values of Xj)

ex: NSW=r,NT=g in conflict with r and g values for Q resp.
=⇒ domain of Q reduced to {b} via f.c.
a conflict set of an empty-domain variable is a nogood

46 / 63

Conflict-Driven Backjumping

Idea: When a branch fails (empty domain for variable Xi):
1 identify nogood which caused the failure deterministically via forward checking
2 backtrack to the most-recently assigned element in nogood,
3 change its value

=⇒ May jump much higher, lots of search saved
Identify nogood:

1 take the conflict set Ci of empty-domain Xi (initial nogood)
2 progressively backward-substitute inside Ci every deterministic assignments Xj = v with its

respective conflict set Cj :

Ci := Ci ∪ Cj \ {Xj = v}
until none is left

=⇒ Identify the most recent decision which caused the failure due to FC by “undoing” FC steps
Many different strategies & variants available

47 / 63

Conflict-Driven Backjumping

Idea: When a branch fails (empty domain for variable Xi):
1 identify nogood which caused the failure deterministically via forward checking
2 backtrack to the most-recently assigned element in nogood,
3 change its value

=⇒ May jump much higher, lots of search saved
Identify nogood:

1 take the conflict set Ci of empty-domain Xi (initial nogood)
2 progressively backward-substitute inside Ci every deterministic assignments Xj = v with its

respective conflict set Cj :

Ci := Ci ∪ Cj \ {Xj = v}
until none is left

=⇒ Identify the most recent decision which caused the failure due to FC by “undoing” FC steps
Many different strategies & variants available

47 / 63

Conflict-Driven Backjumping

Idea: When a branch fails (empty domain for variable Xi):
1 identify nogood which caused the failure deterministically via forward checking
2 backtrack to the most-recently assigned element in nogood,
3 change its value

=⇒ May jump much higher, lots of search saved
Identify nogood:

1 take the conflict set Ci of empty-domain Xi (initial nogood)
2 progressively backward-substitute inside Ci every deterministic assignments Xj = v with its

respective conflict set Cj :

Ci := Ci ∪ Cj \ {Xj = v}
until none is left

=⇒ Identify the most recent decision which caused the failure due to FC by “undoing” FC steps
Many different strategies & variants available

47 / 63

Conflict-Driven Backjumping

Idea: When a branch fails (empty domain for variable Xi):
1 identify nogood which caused the failure deterministically via forward checking
2 backtrack to the most-recently assigned element in nogood,
3 change its value

=⇒ May jump much higher, lots of search saved
Identify nogood:

1 take the conflict set Ci of empty-domain Xi (initial nogood)
2 progressively backward-substitute inside Ci every deterministic assignments Xj = v with its

respective conflict set Cj :

Ci := Ci ∪ Cj \ {Xj = v}
until none is left

=⇒ Identify the most recent decision which caused the failure due to FC by “undoing” FC steps
Many different strategies & variants available

47 / 63

Conflict-Driven Backjumping

Idea: When a branch fails (empty domain for variable Xi):
1 identify nogood which caused the failure deterministically via forward checking
2 backtrack to the most-recently assigned element in nogood,
3 change its value

=⇒ May jump much higher, lots of search saved
Identify nogood:

1 take the conflict set Ci of empty-domain Xi (initial nogood)
2 progressively backward-substitute inside Ci every deterministic assignments Xj = v with its

respective conflict set Cj :

Ci := Ci ∪ Cj \ {Xj = v}
until none is left

=⇒ Identify the most recent decision which caused the failure due to FC by “undoing” FC steps
Many different strategies & variants available

47 / 63

Conflict-Driven Backjumping

Idea: When a branch fails (empty domain for variable Xi):
1 identify nogood which caused the failure deterministically via forward checking
2 backtrack to the most-recently assigned element in nogood,
3 change its value

=⇒ May jump much higher, lots of search saved
Identify nogood:

1 take the conflict set Ci of empty-domain Xi (initial nogood)
2 progressively backward-substitute inside Ci every deterministic assignments Xj = v with its

respective conflict set Cj :

Ci := Ci ∪ Cj \ {Xj = v}
until none is left

=⇒ Identify the most recent decision which caused the failure due to FC by “undoing” FC steps
Many different strategies & variants available

