Fundamentals of Artificial Intelligence Chapter 06: Constraint Satisfaction Problems

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto.sebastiani@unitn. it
http://disi.unitn.it/rseba/DIDATTICA/fai_2021/

Teaching assistant: Mauro Dragoni - dragoni@fbk.eu http://www.maurodragoni.com/teaching/fai/
M.S. Course "Artificial Intelligence Systems", academic year 2021-2022

Last update: Friday $29^{\text {th }}$ October, 2021, 12:05

Copyright notice: Most examples and images displayed in the slides of this course are taken from [Russell \& Norwig, "Artificial Intelligence, a Modern Approach", $3^{\text {rd }}$ ed., Pearson], including explicitly figures from the above-mentioned book, so that their copyright is detained by the authors. A few other material (text, figures, examples) is authored by (in alphabetical order): Pieter Abbeel, Bonnie J. Dorr, Anca Dragan, Dan Klein, Nikita Kitaev, Tom Lenaerts, Michela Milano, Dana Nau, Maria Simi, who detain its copyright.

These slides cannot can be displayed in public without the permission of the author.

Outline

(1) Defining Constraint Satisfaction Problems (CSPs)
(2) Inference in CSPs: Constraint Propagation
(3) Backtracking Search with CSPs

4 Local Search with CSPs
(5) Exploiting Structure of CSPs

Outline

(1) Defining Constraint Satisfaction Problems (CSPs)
2) Inference in CSPs: Constraint Propagation
(3) Backtracking Search with CSPs

4 Local Search with CSPs
(5) Exploiting Structure of CSPs

Recall: State Representations [Ch. 02]

Representations of states and transitions

- Three ways to represent states and transitions between them:
- atomic: a state is a black box with no internal structure
- factored: a state consists of a vector of attribute values
- structured: a state includes objects, each of which may have attributes of its own as well as relationships to other objects
- increasing expressive power and computational complexity
- reality represented at different levels of abstraction

Constraint Satisfaction Problems (CSPs): Generalities

Constraint Satisfaction Problems, CSPs (aka Constraint Satisfiability Problems)

- Search problem so far: Atomic representation of states
- black box with no internal structure
- goal test as set inclusion
- Henceforth: use a Factored representation of states
- state is defined by a set of variables values from some domains
- goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- a set of variable values is a goal iff the values verify all constraints
- CSP Search Algorithms
- take advantage of the structure of states
- use general-purpose heuristics rather than problem-specific ones
- main idea: eliminate large portions of the search space all at once
- identify variable/value combinations that violate the constraints

CSPs: Definitions

CSPs

- A Constraint Satisfaction Problem is a tuple $\langle X, D, C\rangle$:
- a set of variables $X \stackrel{\text { def }}{=}\left\{X_{1}, \ldots, X_{n}\right\}$
- a set of (non-empty) domains $D \stackrel{\text { def }}{=}\left\{D_{1}, \ldots, D_{n}\right\}$, one for each X_{i}
- a set of constraints $C \stackrel{\text { def }}{=}\left\{C_{1}, \ldots, C_{m}\right\}$
- specify allowable combinations of values for the variables in X
- Each D_{i} is a set of allowable values $\left\{v_{i}, \ldots, v_{k}\right\}$ for variable X_{i}
- Each C_{i} is a pair 〈scope, rel〉
- scope is a tuple of variables that participate in the constraint
- rel is a relation defining the values that such variables can take
- A relation is
- an explicit list of all tuples of values that satisfy the constraint (most often inconvenient), or
- an abstract relation supporting two operations:
- test if a tuple is a member of the relation
- enumerate the members of the relation
- We need a language to express constraint relations!

CSPs: Definitions [cont.]

States, Assignments and Solutions

- A state in a CSP is an assignment of values to some or all of the variables $\left\{X_{i}=v_{x_{i}}\right\}_{i}$ s.t $X_{i} \in X$ and $v_{x_{i}} \in D_{i}$
- An assignment is
- complete or total, if every variable is assigned a value
- incomplete or partial, if some variable is assigned a value
- An assignment that does not violate any constraints in the CSP is called a consistent or legal assignment
- A solution to a CSP is a consistent and complete assignment
- A CSP consists in finding one solution (or state there is none)
- Constraint Optimization Problems (COPs):

CSPs requiring solutions that maximize/minimize an objective function

Example: Sudoku

- 81 Variables: (each square) $X_{i j}$, $i=A, \ldots, l ; j=1 \ldots 9$
- Domain: $\{1,2, \ldots, 8,9\}$
- Constraints:
- Allidiff $\left(X_{i 1}, \ldots, X_{i 9}\right)$ for each row i
- AllDiff $\left(X_{A j}, \ldots, X_{i j}\right)$ for each column j
- AllDiff $\left(X_{A 1}, \ldots, X_{A 3}, X_{B 1} \ldots, X_{C 3}\right)$ for each 3×3 square region
(alternatively, a long list of pairwise inequality constraints: $X_{A 1} \neq X_{A 2}, X_{A 1} \neq X_{A 3}, \ldots$)
- Solution: total value assignment satisfying all the constraints: $X_{A 1}=4, X_{A 2}=8, X_{A 3}=3, \ldots$

	1	2	3	4	5	6	7	8	9
A			3		2		6		
B	9			3		5			1
C			1	8		6	4		
D			8	1		2	9		
E	7								8
F			6	7		8	2		
G			2	6		9	5		
H	8			2		3			9
1			5		1		3		

(©) S. Russell \& P. Norwig, AIMA)

Example: Sudoku

- 81 Variables: (each square) $X_{i j}$, $i=A, \ldots, l ; j=1 \ldots 9$
- Domain: $\{1,2, \ldots, 8,9\}$
- Constraints:
- $\operatorname{All} \operatorname{Diff}\left(X_{i 1}, \ldots, X_{i 9}\right)$ for each row i
- $\operatorname{AlIDiff}\left(X_{A j}, \ldots, X_{l j}\right)$ for each column j
- $\operatorname{AllDiff}\left(X_{A 1}, \ldots, X_{A 3}, X_{B 1} \ldots, X_{C 3}\right)$ for each 3×3 square region
(alternatively, a long list of pairwise inequality constraints: $X_{A 1} \neq X_{A 2}, X_{A 1} \neq X_{A 3}, \ldots$)
- Solution: total value assignment satisfying all the constraints: $X_{A 1}=4, X_{A 2}=8, X_{A 3}=3, \ldots$

	1	2	3	4	5	6	7	8	
A	4	8	3	9	2	1	6	5	7
B	9	6	7	3	4	5	8	2	1
C	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
E	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
H	8	1	4	2	5	3	7	6	9
	6	9	5	4	1	7	3	8	2

Example: Map-Coloring

- Variables WA, NT, Q, NSW, V, SA, T
- Domain $D_{i}=\{$ red, green, blue $\}, \forall i$
- Constraints: adjacent regions must have different colours
- e.g. (explicit enumeration): $\langle W A, N T\rangle \in\{\langle r e d$, green \rangle,\langle red, blue \rangle, or (implicit, if language allows it): $W A \neq N T$
- A solution: $\{W A=r e d, N T=$ green, $\mathrm{Q}=\mathrm{red}, \mathrm{NSW}=$ green, $\mathrm{V}=\mathrm{red}, \mathrm{SA}=\mathrm{blue}, \mathrm{T}=$ green $\}$

Example: Map-Coloring

- Variables WA, NT, Q, NSW, V, SA, T
- