Fundamentals of Artificial Intelligence Chapter 03: Problem Solving as Search

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto. sebastiani@unitn. it
http://disi.unitn.it/rseba/DIDATTICA/fai_2022/

Teaching assistant: Mauro Dragoni - dragoni@fbk.eu http://www.maurodragoni.com/teaching/fai/
M.S. Course "Artificial Intelligence Systems", academic year 2022-2023

Last update: Wednesday $28^{\text {th }}$ September, 2022, 17:54
Copyright notice: Most examples and images displayed in the slides of this course are taken from [Russell \& Norwig, "Artificial Intelligence, a Modern Approach", $3^{\text {rd }}$ ed., Pearson], including explicitly figures from the above-mentioned book, so that their copyright is detained by the authors. A few other material (text, figures, examples) is authored by (in alphabetical order): Pieter Abbeel, Bonnie J. Dorr, Anca Dragan, Dan Klein, Nikita Kitaev, Tom Lenaerts, Michela Milano, Dana Nau, Maria Simi, who detain its copyright.

These slides cannot can be displayed in public without the permission of the author.

Outline

(1) Problem-Solving Agents
(2) Example Problems
(3) Search Generalities

- Tree Search
- Graph Search
- Implementation Issues \& Strategies
(4) Uninformed Search Strategies
- Breadth-First Search
- Uniform-cost Search
- Depth-First Search
- Depth-Limited Search \& Iterative Deepening
(5) Informed Search Strategies
- Greedy Search
- A^{*} Search
- Memory-bounded Heuristic Search (hints)
- Heuristic Functions

Outline

（1）Problem－Solving Agents

（2）Example Problems
（3）Search Generalities
－Tree Search
－Graph Search
－Implementation Issues \＆Strategies
（4）Uninformed Search Strategies
－Breadth－First Search
－Uniform－cost Search
－Depth－First Search
－Depth－Limited Search \＆Iterative Deepening
（5）Informed Search Strategies
－Greedy Search
－A＊Search
－Memory－bounded Heuristic Search（hints）
－Heuristic Functions

Problem Solving as Search

One of the dominant approaches to AI problem solving: formulate a problem/task as search in a state space.

Problem Solving as Search

One of the dominant approaches to AI problem solving: formulate a problem/task as search in a state space.

```
Main Paradigm
(1) Goal formulation: define the successful world states
    - Ex: a set of states, a Boolean test function
(a) Problem formulation:
    - define a representation for states
    - define legal actions and transition functions
Search: find a solution by means of a search process
    - solutions are sequences of actions
```

4. Execution: given the solution, perform the actions
\Longrightarrow Problem-solving agents are (a kind of) goal-based agents

Problem Solving as Search

One of the dominant approaches to AI problem solving: formulate a problem/task as search in a state space.

Main Paradigm

(1) Goal formulation: define the successful world states

- Ex: a set of states, a Boolean test function ...
(2) Problem formulation:
- define a representation for states
- define legal actions and transition functions
(3) Search: find a solution by means of a search process
- solutions are sequences of actions
- Execution: aiven the solution, perform the actions
\Longrightarrow Problem-solving agents are (a kind of) goal-based agents

Problem Solving as Search

One of the dominant approaches to AI problem solving: formulate a problem/task as search in a state space.

Main Paradigm

(1) Goal formulation: define the successful world states

- Ex: a set of states, a Boolean test function ...
(2) Problem formulation:
- define a representation for states
- define legal actions and transition functions

Search: find a solution by means of a search process

- solutions are sequences of actions
(-) Execution: given the solution, perform the actions
\Longrightarrow Problem-solving agents are (a kind of) goal-based agents

Problem Solving as Search

One of the dominant approaches to AI problem solving: formulate a problem/task as search in a state space.

Main Paradigm

(1) Goal formulation: define the successful world states

- Ex: a set of states, a Boolean test function ...
(2) Problem formulation:
- define a representation for states
- define legal actions and transition functions
(3) Search: find a solution by means of a search process
- solutions are sequences of actions

```
(1) Execution: given the solution, perform the actions
```

[^0]
Problem Solving as Search

One of the dominant approaches to AI problem solving: formulate a problem/task as search in a state space.

Main Paradigm

(1) Goal formulation: define the successful world states

- Ex: a set of states, a Boolean test function ...
(2) Problem formulation:
- define a representation for states
- define legal actions and transition functions
(3) Search: find a solution by means of a search process
- solutions are sequences of actions
(9) Execution: given the solution, perform the actions
\Longrightarrow Problem-solving agents are (a kind of) goal-based agents

Problem Solving as Search

One of the dominant approaches to AI problem solving: formulate a problem/task as search in a state space.

Main Paradigm

(1) Goal formulation: define the successful world states

- Ex: a set of states, a Boolean test function ...
(2) Problem formulation:
- define a representation for states
- define legal actions and transition functions
(3) Search: find a solution by means of a search process
- solutions are sequences of actions
(9) Execution: given the solution, perform the actions
\Longrightarrow Problem-solving agents are (a kind of) goal-based agents

Problem Solving as Search: Example

Example: Traveling in Romania

- Informal description: On holiday in Romania; currently in Arad. Flight leaves tomorrow from Bucharest
- Formulate goal: (Be in) Bucharest
- Formulate problem:
- States: various cities
- Actions: drive between cities
- Initial state: Arad
- Search for a solution: sequence of cities from Arad to Bucharest
- e.g. Arad, Sibiu, Fagaras, Bucharest
- explore a search tree/graph

[^1]
Problem Solving as Search: Example

Example: Traveling in Romania

- Informal description: On holiday in Romania; currently in Arad. Flight leaves tomorrow from Bucharest
- Formulate goal: (Be in) Bucharest
- Formulate problem:
- States: various cities
- Actions: drive between cities
- Initial state: Arad
- Search for a solution: sequence of cities from Arad to Bucharest
- e.g. Arad, Sibiu, Fagaras, Bucharest
- explore a search tree/graph

Note

The agent is assumed to have no heuristic knowledge about traveling in Romania to exploit.

Problem Solving as Search: Example [cont.]

A simplified road map of part of Romania.

Problem Solving as Search [cont.]

```
Assumptions for Problem-solving Agents (this chapter only)
- state representations are atomic
    \Longrightarrow \text { world states are considered as wholes, with no internal structure}
    - Ex: Arad, Sibiu, Zerind, Bucharest,... (shortcut for In(Arad), In(Sibiu),...)
- the environment is fully observable
    \Longrightarrow ~ t h e ~ a g e n t ~ a l w a y s ~ k n o w s ~ t h e ~ c u r r e n t ~ s t a t e ~
    - Ex: Romanian cities & roads have signs
- the environment is discrete
    \Longrightarrow \text { at any state there are only finitely many actions to choose from}
    - Ex: from Arad, (go to) Sibiu, or Zerind, or Timisoara (see map)
- the environment is known
    \Longrightarrow ~ t h e ~ a g e n t ~ k n o w s ~ w h i c h ~ s t a t e s ~ a r e ~ r e a c h e d ~ b y ~ e a c h ~ a c t i o n ~
    - ex: the agent has the map
- the environment is deterministic
    \Longrightarrow \text { each action has exactly one outcome}
    - Ex: from Arad choose go to Sibiu }\Longrightarrown\epsilonxt step in Sibi
```


Problem Solving as Search [cont.]

Assumptions for Problem-solving Agents (this chapter only)

- state representations are atomic
\Longrightarrow world states are considered as wholes, with no internal structure
- Ex: Arad, Sibiu, Zerind, Bucharest,... (shortcut for $\operatorname{In}($ Arad $), \operatorname{In}(S i b i u), ~ . .)$.
- the environment is fully observable
\rightarrow the agent always knows the current state
- Ex: Romanian cities \& roads have signs
- the environment is discrete
\rightarrow at any state there are only finitely many actions to choose from
- Ex: from Arad, (go to) Sibiu, or Zerind, or Timisoara (see map)
- the environment is known
\Rightarrow the agent knows which states are reached by each action
- ex: the agent has the map
- the environment is deterministic
each action has exactly one outcome
- Ex: from Arad choose go to Sibiu $\Longrightarrow n \epsilon x t$ step in Sibiu

Problem Solving as Search [cont.]

Assumptions for Problem-solving Agents (this chapter only)

- state representations are atomic
\Longrightarrow world states are considered as wholes, with no internal structure
- Ex: Arad, Sibiu, Zerind, Bucharest,... (shortcut for $\operatorname{In}($ Arad $), \operatorname{In}($ Sibiu), ...)
- the environment is fully observable
\Longrightarrow the agent always knows the current state
- Ex: Romanian cities \& roads have signs
- the environment is discrete
\rightarrow at any state there are only finitely many actions to choose from
- Ex: from Arad, (go to) Sibiu, or Zerind, or Timisoara (see map)
- the environment is known
\Rightarrow the agent knows which states are reached by each action
- ex: the agent has the map
- the environment is deterministic
each action has exactly one outcome
- Ex: from Arad choose go to Sibiu $\Longrightarrow n \in x t$ step in Sibiu

Problem Solving as Search [cont.]

Assumptions for Problem-solving Agents (this chapter only)

- state representations are atomic
\Longrightarrow world states are considered as wholes, with no internal structure
- Ex: Arad, Sibiu, Zerind, Bucharest,... (shortcut for $\operatorname{In}($ Arad $), \operatorname{In}($ Sibiu $), \ldots$)
- the environment is fully observable
\Longrightarrow the agent always knows the current state
- Ex: Romanian cities \& roads have signs
- the environment is discrete
\Longrightarrow at any state there are only finitely many actions to choose from
- Ex: from Arad, (go to) Sibiu, or Zerind, or Timisoara (see map)
- the environment is known
\Rightarrow the agent knows which states are reached by each action
- ex: the agent has the map
- the environment is deterministic
each action has exactly one outcome
- Ex: from Arad choose go to Sibiu \Longrightarrow next step in Sibiu

Problem Solving as Search [cont.]

Assumptions for Problem-solving Agents (this chapter only)

- state representations are atomic
\Longrightarrow world states are considered as wholes, with no internal structure
- Ex: Arad, Sibiu, Zerind, Bucharest,... (shortcut for $\operatorname{In}($ Arad $), \ln ($ Sibiu $), \ldots$)
- the environment is fully observable
\Longrightarrow the agent always knows the current state
- Ex: Romanian cities \& roads have signs
- the environment is discrete
\Longrightarrow at any state there are only finitely many actions to choose from
- Ex: from Arad, (go to) Sibiu, or Zerind, or Timisoara (see map)
- the environment is known
\Longrightarrow the agent knows which states are reached by each action
- ex: the agent has the map
- the environment is deterministic
each action has exactly one outcome
- Ex: from Arad choose go to Sibiu \Longrightarrow next step in Sibiu

Problem Solving as Search [cont.]

Assumptions for Problem-solving Agents (this chapter only)

- state representations are atomic
\Longrightarrow world states are considered as wholes, with no internal structure
- Ex: Arad, Sibiu, Zerind, Bucharest,... (shortcut for $\operatorname{In}($ Arad $), \operatorname{In}($ Sibiu $), \ldots$)
- the environment is fully observable
\Longrightarrow the agent always knows the current state
- Ex: Romanian cities \& roads have signs
- the environment is discrete
\Longrightarrow at any state there are only finitely many actions to choose from
- Ex: from Arad, (go to) Sibiu, or Zerind, or Timisoara (see map)
- the environment is known
\Longrightarrow the agent knows which states are reached by each action
- ex: the agent has the map
- the environment is deterministic
\Longrightarrow each action has exactly one outcome
- Ex: from Arad choose go to Sibiu \Longrightarrow next step in Sibiu

Problem Solving as Search [cont.]

Remarks about search

- Search happens inside the agent
- a planning stage before acting
- different from searching in the world
- An agent is given a description of what to achieve, not an algorithm to solve it
the only possibility is to search for a solution
- Searching can be comnutationally very demancing (NP-hard)
- Can be driven with benefits by knowledge of the problem (heuristic knowledge) \Longrightarrow informed/heuristic search

Problem Solving as Search [cont.]

Remarks about search

- Search happens inside the agent
- a planning stage before acting
- different from searching in the world
- An agent is given a description of what to achieve, not an algorithm to solve it \Longrightarrow the only possibility is to search for a solution
- Searching can be computationally very demanding (NP-hard)
- Can be driven with benefits by knowledge of the problem (heuristic knowledge) \Longrightarrow informed/heuristic search

Problem Solving as Search [cont.]

Remarks about search

- Search happens inside the agent
- a planning stage before acting
- different from searching in the world
- An agent is given a description of what to achieve, not an algorithm to solve it \Longrightarrow the only possibility is to search for a solution
- Searching can be computationally very demanding (NP-hard)
- Can be driven with benefits by knowledge of the problem (heuristic knowledge) \Longrightarrow informed/heuristic search

Problem Solving as Search [cont.]

Remarks about search

- Search happens inside the agent
- a planning stage before acting
- different from searching in the world
- An agent is given a description of what to achieve, not an algorithm to solve it \Longrightarrow the only possibility is to search for a solution
- Searching can be computationally very demanding (NP-hard)
- Can be driven with benefits by knowledge of the problem (heuristic knowledge) \Longrightarrow informed/heuristic search

Problem-solving Agent: Schema

```
function Simple-Problem-Solving-Agent ( percept) returns an action
    persistent: seq, an action sequence, initially empty
                            state, some description of the current world state
                            goal, a goal, initially null
    problem, a problem formulation
    state \(\leftarrow\) UPDATE-STATE \((\) state, percept)
    if \(s e q\) is empty then
    goal \(\leftarrow\) FORMULATE-GOAL \((\) state \()\)
    problem \(\leftarrow\) Formulate-Problem(state, goal)
    \(s e q \leftarrow \operatorname{SEARCH}(\) problem \()\)
    if seq \(=\) failure then return a null action
    action \(\leftarrow\) FIRST \((s e q)\)
    \(s e q \leftarrow \operatorname{REST}(s e q)\)
    return action
```


Problem-solving Agent: Schema

```
function SIMPLE-PROBLEM-SOLVING-AGENT( percept) returns an action
    persistent: seq, an action sequence, initially empty
                            state, some description of the current world state
                            goal, a goal, initially null
                            problem, a problem formulation
state}\leftarrow\mathrm{ UPDATE-STATE(state, percept)
    if seq is empty then
    goal \leftarrowFORMULATE-GOAL(state)
    problem}\leftarrow\mathrm{ FORMULATE-PROBLEM(state,goal)
    seq}\leftarrow\operatorname{SEARCH(problem)
    if seq = failure then return a null action
    action }\leftarrow\operatorname{FIRST(seq)
    seq}\leftarrow\operatorname{REST}(seq
    return action
```

While executing the solution sequence the agent ignores its percepts when choosing an action since it knows in advance what they will be ("open loop system")

Well-defined problems and solutions

Problem Formulation: Components

- the initial state the agent starts in
- Ex: In(Arad)
- the set of applicable actions available in a state (AcTIONS(S))
- Ex: if s is $\operatorname{In}($ Arad $)$, then the applicable actions are $\{$ Go(Sibiu), Go(Timisoara), Go(Zerind) $\}$
- a description of what each action does (aka transition model)
- RESULT(S,A): state resulting from applying action A in state S
- Ex: Result(In(Arad), Go(Zerind)) is In(Zerind)
- the goal test determining if a given state is a goal state
- Explicit (e.g.: $\{\ln ($ Bucharest $)\})$
- Implicit (e.g. (Ex: CHECKMATE(X))
- the path cost function assigns a numeric cost to each path
- in this chapter: the sum of the costs of the actions along the path

Well-defined problems and solutions

Problem Formulation: Components

- the initial state the agent starts in
- Ex: In(Arad)
- the set of applicable actions available in a state (AcTIONS(S))
- Ex: if s is In (Arad), then the applicable actions are \{Go(Sibiu), Go(Timisoara), Go(Zerind) \}
a description of what each action does (aka transition model)
- RESULT(S,A): state resulting from applying action A in state S
- Ex: Result(In(Arad), Go(Zerind)) is In(Zerind)
- the goal test determining if a given state is a goal state
- Explicit (e.g.: $\{\ln ($ Bucharest $)\})$
- Implicit (e.g. (Ex: CHECKMATE(X))
- the path cost function assians a nume ric cost to each path
- in this chapter: the sum of the costs of the actions along the path

Well-defined problems and solutions

Problem Formulation: Components

- the initial state the agent starts in
- Ex: $\operatorname{In}($ Arad $)$
- the set of applicable actions available in a state (Actions(S))
- Ex: if s is $\operatorname{In}($ Arad $)$, then the applicable actions are $\{G o($ Sibiu $)$, Go(Timisoara), Go(Zerind) $\}$
- a description of what each action does (aka transition model)
- RESULT(S,A): state resulting from applying action A in state S
- Ex: Result(In(Arad), Go(Zerind)) is In(Zerind)
- the goal test determining if a given state is a goal state
- Explicit (e.g.: $\{\ln ($ Bucharest $)\})$
- Implicit (e.g. (Ex: CHECKMATE(X))
- the path cost function assigns a numeric cost to each path
- in this chapter: the sum of the costs of the actions along the path

Well-defined problems and solutions

Problem Formulation: Components

- the initial state the agent starts in
- Ex: $\operatorname{In}($ Arad $)$
- the set of applicable actions available in a state (Actions(S))
- Ex: if s is $\ln ($ Arad $)$, then the applicable actions are $\{$ Go(Sibiu), Go(Timisoara), Go(Zerind) $\}$
- a description of what each action does (aka transition model)
- Result(S,A): state resulting from applying action A in state S
- Ex: Result(In(Arad), Go(Zerind)) is In(Zerind)
- the goal test determining if a given state is a goal state
- Explicit (e.g.: $\{\ln ($ Bucharest $)\})$
- Implicit (e.g. (Ex: CHECKMATE (X))
- the path cost function assigns a numeric cost to each path
- in this chapter: the sum of the costs of the actions along the path

Well-defined problems and solutions

Problem Formulation: Components

- the initial state the agent starts in
- Ex: $\operatorname{In}($ Arad $)$
- the set of applicable actions available in a state (Actions(S))
- Ex: if s is $\ln ($ Arad $)$, then the applicable actions are $\{$ Go(Sibiu), Go(Timisoara), Go(Zerind) $\}$
- a description of what each action does (aka transition model)
- Result(S,A): state resulting from applying action A in state S
- Ex: Result(In(Arad), Go(Zerind)) is In(Zerind)
- the goal test determining if a given state is a goal state
- Explicit (e.g.: $\{\operatorname{In}($ Bucharest $)\})$
- Implicit (e.g. (Ex: CHECKMATE(X))
- the path cost function assigns a numeric cost to each path
- in this chapter: the sum of the costs of the actions along the path

Well-defined problems and solutions

Problem Formulation: Components

- the initial state the agent starts in
- Ex: $\operatorname{In}($ Arad $)$
- the set of applicable actions available in a state (Actions(S))
- Ex: if s is $\ln ($ Arad $)$, then the applicable actions are $\{G o($ Sibiu $)$, Go(Timisoara), Go(Zerind) $\}$
- a description of what each action does (aka transition model)
- Result(S,A): state resulting from applying action A in state S
- Ex: Result(In(Arad), Go(Zerind)) is In(Zerind)
- the goal test determining if a given state is a goal state
- Explicit (e.g.: $\{\operatorname{In}($ Bucharest $)\})$
- Implicit (e.g. (Ex: CHECKMATE(x))
- the path cost function assigns a numeric cost to each path
- in this chapter: the sum of the costs of the actions along the path

Well-defined problems and solutions [cont.]

State Space, Graphs, Paths, Solutions and Optimal Solutions
Initial state, actions, and transition model implicitly define the state space of the problem

- the state space forms a directed graph (e.g. the Romania map)
- typically too big to be created explicitly and be stored in full
- in a state space graph, each state occurs only once
- a path is a sequence of states connected by actions
- a solution is a path from the initial state to a goal state
- an ontimal solution is a solution with the lowest nath cost

Well-defined problems and solutions [cont.]

State Space, Graphs, Paths, Solutions and Optimal Solutions
Initial state, actions, and transition model implicitly define the state space of the problem

- the state space forms a directed graph (e.g. the Romania map)
- typically too big to be created explicitly and be stored in full
- in a state space graph, each state occurs only once
- a path is a sequence of states connected by actions
- a solution is a path from the initial state to a goal state
- an ontimal solution is a solution with the lowest path cost

Well-defined problems and solutions [cont.]

State Space, Graphs, Paths, Solutions and Optimal Solutions
Initial state, actions, and transition model implicitly define the state space of the problem

- the state space forms a directed graph (e.g. the Romania map)
- typically too big to be created explicitly and be stored in full
- in a state space graph, each state occurs only once
- a path is a sequence of states connected by actions
- a solution is a path from the initial state to a goal state
- an optimal solution is a solution with the lowest path cost

Well-defined problems and solutions [cont.]

State Space, Graphs, Paths, Solutions and Optimal Solutions
Initial state, actions, and transition model implicitly define the state space of the problem

- the state space forms a directed graph (e.g. the Romania map)
- typically too big to be created explicitly and be stored in full
- in a state space graph, each state occurs only once
- a path is a sequence of states connected by actions
- a solution is a path from the initial state to a goal state
- an optimal solution is a solution with the lowest path cost

Well-defined problems and solutions [cont.]

State Space, Graphs, Paths, Solutions and Optimal Solutions
Initial state, actions, and transition model implicitly define the state space of the problem

- the state space forms a directed graph (e.g. the Romania map)
- typically too big to be created explicitly and be stored in full
- in a state space graph, each state occurs only once
- a path is a sequence of states connected by actions
- a solution is a path from the initial state to a goal state
- an optimal solution is a solution with the lowest path cost

Example: Path finding for a Delivery Robot

Example: Path finding for a Delivery Robot

Example: Path finding for a Delivery Robot

Example: Path finding for a Delivery Robot

Task: move from o103 to r123

- States
- Initial state
- Goal state
- State graph
- Optimal solution

Example: Path finding for a Delivery Robot

Task: move from o103 to r123

- States
- Initial state
- Goal state
- State graph
- Optimal solution

Well-defined problems and solutions [cont.]

Abstraction

Problem formulations are models of reality (i.e. abstract descriptions)

- real world is absurdly complex
\Longrightarrow state space must be abstracted for problem solving
- lots of details removed because irrelevant to the problem
- Ex: exact position, "turn steering wheel to the left by 20 degree",
- abstraction: the process of removing detail from representations
- abstract state represents many real states
- abstract action represents complex combination of real actions
- valid abstraction: can expand any abstract solution into a solution in the detailed world
- useful abstraction: if carrying out each of the actions in the solution is easier than in the original problem

The choice of a good abstraction involves removing as much detail as possible, while retaining validity and ensuring that the abstract actions are easy to carry out.

Well-defined problems and solutions [cont.]

```
Abstraction
Problem formulations are models of reality (i.e. abstract descriptions)
- real world is absurdly complex
    \Longrightarrow \text { state space must be abstracted for problem solving}
- lots of details removed because irrelevant to the problem
    - Ex: exact position, "turn steering wheel to the left by }20\mathrm{ degree",
abstraction: the process of removina detail from representations
    - abstract state represents many real states
    - abstract action represents complex combination of real actions
- valid abstraction: can exnand anv abstract solution into a solution in the detailed world
- useful abstraction: if carrying out each of the actions in the solution is easier than in the
    original problem
```

The choice of a good abstraction involves removing as much detail as possible, while retaining validity and ensuring that the abstract actions are easy to carry out.

Well-defined problems and solutions [cont.]

Abstraction

Problem formulations are models of reality (i.e. abstract descriptions)

- real world is absurdly complex
\Longrightarrow state space must be abstracted for problem solving
- lots of details removed because irrelevant to the problem
- Ex: exact position, "turn steering wheel to the left by 20 degree", ...
- abstraction: the process of removing detail from representations
- abstract state represents many real states
- abstract action represents complex combination of real actions
- valid abstraction: can expand any abstract solution into a solution in the detailed world
- useful abstraction: if carrying out each of the actions in the solution is easier than in the original problem

The choice of a good abstraction involves removing as much detail as possible, while retaining validity and ensuring that the abstract actions are easy to carry out.

Well-defined problems and solutions [cont.]

Abstraction

Problem formulations are models of reality (i.e. abstract descriptions)

- real world is absurdly complex
\Longrightarrow state space must be abstracted for problem solving
- lots of details removed because irrelevant to the problem
- Ex: exact position, "turn steering wheel to the left by 20 degree", ...
- abstraction: the process of removing detail from representations
- abstract state represents many real states
- abstract action represents complex combination of real actions
- valid abstraction: can expand any abstract solution into a solution in the detailed world
- useful abstraction: if carrying out each of the actions in the solution is easier than in the original problem

The choice of a good abstraction involves removing as much detail as possible, while retaining validity and ensuring that the abstract actions are easy to carry out.

Well-defined problems and solutions [cont.]

Abstraction

Problem formulations are models of reality (i.e. abstract descriptions)

- real world is absurdly complex
\Longrightarrow state space must be abstracted for problem solving
- lots of details removed because irrelevant to the problem
- Ex: exact position, "turn steering wheel to the left by 20 degree", ...
- abstraction: the process of removing detail from representations
- abstract state represents many real states
- abstract action represents complex combination of real actions
- valid abstraction: can expand any abstract solution into a solution in the detailed world
- useful abstraction: if carrying out each of the actions in the solution is easier than in the original problem

[^2]
Well-defined problems and solutions [cont.]

Abstraction

Problem formulations are models of reality (i.e. abstract descriptions)

- real world is absurdly complex
\Longrightarrow state space must be abstracted for problem solving
- lots of details removed because irrelevant to the problem
- Ex: exact position, "turn steering wheel to the left by 20 degree", ...
- abstraction: the process of removing detail from representations
- abstract state represents many real states
- abstract action represents complex combination of real actions
- valid abstraction: can expand any abstract solution into a solution in the detailed world
- useful abstraction: if carrying out each of the actions in the solution is easier than in the original problem

[^3]
Well-defined problems and solutions [cont.]

Abstraction

Problem formulations are models of reality (i.e. abstract descriptions)

- real world is absurdly complex
\Longrightarrow state space must be abstracted for problem solving
- lots of details removed because irrelevant to the problem
- Ex: exact position, "turn steering wheel to the left by 20 degree", ...
- abstraction: the process of removing detail from representations
- abstract state represents many real states
- abstract action represents complex combination of real actions
- valid abstraction: can expand any abstract solution into a solution in the detailed world
- useful abstraction: if carrying out each of the actions in the solution is easier than in the original problem

The choice of a good abstraction involves removing as much detail as possible, while retaining validity and ensuring that the abstract actions are easy to carry out.

Outline

(1) Problem-Solving Agents

(2) Example Problems

(3) Search Generalities

- Tree Search
- Graph Search
- Implementation Issues \& Strategies
(4) Uninformed Search Strategies
- Breadth-First Search
- Uniform-cost Search
- Depth-First Search
- Depth-Limited Search \& Iterative Deepening
(5) Informed Search Strategies
- Greedy Search
- A* Search
- Memory-bounded Heuristic Search (hints)
- Heuristic Functions

Toy Example: Simple Vacuum Cleaner

- States: 2 locations, each $\{$ clean, dirty $\}: 2 \cdot 2^{2}=8$ states
- Initial State: any
- Actions: \{Left, Right, Suck\}
- Transition Model: (...), Left [Right] if A [B], Suck if clean \Longrightarrow no effect
- Goal Test: check if squares are clean
- Path Cost: each step costs $1 \Longrightarrow$ path cost is \# of steps in path

Toy Example: The 8-Puzzle

- States: Integer location of each tile $\Longrightarrow 9!/ 2$ reachable states
- Initial State: any
- Actions: moving \{ Left, Right, Up, Down $\}$ the empty space
- Transition Model: empty switched with the tile in target location
- Goal Test: checks state corresponds with goal configuration
- Path Cost: each step costs $1 \Longrightarrow$ path cost is \# of steps in path

Start State

Goal State

Toy Example: The 8-Puzzle [cont.]

NP-complete: N-Puzzle $\left(N=k^{2}-1\right): N!/ 2$ reachable states

Toy Example: 8-Queens Problem

- States: any arrangement of 0 to 8 queens on the board $\Longrightarrow 64 \cdot 63 \cdot \ldots \cdot 57 \approx 1.8 \cdot 10^{14}$ possible sequences
- Initial State: no queens on the board
- Actions: add a queen to any empty square
- Transition Model: returns the board with a queen added
- Goal Test: 8 queens on the board, none attacked by other queen
- Path Cost: none

Toy Example: 8-Queens Problem

- States: any arrangement of 0 to 8 queens on the board $\Longrightarrow 64 \cdot 63 \cdot \ldots \cdot 57 \approx 1.8 \cdot 10^{14}$ possible sequences
- Initial State: no queens on the board
- Actions: add a queen to any empty square
- Transition Model: returns the board with a queen added
- Goal Test: 8 queens on the board, none attacked by other queen
- Path Cost: none

Toy Example: 8-Queens Problem (incremental)

- States: $n \leq 8$ queens on board, one per column in the n leftmost columns, no queen attacking another
$\Longrightarrow 2057$ possible sequences
- Actions: Add a queen to any square in the leftmost empty column such that it is not attacked by any other queen.
- ...

Real-World Example: Robotic Assembly

- States: real-valued coordinates of robot joint angles, and of parts of the object to be assembled
- Initial State: any arm position and object configuration
- Actions: continuous motions of robot joints
- Transition Model: position resulting from motion
- Goal Test: complete assembly (without robot)
- Path Cost: time to execute

(© S. Russell \& P. Norwig, AIMA)

Other Real-World Examples

- Airline travel planning problems
- Touring problems
- VLSI layout problem
- Robot navigation
- Automatic assembly sequencing
- Protein design
- ...

Outline

(1) Problem-Solving Agents
(2) Example Problems

(3) Search Generalities

- Tree Search
- Graph Search
- Implementation Issues \& Strategies
(4) Uninformed Search Strategies
- Breadth-First Search
- Uniform-cost Search
- Depth-First Search
- Depth-Limited Search \& Iterative Deepening
(5) Informed Search Strategies
- Greedy Search
- A* Search
- Memory-bounded Heuristic Search (hints)
- Heuristic Functions

Searching for Solutions

Search: Generate sequences of actions.

- Expansion: one starts from a state, and applying the operators (or successor function) will generate new states
- Search strategy: at each step, choose which state to expand.
- Search Tree/DAG: represents the expansion of all states starting from the initial state (the root of the tree/DAG)
- The leaves of the tree/DAG represent either:
- states to expand
- solutions
- dead-ends

Searching for Solutions

Search: Generate sequences of actions.

- Expansion: one starts from a state, and applying the operators (or successor function) will generate new states
- Search strategy: at each step, choose which state to expand.
- Search Tree/DAG: represents the expansion of all states starting from the initial state (the root of the tree/DAG)
- The leaves of the tree/DAG represent either:
- states to expand
- solutions
- dead-ends

Searching for Solutions

Search: Generate sequences of actions.

- Expansion: one starts from a state, and applying the operators (or successor function) will generate new states
- Search strategy: at each step, choose which state to expand.
- Search Tree/DAG: represents the expansion of all states starting from the initial state (the root of the tree/DAG)
- The leaves of the tree/DAG represent either:
- states to expand
- solutions
- dead-ends

Searching for Solutions

Search: Generate sequences of actions.

- Expansion: one starts from a state, and applying the operators (or successor function) will generate new states
- Search strategy: at each step, choose which state to expand.
- Search Tree/DAG: represents the expansion of all states starting from the initial state (the root of the tree/DAG)
- The leaves of the tree/DAG represent either:
- states to expand
- solutions
- dead-ends

Outline

(1) Problem-Solving Agents
(2) Example Problems
(3) Search Generalities

- Tree Search
- Graph Search
- Implementation Issues \& Strategies
(4) Uninformed Search Strategies
- Breadth-First Search
- Uniform-cost Search
- Depth-First Search
- Depth-Limited Search \& Iterative Deepening
(5) Informed Search Strategies
- Greedy Search
- A* Search
- Memory-bounded Heuristic Search (hints)
- Heuristic Functions

Tree Search Algorithms

Tree Search: Basic idea

- Off-line, simulated exploration of state space
- start from initial state
- pick one leaf node, and generate its successors (a.k.a. expanding a node)
- set of current leaves called frontier (a.k.a. fringe, open list)
- strategy for picking leaves critical (search strategy)
- ends when either a goal state is reached, or no more candidates to expand are available (or time-out/memory-out occur)

Tree Search Algorithms

Tree Search: Basic idea

- Off-line, simulated exploration of state space
- start from initial state
- pick one leaf node, and generate its successors (a.k.a. expanding a node)
- set of current leaves called frontier (a.k.a. fringe, open list)
- strategy for picking leaves critical (search strategy)
- ends when either a goal state is reached, or no more candidates to expand are available (or time-out/memory-out occur)

Tree Search Algorithms

Tree Search: Basic idea

- Off-line, simulated exploration of state space
- start from initial state
- pick one leaf node, and generate its successors (a.k.a. expanding a node)
- set of current leaves called frontier (a.k.a. fringe, open list)
- strategy for picking leaves critical (search strategy)
- ends when either a goal state is reached, or no more candidates to expand are available (or time-out/memory-out occur)

Tree Search Algorithms

Tree Search: Basic idea

- Off-line, simulated exploration of state space
- start from initial state
- pick one leaf node, and generate its successors (a.k.a. expanding a node)
- set of current leaves called frontier (a.k.a. fringe, open list)
- strategy for picking leaves critical (search strategy)
- ends when either a goal state is reached, or no more candidates to expand are available (or time-out/memory-out occur)

Tree Search Algorithms

```
Tree Search: Basic idea
    - Off-line, simulated exploration of state space
- start from initial state
- pick one leaf node, and generate its successors (a.k.a. expanding a node)
- set of current leaves called frontier (a.k.a. fringe, open list)
- strategy for picking leaves critical (search strategy)
- ends when either a goal state is reached, or no more candidates to expand are available (or time-out/memory-out occur)
```

function Tree-SEARCH (problem) returns a solution, or failure
initialize the frontier using the initial state of problem

loop do

if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution expand the chosen node, adding the resulting nodes to the frontier

Tree Search Algorithms [cont.]

Tree-Search Example

Tree-Search Example: Trip from Arad to Bucharest

A simplified road map of part of Romania.

Tree-Search Example: Trip from Arad to Bucharest

Expanding the search tree

- Initial state: $\{$ Arad $\}$
- Expand initial state \Longrightarrow \{Sibiu, Timisoara, Zerind $\}$
- Pick\&expand Sibiu $\Longrightarrow\{$ Arad, Fagaras, Oradea, Rimnicu Vicea\}

Tree-Search Example: Trip from Arad to Bucharest

Expanding the search tree

- Initial state: $\{$ Arad $\}$
- Expand initial state \Longrightarrow \{Sibiu, Timisoara, Zerind $\}$
- Pick\&expand Sibiu \Longrightarrow \{Arad, Fagaras, Oradea, Rimnicu Vicea\}

(C) S. Russell \& P. Norwig, AIMA)

Tree-Search Example: Trip from Arad to Bucharest

Expanding the search tree

- Initial state: \{Arad\}
- Expand initial state \Longrightarrow \{Sibiu, Timisoara, Zerind $\}$
- Pick\&expand Sibiu $\Longrightarrow\{$ Arad, Fagaras, Oradea, Rimnicu Vicea $\}$

[^4]
Tree-Search Example: Trip from Arad to Bucharest

Expanding the search tree

- Initial state: \{Arad\}
- Expand initial state \Longrightarrow \{Sibiu, Timisoara, Zerind $\}$
- Pick\&expand Sibiu $\Longrightarrow\{$ Arad, Fagaras, Oradea, Rimnicu Vicea\}

[^5]
Tree-Search Example: Trip from Arad to Bucharest

Expanding the search tree

- Initial state: \{Arad\}
- Expand initial state \Longrightarrow \{Sibiu, Timisoara, Zerind $\}$
- Pick\&expand Sibiu $\Longrightarrow\{$ Arad, Fagaras, Oradea, Rimnicu Vicea\}
- ...

(@S. Russell \& P. Norwig, AIMA)

Beware: Arad \mapsto Sibiu \mapsto Arad (repeated state \Longrightarrow loopy path!)

Repeated states \& Redundant Paths

- redundant paths occur when there is more than one way to get from one state to another
- Failure to detect repeated states can:

[^6]
Repeated states \& Redundant Paths

- redundant paths occur when there is more than one way to get from one state to another
same state explored more than once
- Failure to detect repeated states can:

Repeated states \& Redundant Paths

- redundant paths occur when there is more than one way to get from one state to another \Longrightarrow same state explored more than once
- Failure to detect repeated states can:

Repeated states \& Redundant Paths

- redundant paths occur when there is more than one way to get from one state to another \Longrightarrow same state explored more than once
- Failure to detect repeated states can:
- turn linear problem into exponential

Repeated states \& Redundant Paths

- redundant paths occur when there is more than one way to get from one state to another \Longrightarrow same state explored more than once
- Failure to detect repeated states can:
- cause infinite loops
- turn linear problem into exponential

Repeated states \& Redundant Paths

- redundant paths occur when there is more than one way to get from one state to another \Longrightarrow same state explored more than once
- Failure to detect repeated states can:
- cause infinite loops
- turn linear problem into exponential

Repeated states \& Redundant Paths

- redundant paths occur when there is more than one way to get from one state to another \Longrightarrow same state explored more than once
- Failure to detect repeated states can:
- cause infinite loops
- turn linear problem into exponential

Moral: Algorithms that forget their history are doomed to repeat it!

Outline

(1) Problem-Solving Agents
(2) Example Problems
(3) Search Generalities

- Tree Search
- Graph Search
- Implementation Issues \& Strategies

4) Uninformed Search Strategies

- Breadth-First Search
- Uniform-cost Search
- Depth-First Search
- Depth-Limited Search \& Iterative Deepening
(5) Informed Search Strategies
- Greedy Search
- A^{*} Search
- Memory-bounded Heuristic Search (hints)
- Heuristic Functions

Graph Search Algorithms

Graph Search: Basic idea

- add a data structure which remembers every expanded node
- a.k.a. explored set or closed list
- typically a hash table (access $O(1)$)
- do not expand a node if it already occurs in explored set
function GRAPH-SEARCH (problem) returns a solution, or failure
initialize the frontier using the initial state of problem
initialize the explored set to be empty
loop do
if the frontier is empty then return failure choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier only if not in the frontier or explored set

Graph Search Algorithms: Example

Graph search on the Romania trip problem

- (at each stage each path extended by one step)
- two states become dead-end

Graph Search Algorithms: Example

Separation Property of graph search:

The frontier separates the state-space graph into the explored region and the unexplored region

Ex: Graph search on a rectangular-grid problem

(© S. Russell \& P. Norwig, AIMA)

Outline

(1) Problem-Solving Agents
(2) Example Problems
(3) Search Generalities

- Tree Search
- Graph Search
- Implementation Issues \& Strategies
(4) Uninformed Search Strategies
- Breadth-First Search
- Uniform-cost Search
- Depth-First Search
- Depth-Limited Search \& Iterative Deepening
(5) Informed Search Strategies
- Greedy Search
- A* Search
- Memory-bounded Heuristic Search (hints)
- Heuristic Functions

Implementation: States vs. Nodes

- A state is a representation of a physical configuration
- A node is a data structure constituting part of a search tree
- includes fields: state, parent, action, path cost $g(x)$
node \neq state
- Within a given problem, it should be easy to compute a child node from its parent and the action performed

Implementation: States vs. Nodes

- A state is a representation of a physical configuration
- A node is a data structure constituting part of a search tree
- includes fields: state, parent, action, path cost $g(x)$
\Longrightarrow node \neq state
- Within a given problem, it should be easy to compute a child node from its parent and the action performed

Implementation: States vs. Nodes

- A state is a representation of a physical configuration
- A node is a data structure constituting part of a search tree
- includes fields: state, parent, action, path cost $g(x)$
\Longrightarrow node \neq state
- Within a given problem, it should be easy to compute a child node from its parent and the action performed

[^7]
Implementation: Frontier and Explored

Frontier/Fringe

- Implemented as a Queue:
- First-in-First-Out, FIFO (aka "queue"): $O(1)$ access
- Last-in-First-Out, LIFO (aka "stack"): O(1) access
- Best-First-out (aka "priority queue"): O(log(n)) access
- Three primitives:
- ISEMPTY(QUEUE): returns true iff there are no more elements
- POP(QUEUE): removes and returns the first element of the queue
- Insert(ELEMENT,QUEUE): inserts an element into queue

Explored

Implementation: Frontier and Explored

Frontier/Fringe

- Implemented as a Queue:
- First-in-First-Out, FIFO (aka "queue"): $O(1)$ access
- Last-in-First-Out, LIFO (aka "stack"): $O(1)$ access
- Best-First-out (aka "priority queue"): $O(\log (n))$ access
- Three primitives:
- ISEMPTY(QUEUE): returns true iff there are no more elements
- POP(QUEUE): removes and returns the first element of the queue
- INSERT(ELEMENT,QUEUE): inserts an element into queue

Explored

Implementation: Frontier and Explored

Frontier/Fringe

- Implemented as a Queue:
- First-in-First-Out, FIFO (aka "queue"): $O(1)$ access
- Last-in-First-Out, LIFO (aka "stack"): $O(1)$ access
- Best-First-out (aka "priority queue"): $O(\log (n))$ access
- Three primitives:
- IsEmpty(queUE): returns true iff there are no more elements
- Pop(queve): removes and returns the first element of the queue
- Insert(element,queue): inserts an element into queue

Explored

Implementation: Frontier and Explored

Frontier/Fringe

- Implemented as a Queue:
- First-in-First-Out, FIFO (aka "queue"): O (1) access
- Last-in-First-Out, LIFO (aka "stack"): $O(1)$ access
- Best-First-out (aka "priority queue"): $O(\log (n))$ access
- Three primitives:
- IsEmpty(queUe): returns true iff there are no more elements
- Pop(queve): removes and returns the first element of the queue
- Insert(element,queue): inserts an element into queue

```
Explored
- Implemented as a Hash Table: \(O(1)\) access
- Two primitives:
- ISTHERE(ELEMENT, HASH): returns true iff element is in the hash
- INSERT(ELEMENT,HASH): inserts element into hash
- Choice of hash function critical for efficiency
```


Implementation: Frontier and Explored

Frontier/Fringe

- Implemented as a Queue:
- First-in-First-Out, FIFO (aka "queue"): $O(1)$ access
- Last-in-First-Out, LIFO (aka "stack"): $O(1)$ access
- Best-First-out (aka "priority queue"): $O(\log (n))$ access
- Three primitives:
- ISEmpty(QUEUE): returns true iff there are no more elements
- POP(QUEUE): removes and returns the first element of the queue
- INSERT(ELEMENT,QUEUE): inserts an element into queue

Explored

- Implemented as a Hash Table: $O(1)$ access
- Two primitives:
- ISTHERE(ELEMENT,HASH): returns true iff element is in the hash
- INSERT(ELEMENT,HASH): inserts element into hash
- Choice of hash function critical for efficiency

Implementation: Frontier and Explored

Frontier/Fringe

- Implemented as a Queue:
- First-in-First-Out, FIFO (aka "queue"): $O(1)$ access
- Last-in-First-Out, LIFO (aka "stack"): $O(1)$ access
- Best-First-out (aka "priority queue"): $O(\log (n))$ access
- Three primitives:
- ISEmPTY(QUEUE): returns true iff there are no more elements
- POP(QUEUE): removes and returns the first element of the queue
- INSERT(ELEMENT,QUEUE): inserts an element into queue

Explored

- Implemented as a Hash Table: $O(1)$ access
- Two primitives:
- ISTHERE(ELEMENT,HASH): returns true iff element is in the hash
- INSERT(ELEMENT,HASH): inserts element into hash
- Choice of hash function critical for efficiency

Implementation: Frontier and Explored

Frontier/Fringe

- Implemented as a Queue:
- First-in-First-Out, FIFO (aka "queue"): $O(1)$ access
- Last-in-First-Out, LIFO (aka "stack"): $O(1)$ access
- Best-First-out (aka "priority queue"): $O(\log (n))$ access
- Three primitives:
- ISEmPTY(QUEUE): returns true iff there are no more elements
- POP(QUEUE): removes and returns the first element of the queue
- INSERT(ELEMENT,QUEUE): inserts an element into queue

Explored

- Implemented as a Hash Table: $O(1)$ access
- Two primitives:
- ISThere(ELEMENT,HASH): returns true iff element is in the hash
- InSERT(ELEMENT,HASH): inserts element into hash
- Choice of hash function critical for efficiency

Implementation: general tree search

function Tree-Search (problem, fringe) returns a solution, or failure fringe $\leftarrow \operatorname{Insert}($ MaKe-NODE(Initial-State[problem]), fringe) loop do
if fringe is empty then return failure node \leftarrow Remove-Front(fringe)
if Goal-Test(problem, State(node)) then return node
fringe $\leftarrow \operatorname{INSERT} \operatorname{AlL}(\operatorname{ExPAND}($ node, problem $)$, fringe)
function EXPAND(node, problem) returns a set of nodes
successors \leftarrow the empty set
for each action, result in SUCCESSOR-Fn(problem, STATE[node]) do $s \leftarrow$ a new NODE
Parent-Node $[s] \leftarrow$ node; Action $[s] \leftarrow$ action; State $[s] \leftarrow$ result
Path-Cost $[s] \leftarrow$ Path-Cost[node] + Step-Cost(node, action, s)
Depth $[s] \leftarrow$ Depth $[$ node $]+1$
add s to successors
return successors

Implementation: general graph search

```
function Graph-SEARch( problem, fringe) returns a solution, or failure
    closed}\leftarrow\mathrm{ an empty set
    fringe \leftarrow Insert(Make-Node(Initial-State[problem]), fringe)
loop do
    if fringe is empty then return failure
    node}\leftarrow\mathrm{ Remove-Front(fringe)
    if Goal-Test(problem, State[node]) then return node
    if State[node] is not in closed then
        add State[node] to closed
        fringe }\leftarrow\operatorname{Insert AlL(Expand(node, problem), fringe)
end
```


Uninformed vs. Informed Search Strategies

Strategies: Two possibilities

- Uninformed strategies (a.k.a. blind strategies)
- do not use any domain knowledge
- apply rules arbitrarily and do an exhaustive search strategy
\Rightarrow impractical for some complex problems.
- Informed strategies
- use domain knowledge
- apply rules following heuristics (driven by domain knowledge) practical for many complex problems.

Uninformed vs. Informed Search Strategies

Strategies: Two possibilities

- Uninformed strategies (a.k.a. blind strategies)
- do not use any domain knowledge
- apply rules arbitrarily and do an exhaustive search strategy
\Longrightarrow impractical for some complex problems.
- Informed strategies
- use domain knowledge
- apply rules following heuristics (driven by domain knowledge) practical for many complex problems.

Uninformed vs. Informed Search Strategies

Strategies: Two possibilities

- Uninformed strategies (a.k.a. blind strategies)
- do not use any domain knowledge
- apply rules arbitrarily and do an exhaustive search strategy
\Longrightarrow impractical for some complex problems.
- Informed strategies
- use domain knowledge
- apply rules following heuristics (driven by domain knowledge)
\Longrightarrow practical for many complex problems.

Outline

(1) Problem-Solving Agents
(2) Example Problems
(3) Search Generalities

- Tree Search
- Graph Search
- Implementation Issues \& Strategies
(4) Uninformed Search Strategies
- Breadth-First Search
- Uniform-cost Search
- Depth-First Search
- Depth-Limited Search \& Iterative Deepening
(5) Informed Search Strategies
- Greedy Search
- A* Search
- Memory-bounded Heuristic Search (hints)
- Heuristic Functions

Evaluating Search Strategies

- Strategies are evaluated along the following dimensions:
- completeness: does it always find a solution if one exists?
- time complexity: how many steps to find a solution?
- space complexity: how much memory is needed?
- optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of

Evaluating Search Strategies

- Strategies are evaluated along the following dimensions:
- completeness: does it always find a solution if one exists?
- time complexity: how many steps to find a solution?
- space complexity: how much memory is needed?
- optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of

Evaluating Search Strategies

- Strategies are evaluated along the following dimensions:
- completeness: does it always find a solution if one exists?
- time complexity: how many steps to find a solution?
- space complexity: how much memory is needed?
- optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of

Evaluating Search Strategies

- Strategies are evaluated along the following dimensions:
- completeness: does it always find a solution if one exists?
- time complexity: how many steps to find a solution?
- space complexity: how much memory is needed?
- optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of

Evaluating Search Strategies

- Strategies are evaluated along the following dimensions:
- completeness: does it always find a solution if one exists?
- time complexity: how many steps to find a solution?
- space complexity: how much memory is needed?
- optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of

Evaluating Search Strategies

- Strategies are evaluated along the following dimensions:
- completeness: does it always find a solution if one exists?
- time complexity: how many steps to find a solution?
- space complexity: how much memory is needed?
- optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
- b: maximum branching factor of the search tree
- d: depth of the least-cost solution
- m: maximum depth of the state space (may be $+\infty$)
\# nodes:

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Evaluating Search Strategies

- Strategies are evaluated along the following dimensions:
- completeness: does it always find a solution if one exists?
- time complexity: how many steps to find a solution?
- space complexity: how much memory is needed?
- optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
- b: maximum branching factor of the search tree
- d: depth of the least-cost solution
- m: maximum depth of the state space (may be $+\infty$)
\# nodes

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Evaluating Search Strategies

- Strategies are evaluated along the following dimensions:
- completeness: does it always find a solution if one exists?
- time complexity: how many steps to find a solution?
- space complexity: how much memory is needed?
- optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
- b: maximum branching factor of the search tree
- d: depth of the least-cost solution
- m: maximum depth of the state space (may be $+\infty$) \# nodes: $1+b+b^{2}$

Evaluating Search Strategies

- Strategies are evaluated along the following dimensions:
- completeness: does it always find a solution if one exists?
- time complexity: how many steps to find a solution?
- space complexity: how much memory is needed?
- optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
- b: maximum branching factor of the search tree
- d: depth of the least-cost solution
- m: maximum depth of the state space (may be $+\infty$)

Evaluating Search Strategies

- Strategies are evaluated along the following dimensions:
- completeness: does it always find a solution if one exists?
- time complexity: how many steps to find a solution?
- space complexity: how much memory is needed?
- optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
- b: maximum branching factor of the search tree
- d: depth of the least-cost solution
- m: maximum depth of the state space (may be $+\infty$)
\Longrightarrow \# nodes: $1+b+b^{2}+\ldots+b^{m}=O\left(b^{m}\right)$

Uninformed Search Strategies

Uninformed strategies

Use only the information available in the problem definition

- Different uninformed search stategies
- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search \& Iterative-deepening search
- Defined by the access strategy of the frontier/fringe
(i.e. the order of node expansion)

Outline

(1) Problem-Solving Agents
(2) Example Problems
(3) Search Generalities

- Tree Search
- Graph Search
- Implementation Issues \& Strategies
(4) Uninformed Search Strategies
- Breadth-First Search
- Uniform-cost Search
- Depth-First Search
- Depth-Limited Search \& Iterative Deepening
(5) Informed Search Strategies
- Greedy Search
- A* Search
- Memory-bounded Heuristic Search (hints)
- Heuristic Functions

Breadth-First Search Strategy (BFS)

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Breadth-First Search Strategy (BFS)

Breadth-First Search

- Idea: Expand first the shallowest unexpanded nodes
- Implementation: frontier/fringe implemented as a FIFO queue

Breadth－First Search Strategy（BFS）

Breadth－First Search

－Idea：Expand first the shallowest unexpanded nodes
－Implementation：frontier／fringe implemented as a FIFO queue
\Longrightarrow novel successors pushed to the end of the queue

Breadth－First Search Strategy（BFS）

Breadth－First Search

－Idea：Expand first the shallowest unexpanded nodes
－Implementation：frontier／fringe implemented as a FIFO queue
\Longrightarrow novel successors pushed to the end of the queue

Breadth-First Search Strategy (BFS)

Breadth-First Search

- Idea: Expand first the shallowest unexpanded nodes
- Implementation: frontier/fringe implemented as a FIFO queue
\Longrightarrow novel successors pushed to the end of the queue

Breadth－First Search Strategy（BFS）

Breadth－First Search

－Idea：Expand first the shallowest unexpanded nodes
－Implementation：frontier／fringe implemented as a FIFO queue
\Longrightarrow novel successors pushed to the end of the queue

Breadth－First Search Strategy（BFS）

Breadth－First Search

－Idea：Expand first the shallowest unexpanded nodes
－Implementation：frontier／fringe implemented as a FIFO queue
\Longrightarrow novel successors pushed to the end of the queue

Breadth-First Search Strategy (BFS) [cont.]

BFS, Graph version (Tree version without "explored")

```
function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure
    node }\leftarrow\mathrm{ a node with STATE = problem.InitiAL-State, PATH-COST =0
    if problem.Goal-TEST(node.STATE) then return SOlution(node)
    frontier }\leftarrow\textrm{a}\mathrm{ FIFO queue with node as the only element
    explored }\leftarrow\mathrm{ an empty set
    loop do
        if EMPTY?( frontier) then return failure
        node \leftarrowPOP( frontier) /* chooses the shallowest node in frontier */
        add node.STATE to explored
        for each action in problem.ACTIONS(node.STATE) do
        child \leftarrow CHILD-NODE(problem, node, action)
        if child.STATE is not in explored or frontier then
            if problem.GOAL-TEST(child.STATE) then return SOLUTION(child)
            frontier }\leftarrow\mathrm{ INSERT(child, frontier)
```

Note: the goal test is applied to each node when it is generated, rather than when it is selected for expansion \Longrightarrow solution detected 1 layer earlier

Breadth-First Search: Tiers

State space is explored by tiers (tree version, children expanded in alphabetical order)

Strategy: expand a shallowest node first Implementation: Fringe is a FIFO queue

Exercises

(1) As with previous example, with BFS graph search.
(2) Consider the following graph, initial state 0 , goal state 17:
children should be expanded in numerical order

Exercises

(1) As with previous example, with BFS graph search.
(2) Consider the following graph, initial state 0 , goal state 17:
(1) explore it using BFS, tree version
(2) explore it using BFS, graph version
children should be expanded in numerical order

Exercises

(1) As with previous example, with BFS graph search.
(2) Consider the following graph, initial state 0 , goal state 17:
(1) explore it using BFS, tree version
(2) explore it using BFS, graph version children should be expanded in numerical order

Breadth-First Search (BFS): Properties

d : depth of shallowest solution

- How many steps?
- processes all nodes above shallowest solution
\Longrightarrow takes $O\left(b^{d}\right)$ time
- How much memory?
- Is it complete?
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Memory requirement is a major problem for breadth-first search

Breadth-First Search (BFS): Properties

d : depth of shallowest solution

- How many steps?
- processes all nodes above shallowest solution
\Longrightarrow takes $O\left(b^{d}\right)$ time
- How much memory?
- Is it complete?
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Memory requirement is a major problem for breadth-first search

Breadth-First Search (BFS): Properties

d : depth of shallowest solution

- How many steps?
- processes all nodes above shallowest solution
\Longrightarrow takes $O\left(b^{d}\right)$ time
- How much memory?
- max frontier size: b^{d} nodes
- Is it complete?
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Memory requirement is a major problem for breadth-first search

Breadth-First Search (BFS): Properties

d : depth of shallowest solution

- How many steps?
- processes all nodes above shallowest solution
\Longrightarrow takes $O\left(b^{d}\right)$ time
- How much memory?
- max frontier size: b^{d} nodes $\Longrightarrow O\left(b^{d}\right)$ memory size
- Is it complete?
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Memory requirement is a major problem for breadth-first search

Breadth-First Search (BFS): Properties

d : depth of shallowest solution

- How many steps?
- processes all nodes above shallowest solution
\Longrightarrow takes $O\left(b^{d}\right)$ time
- How much memory?
- max frontier size: b^{d} nodes $\Longrightarrow O\left(b^{d}\right)$ memory size
- Is it complete?
- if solution exists, b^{d} finite
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Breadth-First Search (BFS): Properties

d : depth of shallowest solution

- How many steps?
- processes all nodes above shallowest solution
\Longrightarrow takes $O\left(b^{d}\right)$ time
- How much memory?
- max frontier size: b^{d} nodes $\Longrightarrow O\left(b^{d}\right)$ memory size
- Is it complete?
- if solution exists, b^{d} finite \Longrightarrow Yes
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Memory requirement is a major problem for breadth-first search

Breadth-First Search (BFS): Properties

d : depth of shallowest solution

- How many steps?
- processes all nodes above shallowest solution
\Longrightarrow takes $O\left(b^{d}\right)$ time
- How much memory?
- max frontier size: b^{d} nodes $\Longrightarrow O\left(b^{d}\right)$ memory size
- Is it complete?
- if solution exists, b^{d} finite \Longrightarrow Yes
- Is it optimal?
- if and only if all costs are 1

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Breadth-First Search (BFS): Properties

d : depth of shallowest solution

- How many steps?
- processes all nodes above shallowest solution
\Longrightarrow takes $O\left(b^{d}\right)$ time
- How much memory?
- max frontier size: b^{d} nodes $\Longrightarrow O\left(b^{d}\right)$ memory size
- Is it complete?
- if solution exists, b^{d} finite \Longrightarrow Yes
- Is it optimal?
- if and only if all costs are 1

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Breadth-First Search (BFS): Properties

d : depth of shallowest solution

- How many steps?
- processes all nodes above shallowest solution
\Longrightarrow takes $O\left(b^{d}\right)$ time
- How much memory?
- max frontier size: b^{d} nodes $\Longrightarrow O\left(b^{d}\right)$ memory size
- Is it complete?
- if solution exists, b^{d} finite \Longrightarrow Yes
- Is it optimal?
- if and only if all costs are 1

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Breadth-First Search (BFS): Time and Memory

- Assume:
- 1 million nodes generated per second
- 1 node requires 1000 bytes of storage
- branching factor $b=10$

Depth	Nodes	Time	Memory
2	110	.11 milliseconds	107 kilobytes
4	11,110	11 milliseconds	10.6 megabytes
6	10^{6}	1.1 seconds	1 gigabyte
8	10^{8}	2 minutes	103 gigabytes
10	10^{10}	3 hours	10 terabytes
12	10^{12}	13 days	1 petabyte
14	10^{14}	3.5 years	99 petabytes
16	10^{16}	350 years	10 exabytes

Memory requirements is a bigger problem for BFS than execution time

Outline

(1) Problem-Solving Agents
(2) Example Problems
(3) Search Generalities

- Tree Search
- Graph Search
- Implementation Issues \& Strategies
(4) Uninformed Search Strategies
- Breadth-First Search
- Uniform-cost Search
- Depth-First Search
- Depth-Limited Search \& Iterative Deepening
(5) Informed Search Strategies
- Greedy Search
- A* Search
- Memory-bounded Heuristic Search (hints)
- Heuristic Functions

Uniform-Cost Search Strategy (UCS)

Uniform-Cost Search

- Idea: Expand first the node with lowest path cost $g(n)$
- Implementation: frontier/fringe implemented as a priority queue ordered by $g()$
- similar to BFS if step costs are all equal

Uniform-Cost Search Strategy (UCS)

Uniform-Cost Search

- Idea: Expand first the node with lowest path cost $g(n)$
- Implementation: frontier/fringe implemented as a priority queue ordered by g()
- similar to BFS if step costs are all equal
\square

Uniform-Cost Search Strategy (UCS)

Uniform-Cost Search

- Idea: Expand first the node with lowest path cost $g(n)$
- Implementation: frontier/fringe implemented as a priority queue ordered by $g()$ \Longrightarrow novel nearest successors pushed to the top of the queue
- similar to BFS if step costs are all equal

Uniform-Cost Search Strategy (UCS)

Uniform-Cost Search

- Idea: Expand first the node with lowest path cost $g(n)$
- Implementation: frontier/fringe implemented as a priority queue ordered by $g()$
\Longrightarrow novel nearest successors pushed to the top of the queue
- similar to BFS if step costs are all equal

Uniform-Cost Search Strategy (UCS)

Uniform-Cost Search

- Idea: Expand first the node with lowest path cost $g(n)$
- Implementation: frontier/fringe implemented as a priority queue ordered by $g()$ \Longrightarrow novel nearest successors pushed to the top of the queue
- similar to BFS if step costs are all equal

[^8]
Uniform-Cost Search Strategy (UCS)

Uniform-Cost Search

- Idea: Expand first the node with lowest path cost $g(n)$
- Implementation: frontier/fringe implemented as a priority queue ordered by $g()$ \Longrightarrow novel nearest successors pushed to the top of the queue
- similar to BFS if step costs are all equal

[^9]
Uniform-Cost Search Strategy (UCS)

Uniform-Cost Search

- Idea: Expand first the node with lowest path cost $g(n)$
- Implementation: frontier/fringe implemented as a priority queue ordered by $g()$ \Longrightarrow novel nearest successors pushed to the top of the queue
- similar to BFS if step costs are all equal

[^10]
Uniform-Cost Search Strategy (UCS) [cont.]

UCS, Graph version (Tree version: without "explored")

```
function UNIFORM-COST-SEARCH ( problem) returns a solution, or failure
    node \(\leftarrow\) a node with State \(=\) problem. Initial-State, Path-Cost \(=0\)
    frontier \(\leftarrow\) a priority queue ordered by PATH-CosT, with node as the only element
    explored \(\leftarrow\) an empty set
    loop do
        if Empty? ( frontier) then return failure
        node \(\leftarrow \mathrm{POP}(\) frontier \() \quad / *\) chooses the lowest-cost node in frontier */
        if problem.Goal-TEST(node.STATE) then return Solution(node)
    add node.STATE to explored
    for each action in problem. Actions (node. State) do
        child \(\leftarrow\) Child-NODE (problem, node, action)
        if child.STATE is not in explored or frontier then
            frontier \(\leftarrow\) INSERT (child, frontier)
        else if child. State is in frontier with higher Path-Cost then
            replace that frontier node with child
```

- apply the goal test to a node when it is selected for expansion rather than when it is first generated
- replace in the frontier a node with same state but worse path cost

Uniform-Cost Search

Strategy: expand a cheapest node first:
Fringe is a priority queue (priority: cumulative cost)

Exercises

- Apply UCS to the Romania-map Example
© Consider the following graph, initial state 0 , goal state 17

Exercises

(1) Apply UCS to the Romania-map Example
(2) Consider the following graph, initial state 0 , goal state 17
(0) explore it using UCS (tree version)
(2) explore it using UCS (graph version)

Uniform-Cost Search (UCS): Properties

C^{*} : cost of cheapest solution; ϵ : minimum arc cost
$\Longrightarrow 1+\left\lfloor C^{*} / \epsilon\right\rfloor$ "effective depth"

- How many steps?
- processes all nodes costing less than cheapest solution \Longrightarrow takes $O\left(b^{1+\left[C^{*} \epsilon\right.}\right)$ time
- How much memory?
- Is it complete?
- Is it optimal?

Uniform-Cost Search (UCS): Properties

C^{*} : cost of cheapest solution; ϵ : minimum arc cost
$\Longrightarrow 1+\left\lfloor C^{*} / \epsilon\right\rfloor$ "effective depth"

- How many steps?
- processes all nodes costing less than cheapest solution \Longrightarrow takes $O\left(b^{1+\left[C^{\prime \prime} / \epsilon\right\rfloor}\right)$ time
- How much memory?
- Is it complete?
- Is it optimal?

Uniform-Cost Search (UCS): Properties

C^{*} : cost of cheapest solution; ϵ : minimum arc cost
$\Longrightarrow 1+\left\lfloor C^{*} / \epsilon\right\rfloor$ "effective depth"

- How many steps?
- processes all nodes costing less than cheapest solution \Longrightarrow takes $O\left(b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}\right)$ time
- How much memory?
$\left.\stackrel{\text { max frontier size: } b^{1+\left\lfloor c^{*} / a\right\rfloor}}{\Longrightarrow O\left(b^{1}-c^{1}\right.}\right)$ memory size
- Is it complete?
- Is it optimal?

Uniform-Cost Search (UCS): Properties

C^{*} : cost of cheapest solution; ϵ : minimum arc cost
$\Longrightarrow 1+\left\lfloor C^{*} / \epsilon\right\rfloor$ "effective depth"

- How many steps?
- processes all nodes costing less than cheapest solution
\Longrightarrow takes $O\left(b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}\right)$ time
- How much memory?
- max frontier size: $\left.b^{1+\left\lfloor C^{*}\right.} \epsilon\right\rfloor$
$\Longrightarrow O\left(b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}\right)$ memory size
- Is it complete?
- Is it optimal?

Uniform-Cost Search (UCS): Properties

C^{*} : cost of cheapest solution; ϵ : minimum arc cost
$\Longrightarrow 1+\left\lfloor C^{*} / \epsilon\right\rfloor$ "effective depth"

- How many steps?
- processes all nodes costing less than cheapest solution \Longrightarrow takes $O\left(b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}\right)$ time
- How much memory?
- max frontier size: $b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}$
$\Longrightarrow O\left(b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}\right)$ memory size
- Is it complete?
- if solution exists, finite cost
\Longrightarrow Yes
Is it optimal?

Uniform-Cost Search (UCS): Properties

C^{*} : cost of cheapest solution; ϵ : minimum arc cost
$\Longrightarrow 1+\left\lfloor C^{*} / \epsilon\right\rfloor$ "effective depth"

- How many steps?
- processes all nodes costing less than cheapest solution \Longrightarrow takes $O\left(b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}\right)$ time
- How much memory?
- max frontier size: $b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}$
$\Longrightarrow O\left(b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}\right)$ memory size
- Is it complete?
- if solution exists, finite cost
\Longrightarrow Yes

Uniform-Cost Search (UCS): Properties

C^{*} : cost of cheapest solution; ϵ : minimum arc cost
$\Longrightarrow 1+\left\lfloor C^{*} / \epsilon\right\rfloor$ "effective depth"

- How many steps?
- processes all nodes costing less than cheapest solution \Longrightarrow takes $O\left(b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}\right)$ time
- How much memory?
- max frontier size: $b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}$
$\Longrightarrow O\left(b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}\right)$ memory size
- Is it complete?
- if solution exists, finite cost

$$
\Longrightarrow \text { Yes }
$$

- Is it optimal?

Uniform-Cost Search (UCS): Properties

C^{*} : cost of cheapest solution; ϵ : minimum arc cost
$\Longrightarrow 1+\left\lfloor C^{*} / \epsilon\right\rfloor$ "effective depth"

- How many steps?
- processes all nodes costing less than cheapest solution \Longrightarrow takes $O\left(b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}\right)$ time
- How much memory?
- max frontier size: $b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}$
$\Longrightarrow O\left(b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}\right)$ memory size
- Is it complete?
- if solution exists, finite cost \Longrightarrow Yes
- Is it optimal?

- Yes

Uniform-Cost Search (UCS): Properties

C^{*} : cost of cheapest solution; ϵ : minimum arc cost
$\Longrightarrow 1+\left\lfloor C^{*} / \epsilon\right\rfloor$ "effective depth"

- How many steps?
- processes all nodes costing less than cheapest solution \Longrightarrow takes $O\left(b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}\right)$ time
- How much memory?
- max frontier size: $b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}$
$\Longrightarrow O\left(b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}\right)$ memory size
- Is it complete?
- if solution exists, finite cost \Longrightarrow Yes
- Is it optimal?

- Yes

Memory requirement is a major problem also for uniform-cost search

Outline

(1) Problem-Solving Agents
(2) Example Problems
(3) Search Generalities

- Tree Search
- Graph Search
- Implementation Issues \& Strategies
(4) Uninformed Search Strategies
- Breadth-First Search
- Uniform-cost Search
- Depth-First Search
- Depth-Limited Search \& Iterative Deepening
(5) Informed Search Strategies
- Greedy Search
- A* Search
- Memory-bounded Heuristic Search (hints)
- Heuristic Functions

Depth-First Search Strategy (DFS)

Depth-First Search

- Idea: Expand first the deepest unexpanded nodes
- Implementation: frontier/fringe implemented as a LIFO queue (aka stack)

Depth-First Search Strategy (DFS)

Depth-First Search

- Idea: Expand first the deepest unexpanded nodes
- Implementation: frontier/fringe implemented as a LIFO queue (aka stack)

Depth-First Search Strategy (DFS)

Depth-First Search

- Idea: Expand first the deepest unexpanded nodes
- Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
\Longrightarrow novel successors pushed to the top of the stack

Depth-First Search Strategy (DFS)

Depth-First Search

- Idea: Expand first the deepest unexpanded nodes
- Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
\Longrightarrow novel successors pushed to the top of the stack

Depth-First Search Strategy (DFS)

Depth-First Search

- Idea: Expand first the deepest unexpanded nodes
- Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
\Longrightarrow novel successors pushed to the top of the stack

Depth-First Search Strategy (DFS)

Depth-First Search

- Idea: Expand first the deepest unexpanded nodes
- Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
\Longrightarrow novel successors pushed to the top of the stack

Depth-First Search Strategy (DFS)

Depth-First Search

- Idea: Expand first the deepest unexpanded nodes
- Implementation: frontier/fringe implemented as a LIFO queue (aka stack) \Longrightarrow novel successors pushed to the top of the stack

Depth-First Search Strategy (DFS)

Depth-First Search

- Idea: Expand first the deepest unexpanded nodes
- Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
\Longrightarrow novel successors pushed to the top of the stack

Depth-First Search Strategy (DFS)

Depth-First Search

- Idea: Expand first the deepest unexpanded nodes
- Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
\Longrightarrow novel successors pushed to the top of the stack

Depth-First Search Strategy (DFS)

Depth-First Search

- Idea: Expand first the deepest unexpanded nodes
- Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
\Longrightarrow novel successors pushed to the top of the stack

Depth-First Search Strategy (DFS)

Depth-First Search

- Idea: Expand first the deepest unexpanded nodes
- Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
\Longrightarrow novel successors pushed to the top of the stack

Depth-First Search Strategy (DFS)

Depth-First Search

- Idea: Expand first the deepest unexpanded nodes
- Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
\Longrightarrow novel successors pushed to the top of the stack

Depth-First Search Strategy (DFS)

Depth-First Search

- Idea: Expand first the deepest unexpanded nodes
- Implementation: frontier/fringe implemented as a LIFO queue (aka stack)
\Longrightarrow novel successors pushed to the top of the stack

Depth-First Search

DFS on a Graph

Similar to BFS, using a LIFO access for frontier/fringe rather than FIFO.