47 / 63

Conflict-Driven Backjumping: Example

failed branch:
step assign.[domain] ← {conflict set}
(1) pick WA= r [rbg] ← {}
(2) pick NSW = r [rbg] ← {}
(3) pick T = r [rbg] ← {}
(4) pick NT =g [bg] ← {WA= r}
(5) fc

=⇒ Q=b [b] ← {NSW = r ,NT =g}
(6) pick V =b [b, g] ← {NSW = r}
(7) fc

=⇒ SA=∅ [] ← {WA= r ,NT =g,Q=b}
backward-substitute assignments

∅ (7)
{WA= r ,NT =g,Q=b} (5)
{WA= r ,NT =g,NSW = r}

=⇒ backtrack till (3), then assign NT = b
=⇒ saves useless search on V values

48 / 63

Conflict-Driven Backjumping: Example

failed branch:
step assign.[domain] ← {conflict set}
(1) pick WA= r [rbg] ← {}
(2) pick NSW = r [rbg] ← {}
(3) pick T = r [rbg] ← {}
(4) pick NT =g [bg] ← {WA= r}
(5) fc

=⇒ Q=b [b] ← {NSW = r ,NT =g}
(6) pick V =b [b, g] ← {NSW = r}
(7) fc

=⇒ SA=∅ [] ← {WA= r ,NT =g,Q=b}
backward-substitute assignments

∅ (7)
{WA= r ,NT =g,Q=b} (5)
{WA= r ,NT =g,NSW = r}

=⇒ backtrack till (3), then assign NT = b
=⇒ saves useless search on V values

48 / 63

Conflict-Driven Backjumping: Example

failed branch:
step assign.[domain] ← {conflict set}
(1) pick WA= r [rbg] ← {}
(2) pick NSW = r [rbg] ← {}
(3) pick T = r [rbg] ← {}
(4) pick NT =g [bg] ← {WA= r}
(5) fc

=⇒ Q=b [b] ← {NSW = r ,NT =g}
(6) pick V =b [b, g] ← {NSW = r}
(7) fc

=⇒ SA=∅ [] ← {WA= r ,NT =g,Q=b}
backward-substitute assignments

∅ (7)
{WA= r ,NT =g,Q=b} (5)
{WA= r ,NT =g,NSW = r}

=⇒ backtrack till (3), then assign NT = b
=⇒ saves useless search on V values

48 / 63

Conflict-Driven Backjumping: Example

failed branch:
step assign.[domain] ← {conflict set}
(1) pick WA= r [rbg] ← {}
(2) pick NSW = r [rbg] ← {}
(3) pick T = r [rbg] ← {}
(4) pick NT =g [bg] ← {WA= r}
(5) fc

=⇒ Q=b [b] ← {NSW = r ,NT =g}
(6) pick V =b [b, g] ← {NSW = r}
(7) fc

=⇒ SA=∅ [] ← {WA= r ,NT =g,Q=b}
backward-substitute assignments

∅ (7)
{WA= r ,NT =g,Q=b} (5)
{WA= r ,NT =g,NSW = r}

=⇒ backtrack till (3), then assign NT = b
=⇒ saves useless search on V values

48 / 63

Conflict-Driven Backjumping: Example [cont.]

new failed branch:
step assign.[domain] ← {conflict set}
(1) pick WA= r [rbg] ← {}
(2) pick NSW = r [rbg] ← {}
(3) pick T = r [rbg] ← {}
(4) pick NT =b [b] ← {WA= r}
(5) fc

=⇒ Q=g [g] ← {NSW = r ,NT =b}
(6) pick V =b [b, g] ← {NSW = r}
(7) fc

=⇒ SA=∅ [] ← {WA= r ,NT =b,Q=g}
backward-substitute assignments

∅ (7)
{WA= r ,NT =b,Q=g} (5)
{WA= r ,NT =b,NSW = r} (4)

{WA= r ,NSW = r}
=⇒ backtrack till (1), then assign NSW another value
=⇒ saves useless search on T values
=⇒ overall, saves lots of search wrt. chronological backtracking

49 / 63

Conflict-Driven Backjumping: Example [cont.]

new failed branch:
step assign.[domain] ← {conflict set}
(1) pick WA= r [rbg] ← {}
(2) pick NSW = r [rbg] ← {}
(3) pick T = r [rbg] ← {}
(4) pick NT =b [b] ← {WA= r}
(5) fc

