Fundamentals of Artificial Intelligence Laboratory

Dr. Mauro Dragoni

Apply online DFS for reaching the goal (N-13) from the start (N-0). Report the list
of physically visited nodes. Nodes are visited in descending order.

Apply online DFS for reaching the goal (N-13) from the start (N-0). Report the list
of physically visited nodes. Nodes are visited in descending order.

List of visited nodes:0, 7, 14, 7, 8, 12, 16, 17, 15, 11, 15, 17, 13

Apply online DFS for reaching the goal (N-16) from the start (N-0). Report the list
of physically visited nodes. Nodes are visited in ascending order.

 Apply online DFS for reaching the goal (N-16) from the start (N-0). Report the list of physically visited nodes. Nodes are visited in ascending order.

List of visited nodes:0, 1, 5, 6, 2, 6, 3, 17, 10, 9, 13, 16

 Apply online DFS for reaching the goal (N-16) from the start (N-0). Report the list of physically visited nodes. Nodes are visited in descending order.

 Apply online DFS for reaching the goal (N-16) from the start (N-0). Report the list of physically visited nodes. Nodes are visited in descending order.

List of visited nodes:0, 14, 15, 14, 7, 8, 7, 4, 5, 9, 13, 16

- The agent starts from S, it has to reach G. Each step costs 1. Heuristic is based on Manhattan distance.
- In case of same h(s) values, the order of possible actions are: UP, RIGHT, DOWN, LEFT

	1	2	3	4
1			G	
2				
3	4			
4	S (5)	4		

	1	2	3	4
1			G	
2				
3	4			
4	S (5)	4		

	1	2	3	4
1			G	
2				
3	6			
4	S (5)	4		

	1	2	3	4
1			G	
2				
3	6	3		
4	S (5)	4	3	

	1	2	3	4
1			G	
2				
3	6	3		
4	S (5)	4	3	

	1	2	3	4
1			G	
2		2		
3	6	3	2	
4	S (5)	4	3	

	1	2	3	4
1			G	
2		2		
3	6	3	2	
4	S (5)	4	3	

	•	_		•
1		1	G	
2	3	2	1	
3	6	3	2	
4	S (5)	4	3	

	1	2	3	4
1		1	G	
2	3	2	1	
3	6	3	2	
4	S (5)	4	3	

1		1	G	
2	3	2	1	
3	6	3	2	
4	S (5)	4	3	

	1	2	3	4	
1		1	G		
2	3	2	1		
3	6	3	2		
4	S (5)	4	3		

	1	2	3	4
1		3	G	
2	3	2	1	
3	6	3	2	
4	S (5)	4	3	

1		3	G	
2	3	2	1	
3	6	3	2	
4	S (5)	4	3	

	1	2	3	4
1		3	G	
2	3	2	1	
3	6	3	2	
4	S (5)	4	3	

1		3	G	
2	3	2	1	2
3	6	3	2	
4	S (5)	4	3	

	1	2	3	4	
1		3	G		
2	3	2	1	2	
3	6	3	2		
4	S (5)	4	3		

1		3	G	
2	3	2	3	2
3	6	3	2	
4	S (5)	4	3	

	1	2	3	4	
1		3	G		1
2	3	2	1	2	2
3	6	3	2		3
4	S (5)	4	3		4

	3	G	1
3	2	3	2
6	3	2	3
S (5)	4	3	

	1	2	3	4	
1		3	G	1	1
2	3	2	1	2	2
3	6	3	2	3	3
4	S (5)	4	3		4

	3	G (0)	1
3	2	3	2
6	3	2	3
S (5)	4	3	

- The agent starts from S, it has to reach G.
 Each step costs:
 2 when UP
 1 otherwise.
 Heuristic is based on Manhattan distance.
- In case of same h(s) values, the order of possible actions are: RIGHT, DOWN, UP, LEFT

- The agent starts from S, it has to reach G.
 Each step costs:
 2 when UP
 1 otherwise.
 Heuristic is based on Manhattan distance.
- In case of same h(s) values, the order of possible actions are:
 RIGHT, DOWN, UP, LEFT

	1	2	3	4
1			G	
2				
3	4			
4	S (5)	4		

1			G	
2				
3	4	3		
4	S (5)	4	3	

	1	2	3	4
1			G	
2				
3	4	3		
4	S (5)	4	3	

1			G	
2				
3	4	3	2	
4	S (5)	4	3	4

	1	2	3	4
1			G	
2				
3	4	3	2	
4	S (5)	4	3	4

1			G	
2				
3	4	3	2	
4	S (5)	4	4	4

	1	2	3	4		1	2	3	4
1			G		1			G	
2					2				
3	4	3	2		3	4	3	4	
4	S (5)	4	4	4	4	S (5)	4	4	4

	1	2	3	4	
1			G		1
2					2
3	4	3	4		3
4	S (5)	4	4	4	

1			G	
2		2		
3	4	3	4	
4	S (5)	4	4	4

- The agent starts from S, it has to reach G.
 Each step costs:
 2 when UP
 1 otherwise.
 Heuristic is based on Manhattan distance.
- In case of same h(s) values, the order of possible actions are:
 RIGHT, DOWN, UP, LEFT

	1	2	3	4		1	2	3	4
1			G		1		1	G	1
2		2			2	3	2	3	3
3	4	3	4		3	4	4	4	
4	S (5)	4	4	4	4	S (5)	4	4	4

- The agent starts from S, it has to reach G.
 - Each step costs:
 - 2 when UP
 - 1 otherwise.
 - Heuristic is based on Manhattan distance.
- In case of same h(s) values, the order of possible actions are: RIGHT, DOWN, UP, LEFT