Depth-First Search

Strategy: expand a deepest node first
Implementation:
Fringe is a LIFO stack

Exercises

- As with previous example, with DFS graph search.
(2) Consider the following graph, initial state 0 , goal state 17:
children should be expanded in numerical order

Exercises

(1) As with previous example, with DFS graph search.
(2) Consider the following graph, initial state 0 , goal state 17:
(1) explore it using DFS, tree version
(2) explore it using DFS, graph version
children should be expanded in numerical order

Exercises

(1) As with previous example, with DFS graph search.
(2) Consider the following graph, initial state 0 , goal state 17:
(1) explore it using DFS, tree version
(2) explore it using DFS, graph version children should be expanded in numerical order

Depth-First Search (DFS): Properties

- How many steps?
- could process the whole tree!
- How much memory?
- Is it complete?
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Depth-First Search (DFS): Properties

- How many steps?
- could process the whole tree!
\Longrightarrow if m finite, takes $O\left(b^{m}\right)$ time
- How much memory?
- Is it complete?
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Depth-First Search (DFS): Properties

- How many steps?
- could process the whole tree!
\Longrightarrow if m finite, takes $O\left(b^{m}\right)$ time
- How much memory?
- only siblings on path to root $\Longrightarrow O(\mathrm{bm})$ memory size
- Is it complete?
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Depth-First Search (DFS): Properties

- How many steps?
- could process the whole tree!
\Longrightarrow if m finite, takes $O\left(b^{m}\right)$ time
- How much memory?
- only siblings on path to root $\Longrightarrow O(b m)$ memory size
- Is it complete?
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Depth-First Search (DFS): Properties

- How many steps?
- could process the whole tree!
\Longrightarrow if m finite, takes $O\left(b^{m}\right)$ time
- How much memory?
- only siblings on path to root $\Longrightarrow O(b m)$ memory size
- Is it complete?
- if infinite state space: no
- if finite state space:

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)
- Is it optimal?

Depth-First Search (DFS): Properties

- How many steps?
- could process the whole tree!
\Longrightarrow if m finite, takes $O\left(b^{m}\right)$ time
- How much memory?
- only siblings on path to root $\Longrightarrow O(b m)$ memory size
- Is it complete?
- if infinite state space: no
- if finite state space:

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)
- Is it optimal?

Depth-First Search (DFS): Properties

- How many steps?
- could process the whole tree!
\Longrightarrow if m finite, takes $O\left(b^{m}\right)$ time
- How much memory?
- only siblings on path to root $\Longrightarrow O(\mathrm{bm})$ memory size
- Is it complete?
- if infinite state space: no
- if finite state space:
- graph version: yes
- tree version: only if we prevent loops (cheap loop test)
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Depth-First Search (DFS): Properties

- How many steps?
- could process the whole tree!
\Longrightarrow if m finite, takes $O\left(b^{m}\right)$ time
- How much memory?
- only siblings on path to root $\Longrightarrow O(b m)$ memory size
- Is it complete?
- if infinite state space: no
- if finite state space:
- graph version: yes
- tree version: only if we prevent loops
(cheap loop test)
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Depth-First Search (DFS): Properties

- How many steps?
- could process the whole tree!
\Longrightarrow if m finite, takes $O\left(b^{m}\right)$ time
- How much memory?
- only siblings on path to root $\Longrightarrow O(\mathrm{bm})$ memory size
- Is it complete?
- if infinite state space: no
- if finite state space:
- graph version: yes
- tree version: only if we prevent loops (cheap loop test)
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Depth-First Search (DFS): Properties

- How many steps?
- could process the whole tree!
\Longrightarrow if m finite, takes $O\left(b^{m}\right)$ time
- How much memory?
- only siblings on path to root $\Longrightarrow O(b m)$ memory size
- Is it complete?
- if infinite state space: no
- if finite state space:
- graph version: yes
- tree version: only if we prevent loops (cheap loop test)
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)
- No, regardless of depth/cost

Memory requirement much better than BFS: $O(b m)$ vs. $O\left(b^{d}\right)$!
typically preferred to BFS

Depth-First Search (DFS): Properties

- How many steps?
- could process the whole tree!
\Longrightarrow if m finite, takes $O\left(b^{m}\right)$ time
- How much memory?
- only siblings on path to root $\Longrightarrow O(b m)$ memory size
- Is it complete?
- if infinite state space: no
- if finite state space:
- graph version: yes
- tree version: only if we prevent loops (cheap loop test)
- Is it optimal?
- No, regardless of depth/cost

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)
\Longrightarrow "leftmost" solution

[^11]
Depth-First Search (DFS): Properties

- How many steps?
- could process the whole tree!
\Longrightarrow if m finite, takes $O\left(b^{m}\right)$ time
- How much memory?
- only siblings on path to root $\Longrightarrow O(b m)$ memory size
- Is it complete?
- if infinite state space: no
- if finite state space:
- graph version: yes
- tree version: only if we prevent loops (cheap loop test)
- Is it optimal?
- No, regardless of depth/cost

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)
\Longrightarrow "leftmost" solution
Memory requirement much better than BFS: $O(b m)$ vs. $O\left(b^{d}\right)$! \Longrightarrow typically preferred to BFS

A Variant of DFS: Backtracking Search

Backtracking Search

- Idea: only one successor is generated at the time
- each partially-expanded node remembers which successor to generate next
- generate a successor by modifying the current state description, rather than copying it firs
- Applied in CSP, SAT/SMT and Logic Programming
only $O(m)$ memory is needed rather than $O(\mathrm{bm})$

A Variant of DFS: Backtracking Search

Backtracking Search

- Idea: only one successor is generated at the time
- each partially-expanded node remembers which successor to generate next
- generate a successor by modifying the current state description, rather than copying it firs
- Applied in CSP, SAT/SMT and Logic Programming
\Longrightarrow only $O(m)$ memory is needed rather than $O(b m)$

Outline

(1) Problem-Solving Agents
(2) Example Problems
(3) Search Generalities

- Tree Search
- Graph Search
- Implementation Issues \& Strategies
(4) Uninformed Search Strategies
- Breadth-First Search
- Uniform-cost Search
- Depth-First Search
- Depth-Limited Search \& Iterative Deepening
(5) Informed Search Strategies
- Greedy Search
- A* Search
- Memory-bounded Heuristic Search (hints)
- Heuristic Functions

Depth-Limited Search (DLS) Strategy

Depth-Limited Search (DLS)

- Idea: depth-first search with depth limit /
- i.e., nodes at depth / treated as having no successors
- DFS is DLS with $I=+\infty$
- solves the infinite-path problem of DFS
\Longrightarrow allows DFS deal with infinite-state spaces
- useful also if maximum-depth is known by domai knowledge
- e.g., if maximum node distance in a graph (diameter) is known
- Ex: Romania trip: 9 steps
- Drawbacks (d : depth of the shallowest goal):

Depth-Limited Search (DLS) Strategy

Depth-Limited Search (DLS)

- Idea: depth-first search with depth limit /
- i.e., nodes at depth / treated as having no successors
- DFS is DLS with $I=+\infty$
- solves the infinite-path problem of DFS
\Longrightarrow allows DFS deal with infinite-state spaces
- useful also if maximum-depth is known by domain knowledge
- e.g., if maximum node distance in a graph (diameter) is known
- Ex: Romania trip: 9 steps
- Drawbacks (d : depth of the shallowest goal)

Depth-Limited Search (DLS) Strategy

Depth-Limited Search (DLS)

- Idea: depth-first search with depth limit /
- i.e., nodes at depth / treated as having no successors
- DFS is DLS with $/=+\infty$
- solves the infinite-path problem of DFS
\Longrightarrow allows DFS deal with infinite-state spaces
- useful also if maximum-depth is known by domain knowledge
- e.g., if maximum node distance in a graph (diameter) is known
- Ex: Romania trip: 9 steps
- Drawbacks (d : depth of the shallowest goal):

Depth-Limited Search (DLS) Strategy

Depth-Limited Search (DLS)

- Idea: depth-first search with depth limit /
- i.e., nodes at depth / treated as having no successors
- DFS is DLS with $I=+\infty$
- solves the infinite-path problem of DFS
\Longrightarrow allows DFS deal with infinite-state spaces
- useful also if maximum-depth is known by domain knowledge
- e.g., if maximum node distance in a graph (diameter) is known
- Ex: Romania trip: 9 steps
- Drawbacks (d: depth of the shallowest goal):

Depth-Limited Search (DLS) Strategy

Depth-Limited Search (DLS)

- Idea: depth-first search with depth limit /
- i.e., nodes at depth / treated as having no successors
- DFS is DLS with $I=+\infty$
- solves the infinite-path problem of DFS
\Longrightarrow allows DFS deal with infinite-state spaces
- useful also if maximum-depth is known by domain knowledge
- e.g., if maximum node distance in a graph (diameter) is known
- Ex: Romania trip: 9 steps
- Drawbacks (d: depth of the shallowest goal):
- if $d>I \Longrightarrow$ incomplete
- if $d<I \Longrightarrow$ takes $O\left(b^{\prime}\right)$ instead of $O\left(b^{d}\right)$ steps

Depth-Limited Search (DLS) Strategy

Depth-Limited Search (DLS)

- Idea: depth-first search with depth limit /
- i.e., nodes at depth / treated as having no successors
- DFS is DLS with $I=+\infty$
- solves the infinite-path problem of DFS
\Longrightarrow allows DFS deal with infinite-state spaces
- useful also if maximum-depth is known by domain knowledge
- e.g., if maximum node distance in a graph (diameter) is known
- Ex: Romania trip: 9 steps
- Drawbacks (d : depth of the shallowest goal):
- if $d>I \Longrightarrow$ incomplete
- if $d<I \Longrightarrow$ takes $O\left(b^{\prime}\right)$ instead of $O\left(b^{d}\right)$ steps

Depth-Limited Search (DLS) Strategy

Depth-Limited Search (DLS)

- Idea: depth-first search with depth limit /
- i.e., nodes at depth / treated as having no successors
- DFS is DLS with $I=+\infty$
- solves the infinite-path problem of DFS
\Longrightarrow allows DFS deal with infinite-state spaces
- useful also if maximum-depth is known by domain knowledge
- e.g., if maximum node distance in a graph (diameter) is known
- Ex: Romania trip: 9 steps
- Drawbacks (d : depth of the shallowest goal):
- if $d>I \Longrightarrow$ incomplete
- if $d<I \Longrightarrow$ takes $O\left(b^{\prime}\right)$ instead of $O\left(b^{d}\right)$ steps

Depth-Limited Search (DLS) Strategy [cont.]

Recursive DLS

function DEPTH-LIMITED-SEARCH (problem, limit) returns a solution, or failure/cutoff return RECURSIVE-DLS(MAKE-NODE(problem.InITIAL-STATE), problem, limit)
function RECURSIVE-DLS(node, problem, limit) returns a solution, or failure/cutoff if problem.Goal-TEST(node.STATE) then return Solution(node) else if limit $=0$ then return cutoff else

$$
\begin{aligned}
& \text { cutoff_occurred } ? \leftarrow \text { false } \\
& \text { for each } \text { action in } \text { problem.ACTIONS }(\text { node.STATE }) \text { do } \\
& \text { child } \leftarrow \text { CHILD-NODE }(\text { problem, node, action }) \\
& \text { result } \leftarrow \text { RECURSIVE-DLS }(\text { child, problem, limit }-1) \\
& \text { if } \text { result }=\text { cutoff then } \text { cutoff_occurred } ? \leftarrow \text { true } \\
& \text { else if } \text { result } \neq \text { failure } \text { then return } \text { result } \\
& \text { if } \text { cutoff_occurred? then return } \text { cutoff } \text { else return } \text { failure }
\end{aligned}
$$

Iterative-Deepening Search Strategy (IDS)

Iterative-Deepening Search

- Idea: call iteratively DLS for increasing depths $I=0,1,2,3 \ldots$
- combines the advantages of breadth- and depth-first strategies
- The favorite search strategy when the search space is very large and depth is not known
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure for depth $=0$ to ∞ do
result \leftarrow DEPTH-LIMITED-SEARCH $($ problem, depth $)$
if result \neq cutoff then return result

Iterative-Deepening Search Strategy (IDS)

Iterative-Deepening Search

- Idea: call iteratively DLS for increasing depths $I=0,1,2,3 \ldots$
- combines the advantages of breadth- and depth-first strategies

```
- complete (like BFS)
- takes O(bd})\mathrm{ steps (like BFS and DFS)
- requires O(bd) memory (like DFS)
- explores a single branch at a time (like DFS)
- optimal only if step cost =1
```

 - optimal variants exist: iterative-lengthening search (see AIMA)
 - The favorite search strategy when the search space is very large and depth is not known
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure for depth $=0$ to ∞ do result \leftarrow DEPTH-LIMITED-SEARCH $($ problem, depth $)$
if result \neq cutoff then return result

Iterative-Deepening Search Strategy (IDS)

Iterative-Deepening Search

- Idea: call iteratively DLS for increasing depths $I=0,1,2,3 \ldots$
- combines the advantages of breadth- and depth-first strategies
- complete (like BFS)
- takes $O\left(b^{d}\right)$ steps (like BFS and DFS)
- requires $O(b d)$ memory (like DFS)
- explores a single branch at a time (like DFS)
- optimal only if step cost $=1$
- optimal variants exist: iterative-lengthening search (see AIMA)
- The favorite search strategy when the search snace is very large and depth is not known
function ITERATIVE-DEEPENING-SEARCH (problem) returns a solution, or failure for depth $=0$ to ∞ do
result \leftarrow DEPTH-LIMITED-SEARCH $($ problem, depth $)$
if result \neq cutoff then return result

Iterative-Deepening Search Strategy (IDS)

Iterative-Deepening Search

- Idea: call iteratively DLS for increasing depths $I=0,1,2,3 \ldots$
- combines the advantages of breadth- and depth-first strategies
- complete (like BFS)
- takes $O\left(b^{d}\right)$ steps (like BFS and DFS)
- requires $O(b d)$ memory (like DFS)
- explores a single branch at a time (like DFS)
- optimal only if step cost = 1
- optimal variants exist: iterative-lengthening search (see AIMA)
- The favorite search strategy when the search space is very large and depth is not known
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure for depth $=0$ to ∞ do
result \leftarrow DEPTH-LIMITED-SEARCH $($ problem, depth $)$
if result \neq cutoff then return result

Iterative-Deepening Search Strategy (IDS)

Iterative-Deepening Search

- Idea: call iteratively DLS for increasing depths $I=0,1,2,3 \ldots$
- combines the advantages of breadth- and depth-first strategies
- complete (like BFS)
- takes $O\left(b^{d}\right)$ steps (like BFS and DFS)
- requires $O(b d)$ memory (like DFS)
- explores a single branch at a time (like DFS)
- optimal only if step cost =1
- optimal variants exist: iterative-lengthening search (see AIMA)
- The favorite search strategy when the search space is very large and depth is not known
function ITERATIVE-DEEPENING-SEARCH (problem) returns a solution, or failure for depth $=0$ to ∞ do
result \leftarrow DEPTH-LIMITED-SEARCH $($ problem, depth $)$
if result \neq cutoff then return result

Iterative-Deepening Search Strategy (IDS)

Iterative-Deepening Search

- Idea: call iteratively DLS for increasing depths $I=0,1,2,3 \ldots$
- combines the advantages of breadth- and depth-first strategies
- complete (like BFS)
- takes $O\left(b^{d}\right)$ steps (like BFS and DFS)
- requires $O(b d)$ memory (like DFS)
- explores a single branch at a time (like DFS)
- optimal only if step cost $=1$
- optimal variants exist: iterative-lengthening search (see AIMA)
- The favorite search strategy when the search space is very large and depth is not known
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure for depth $=0$ to ∞ do
result \leftarrow DEPTH-LIMITED-SEARCH $($ problem, depth $)$
if result \neq cutoff then return result

Iterative-Deepening Search Strategy (IDS)

Iterative-Deepening Search

- Idea: call iteratively DLS for increasing depths $I=0,1,2,3 \ldots$
- combines the advantages of breadth- and depth-first strategies
- complete (like BFS)
- takes $O\left(b^{d}\right)$ steps (like BFS and DFS)
- requires $O(b d)$ memory (like DFS)
- explores a single branch at a time (like DFS)
- optimal only if step cost $=1$
- optimal variants exist: iterative-lengthening search (see AIMA)
- The favorite search strategy when the search space is very large and depth is not known
function ITERATIVE-DEEPENING-SEARCH (problem) returns a solution, or failure for depth $=0$ to ∞ do
result \leftarrow DEPTH-LIMITED-SEARCH $($ problem, depth $)$
if result \neq cutoff then return result

Iterative-Deepening Search Strategy (IDS)

Iterative-Deepening Search

- Idea: call iteratively DLS for increasing depths $I=0,1,2,3 \ldots$
- combines the advantages of breadth- and depth-first strategies
- complete (like BFS)
- takes $O\left(b^{d}\right)$ steps (like BFS and DFS)
- requires $O(b d)$ memory (like DFS)
- explores a single branch at a time (like DFS)
- optimal only if step cost = 1
- optimal variants exist: iterative-lengthening search (see AIMA)
- The favorite search strategy when the search space is very large and depth is not known
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure for depth $=0$ to ∞ do
result \leftarrow DEPTH-LIMITED-SEARCH $($ problem, depth $)$
if result \neq cutoff then return result

Iterative-Deepening Search (IDS) [cont.]

Limit $=0$
(ㅏ)
(© S. Russell \& P. Norwig, AIMA)

Iterative-Deepening Search (IDS) [cont.]

Iterative-Deepening Search (IDS) [cont.]

(©) S. Russell \& P. Norwig, AIMA)

Iterative-Deepening Search (IDS) [cont.]

Exercises

- Consider the following graph, initial state 0 , goal state 17 :
(1) explore it using IDS, tree version
(3) explore it using IDS, graph version
children should be expanded in numerical order

Exercises

(1) Consider the following graph, initial state 0 , goal state 17 :
(1) explore it using IDS, tree version
(2) explore it using IDS, graph version children should be expanded in numerical order

Iterative-Deepening Search Strategy (IDS) [cont.]