=⇒ Q=g [g] ← {NSW = r ,NT =b}
(6) pick V =b [b, g] ← {NSW = r}
(7) fc

=⇒ SA=∅ [] ← {WA= r ,NT =b,Q=g}
backward-substitute assignments

∅ (7)
{WA= r ,NT =b,Q=g} (5)
{WA= r ,NT =b,NSW = r} (4)

{WA= r ,NSW = r}
=⇒ backtrack till (1), then assign NSW another value
=⇒ saves useless search on T values
=⇒ overall, saves lots of search wrt. chronological backtracking

49 / 63

Conflict-Driven Backjumping: Example [cont.]

new failed branch:
step assign.[domain] ← {conflict set}
(1) pick WA= r [rbg] ← {}
(2) pick NSW = r [rbg] ← {}
(3) pick T = r [rbg] ← {}
(4) pick NT =b [b] ← {WA= r}
(5) fc

=⇒ Q=g [g] ← {NSW = r ,NT =b}
(6) pick V =b [b, g] ← {NSW = r}
(7) fc

=⇒ SA=∅ [] ← {WA= r ,NT =b,Q=g}
backward-substitute assignments

∅ (7)
{WA= r ,NT =b,Q=g} (5)
{WA= r ,NT =b,NSW = r} (4)

{WA= r ,NSW = r}
=⇒ backtrack till (1), then assign NSW another value
=⇒ saves useless search on T values
=⇒ overall, saves lots of search wrt. chronological backtracking

49 / 63

Conflict-Driven Backjumping: Example [cont.]

new failed branch:
step assign.[domain] ← {conflict set}
(1) pick WA= r [rbg] ← {}
(2) pick NSW = r [rbg] ← {}
(3) pick T = r [rbg] ← {}
(4) pick NT =b [b] ← {WA= r}
(5) fc

=⇒ Q=g [g] ← {NSW = r ,NT =b}
(6) pick V =b [b, g] ← {NSW = r}
(7) fc

=⇒ SA=∅ [] ← {WA= r ,NT =b,Q=g}
backward-substitute assignments

∅ (7)
{WA= r ,NT =b,Q=g} (5)
{WA= r ,NT =b,NSW = r} (4)

{WA= r ,NSW = r}
=⇒ backtrack till (1), then assign NSW another value
=⇒ saves useless search on T values
=⇒ overall, saves lots of search wrt. chronological backtracking

49 / 63

Conflict-Driven Backjumping: Example [cont.]

new failed branch:
step assign.[domain] ← {conflict set}
(1) pick WA= r [rbg] ← {}
(2) pick NSW = r [rbg] ← {}
(3) pick T = r [rbg] ← {}
(4) pick NT =b [b] ← {WA= r}
(5) fc

=⇒ Q=g [g] ← {NSW = r ,NT =b}
(6) pick V =b [b, g] ← {NSW = r}
(7) fc

=⇒ SA=∅ [] ← {WA= r ,NT =b,Q=g}
backward-substitute assignments

∅ (7)
{WA= r ,NT =b,Q=g} (5)
{WA= r ,NT =b,NSW = r} (4)

{WA= r ,NSW = r}
=⇒ backtrack till (1), then assign NSW another value
=⇒ saves useless search on T values
=⇒ overall, saves lots of search wrt. chronological backtracking

49 / 63

Conflict-Driven Backjumping: Example [cont.]

Search Tree

SA?

Like Tree1

(7)

(6)

(5)

(4)

(3)

(2)

(1)

Tree1

. . . .

with NT=blue
and Q=green

V

SAWA

NT

NSW

Q

T

V

SAWA

NT

NSW

Q

T

V

SAWA

NT

NSW

Q

T

V

SAWA

NT

NSW

Q

T

V

SAWA

NT

NSW

Q

T

V

SAWA

NT

NSW

Q

T

V

SAWA

NT

NSW

Q

T

50 / 63

Learning Nogoods

Nogood can be learned (stored) for future search pruning:
added to constraints (e.g. “(WA 6= r) or (NSW 6= r)”)
added to explicit nogood list

As soon as assignment contains all but one element of a nogood, drop the value of the
remaining element from variable’s domain
Example:

given nogood: {WA= r ,NSW = r}
as soon as {NSW = r} is added to assignment
r is dropped from WA domain

