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Acting Under Uncertainty

Agents often make decisions based on incomplete information
partial observability
nondeterministic actions

Partial solution (see previous chapters): maintain belief states
represent the set of all possible world states the agent might be in
generating a contingency plan handling every possible eventuality

Several drawbacks:
must consider every possible explanation for the observation (even very-unlikely ones)
=⇒ impossibly complex belief-states
contingent plans handling every eventuality grow arbitrarily large
sometimes there is no plan that is guaranteed to achieve the goal

Agent’s knowledge cannot guarantee a successful outcome ...
... but can provide some degree of belief (likelihood) on it
A rational decision depends on both the relative importance of (sub)goals and the likelihood
that they will be achieved
Probability theory offers a clean way to quantify likelihood
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Acting Under Uncertainty: Example

Automated taxi to Airport

Goal: deliver a passenger to the airport on time
Action At : leave for airport t minutes before flight

How can we be sure that A90 will succeed?

Too many sources of uncertainty:
partial observability (ex: road state, other drivers’ plans, etc.)
uncertainty in action outcome (ex: flat tire, etc.)
noisy sensors (ex: unreliable traffic reports)
complexity of modelling and predicting traffic

=⇒ With purely-logical approach it is difficult to anticipate everything that can go wrong
risks falsehood: “A25 will get me there on time” or
leads to conclusions that are too weak for decision making:
“A25 will get me there on time if there’s no accident on the bridge , and it doesn’t rain and my tires
remain intact , and...”

Over-cautious choices are not rational solutions either
ex: A1440 causes staying overnight at the airport
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Acting Under Uncertainty: Example (2)

A medical diagnosis

Given the symptoms (toothache) infer the cause (cavity)
How to encode this relation in logic?

diagnostic rules:
Toothache→ Cavity (wrong)
Toothache→ (Cavity ∨GumProblem ∨ Abscess ∨ ...)
(too many possible causes, some very unlikely)
causal rules:
Cavity → Toothache (wrong)
(Cavity ∧ ...)→ Toothache (many possible (con)causes)

Problems in specifying the correct logical rules:
Complexity: too many possible antecedents or consequents
Theoretical ignorance: no complete theory for the domain
Practical ignorance: no complete knowledge of the patient
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Summarizing Uncertainty

Probability allows to summarize the uncertainty on effects of
laziness: failure to enumerate exceptions, qualifications, etc.
ignorance: lack of relevant facts, initial conditions, etc.

Probability can be derived from
statistical data (ex: 80% of toothache patients so far had cavities)
some knowledge (ex: 80% of toothache patients has cavities)
their combination thereof

Probability statements are made with respect to a state of knowledge (aka evidence), not
with respect to the real world

e.g., “The probability that the patient has a cavity, given that she has a toothache, is 0.8”:
P(HasCavity(patient) | hasToothAche(patient)) = 0.8

Probabilities of propositions change with new evidence:
“The probability that the patient has a cavity, given that she has a toothache and a history of gum
disease, is 0.4”:
P(HasCavity(patient) | hasToothAche(patient) ∧ HistoryOfGum(patient)) = 0.4
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Making Decisions Under Uncertainty

Ex: Suppose I believe:
P(A25 gets me there on time |...) = 0.04
P(A90 gets me there on time |...) = 0.70
P(A120 gets me there on time |...) = 0.95
P(A1440 gets me there on time |...) = 0.9999
Which action to choose?

=⇒ Depends on tradeoffs among preferences:
missing flight vs. costs (airport cuisine, sleep overnight in airport)

When there are conflicting goals the agent may express preferences among them by means
of a utility function.
Utilities are combined with probabilities in the general theory of rational decisions, aka
decision theory:
Decision theory = Probability theory + Utility theory
Maximum Expected Utility (MEU): an agent is rational if and only if it chooses the action that
yields the maximum expected utility, averaged over all the possible outcomes of the action.
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Probabilities Basics: an AI-sh Introduction

Probabilistic assertions: state how likely possible worlds are
Sample space Ω: the set of all possible worlds

ω ∈ Ω is a possible world (aka sample point or atomic event)
ex: the dice roll (1,4)
the possible worlds are mutually exclusive and exhaustive
ex: the 36 possible outcomes of rolling two dice: (1,1), (1,2), ...

A probability model (aka probability space) is a sample space with an assignment P(ω) for
every ω ∈ Ω s.t.