Remark: Why "only" $O\left(b^{d}\right)$ steps?

- may seem wasteful since states are generated multiple times..
- ... however, only a small fraction of nodes are multiply generated
- number of repeatedly-generated nodes decreases exponentially with number of repetitions
- depth 1 (b nodes): repeated d times
- depth 2 (b^{2} nodes): repeated $d-1$ times
-
- depth d (bd nodes): repeated 1 time

Iterative-Deepening Search Strategy (IDS) [cont.]

Remark: Why "only" $O\left(b^{d}\right)$ steps?

- may seem wasteful since states are generated multiple times...
- ... however, only a small fraction of nodes are multiply generated
- number of repeatedly-generated nodes decreases exponentially with number of repetitions
- depth 1 (b nodes): repeated d times
- depth 2 (b^{2} nodes): repeated $d-1$ times
- depth d (b^{d} nodes): repeated 1 time

Iterative-Deepening Search Strategy (IDS) [cont.]

Remark: Why "only" $O\left(b^{d}\right)$ steps?

- may seem wasteful since states are generated multiple times...
- ... however, only a small fraction of nodes are multiply generated
- number of repeatedly-generated nodes decreases exponentially with number of repetitions
- depth 1 (b nodes): repeated d times
- depth 2 (b^{2} nodes): repeated $d-1$ times
- depth d (b^{d} nodes): repeated 1 time

Iterative-Deepening Search Strategy (IDS) [cont.]

Remark: Why "only" $O\left(b^{d}\right)$ steps?

- may seem wasteful since states are generated multiple times...
- ... however, only a small fraction of nodes are multiply generated
- number of repeatedly-generated nodes decreases exponentially with number of repetitions
- depth 1 (b nodes): repeated d times
- depth 2 (b^{2} nodes): repeated $d-1$ times
- ...
- depth d (b^{d} nodes): repeated 1 time
- Ex: with $b=10$ and $d=5$:

not significantly worse than BFS

Iterative－Deepening Search Strategy（IDS）［cont．］

Remark：Why＂only＂$O\left(b^{d}\right)$ steps？
－may seem wasteful since states are generated multiple times．．．
－．．．however，only a small fraction of nodes are multiply generated
－number of repeatedly－generated nodes decreases exponentially with number of repetitions
－depth 1 （ b nodes）：repeated d times
－depth 2 （ b^{2} nodes）：repeated $d-1$ times
－．．．
－depth d（ b^{d} nodes）：repeated 1 time
\Longrightarrow The total number of generated nodes is：

$$
\begin{aligned}
N(I D S) & =(d) b^{1}+(d-1) b^{2}+\ldots+(1) b^{d}=O\left(b^{d}\right) \\
N(B F S) & =b^{1}+b^{2}+\ldots+b^{d}=O\left(b^{d}\right)
\end{aligned}
$$

－Ex：with $b=10$ and d $N(I D S)=50+400+3,000+20,000+100,000=123,000$
$N(B F S)=10+100+1,000+10,000+100,000=111,110$ not significantly worse than BFS

Iterative-Deepening Search Strategy (IDS) [cont.]

Remark: Why "only" $O\left(b^{d}\right)$ steps?

- may seem wasteful since states are generated multiple times...
- ... however, only a small fraction of nodes are multiply generated
- number of repeatedly-generated nodes decreases exponentially with number of repetitions
- depth 1 (b nodes): repeated d times
- depth 2 (b^{2} nodes): repeated $d-1$ times
- ...
- depth d (b^{d} nodes): repeated 1 time
\Longrightarrow The total number of generated nodes is:

$$
\begin{aligned}
N(I D S) & =(d) b^{1}+(d-1) b^{2}+\ldots+(1) b^{d}=O\left(b^{d}\right) \\
N(B F S) & =b^{1}+b^{2}+\ldots+b^{d}=O\left(b^{d}\right)
\end{aligned}
$$

- Ex: with $b=10$ and $d=5$:

$$
\begin{aligned}
& N(I D S)=50+400+3,000+20,000+100,000=123,000 \\
& N(B F S)=10+100+1,000+10,000+100,000=111,110
\end{aligned}
$$

not significantly worse than BFS

Iterative-Deepening Search Strategy (IDS) [cont.]

Remark: Why "only" $O\left(b^{d}\right)$ steps?

- may seem wasteful since states are generated multiple times...
- ... however, only a small fraction of nodes are multiply generated
- number of repeatedly-generated nodes decreases exponentially with number of repetitions
- depth 1 (b nodes): repeated d times
- depth 2 (b^{2} nodes): repeated $d-1$ times
- ...
- depth d (b^{d} nodes): repeated 1 time
\Longrightarrow The total number of generated nodes is:

$$
\begin{aligned}
N(I D S) & =(d) b^{1}+(d-1) b^{2}+\ldots+(1) b^{d}=O\left(b^{d}\right) \\
N(B F S) & =b^{1}+b^{2}+\ldots+b^{d}=O\left(b^{d}\right)
\end{aligned}
$$

- Ex: with $b=10$ and $d=5$:

$$
\begin{aligned}
& N(I D S)=50+400+3,000+20,000+100,000=123,000 \\
& N(B F S)=10+100+1,000+10,000+100,000=111,110
\end{aligned}
$$

\Longrightarrow not significantly worse than BFS

Bidirectional Search [hints]

- Idea: Two simultaneous searches:
- forward: from start node
- backward: from goal node
checking if the node belongs to the other frontier before expansion
- Rationale: $b^{d / 2}+b^{d / 2} \ll b^{d}$
\Longrightarrow number of steps and memory consumption are $\approx 2 b^{d / 2}$
- backward search can be tricky in some cases (e.g. 8-queens)

Uninformed Search Strategies: Comparison

Evaluation of tree-search strategies

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete?	Yes a	Yes $^{a, b}$	No	No	Yes a	Yes $^{a, d}$
Time	$O\left(b^{d}\right)$	$O\left(b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}\right)$	$O\left(b^{m}\right)$	$O\left(b^{\ell}\right)$	$O\left(b^{d}\right)$	$O\left(b^{d / 2}\right)$
Space	$O\left(b^{d}\right)$	$O\left(b^{1+\left\lfloor C^{*} / \epsilon\right\rfloor}\right)$	$O(b m)$	$O(b \ell)$	$O(b d)$	$O\left(b^{d / 2}\right)$
Optimal?	Yes c	Yes	No	No	Yes c	Yes $^{c, d}$

${ }^{a}$: complete if b is finite
b : complete if step costs $\geq \epsilon$ for some positive ϵ
c : optimal if step costs are all identical
d : if both directions use breadth-first search

For graph searches, the main differences are:

- depth-first search is complete for finite-state spaces
- space \& time complexities are bounded by the state space size

Outline

(1) Problem-Solving Agents
(2) Example Problems
(3) Search Generalities

- Tree Search
- Graph Search
- Implementation Issues \& Strategies
(4) Uninformed Search Strategies
- Breadth-First Search
- Uniform-cost Search
- Depth-First Search
- Depth-Limited Search \& Iterative Deepening
(5) Informed Search Strategies
- Greedy Search
- A* Search
- Memory-bounded Heuristic Search (hints)
- Heuristic Functions

Informed Search Strategies

Some general principles

- The intelligence of a system cannot be measured only in terms of search capacity, but in the ability to use knowledge about the problem to reduce/mitigate the combinatorial explosion
- If the system has some control on the order in which candidate solutions are generated, then it is useful to use this order so that actual solutions have a high chance to appear earlier
- For a system with limited processing capacity: intelligence is the wise choice of what to do next

Heuristic search and heuristic functions

Heuristic search and heuristic functions

- Uninformed UCS strategy ignores the goal when selecting nodes
\Longrightarrow Idea: don't ignore the goal when selecting nodes
- Intuition: often extra knowledge can be used to guide the search towards the goal: heuristics
- A heuristic is a function $h(n)$ that estimates how close a state n is to a goal
- designed for a particular search problem
- Ex Manhattan distance, Euclidean distance for pathing

Heuristic search and heuristic functions

Heuristic search and heuristic functions

- Uninformed UCS strategy ignores the goal when selecting nodes
\Longrightarrow Idea: don't ignore the goal when selecting nodes
- Intuition: often extra knowledge can be used to guide the search towards the goal: heuristics
- A heuristic is a function $h(n)$ that estimates how close a state n is to a goal
- designed for a particular search problem
- Ex Manhattan distance, Euclidean distance for pathing

Heuristic search and heuristic functions

Heuristic search and heuristic functions

- Uninformed UCS strategy ignores the goal when selecting nodes
\Longrightarrow Idea: don't ignore the goal when selecting nodes
- Intuition: often extra knowledge can be used to guide the search towards the goal: heuristics
- A heuristic is a function $h(n)$ that estimates how close a state n is to a goal
- designed for a particular search problem
- Ex Manhattan distance, Euclidean distance for pathing

Best-first Search Strategies

General approach of informed search: Best-first search

- Best-first search: node selected for expansion based on an evaluation function $f(n)$
- represent a cost estimate \Longrightarrow choose node which appears best
- implemented like uniform-cost search, with f instead of g
\Longrightarrow the frontier is a priority queue sorted in decreasing order of $f(n)$
- both tree-based and graph-based versions
- most often f includes a heuristic function $h(n)$
- Heuristic function $h(n)$
estimated cost of the cheapest path from the state at node n to a goal state
- $h(n) \geq 0 \forall n$
- If G is goal, then $h(G)=0$
- implements extra domain knowledge
- depends only on state, not on node (e.g., independent on paths)
- Main strategies:
- Greedy search
- A^{*} search

Best-first Search Strategies

General approach of informed search: Best-first search

- Best-first search: node selected for expansion based on an evaluation function $f(n)$
- represent a cost estimate \Longrightarrow choose node which appears best
- implemented like uniform-cost search, with f instead of g
\Longrightarrow the frontier is a priority queue sorted in decreasing order of $f(n)$
- both tree-based and graph-based versions
- most often f includes a heuristic function $h(n)$
- Heuristic function $h(n) \in \mathbb{R}^{+}$:
estimated cost of the cheapest path from the state at node n to a goal state
- $h(n) \geq 0 \forall n$
- If G is goal, then $h(G)=0$
- implements extra domain knowledge
- depends only on state, not on node (e.g., independent on paths)
- Main strategies:
- Greedy search
- A^{*} search

Best-first Search Strategies

General approach of informed search: Best-first search

- Best-first search: node selected for expansion based on an evaluation function $f(n)$
- represent a cost estimate \Longrightarrow choose node which appears best
- implemented like uniform-cost search, with f instead of g
\Longrightarrow the frontier is a priority queue sorted in decreasing order of $f(n)$
- both tree-based and graph-based versions
- most often f includes a heuristic function $h(n)$
- Heuristic function $h(n) \in \mathbb{R}^{+}$:
estimated cost of the cheapest path from the state at node n to a goal state
- $h(n) \geq 0 \forall n$
- If G is goal, then $h(G)=0$
- implements extra domain knowledge
- depends only on state, not on node (e.g., independent on paths)
- Main strategies:
- Greedy search
- A^{*} search

Example: Straight-Line Distance $h_{S L D}(n)$

- $h(n) \stackrel{\text { def }}{=} h_{\text {SLD }}(n)$: straight-line distance heuristic
- different from actual minimum-path dinstance
- cannot be computed from the problem description itself

Outline

(1) Problem-Solving Agents
(2) Example Problems
(3) Search Generalities

- Tree Search
- Graph Search
- Implementation Issues \& Strategies
(4) Uninformed Search Strategies
- Breadth-First Search
- Uniform-cost Search
- Depth-First Search
- Depth-Limited Search \& Iterative Deepening
(5) Informed Search Strategies
- Greedy Search
- A* Search
- Memory-bounded Heuristic Search (hints)
- Heuristic Functions

Greedy Best-First Search Strategy (GBFS)

Greedy Best-First Search (aka Greedy Search)

- Idea: Expand first the node n with lowest estimate cost to the closest goal, $h(n)$
- Implementation: same as uniform-cost search, with $g(n) \stackrel{\text { def }}{=} h(n)$
- both tree and graph versions

Greedy Best-First Search Strategy (GBFS)

Greedy Best-First Search (aka Greedy Search)

- Idea: Expand first the node n with lowest estimate cost to the closest goal, $h(n)$
- Implementation: same as uniform-cost search, with $g(n) \stackrel{\text { det }}{=} h(n)$
- both tree and graph versions

Greedy Best-First Search Strategy (GBFS)

Greedy Best-First Search (aka Greedy Search)

- Idea: Expand first the node n with lowest estimate cost to the closest goal, $h(n)$
- Implementation: same as uniform-cost search, with $g(n) \stackrel{\text { def }}{=} h(n)$
\Longrightarrow expands the node that appears to be closest to goal
- both tree and graph versions

Greedy Best-First Search Strategy (GBFS)

Greedy Best-First Search (aka Greedy Search)

- Idea: Expand first the node n with lowest estimate cost to the closest goal, $h(n)$
- Implementation: same as uniform-cost search, with $g(n) \stackrel{\text { def }}{=} h(n)$
\Longrightarrow expands the node that appears to be closest to goal
- both tree and graph versions

Greedy Best-First Search Strategy: Example

$$
D \frac{\text { Arad }}{366}
$$

Greedy Best-First Search Strategy: Example

Greedy Best-First Search Strategy: Example

Greedy Best-First Search Strategy: Example

Greedy Best-First Search Strategy: Example

(Arad, Sibiu, Fagaras, Bucharest)
Sibiu Bucharest

Greedy Best-First Search Strategy: Example

Greedy Best-First Search Strategy: Example

Greedy Best-First Search: (Non-)Optimality

- Greedy best-first search is not optimal
- it is not guaranteed to find the best solution
- it is not guaranteed to find the best path toward a solution
- picks the node with minimum (estimated) distance to goal, regardless the cost to reach it
- Ex: when in Sibiu, it picks Fagaras rather than Rimnicu Vicea

(C) S. Russell \& P. Norwig, AIMA)

Greedy Best-First Search: (In-)Completeness

- Tree-based Greedy best-first search is not complete
- may lead to infinite loops
- Graph-based version complete (if state space finite)
- substantially same completeness issues as DFS

Greedy Best-First Search (GBFS): Properties

- How many steps?

```
- in worst cases may explore all states \(\Longrightarrow\) takes \(O\left(b^{d}\right)\) time
if good heuristics:
\(\Longrightarrow\) may give good improvements
```

- How much memory?
- Is it complete?
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Greedy Best-First Search (GBFS): Properties

- How many steps?
- in worst cases may explore all states
\Longrightarrow takes $O\left(b^{d}\right)$ time
if good heuristics:
\Longrightarrow may give good improvements
- How much memory?
- Is it complete?
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Greedy Best-First Search (GBFS): Properties

- How many steps?
- in worst cases may explore all states
\Longrightarrow takes $O\left(b^{d}\right)$ time
if good heuristics:
\Longrightarrow may give good improvements
- How much memory?
- max frontier size: b^{d} (as with UCS) $\Longrightarrow O\left(b^{d}\right)$ memory size
- Is it complete?
- Is it optimal?

Greedy Best-First Search (GBFS): Properties

- How many steps?
- in worst cases may explore all states
\Longrightarrow takes $O\left(b^{d}\right)$ time
if good heuristics:
\Longrightarrow may give good improvements
- How much memory?
- max frontier size: b^{d} (as with UCS)
$\Longrightarrow O\left(b^{d}\right)$ memory size
- Is it complete?
- Is it optimal?

Greedy Best-First Search (GBFS): Properties

- How many steps?
- in worst cases may explore all states
\Longrightarrow takes $O\left(b^{d}\right)$ time
if good heuristics:
\Longrightarrow may give good improvements
- How much memory?
- max frontier size: b^{d} (as with UCS)
$\Longrightarrow O\left(b^{d}\right)$ memory size
- Is it complete?
- tree: no
graph: yes if space finite
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

Greedy Best-First Search (GBFS): Properties

- How many steps?
- in worst cases may explore all states
\Longrightarrow takes $O\left(b^{d}\right)$ time
if good heuristics:
\Longrightarrow may give good improvements
- How much memory?
- max frontier size: b^{d} (as with UCS)
$\Longrightarrow O\left(b^{d}\right)$ memory size
- Is it complete?
- tree: no
graph: yes if space finite
- Is it optimal?

Greedy Best-First Search (GBFS): Properties

- How many steps?
- in worst cases may explore all states
\Longrightarrow takes $O\left(b^{d}\right)$ time
if good heuristics:
\Longrightarrow may give good improvements
- How much memory?
- max frontier size: b^{d} (as with UCS)
$\Longrightarrow O\left(b^{d}\right)$ memory size
- Is it complete?
- tree: no
graph: yes if space finite
- Is it optimal?