Allows for
early-reveal inconsistencies
cause further constraint propagation

Nogoods can be learned either temporarily or permanently
pruning effectiveness vs. memory consumption & overhead

Many different strategies & variants available

51 / 63

Learning Nogoods

Nogood can be learned (stored) for future search pruning:
added to constraints (e.g. “(WA 6= r) or (NSW 6= r)”)
added to explicit nogood list

As soon as assignment contains all but one element of a nogood, drop the value of the
remaining element from variable’s domain
Example:

given nogood: {WA= r ,NSW = r}
as soon as {NSW = r} is added to assignment
r is dropped from WA domain

Allows for
early-reveal inconsistencies
cause further constraint propagation

Nogoods can be learned either temporarily or permanently
pruning effectiveness vs. memory consumption & overhead

Many different strategies & variants available

51 / 63

Learning Nogoods

Nogood can be learned (stored) for future search pruning:
added to constraints (e.g. “(WA 6= r) or (NSW 6= r)”)
added to explicit nogood list

As soon as assignment contains all but one element of a nogood, drop the value of the
remaining element from variable’s domain
Example:

given nogood: {WA= r ,NSW = r}
as soon as {NSW = r} is added to assignment
r is dropped from WA domain

Allows for
early-reveal inconsistencies
cause further constraint propagation

Nogoods can be learned either temporarily or permanently
pruning effectiveness vs. memory consumption & overhead

Many different strategies & variants available

51 / 63

Learning Nogoods

Nogood can be learned (stored) for future search pruning:
added to constraints (e.g. “(WA 6= r) or (NSW 6= r)”)
added to explicit nogood list

As soon as assignment contains all but one element of a nogood, drop the value of the
remaining element from variable’s domain
Example:

given nogood: {WA= r ,NSW = r}
as soon as {NSW = r} is added to assignment
r is dropped from WA domain

Allows for
early-reveal inconsistencies
cause further constraint propagation

Nogoods can be learned either temporarily or permanently
pruning effectiveness vs. memory consumption & overhead

Many different strategies & variants available

51 / 63

Learning Nogoods

Nogood can be learned (stored) for future search pruning:
added to constraints (e.g. “(WA 6= r) or (NSW 6= r)”)
added to explicit nogood list

As soon as assignment contains all but one element of a nogood, drop the value of the
remaining element from variable’s domain
Example:

given nogood: {WA= r ,NSW = r}
as soon as {NSW = r} is added to assignment
r is dropped from WA domain

Allows for
early-reveal inconsistencies
cause further constraint propagation

Nogoods can be learned either temporarily or permanently
pruning effectiveness vs. memory consumption & overhead

Many different strategies & variants available

51 / 63

Learning Nogoods

Nogood can be learned (stored) for future search pruning:
added to constraints (e.g. “(WA 6= r) or (NSW 6= r)”)
added to explicit nogood list

As soon as assignment contains all but one element of a nogood, drop the value of the
remaining element from variable’s domain
Example:

given nogood: {WA= r ,NSW = r}
as soon as {NSW = r} is added to assignment
r is dropped from WA domain

Allows for
early-reveal inconsistencies
cause further constraint propagation

Nogoods can be learned either temporarily or permanently
pruning effectiveness vs. memory consumption & overhead

Many different strategies & variants available

51 / 63

Learning Nogoods

Nogood can be learned (stored) for future search pruning:
added to constraints (e.g. “(WA 6= r) or (NSW 6= r)”)
added to explicit nogood list

As soon as assignment contains all but one element of a nogood, drop the value of the
remaining element from variable’s domain
Example:

given nogood: {WA= r ,NSW = r}
as soon as {NSW = r} is added to assignment
r is dropped from WA domain

Allows for
early-reveal inconsistencies
cause further constraint propagation

Nogoods can be learned either temporarily or permanently
pruning effectiveness vs. memory consumption & overhead

Many different strategies & variants available

51 / 63

Outline

1 Constraint Satisfaction Problems (CSPs)

2 Search with CSPs
Inference: Constraint Propagation
Backtracking Search

3 Local Search with CSPs

4 Exploiting Structure of CSPs

52 / 63

Local Search with CSPs

Extension of Local Search to CSPs straightforward
Use complete-state representation (complete assignments)

allow states with unsatisfied constraints
“neighbour states” differ for one variable value
steps: reassign variable values