0 ≤ P(ω) ≤ 1, for every ω ∈ Ω
Σω∈ΩP(ω) = 1

Ex: 1-die roll: P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6
An Event A is any subset of Ω, s.t. P(A) = Σω∈AP(ω)

events can be described by propositions in some formal language
ex: P(Total = 11) = P(5, 6) + P(6, 5) = 1/36 + 1/36 = 1/18
ex: P(doubles) = P(1, 1) + P(2, 2) + ...+ P(6, 6) = 6/36 = 1/6

10 / 44



Random Variables

Factored representation of possible worlds: sets of 〈variable, value〉 pairs
Variables in probability theory: Random variables

domain: the set of possible values a variable can take on
ex: Die: {1, 2, 3, 4, 5, 6}, Weather: {sunny , rain, cloudy , snow}, Odd: {true, false}
a r.v. can be seen as a function from sample points to the domain:
ex: Die(ω), Weather(ω),... (“(ω)” typically omitted)

Probability Distribution gives the probabilities of all the possible values of a random variable
X : P(X = xi )

def
= Σω∈X(ω)P(ω)

ex: P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2
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Propositions and Probabilities

We think a proposition a as the event A (set of sample points) where the proposition is true
Odd is a propositional random variable of range {true, false}
notation: a⇐⇒ “A = true′′

Given Boolean random variables A and B:
a: set of sample points where A(ω) = true
¬a: set of sample points where A(ω) = false
a ∧ b: set of sample points where A(ω) = true, B(ω) = true

=⇒ with Boolean random variables, sample points are PL models
Proposition: disjunction of the sample points in which it is true

ex: (a ∨ b) ≡ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)
=⇒ P(a ∨ b) = P(¬a ∧ b) + P(a ∧ ¬b) + P(a ∧ b)

Some derived facts:
P(¬a) = 1− P(a)
P(a ∨ b) = P(a) + P(b)− P(a ∧ b)
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Probability Distributions

Probability Distribution gives the probabilities of all the possible values of a random variable
ex: Weather: {sunny , rain, cloudy , snow}

=⇒ P(Weather) = (0.6, 0.1, 0.29, 0.01)⇐⇒


P(Weather = sunny) = 0.6
P(Weather = rain) = 0.1
P(Weather = cloudy) = 0.29
P(Weather = snow) = 0.01


normalized: their sum is 1

Joint Probability Distribution for multiple variables
gives the probability of every sample point

ex: P(Weather ,Cavity) =
Weather = sunny rain cloudy snow
Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 0.576 0.08 0.064 0.08

Every event is a sum of sample points,
=⇒ its probability is determined by the joint distribution
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Probability for Continuous Variables
Express continuous probability distributions:

density functions f (x) ∈ [0, 1] s.t
∫ +∞
−∞ f (x)dx = 1

P(x ∈ [a,b]) =
∫ b

a f (x) dx
=⇒ P(x ∈ [val, val]) = 0, P(x ∈ [−∞,+∞]) = 1

ex: P(x ∈ [20, 22]) =
∫ 22

20 0.125 dx = 0.25

Density: P(x) = P(X = x)
def
= limdx 7→0 P(X ∈ [x , x + dx ])/dx

ex: P(20.1) = limdx 7→0 P(X ∈ [20.1, 20.1 + dx ])/dx = 0.125
note: P(v) 6= P(x ∈ [v , v ]) = 0

(© S. Russell & P. Norwig, AIMA)
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Conditional Probabilities

Unconditional or prior probabilities refer to degrees of belief in propositions in the absence of
any other information (evidence)

ex: P(cavity) = 0.2, P(Total = 11) = 1/18, P(double) = 1/6

Conditional or posterior probabilities refer to degrees of belief in proposition a given some
evidence b: P(a|b)

evidence: information already revealed
ex: P(cavity |toothache) = 0.6: p. of a cavity given a toothache (assuming no other information is
provided!)
ex: P(Total =11|die1 =5)=1/6: p. of total 11 given first die is 5

=⇒ restricts the set of possible worlds to those where the first die is 5

Note: P(a|... ∧ a) = 1, P(a|... ∧ ¬a) = 0
ex: P(cavity |toothache ∧ cavity) = 1, P(cavity |toothache ∧ ¬cavity) = 0

Less specific belief still valid after more evidence arrives
ex: P(cavity) = 0.2 holds even if P(cavity |toothache) = 0.6

New evidence may be irrelevant, allowing for simplification
ex: P(cavity |toothache, 49ersWin) = P(cavity |toothache) = 0.8
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Conditional Probabilities [cont.]