Greedy Best-First Search (GBFS): Properties

- How many steps?
- in worst cases may explore all states
\Longrightarrow takes $O\left(b^{d}\right)$ time
if good heuristics:
\Longrightarrow may give good improvements
- How much memory?
- max frontier size: b^{d} (as with UCS)
$\Longrightarrow O\left(b^{d}\right)$ memory size
- Is it complete?
- tree: no
graph: yes if space finite
- Is it optimal?
- No

Greedy Best-First Search (GBFS): Properties

- How many steps?
- in worst cases may explore all states
\Longrightarrow takes $O\left(b^{d}\right)$ time
if good heuristics:
\Longrightarrow may give good improvements
- How much memory?
- max frontier size: b^{d} (as with UCS)
$\Longrightarrow O\left(b^{d}\right)$ memory size
- Is it complete?
- tree: no
graph: yes if space finite
- Is it optimal?
- No

Memory requirement is a major problem also for GBFS

Outline

(1) Problem-Solving Agents
(2) Example Problems
(3) Search Generalities

- Tree Search
- Graph Search
- Implementation Issues \& Strategies
(4) Uninformed Search Strategies
- Breadth-First Search
- Uniform-cost Search
- Depth-First Search
- Depth-Limited Search \& Iterative Deepening
(5) Informed Search Strategies
- Greedy Search
- A^{*} Search
- Memory-bounded Heuristic Search (hints)
- Heuristic Functions

A^{*} Search Strategy

A* Search

- Best-known form of best-first search
- Idea: avoid expanding paths that are already expensive
- Combine Uniform-Cost and Greedv search: $f(n)=a(n)+h(n)$
- $g(n)$: cost so far to reach n
- $h(n)$: estimated cost to goal from n
- $f(n)$: estimated total cost of path through n to goal
\Longrightarrow Expand first the node n with lowest estimated cost of the cheapest solution through n
- Implementation: same as uniform-cost search, with $g(n)+h(n)$ instead of $g(n)$

A^{*} Search Strategy

A* Search

- Best-known form of best-first search
- Idea: avoid expanding paths that are already expensive
- Combine Uniform-Cost and Greedy search: $f(n)=g(n)+h(n)$
- $g(n)$: cost so far to reach n
- $h(n)$: estimated cost to goal from n
- $f(n)$: estimated total cost of path through n to goal
\rightarrow Expand first the node n with lowest estimated cost of the cheapest solution through n
- Implementation: same as uniform-cost search, with $a(n)+h(n)$ instead of $g(n)$

A^{*} Search Strategy

A* Search

- Best-known form of best-first search
- Idea: avoid expanding paths that are already expensive
- Combine Uniform-Cost and Greedy search: $f(n)=g(n)+h(n)$
- $g(n)$: cost so far to reach n
- $h(n)$: estimated cost to goal from n
- $f(n)$: estimated total cost of path through n to goal
\rightarrow Expand first the node n with lowest estimated cost of the cheapest solution through n
- Implementation: same as uniform-cost search, with $g(n)+h(n)$ instead of $g(n)$

A^{*} Search Strategy

A* Search

- Best-known form of best-first search
- Idea: avoid expanding paths that are already expensive
- Combine Uniform-Cost and Greedy search: $f(n)=g(n)+h(n)$
- $g(n)$: cost so far to reach n
- $h(n)$: estimated cost to goal from n
- $f(n)$: estimated total cost of path through n to goal

[^12]
A^{*} Search Strategy

A^{*} Search

- Best-known form of best-first search
- Idea: avoid expanding paths that are already expensive
- Combine Uniform-Cost and Greedy search: $f(n)=g(n)+h(n)$
- $g(n)$: cost so far to reach n
- $h(n)$: estimated cost to goal from n
- $f(n)$: estimated total cost of path through n to goal
\Longrightarrow Expand first the node n with lowest estimated cost of the cheapest solution through n
- Implementation: same as uniform-cost search, with $g(n)+h(n)$ instead of $g(n)$

A^{*} Search Strategy

A^{*} Search

- Best-known form of best-first search
- Idea: avoid expanding paths that are already expensive
- Combine Uniform-Cost and Greedy search: $f(n)=g(n)+h(n)$
- $g(n)$: cost so far to reach n
- $h(n)$: estimated cost to goal from n
- $f(n)$: estimated total cost of path through n to goal
\Longrightarrow Expand first the node n with lowest estimated cost of the cheapest solution through n
- Implementation: same as uniform-cost search, with $g(n)+h(n)$ instead of $g(n)$

A* Search Strategy: Example

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

- A* Search orders by the sum: $f(n)=g(n)+h(n)$

A* Search Strategy: Example

Exercise

- Modify the Romanian Map example as follows:
- drop the arcs from Faragas to Bucharest and from Pitesti to Bucharest
- add one arc from Oradea to Neamt of length 250.
- Execute the A^{*} algorithm from Arad to Bucharest with such new map

A* Search: Admissible and Consistent Heuristics

Admissible heuristics $h(n)$

- $h(n)$ is admissible (aka optimistic) iff it never overestimates the cost to reach the goal:
- $h(n) \leq h^{*}(n)$ where $h^{*}(n)$ is the true cost from n
- ex: the straight-line distance $h_{S D L}()$ to Bucharest

Consistent heuristics $h(n)$

- $h(n)$ is consistent (aka monotonic) iff, for every successor n ' of n generated by any action a with step cost $c\left(n, a, n^{\prime}\right)$,
$h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)$
- verifies the triangular inequality
- ex: the straight-line distance $h_{S D L}()$ to Bucharest

A* Tree Search: Optimality

If $h(n)$ is admissible, then A^{*} tree search is optimal

- Suppose some sub-optimal goal G_{2} is in the frontier queue.
- n unexpanded node on a shortest path to an optimal goal G.
- then: $\quad f\left(G_{2}\right)=g\left(G_{2}\right)$ since $h\left(G_{2}\right)=0$
$a(G)$ since G_{2} sub-optimal
$\geq f(n) \quad$ since h is admissible

A* Tree Search: Optimality

If $h(n)$ is admissible, then A^{*} tree search is optimal

- Suppose some sub-optimal goal G_{2} is in the frontier queue.
- n unexpanded node on a shortest path to an optimal goal G.
- then:

A^{*} will not pick G_{2} from the frontier queue before n

A* Tree Search: Optimality

If $h(n)$ is admissible, then A^{*} tree search is optimal

- Suppose some sub-optimal goal G_{2} is in the frontier queue.
- n unexpanded node on a shortest path to an optimal goal G.
- then:

$$
\begin{aligned}
f\left(G_{2}\right) & =g\left(G_{2}\right) \quad \text { since } h\left(G_{2}\right)=0 \\
& >g(G) \quad \text { since } G_{2} \text { sub-optimal } \\
& \geq f(n) \quad \text { since } h \text { is admissible }
\end{aligned}
$$

A* will not pick G_{2} from the frontier queue before n

A* Tree Search: Optimality

If $h(n)$ is admissible, then A^{*} tree search is optimal

- Suppose some sub-optimal goal G_{2} is in the frontier queue.
- n unexpanded node on a shortest path to an optimal goal G.
- then:

$$
\begin{aligned}
f\left(G_{2}\right) & =g\left(G_{2}\right) \quad \text { since } h\left(G_{2}\right)=0 \\
& >g(G) \quad \text { since } G_{2} \text { sub-optimal } \\
& \geq f(n) \quad \text { since } h \text { is admissible }
\end{aligned}
$$

$\Longrightarrow A^{*}$ will not pick G_{2} from the frontier queue before n

A^{*} Graph Search: Properties

Properties

(1) if $h(n)$ is consistent, then $h(n)$ is admissible (straightforward)
(2) If $h(n)$ is consistent, then $f(n)$ is non-decreasing along any path:

- let n^{\prime} be a successor of n :
\qquad

$$
f\left(n^{\prime}\right)=g\left(n^{\prime}\right)+h\left(n^{\prime}\right)=g(n)+c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right) \geq g(n)+h(n)=f(n)
$$

(3) Graph A^{*} selects node n from the frontier only if the optimal path to n has been found

- if not so, there would be a node n^{\prime} in the frontier on the optimal path to n (because of the graph separation property)
- since f is non-decreasing along any path, $f\left(n^{\prime}\right) \leq f(n)$
- since n^{\prime} is on the optimal path to $n, f\left(n^{\prime}\right)<f(n)$
$\Longrightarrow n^{\prime}$ would have been selected before n
A^{*} (graph search) expands nodes in non-decreasing order of f

[^13]
A^{*} Graph Search: Properties

Properties

(1) if $h(n)$ is consistent, then $h(n)$ is admissible (straightforward)
(2) If $h(n)$ is consistent, then $f(n)$ is non-decreasing along any path:

- let n^{\prime} be a successor of n :

```
g(n')
```

$f\left(n^{\prime}\right)=g\left(n^{\prime}\right)+h\left(n^{\prime}\right)=g(n)+c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right) \geq g(n)+h(n)=f(n)$
(3) Graph A^{*} selects node n from the frontier only if the optimal path to n has been found

- if not so, there would be a node n^{\prime} in the frontier on the optimal path to n (because of the graph separation property)
- since f is non-decreasing along any path, $f\left(n^{\prime}\right) \leq f(n)$
- since n^{\prime} is on the optimal path to $n, f\left(n^{\prime}\right)<f(n)$
n^{\prime} would have been selected before n
A^{*} (graph search) expands nodes in non-decreasing order of f

[^14]
A^{*} Graph Search: Properties

Properties

(1) if $h(n)$ is consistent, then $h(n)$ is admissible (straightforward)
(2) If $h(n)$ is consistent, then $f(n)$ is non-decreasing along any path:

- let n^{\prime} be a successor of n :

$$
f\left(n^{\prime}\right)=g\left(n^{\prime}\right)+h\left(n^{\prime}\right)=\overbrace{g(n)+c\left(n, a, n^{\prime}\right)}^{g\left(n^{\prime}\right)}+h\left(n^{\prime}\right) \geq g(n)+h(n)=f(n)
$$

(8) Graph A^{*} selects node n from the frontier only if the optimal path to n has been found

- if not so, there would be a node n^{\prime} in the frontier on the optimal path to n
(because of the graph separation property)
- since f is non-decreasing along any path, $f\left(n^{\prime}\right) \leq f(n)$
- since n^{\prime} is on the optimal path to $n, f\left(n^{\prime}\right)<f(n)$
n^{\prime} would have been selected before n
A^{*} (graph search) expands nodes in non-decreasing order of f

[^15]
A^{*} Graph Search: Properties

Properties

(1) if $h(n)$ is consistent, then $h(n)$ is admissible (straightforward)
(2) If $h(n)$ is consistent, then $f(n)$ is non-decreasing along any path:

- let n^{\prime} be a successor of n :

$$
f\left(n^{\prime}\right)=g\left(n^{\prime}\right)+h\left(n^{\prime}\right)=\overbrace{g(n)+c\left(n, a, n^{\prime}\right)}^{g\left(n^{\prime}\right)}+h\left(n^{\prime}\right) \geq g(n)+h(n)=f(n)
$$

(3) Graph A^{*} selects node n from the frontier only if the optimal path to n has been found

- if not so, there would be a node n^{\prime} in the frontier on the optimal path to n (because of the graph separation property)
- since f is non-decreasing along any path, $f\left(n^{\prime}\right) \leq f(n)$
- since n^{\prime} is on the optimal path to $n, f\left(n^{\prime}\right)<f(n)$
$\Longrightarrow n^{\prime}$ would have been selected before n
$\Longrightarrow A^{*}$ (graph search) expands nodes in non-decreasing order of f

As long as we progress along an optimal path, h becomes progressively less optimistic and more realistic.

A^{*} Graph Search: Properties

Properties

(1) if $h(n)$ is consistent, then $h(n)$ is admissible (straightforward)
(2) If $h(n)$ is consistent, then $f(n)$ is non-decreasing along any path:

- let n^{\prime} be a successor of n :

$$
f\left(n^{\prime}\right)=g\left(n^{\prime}\right)+h\left(n^{\prime}\right)=\overbrace{g(n)+c\left(n, a, n^{\prime}\right)}^{g\left(n^{\prime}\right)}+h\left(n^{\prime}\right) \geq g(n)+h(n)=f(n)
$$

(3) Graph A^{*} selects node n from the frontier only if the optimal path to n has been found

- if not so, there would be a node n^{\prime} in the frontier on the optimal path to n (because of the graph separation property)
- since f is non-decreasing along any path, $f\left(n^{\prime}\right) \leq f(n)$
- since n^{\prime} is on the optimal path to $n, f\left(n^{\prime}\right)<f(n)$
$\Longrightarrow n^{\prime}$ would have been selected before n
$\Longrightarrow A^{*}$ (graph search) expands nodes in non-decreasing order of f

As long as we progress along an optimal path, h becomes progressively less optimistic and more realistic.

A^{*} Graph Search: Optimality

If $h(n)$ is consistent, then A^{*} graph search is optimal

- A^{*} expands nodes in order of non-decreasing f value
- Gradually adds "f-contours" of nodes (as BFS adds layers)
- contour i has all nodes with $f=f_{i}$, s.t. $f_{i}<f_{i+1}$
- cannot expand contour f_{i+1} until contour f_{i} is fully expanded
- If C^{*} is the cost of the optimal solution path
(1) A^{*} expands all nodes s.t. $f(n)<C$
(2) A^{*} might expand some of the nodes on "goal contour" s.t. $f(n)=C^{*}$ before selecting a goal node
- A^{*} does not expand nodes s.t. $f^{\prime}(n)>C^{*}$ (pruning)

(© S. Russell \& P. Norwig, AIMA)

A^{*} Graph Search: Optimality

If $h(n)$ is consistent, then A^{*} graph search is optimal

- A^{*} expands nodes in order of non-decreasing f value
- Gradually adds "f-contours" of nodes (as BFS adds layers)
- contour i has all nodes with $f=f_{i}$, s.t. $f_{i}<f_{i+1}$
- cannot expand contour f_{i+1} until contour f_{i} is fully expanded
- If C^{*} is the cost of the optimal solution path
(1) A^{*} expands all nodes s.t. $f(n)<C$
(2) A^{*} might expand some of the nodes on "goal contour" s.t. $f(n)=C^{*}$ before selecting a goal node - A^{*} does not expand nodes s.i. $f^{\prime}(n)>C^{*}$ (pruning)

(© S. Russell \& P. Norwig, AIMA)

A^{*} Graph Search: Optimality

If $h(n)$ is consistent, then A^{*} graph search is optimal

- A^{*} expands nodes in order of non-decreasing f value
- Gradually adds "f-contours" of nodes (as BFS adds layers)
- contour i has all nodes with $f=f_{i}$, s.t. $f_{i}<f_{i+1}$
- cannot expand contour f_{i+1} until contour f_{i} is fully expanded
- If C^{*} is the cost of the optimal solution path
(1) A^{*} expands all nodes s.t. $f(n)<C^{*}$
(2) A^{*} might expand some of the nodes on "goal contour" s.t. $f(n)=C^{*}$ before selecting a goal node.
(3) A^{*} does not expand nodes s.t. $f(n)>C^{*}$ (pruning)

UCS vs A^{*} Contours

Intuition

- UCS expands equally in all "directions"

[^16]
UCS vs A^{*} Contours

Intuition

- UCS expands equally in all "directions"
- A^{*} expands mainly toward the goal

[^17]
A^{*} Search: Completeness

If all step costs exceed some finite ϵ and b is finite, then there are only finitely many nodes n s.t. $f(n) \leq C^{*}$
$\Longrightarrow A^{*}$ is complete.

A^{*} Search: Properties

(Under simplified hypotheses) it can be shown the following.
Let $\epsilon \stackrel{\text { def }}{=}\left(h^{*}-h\right) / h^{*}$ (relative error)
b^{ϵ} : effective branching factor

- How many steps?
if good heuristics, may give dramatic
- How much memory?
- Is it complete?
- Is it optimal?

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

A^{*} Search: Properties

(Under simplified hypotheses) it can be shown the following.
Let $\epsilon \stackrel{\text { def }}{=}\left(h^{*}-h\right) / h^{*}$ (relative error)
b^{ϵ} : effective branching factor

- How many steps?
- takes $O\left(\left(b^{\epsilon}\right)^{d}\right)$ time if good heuristics, may give dramatic improvements
- How much memory?
- Is it complete?
- Is it optimal?

A^{*} Search: Properties

(Under simplified hypotheses) it can be shown the following.
Let $\epsilon \stackrel{\text { def }}{=}\left(h^{*}-h\right) / h^{*}$ (relative error)
b^{ϵ} : effective branching factor

- How many steps?
- takes $O\left(\left(b^{\epsilon}\right)^{d}\right)$ time if good heuristics, may give dramatic improvements
- How much memory?
- Keeps all nodes in memory
$\Longrightarrow O\left(\left(b^{\epsilon}\right)^{d}\right)$ memory size
(exponential, like UCS)
- Is it complete?

- Is it optimal?

A^{*} Search: Properties

(Under simplified hypotheses) it can be shown the following.
Let $\epsilon \xlongequal{=}\left(h^{*}-h\right) / h^{*}$ (relative error)
b^{ϵ} : effective branching factor

- How many steps?
- takes $O\left(\left(b^{\epsilon}\right)^{d}\right)$ time if good heuristics, may give dramatic improvements
- How much memory?
- Keeps all nodes in memory
$\Longrightarrow O\left(\left(b^{\epsilon}\right)^{d}\right)$ memory size
(exponential, like UCS)
- Is it complete?

- Is it optimal?

A^{*} Search: Properties

(Under simplified hypotheses) it can be shown the following.
Let $\epsilon \xlongequal{=}\left(h^{*}-h\right) / h^{*}$ (relative error)
b^{ϵ} : effective branching factor

- How many steps?
- takes $O\left(\left(b^{\epsilon}\right)^{d}\right)$ time if good heuristics, may give dramatic improvements
- How much memory?
- Keeps all nodes in memory
$\Longrightarrow O\left(\left(b^{\epsilon}\right)^{d}\right)$ memory size
(exponential, like UCS)
- Is it complete?
- Is it optimal?

A^{*} Search: Properties

(Under simplified hypotheses) it can be shown the following.
Let $\epsilon \xlongequal{=}\left(h^{*}-h\right) / h^{*}$ (relative error)
b^{ϵ} : effective branching factor

- How many steps?
- takes $O\left(\left(b^{\epsilon}\right)^{d}\right)$ time if good heuristics, may give dramatic improvements
- How much memory?
- Keeps all nodes in memory
$\Longrightarrow O\left(\left(b^{\epsilon}\right)^{d}\right)$ memory size
(exponential, like UCS)
- Is it complete?
- yes
- Is it optimal?