Min-conflicts heuristic in hill-climbing:
Variable selection: randomly select any conflicted variable
Value selection: select new value that results in a minimum number of conflicts with the other
variables
Improvement: adaptive strategies giving different weights to constraints according to their
criticality

SLC variants [see Ch. 4] apply to CSPs as well
random walk, simulated annealing, GAs, taboo search, ...

ex: 1000-queens solved in few minutes

53 / 63

Local Search with CSPs

Extension of Local Search to CSPs straightforward
Use complete-state representation (complete assignments)

allow states with unsatisfied constraints
“neighbour states” differ for one variable value
steps: reassign variable values

Min-conflicts heuristic in hill-climbing:
Variable selection: randomly select any conflicted variable
Value selection: select new value that results in a minimum number of conflicts with the other
variables
Improvement: adaptive strategies giving different weights to constraints according to their
criticality

SLC variants [see Ch. 4] apply to CSPs as well
random walk, simulated annealing, GAs, taboo search, ...

ex: 1000-queens solved in few minutes

53 / 63

Local Search with CSPs

Extension of Local Search to CSPs straightforward
Use complete-state representation (complete assignments)

allow states with unsatisfied constraints
“neighbour states” differ for one variable value
steps: reassign variable values

Min-conflicts heuristic in hill-climbing:
Variable selection: randomly select any conflicted variable
Value selection: select new value that results in a minimum number of conflicts with the other
variables
Improvement: adaptive strategies giving different weights to constraints according to their
criticality

SLC variants [see Ch. 4] apply to CSPs as well
random walk, simulated annealing, GAs, taboo search, ...

ex: 1000-queens solved in few minutes

53 / 63

Local Search with CSPs

Extension of Local Search to CSPs straightforward
Use complete-state representation (complete assignments)

allow states with unsatisfied constraints
“neighbour states” differ for one variable value
steps: reassign variable values

Min-conflicts heuristic in hill-climbing:
Variable selection: randomly select any conflicted variable
Value selection: select new value that results in a minimum number of conflicts with the other
variables
Improvement: adaptive strategies giving different weights to constraints according to their
criticality

SLC variants [see Ch. 4] apply to CSPs as well
random walk, simulated annealing, GAs, taboo search, ...

ex: 1000-queens solved in few minutes

53 / 63

Local Search with CSPs

Extension of Local Search to CSPs straightforward
Use complete-state representation (complete assignments)

allow states with unsatisfied constraints
“neighbour states” differ for one variable value
steps: reassign variable values

Min-conflicts heuristic in hill-climbing:
Variable selection: randomly select any conflicted variable
Value selection: select new value that results in a minimum number of conflicts with the other
variables
Improvement: adaptive strategies giving different weights to constraints according to their
criticality

SLC variants [see Ch. 4] apply to CSPs as well
random walk, simulated annealing, GAs, taboo search, ...

ex: 1000-queens solved in few minutes

53 / 63

The Min-Conflicts Heuristic

(© S. Russell & P. Norwig, AIMA)

54 / 63

The Min-Conflicts Heuristic: Example

Two steps solution of 8-Queens problem

(© S. Russell & P. Norwig, AIMA)

55 / 63

Outline

1 Constraint Satisfaction Problems (CSPs)

2 Search with CSPs
Inference: Constraint Propagation
Backtracking Search

3 Local Search with CSPs

4 Exploiting Structure of CSPs

56 / 63

Partitioning CFPs

“Divide & Conquer” CSPs

Idea (when applicable): Partition a CSP into independent CSPs
identify strongly-connected components in constraint graph
e.g. by Tarjan’s algorithms (linear!)

Ex: Tasmania and mainland are independent subproblems
E.g. partition n-variable CSP into n/c CSPs w. c variables each:

from dn to n/c · dc steps in worst-case
if n = 80, d = 2, c = 20, then from 280 ≈ 1024 to 4 · 220 ≈ 4 · 106

=⇒ from 4 billion years to 0.4 secs at 10million steps/sec

(© S. Russell & P. Norwig, AIMA)

57 / 63

Partitioning CFPs

“Divide & Conquer” CSPs

Idea (when applicable): Partition a CSP into independent CSPs
identify strongly-connected components in constraint graph
e.g. by Tarjan’s algorithms (linear!)