Conditional probability: P(a|b)
def
= P(a∧b)

P(b) , s.t. P(b)>0

ex: P(Total = 11|die1 = 5) = P(Total=11∧die1=5)
P(die1=5)

= 1/6·1/6
1/6 = 1/6

observing b restricts the possible worlds to those where b is true

Production rule: P(a ∧ b) = P(a|b) · P(b) = P(b|a) · P(a)

Production rule for whole distributions: P(X ,Y ) = P(X |Y ) · P(Y )
ex: P(Weather ,Cavity) = P(Weather |Cavity)P(Cavity), that is:

P(sunny , cavity) = P(sunny |cavity)P(cavity)
...
P(snow ,¬cavity) = P(snow |¬cavity)P(¬cavity)

a 4× 2 set of equations, not matrix multiplication!

Chain rule is derived by successive application of product rule:
P(X1, ...,Xn)
= P(X1, ...,Xn−1)P(Xn|X1, ...,Xn−1)
= P(X1, ...,Xn−2)P(Xn−1|X1, ...,Xn−2)P(Xn|X1, ...,Xn−1)
= ...
=
∏n

i=1 P(Xi |X1, ...,Xi−1)
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Logic vs. Probability

Logic Probability
a P(a) = 1
¬a P(a) = 0

a→ b P(b|a) = 1
(a,a→ b)

b
P(a) = 1,P(b|a) = 1

P(b) = 1
(a→ b,b → c)

a→ c
P(b|a) = 1,P(c|b) = 1

P(c|a) = 1

Proof of P(b|a) = 1,P(c|b) = 1 =⇒ P(c|a) = 1
P(b|a) = 1 =⇒ P(¬b, a)

def
= P(¬b|a)P(a) = 0

P(c|b) = 1 =⇒ P(¬c, b)
def
= P(¬c|b)P(b) = 0

P(¬c, a) = P(¬c, a, b) + P(¬c, a,¬b) ≤ P(¬c, b)︸ ︷︷ ︸
0

+ P(a,¬b)︸ ︷︷ ︸
0

= 0

P(¬c|a) = P(¬c, a)/P(a) = 0
P(c|a) = 1− P(¬c|a) = 1

(Courtesy of Maria Simi, UniPI)
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Probabilistic Inference via Enumeration

Basic Ideas

Start with the joint distribution P(Toothache,Catch,Cavity)

For any proposition ϕ, sum the atomic events where ϕ is true: P(ϕ) = Σω : ω|=ϕP(ω)
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Probabilistic Inference via Enumeration: Example

Example: Generic Inference

Start with the joint distribution P(Toothache,Catch,Cavity)

For any proposition ϕ, sum the atomic events where ϕ is true: P(ϕ) = Σω : ω|=ϕP(ω):
Ex: P(cavity ∨ toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28

(© S. Russell & P. Norwig, AIMA)
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Marginalization

Start with the joint distribution P(Toothache,Catch,Cavity)

Marginalization (aka summing out):
sum up the probabilities for each possible value of the other variables:
P(Y) =

∑
z∈Z P(Y, z)

Ex: P(Toothache) =
∑

z∈{Catch,Cavity} P(Toothache, z)

Conditioning: variant of marginalization, involving conditional probabilities instead of joint
probabilities (using the product rule)
P(Y) =

∑
z∈Z P(Y|z)P(z)

Ex: P(Toothache) =
∑

z∈{Catch,Cavity} P(Toothache|z)P(z)
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Marginalization: Example

Start with the joint distribution P(Toothache,Catch,Cavity)

Marginalization (aka summing out):
sum up the probabilities for each possible value of the other variables:
P(Y) =

∑
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P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
P(¬toothache) = 1− P(toothache) = 1− 0.2 = 0.8

=⇒ P(Toothache) = 〈0.2,0.8〉

(© S. Russell & P. Norwig, AIMA)
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Conditional Probability via Enumeration: Example

Start with the joint distribution P(Toothache,Catch,Cavity)

Conditional Probability:

Ex: P(¬cavity |toothache) = P(¬cavity∧toothache)
P(toothache)

= 0.016+0.064
0.108+0.012+0.016+0.064 = 0.4

Ex: P(cavity |toothache) = P(cavity∧toothache)
P(toothache) = ... = 0.6

(© S. Russell & P. Norwig, AIMA)
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Normalization

Let X be all the variables. Typically, we want P(Y|E = e):
the conditional joint distribution of the query variables Y
given specific values e for the evidence variables E
let the hidden variables be H def