A^{*} Search: Properties

(Under simplified hypotheses) it can be shown the following.
Let $\epsilon \xlongequal{=}\left(h^{*}-h\right) / h^{*}$ (relative error)
b^{ϵ} : effective branching factor

- How many steps?
- takes $O\left(\left(b^{\epsilon}\right)^{d}\right)$ time if good heuristics, may give dramatic improvements
- How much memory?
- Keeps all nodes in memory
$\Longrightarrow O\left(\left(b^{\epsilon}\right)^{d}\right)$ memory size
(exponential, like UCS)
- Is it complete?
- yes
- Is it optimal?

A^{*} Search: Properties

(Under simplified hypotheses) it can be shown the following.
Let $\epsilon \xlongequal{=}\left(h^{*}-h\right) / h^{*}$ (relative error)
b^{ϵ} : effective branching factor

- How many steps?
- takes $O\left(\left(b^{\epsilon}\right)^{d}\right)$ time if good heuristics, may give dramatic improvements
- How much memory?
- Keeps all nodes in memory
$\Longrightarrow O\left(\left(b^{\epsilon}\right)^{d}\right)$ memory size
(exponential, like UCS)
- Is it complete?
- yes
- Is it optimal?

- yes

A^{*} Search: Properties

(Under simplified hypotheses) it can be shown the following.
Let $\epsilon \xlongequal{=}\left(h^{*}-h\right) / h^{*}$ (relative error)
b^{ϵ} : effective branching factor

- How many steps?
- takes $O\left(\left(b^{\epsilon}\right)^{d}\right)$ time if good heuristics, may give dramatic improvements
- How much memory?
- Keeps all nodes in memory
$\Longrightarrow O\left(\left(b^{\epsilon}\right)^{d}\right)$ memory size
(exponential, like UCS)
- Is it complete?
- yes
- Is it optimal?

- yes

Memory requirement is a major problem also for A^{*}

Outline

(1) Problem-Solving Agents
(2) Example Problems
(3) Search Generalities

- Tree Search
- Graph Search
- Implementation Issues \& Strategies
(4) Uninformed Search Strategies
- Breadth-First Search
- Uniform-cost Search
- Depth-First Search
- Depth-Limited Search \& Iterative Deepening
(5) Informed Search Strategies
- Greedy Search
- A* Search
- Memory-bounded Heuristic Search (hints)
- Heuristic Functions

Memory-bounded Heuristic Search (hints)

Some solutions to A^{*} space problems (maintain completeness and optimality)

- Iterative-deepening A^{*} (IDA*)
- here cutoff information is the f-cost $(g+h)$ instead of depth
- Recursive best-first search(RBFS)
- attempts to mimic standard best-first search with linear space
- (simple) Memory-bounded A^{*} ((S)MA*)
- drop the worst-leaf node when memory is full

Outline

(1) Problem-Solving Agents
(2) Example Problems
(3) Search Generalities

- Tree Search
- Graph Search
- Implementation Issues \& Strategies
(4) Uninformed Search Strategies
- Breadth-First Search
- Uniform-cost Search
- Depth-First Search
- Depth-Limited Search \& Iterative Deepening
(5) Informed Search Strategies
- Greedy Search
- A* Search
- Memory-bounded Heuristic Search (hints)
- Heuristic Functions

Admissible Heuristics

Main problem

What is the best admissible/consistent heuristic?

Dominance of Admissible Heuristics

Dominance

Let $h_{1}(n), h_{2}(n)$ admissible heuristics.

- $h_{2}(n)$ dominates $h_{1}(n)$ iff $h_{2}(n) \geq h_{1}(n)$ for all n.
$\Longrightarrow h_{2}(n)$ is better for search
- is nearer to $h^{*}(n)$

Let $h_{1}(n), h_{2}(n)$ admissible heuristics. Let $h_{12} \stackrel{\text { def }}{=} \max \left(h_{1}(n), h_{2}(n)\right)$.

- h_{12} is also admissible
- h_{12} dominates both $h_{1}(n), h_{2}(n)$

Dominance of Admissible Heuristics

Dominance

Let $h_{1}(n), h_{2}(n)$ admissible heuristics.

- $h_{2}(n)$ dominates $h_{1}(n)$ iff $h_{2}(n) \geq h_{1}(n)$ for all n.
$\Longrightarrow h_{2}(n)$ is better for search
- is nearer to $h^{*}(n)$

Let $h_{1}(n), h_{2}(n)$ admissible heuristics. Let $h_{12} \stackrel{\text { def }}{=} \max \left(h_{1}(n), h_{2}(n)\right)$.

- h_{12} is also admissible
- h_{12} dominates both $h_{1}(n), h_{2}(n)$

Admissible Heuristics: Example

Ex: Heuristics for the 8-puzzle

- $h_{1}(n)$: number of misplaced tiles
- $h_{2}(n)$: total Manhattan distance over all tiles
- (i.e., \# of squares from desired location of each tile)
- $h_{1}(S)$?
- $h_{2}(S)$?
- $h^{*}(S)$?
- both $h_{1}(n), h_{2}(n)$ admissible (\leq number of actual steps to solve) - $h_{2}(n)$ dominates $h_{1}(n)$

Admissible Heuristics: Example

Ex: Heuristics for the 8-puzzle

- $h_{1}(n)$: number of misplaced tiles
- $h_{2}(n)$: total Manhattan distance over all tiles
- (i.e., \# of squares from desired location of each tile)
- $h_{1}(S)$?
- $h_{2}(S)$?
- $h^{*}(S)$?
- both $h_{1}(n), h_{2}(n)$ admissible (\leq number of actual steps to solve) - $h_{2}(n)$ dominates $h_{1}(n)$
Start State

1	2	3
4	5	6
7	8	
7		

Goal State

Admissible Heuristics: Example

Ex: Heuristics for the 8-puzzle

- $h_{1}(n)$: number of misplaced tiles
- $h_{2}(n)$: total Manhattan distance over all tiles
- (i.e., \# of squares from desired location of each tile)
- $h_{1}(S)$? 6
- $h_{2}(S)$?
- $h^{*}(S)$?
- both $h_{1}(n), h_{2}(n)$ admissible (\leq number of actual steps to solve) - $h_{2}(n)$ dominates $h_{1}(n)$

Admissible Heuristics: Example

Ex: Heuristics for the 8-puzzle

- $h_{1}(n)$: number of misplaced tiles
- $h_{2}(n)$: total Manhattan distance over all tiles
- (i.e., \# of squares from desired location of each tile)
- $h_{1}(S)$? 6
- $h_{2}(S)$?
- both $h_{1}(n), h_{2}(n)$ admissible (\leq number of actual steps to solve)
- $h_{2}(n)$ dominates $h_{1}(n)$
Start State

1	2	3
4	5	6
7	8	
7		

Goal State

Admissible Heuristics: Example

Ex: Heuristics for the 8-puzzle

- $h_{1}(n)$: number of misplaced tiles
- $h_{2}(n)$: total Manhattan distance over all tiles
- (i.e., \# of squares from desired location of each tile)
- $h_{1}(S)$? 6
- $h_{2}(S)$? $4+0+3+3+1+0+2+1=14$
- $h^{*}(S)$?
- both $h_{1}(n), h_{2}(n)$ admissible (\leq number of actual steps to solve)
- $h_{2}(n)$ dominates $h_{1}(n)$
Start State

1	2	3
4	5	6
7	8	
7		

Goal State

Admissible Heuristics: Example

Ex: Heuristics for the 8-puzzle

- $h_{1}(n)$: number of misplaced tiles
- $h_{2}(n)$: total Manhattan distance over all tiles
- (i.e., \# of squares from desired location of each tile)
- $h_{1}(S)$? 6
- $h_{2}(S)$? $4+0+3+3+1+0+2+1=14$
- $h^{*}(S) ? 26$
- both $h_{1}(n), h_{2}(n)$ admissible (\leq number of actual steps to solve)
- $h_{2}(n)$ dominates $h_{1}(n)$
Start State

1	2	3
4	5	6
7	8	
7		

Goal State

Admissible Heuristics: Example

Ex: Heuristics for the 8-puzzle

- $h_{1}(n)$: number of misplaced tiles
- $h_{2}(n)$: total Manhattan distance over all tiles
- (i.e., \# of squares from desired location of each tile)
- $h_{1}(S)$? 6
- $h_{2}(S)$? $4+0+3+3+1+0+2+1=14$
- $h^{*}(S)$? 26
- both $h_{1}(n), h_{2}(n)$ admissible (\leq number of actual steps to solve)
- $h_{2}(n)$ dominates $h_{1}(n)$

7	2	4	1	2	3
5		6	4	5	6
8	3	1	7	8	

Admissible Heuristics: Example

Ex: Heuristics for the 8-puzzle

- $h_{1}(n)$: number of misplaced tiles
- $h_{2}(n)$: total Manhattan distance over all tiles
- (i.e., \# of squares from desired location of each tile)
- $h_{1}(S)$? 6
- $h_{2}(S)$? $4+0+3+3+1+0+2+1=14$
- $h^{*}(S)$? 26
- both $h_{1}(n), h_{2}(n)$ admissible (\leq number of actual steps to solve)
- $h_{2}(n)$ dominates $h_{1}(n)$
Start State

1	2	3
4	5	6
7	8	
7		

Goal State

Quality of Heuristics

Effective branching factor

- Effective branching factor b^{*} : the branching factor that a uniform tree of depth d would have in order to contain $\mathrm{N}+1$ nodes

$$
N+1=1+b^{*}+\left(b^{*}\right)^{2}+\ldots+\left(b^{*}\right)^{d}
$$

N being the number of nodes generated by the A^{*} search

- ex: if $\mathrm{d}=5$ and $N=52$, then $b^{*}=1.92$
- experimental measure of b^{*} is fairly constant for hard problems
\Longrightarrow can provide a good guide to the heuristic's overall usefulness
- Ideal value of b^{*} is 1

Admissible Heuristics: Example [cont.]

Average performances on 100 random samples of 8-puzzle
Iterative-deepening search (IDS) vs. A^{*}

	Search Cost (nodes generated)			Effective Branching Factor		
d	IDS	$\mathrm{A}^{*}\left(h_{1}\right)$	$\mathrm{A}^{*}\left(h_{2}\right)$	IDS	$\mathrm{A}^{*}\left(h_{1}\right)$	$\mathrm{A}^{*}\left(h_{2}\right)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	-	539	113	2.78	1.42
14	-	1301	211	-	1.44	1.24
16	-	3056	363	-	1.45	1.23
18	-	7276	676	-	1.46	1.47
20	-	18094	1219	-	1.48	1.26
22	-	39135	1641	-	1.48	1.28
24	-				1.26	

(© S. Russell \& P. Norwig, AIMA)

\Longrightarrow Dramatic performance improvement

Admissible Heuristics from Relaxed Problems

Idea: Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

- Relaxed 8-puzzle: a tile can move from any tile to any other tile
- Relaxed 8-puzzle: a tile can move to any adjacent square

Admissible Heuristics from Relaxed Problems

Idea: Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

- Relaxed 8-puzzle: a tile can move from any tile to any other tile
$\Longrightarrow h_{1}(n)$ gives the shortest solution
- Relaxed 8-puzzle: a tile can move to any adjacent square

Admissible Heuristics from Relaxed Problems

Idea: Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

- Relaxed 8-puzzle: a tile can move from any tile to any other tile
$\Longrightarrow h_{1}(n)$ gives the shortest solution
- Relaxed 8-puzzle: a tile can move to any adjacent square

Admissible Heuristics from Relaxed Problems

Idea: Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

- Relaxed 8-puzzle: a tile can move from any tile to any other tile $\Longrightarrow h_{1}(n)$ gives the shortest solution
- Relaxed 8-puzzle: a tile can move to any adjacent square $\Longrightarrow h_{2}(n)$ gives the shortest solution

Admissible Heuristics from Relaxed Problems

Idea: Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

- Relaxed 8-puzzle: a tile can move from any tile to any other tile $\Longrightarrow h_{1}(n)$ gives the shortest solution
- Relaxed 8-puzzle: a tile can move to any adjacent square $\Longrightarrow h_{2}(n)$ gives the shortest solution

Admissible Heuristics from Relaxed Problems

Idea: Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

- Relaxed 8-puzzle: a tile can move from any tile to any other tile $\Longrightarrow h_{1}(n)$ gives the shortest solution
- Relaxed 8-puzzle: a tile can move to any adjacent square $\Longrightarrow h_{2}(n)$ gives the shortest solution
- The relaxed problem adds edges to the state space
\Longrightarrow any optimal solution in the original problem is also a solution in the relaxed problem
\Longrightarrow the cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- the derived heuristic is an exact cost for the relaxed problem
must obey the triangular inequality
consistent

Admissible Heuristics from Relaxed Problems

Idea: Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

- Relaxed 8-puzzle: a tile can move from any tile to any other tile $\Longrightarrow h_{1}(n)$ gives the shortest solution
- Relaxed 8-puzzle: a tile can move to any adjacent square $\Longrightarrow h_{2}(n)$ gives the shortest solution
- The relaxed problem adds edges to the state space
\Longrightarrow any optimal solution in the original problem is also a solution in the relaxed problem
\Longrightarrow the cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- the derived heuristic is an exact cost for the relaxed problem
\Longrightarrow must obey the triangular inequality
\Longrightarrow consistent

Inferring Automatically Admissible Heuristics

Idea: If a problem definition is written down in a formal language, it is possible to construct relaxed problems automatically

Example

The tool ABSolver can generate such heuristics automatically.

Inferring Automatically Admissible Heuristics

Idea: If a problem definition is written down in a formal language, it is possible to construct relaxed problems automatically

Example

- 8-puzzle actions:
a tile can move from square A to square B if
A is horizontally or vertically adjacent to B, and
B is blank
- we can generate three relaxed problems by removing one or both of the conditions
(a) a tile can move from square A to square B if A is adjacent to B
(b) a tile can move from square A to square B if B is blank
(c) a tile can move from square A to square B
(a) corresponds to $h_{2}(n)$, (c) corresponds to $h_{1}(n)$,

[^18]
Inferring Automatically Admissible Heuristics

Idea: If a problem definition is written down in a formal language, it is possible to construct relaxed problems automatically

Example

- 8-puzzle actions:
a tile can move from square A to square B if
A is horizontally or vertically adjacent to B, and
B is blank
- we can generate three relaxed problems by removing one or both of the conditions
(a) a tile can move from square A to square B if A is adjacent to B
(b) a tile can move from square A to square B if B is blank
(c) a tile can move from square A to square B
(a) corresponds to $h_{2}(n)$, (c) corresponds to $h_{1}(n)$,

[^19]
Inferring Automatically Admissible Heuristics

Idea: If a problem definition is written down in a formal language, it is possible to construct relaxed problems automatically

Example

- 8-puzzle actions:
a tile can move from square A to square B if
A is horizontally or vertically adjacent to B, and
B is blank
- we can generate three relaxed problems by removing one or both of the conditions
(a) a tile can move from square A to square B if A is adjacent to B
(b) a tile can move from square A to square B if B is blank
(c) a tile can move from square A to square B
$\Longrightarrow(\mathrm{a})$ corresponds to $h_{2}(n)$, (c) corresponds to $h_{1}(n)$,

Inferring Automatically Admissible Heuristics

Idea: If a problem definition is written down in a formal language, it is possible to construct relaxed problems automatically

Example

- 8-puzzle actions:
a tile can move from square A to square B if
A is horizontally or vertically adjacent to B, and
B is blank
- we can generate three relaxed problems by removing one or both of the conditions
(a) a tile can move from square A to square B if A is adjacent to B
(b) a tile can move from square A to square B if B is blank
(c) a tile can move from square A to square B
\Longrightarrow (a) corresponds to $h_{2}(n)$, (c) corresponds to $h_{1}(n)$,
The tool ABSolver can generate such heuristics automatically.

Learning Admissible Heuristics

- Another way to find an admissible heuristic is through learning from experience:
- Experience = solving lots of 8-puzzles
- An inductive learning algorithm can be used to predict costs for other states that arise during search

[^0]: \Longrightarrow Problem-solving agents are (a kind of) goal-based agents

[^1]: The agent is assumed to have no heuristic knowledge about traveling in Romania to exploit.

[^2]: The choice of a good abstraction involves removing as much detail as possible, while retaining
 validity and ensuring that the abstract actions are easy to carry out.

[^3]: The choice of a good abstraction involves removing as much detail as possible, while retaining
 validity and ensuring that the abstract actions are easy to carry out.

[^4]: (© S. Russell \& P. Norwig, AIMA)

[^5]: (C) S. Russell \& P. Norwig, AIMA)

[^6]: Moral: Algorithms that forget their history are doomed to repeat it!

[^7]: function CHILD-NODE (problem, parent, action) returns a node return a node with

 STATE $=$ problem. $\operatorname{RESULT}($ parent.STATE, action $)$,
 PARENT $=$ parent, $\mathrm{ACTION}=$ action ,
 PATH-COST $=$ parent $. \mathrm{PATH}-\mathrm{COST}+$ problem $. \mathrm{STEP}-\operatorname{COST}($ parent. STATE, action $)$

[^8]: (Courtesy of Michela Milano, UniBO)

[^9]: (Courtesy of Michela Milano, UniBO)

[^10]: (Courtesy of Michela Milano, UniBO)

[^11]: Memory requirement much better than BFS: O(bm) vs. O(bl)! \Longrightarrow typically preferred to BFS

[^12]: \Rightarrow Expand first the node n with lowest estimated cost of the cheapest solution through n

 - Implementation: same as uniform-cost search, with $g(n)+h(n)$ instead of $g(n)$

[^13]: As long as we progress along an optimal path, h becomes progressively less optimistic and more realistic.

[^14]: As long as we progress along an optimal path, h becomes progressively less optimistic and more realistic.

[^15]: As long as we progress along an optimal path, h becomes progressively less optimistic and more realistic.

[^16]: (© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

[^17]: (© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)

[^18]: The tool ABSolver can generate such heuristics automatically.

[^19]: The tool ABSolver can generate such heuristics automatically.