Ex: Tasmania and mainland are independent subproblems
E.g. partition n-variable CSP into n/c CSPs w. c variables each:

from dn to n/c · dc steps in worst-case
if n = 80, d = 2, c = 20, then from 280 ≈ 1024 to 4 · 220 ≈ 4 · 106

=⇒ from 4 billion years to 0.4 secs at 10million steps/sec

(© S. Russell & P. Norwig, AIMA)

57 / 63

Partitioning CFPs

“Divide & Conquer” CSPs

Idea (when applicable): Partition a CSP into independent CSPs
identify strongly-connected components in constraint graph
e.g. by Tarjan’s algorithms (linear!)

Ex: Tasmania and mainland are independent subproblems
E.g. partition n-variable CSP into n/c CSPs w. c variables each:

from dn to n/c · dc steps in worst-case
if n = 80, d = 2, c = 20, then from 280 ≈ 1024 to 4 · 220 ≈ 4 · 106

=⇒ from 4 billion years to 0.4 secs at 10million steps/sec

(© S. Russell & P. Norwig, AIMA)

57 / 63

Partitioning CFPs

“Divide & Conquer” CSPs

Idea (when applicable): Partition a CSP into independent CSPs
identify strongly-connected components in constraint graph
e.g. by Tarjan’s algorithms (linear!)

Ex: Tasmania and mainland are independent subproblems
E.g. partition n-variable CSP into n/c CSPs w. c variables each:

from dn to n/c · dc steps in worst-case
if n = 80, d = 2, c = 20, then from 280 ≈ 1024 to 4 · 220 ≈ 4 · 106

=⇒ from 4 billion years to 0.4 secs at 10million steps/sec

(© S. Russell & P. Norwig, AIMA)

57 / 63

Solving Tree-structured CSPs

Theorem:

If the constraint graph has no loops, the CSP can be solved in O(nd2) time in worst case
general CSPs can be solved O(dn) time worst-case

Algorithm
1 Choose a variable as root, order variables from root to leaves
2 For j ∈ n..2 apply MAKEARCCONSISTENT(PARENT(Xj),Xj)
3 For j ∈ 2..n, assign Xj consistently with PARENT(Xj)

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

58 / 63

Solving Tree-structured CSPs

Theorem:

If the constraint graph has no loops, the CSP can be solved in O(nd2) time in worst case
general CSPs can be solved O(dn) time worst-case

Algorithm
1 Choose a variable as root, order variables from root to leaves
2 For j ∈ n..2 apply MAKEARCCONSISTENT(PARENT(Xj),Xj)
3 For j ∈ 2..n, assign Xj consistently with PARENT(Xj)

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)
58 / 63

Solving Tree-structured CSPs

Theorem:

If the constraint graph has no loops, the CSP can be solved in O(nd2) time in worst case
general CSPs can be solved O(dn) time worst-case

Algorithm
1 Choose a variable as root, order variables from root to leaves
2 For j ∈ n..2 apply MAKEARCCONSISTENT(PARENT(Xj),Xj)
3 For j ∈ 2..n, assign Xj consistently with PARENT(Xj)

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)
58 / 63

Solving Tree-structured CSPs

Theorem:

If the constraint graph has no loops, the CSP can be solved in O(nd2) time in worst case
general CSPs can be solved O(dn) time worst-case

Algorithm
1 Choose a variable as root, order variables from root to leaves
2 For j ∈ n..2 apply MAKEARCCONSISTENT(PARENT(Xj),Xj)
3 For j ∈ 2..n, assign Xj consistently with PARENT(Xj)

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)
58 / 63

Solving Tree-structured CSPs [cont.]