= X \ (Y ∪ E)

The summation of joint entries is done by summing out the hidden variables:
P(Y |E = e) = αP(Y ,E = e) = αΣh∈HP(Y ,E = e,H = h)

where α def
= 1/P(E = e) (different α’s for different values of e)

=⇒ it is easy to compute α by normalization
note: the terms in the summation are joint entries,
because Y, E, H together exhaust the set of random variables X

Idea: compute whole distribution on query variable by:
fixing evidence variables and summing over hidden variables
normalize the final distribution, so that

∑
... = 1

Complexity: O(2n), n number of propositions =⇒ impractical for large n’s
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Normalization: Example

α
def
= 1/P(toothache) can be viewed as a normalization constant

Idea: compute whole distribution on query variable by:
fixing evidence variables and summing over hidden variables
normalize the final distribution, so that

∑
... = 1

Ex:
P(Cavity |toothache) = αP(Cavity ∧ toothache)
= α[P(Cavity , toothache, catch) + P(Cavity , toothache,¬catch)]
= α[〈0.108,0.016〉+ 〈0.012,0.064〉]
= α〈0.12,0.08〉 = (normalization) = 〈0.6,0.4〉 [α=5]

P(Cavity |¬toothache) = ... = α〈0.08,0.72〉 = 〈0.1,0.9〉[α=1.25]

(© S. Russell & P. Norwig, AIMA) 25 / 44
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Independence
Variables X and Y are independent iff P(X ,Y ) = P(X )P(Y )
(or equivalently, iff P(X |Y ) = P(X ) or P(Y |X ) = P(Y ))

ex: P(Toothache,Catch,Cavity ,Weather) = P(Toothache,Catch,Cavity)P(Weather)
=⇒ e.g. P(toothache, catch, cavity , cloudy) = P(toothache, catch, cavity)P(cloudy)

typically based on domain knowledge
May drastically reduce the number of entries and computation
=⇒ ex: 32-element table decomposed into one 8-element and one 4-element table

Unfortunately, absolute independence is quite rare

(© S. Russell & P. Norwig, AIMA)
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Conditional Independence

Variables X and Y are conditionally independent given Z iff P(X ,Y |Z) = P(X |Z)P(Y |Z)
(or equivalently, iff P(X |Y ,Z) = P(X |Z) or P(Y |X ,Z) = P(Y |Z))
Consider P(Toothache,Cavity ,Catch)

if I have a cavity, the probability that the probe catches in it doesn’t depend on whether I have a
toothache: P(catch|toothache, cavity) = P(catch|cavity)
the same independence holds if I haven’t got a cavity:
P(catch|toothache,¬cavity) = P(catch|¬cavity)

=⇒ Catch is conditionally independent of Toothache given Cavity:
P(Catch|Toothache,Cavity) = P(Catch|Cavity)
or, equivalently: P(Toothache|Catch,Cavity) = P(Toothache|Cavity), or
P(Toothache,Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)

Hint: Toothache and Catch are two (mutually-independent) effects of the same cause Cavity
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Conditional Independence [cont.]

In many cases, the use of conditional independence reduces the size of the representation
of the joint distribution dramatically

even from exponential to linear!

Ex:

P(Toothache,Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

=⇒ Passes from 7 to 2+2+1=5 independent numbers
P(Toothache,Catch,Cavity) contains 7 independent entries
(the 8th can be obtained as 1−

∑
...)

P(Toothache|Cavity),P(Catch|Cavity) contain 2 independent entries (2× 2 matrix, each row
sums to 1)
P(Cavity) contains 1 independent entry

General Case: if one causes has n independent effects:
P(Cause,Effect1, ...,Effectn) = P(Cause)

∏
i P(Effecti |Cause)

=⇒ reduces from 2n+1 − 1 to 2n + 1 independent entries
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Exercise

Consider the joint probability distribution described in the table in previous section (slide 20
onwards): P(Toothache,Catch,Cavity)

Consider the example in previous slide:
P(Toothache,Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

Compute separately the distributions P(Toothache|Catch,Cavity), P(Catch|Cavity),
P(Cavity), P(Toothache|Cavity).
Recompute P(Toothache,Catch,Cavity) in two ways:

P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)
P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

and compare the result with P(Toothache,Catch,Cavity)
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Bayes’ Rule

Bayes’ Rule/Theorem/Law

Bayes’ rule: P(a|b) =
P(a ∧ b)

P(b)
=

P(b|a)P(a)

P(b)

In distribution form P(Y |X ) =
P(X |Y )P(Y )

P(X )
= αP(X |Y )P(Y )

α
def
= 1/P(X ): normalization constant to make P(Y |X ) entries sum to 1

(different α′s for different values of X )

A version conditionalized on some background evidence e:

P(Y |X ,e) =
P(X |Y ,e)P(Y |e)

P(X |e)
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Using Bayes’ Rule: The Simple Case

Used to assess diagnostic probability from causal probability:

P(cause|effect) =
P(effect |cause)P(cause)

P(effect)
P(cause|effect) goes from effect to cause (diagnostic direction)
P(effect |cause) goes from cause to effect (causal direction)

Example

An expert doctor is likely to have causal knowledge ... P(symptoms|disease)
(i.e., P(effect |cause))
... and needs producing diagnostic knowledge P(disease|symptoms) (i.e., P(cause|effect))
Ex: let m be meningitis, s be stiff neck

P(m) = 1/50000, P(s) = 0.01 (prior knowledge, from statistics)
“meningitis causes to the patient a stiff neck in 70% of cases”: P(s|m) = 0.7 (doctor’s experience)

=⇒ P(m|s) =
P(s|m)P(m)

P(s)
=

0.7 · 1/50000
0.01

= 0.0014
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Using Bayes’ Rule: Combining Evidence

A naive Bayes model is a probability model that assumes the effects are conditionally
independent, given the cause
=⇒ P(Cause,Effect1, ...,Effectn) = P(Cause)

∏
i P(Effecti |Cause)

total number of parameters is linear in n
ex: P(Cavity ,Toothache,Catch) = P(Cavity)P(Toothache|Cavity)P(Catch|Cavity)

Q: How can we compute P(Cause|Effect1, ...,Effectk )?
ex P(Cavity |toothache ∧ catch)?

(© S. Russell & P. Norwig, AIMA)
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Using Bayes’ Rule: Combining Evidence [cont.]

Q: How can we compute P(Cause|Effect1, ...,Effectk )?
ex: P(Cavity |toothache ∧ catch)?

A: Apply Bayes’ Rule

P(Cavity |toothache ∧ catch)
= P(toothache ∧ catch|Cavity)P(Cavity)/P(toothache ∧ catch)
= αP(toothache ∧ catch|Cavity)P(Cavity)
= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

α
def
= 1/P(toothache ∧ catch) not computed explicitly

General case: P(Cause|Effect1, ...,Effectn) = αP(Cause)
∏

i P(Effecti |Cause)

α
def
= 1/P(Effect1, ...,Effectn) not computed explicitly

(one α value for every value of Effect1, ...,Effectn)
=⇒ reduces from 2n+1 − 1 to 2n + 1 independent entries
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An Example: The Wumpus World
A probability model of the Wumpus World

Consider again the Wumpus World (restricted to pit detection)
Evidence: no pit in (1,1), (1,2), (2,1), breezy in (1,2), (2,1)

Q. Given the evidence, what is the probability of having a pit in (1,3), (2,2) or (3,1)?
Two groups of variables:

Pij = true iff [i, j] contains a pit
(“causes”)
Bij = true iff [i, j] is breezy
(“effects”, consider only
B1,1, B1,2, B2,1)

Joint Distribution:
P(P1,1, ...,P4,4,B1,1,B1,2,B2,1)

Known facts (evidence):
b∗ def

= ¬b1,1 ∧ b1,2 ∧ b2,1

p∗ def
= ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1

Queries: P(P1,3|b∗,p∗)? P(P22|b∗,p∗)?
(P(P3,1|b∗,p∗) symmetric) (© S. Russell & P. Norwig, AIMA)
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An Example: The Wumpus World [cont.]

Specifying the probability model

Apply the product rule to the joint distribution P(P1,1, ...,P4,4,B1,1,B1,2,B2,1) =
P(B1,1,B1,2,B2,1|P1,1, ...,P4,4) P(P1,1, ...,P4,4)

P(B1,1,B1,2,B2,1|P1,1, ...,P4,4)

1 if one pit is adjacent to breeze,
0 otherwise

P(P1,1, ...,P4,4): pits are placed randomly except in (1,1):
P(P1,1, ...,P4,4) =

∏4
i=1
∏4

j=1 P(Pi,j )

P(Pi,j ) =

{
0.2 if (i, j) 6= (1, 1)}
0 otherwise

ex: P(P1,1, ...,P4,4) = 0.23 · 0.815−3 ≈ 0.00055 if 3 pits
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An Example: The Wumpus World [cont.]