(© S. Russell & P. Norwig, AIMA)

59 / 63

Solving Nearly Tree-Structured CSPs

Cutset Conditioning
1 Identify a (small) cycle cutset S: a set of variables s.t. the remaining constraint graph is a

tree
finding smallest cycle cutset is NP-hard
fast approximated techniques known

2 For each possible consistent assignment to the variables in S
a) remove from the domains of the remaining variables any values that are inconsistent with the

assignment for S
b) apply the tree-structured CSP algorithm

3 If c def
= |S|, then runtime is O(dc · (n − c)d2)

=⇒ much smaller than dn if c small

60 / 63

Solving Nearly Tree-Structured CSPs

Cutset Conditioning
1 Identify a (small) cycle cutset S: a set of variables s.t. the remaining constraint graph is a

tree
finding smallest cycle cutset is NP-hard
fast approximated techniques known

2 For each possible consistent assignment to the variables in S
a) remove from the domains of the remaining variables any values that are inconsistent with the

assignment for S
b) apply the tree-structured CSP algorithm

3 If c def
= |S|, then runtime is O(dc · (n − c)d2)

=⇒ much smaller than dn if c small

60 / 63

Solving Nearly Tree-Structured CSPs

Cutset Conditioning
1 Identify a (small) cycle cutset S: a set of variables s.t. the remaining constraint graph is a

tree
finding smallest cycle cutset is NP-hard
fast approximated techniques known

2 For each possible consistent assignment to the variables in S
a) remove from the domains of the remaining variables any values that are inconsistent with the

assignment for S
b) apply the tree-structured CSP algorithm

3 If c def
= |S|, then runtime is O(dc · (n − c)d2)

=⇒ much smaller than dn if c small

60 / 63

Solving Nearly Tree-Structured CSPs

Cutset Conditioning
1 Identify a (small) cycle cutset S: a set of variables s.t. the remaining constraint graph is a

tree
finding smallest cycle cutset is NP-hard
fast approximated techniques known

2 For each possible consistent assignment to the variables in S
a) remove from the domains of the remaining variables any values that are inconsistent with the

assignment for S
b) apply the tree-structured CSP algorithm

3 If c def
= |S|, then runtime is O(dc · (n − c)d2)

=⇒ much smaller than dn if c small

60 / 63

Cutset Conditioning: Example

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

61 / 63

Exercise

Solve the following 3-coloring problem by Cutset Conditioning

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

62 / 63

Breaking Value Symmetry

Value symmetry: if domain size is n and no unary constraints
every solution has n! solutions obtained by permuting color names
ex: 3-coloring, 3! = 6 permutations for every solutions

Symmetry Breaking: add symmetry-breaking constraints s.t. only one of the n! solution is
possible
=⇒ reduce search space by n! factor

Add value-ordering constraints on n variables:
give an ordering of values (ex: r < b < g)
impose an ordering on the values of n variables s.t. xi 6= xj

(ex: WA < NT < SA)
=⇒ only one solution out of n!

63 / 63

Breaking Value Symmetry

Value symmetry: if domain size is n and no unary constraints
every solution has n! solutions obtained by permuting color names
ex: 3-coloring, 3! = 6 permutations for every solutions

Symmetry Breaking: add symmetry-breaking constraints s.t. only one of the n! solution is
possible
=⇒ reduce search space by n! factor

Add value-ordering constraints on n variables:
give an ordering of values (ex: r < b < g)
impose an ordering on the values of n variables s.t. xi 6= xj

(ex: WA < NT < SA)
=⇒ only one solution out of n!

63 / 63

Breaking Value Symmetry

Value symmetry: if domain size is n and no unary constraints
every solution has n! solutions obtained by permuting color names
ex: 3-coloring, 3! = 6 permutations for every solutions

Symmetry Breaking: add symmetry-breaking constraints s.t. only one of the n! solution is
possible
=⇒ reduce search space by n! factor

Add value-ordering constraints on n variables:
give an ordering of values (ex: r < b < g)
impose an ordering on the values of n variables s.t. xi 6= xj

(ex: WA < NT < SA)
=⇒ only one solution out of n!

63 / 63

Breaking Value Symmetry

Value symmetry: if domain size is n and no unary constraints
every solution has n! solutions obtained by permuting color names
ex: 3-coloring, 3! = 6 permutations for every solutions

Symmetry Breaking: add symmetry-breaking constraints s.t. only one of the n! solution is
possible
=⇒ reduce search space by n! factor

Add value-ordering constraints on n variables:
give an ordering of values (ex: r < b < g)
impose an ordering on the values of n variables s.t. xi 6= xj

(ex: WA < NT < SA)
=⇒ only one solution out of n!

63 / 63

	Constraint Satisfaction Problems (CSPs)
	Search with CSPs
	Inference: Constraint Propagation
	Backtracking Search

	Local Search with CSPs
	Exploiting Structure of CSPs