Inference by enumeration

Case P1,3:
General form of query: P(Y|E = e) = αP(Y,E = e) = α

∑
h P(Y,E = e,H = h)

Y: query vars; E,e: evidence vars/values; H,h: hidden vars/values

Our case: P(P1,3|p∗,b∗), s.t. the evidence is

b∗ def
= ¬b1,1 ∧ b1,2 ∧ b2,1

p∗ def
= ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1

Sum over hidden variables:
P(P1,3|p∗,b∗) =
α
∑

unknown P(P1,3|p∗,b∗,unknown)

unknown are all Pij ’s s.t.
(i, j) 6∈ {(1, 1), (1, 2), (2, 1), (1, 3)}

=⇒ 216−4 = 4096 terms of the sum!

Grows exponentially in the number of hidden variables H!
=⇒ Inefficient

(© S. Russell & P. Norwig, AIMA)
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An Example: The Wumpus World [cont.]

Using conditional independence

Basic insight: Given the fringe squares (see below), b∗ is conditionally independent of the
other hidden squares

Unknown def
= Fringe ∪Other

=⇒ P(b∗|p∗,P1,3,Unknown)
def
= P(b∗|p∗,P1,3,Fringe,Others) = P(b∗|p∗,P1,3,Fringe)

Next: manipulate the query into a form
where this equation can be used

(© S. Russell & P. Norwig, AIMA)
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An Example: The Wumpus World [cont.]
P(p∗,b∗) = P(p∗,b∗) is scalar; use as a normalization constant

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]
Sum over the unknowns

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]
Use the product rule

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]
Separate unknown into fringe and other

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]
b∗ is conditionally independent of other given fringe

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]
Move P(b∗|p∗,P1,3, fringe) outward

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]
All of the pit locations are independent

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]
Move P(p∗),P(P1,3), and P(fringe) outward

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]
Remove

∑
other P(other) because it equals 1

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)

41 / 44



An Example: The Wumpus World [cont.]
P(p∗) is scalar, so make it part of the normalization constant

(© of Dana Nau, CMSC21, U. Maryland, Licensed under Creative Commons)
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An Example: The Wumpus World [cont.]

We have obtained: P(P1,3|p∗,b∗) = α′P(P1,3)
∑

fringe P(b∗|p∗,P1,3, fringe)P(fringe)

We know that P(P1,3) = 〈0.2,0.8〉 (see slide 38)
We can compute the normalization coefficient α′ afterwards∑

fringe P(b∗|p∗,P1,3, fringe)P(fringe): only 4 possible fringes
Start by rewriting as two separate equations:

P( p1,3|p∗, b∗) = α′P( p1,3)
∑

fringe P(b∗|p∗, p1,3, fringe)P(fringe)

P(¬p1,3|p∗, b∗) = α′P(¬p1,3)
∑

fringe P(b∗|p∗,¬p1,3, fringe)P(fringe)

(© S. Russell & P. Norwig, AIMA)
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An Example: The Wumpus World [cont.]

Start by rewriting as two separate equations:
P( p1,3|p∗, b∗) = α′P( p1,3)

∑
fringe P(b∗|p∗, p1,3, fringe)P(fringe)

P(¬p1,3|p∗, b∗) = α′P(¬p1,3)
∑

fringe P(b∗|p∗,¬p1,3, fringe)P(fringe)

For each of them, P(b∗|...) is 1 if the breezes occur, 0 otherwise:∑
fringe P(b∗|p∗, p1,3, fringe)P(fringe) = 1 · 0.04 + 1 · 0.16 + 1 · 0.16 + 0 · 0.64 = 0.36∑
fringe P(b∗|p∗,¬p1,3, fringe)P(fringe) = 1·0.04 + 1 · 0.16 + 0 · 0.16 + 0 · 0.64 = 0.2

=⇒ P(P1,3|p∗,b∗) = α′P(P1,3)
∑

fringe P(b∗|p∗,P1,3, fringe)P(fringe)

= α′〈0.2,0.8〉〈0.36,0.2〉 = α′〈0.072,0.16〉 = (normalization, s.t . α′ ≈ 4.31) ≈ 〈0.31,0.69〉

(© S. Russell & P. Norwig, AIMA)
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Exercise

Compute P(P2,2|p∗,b∗) in the same way.
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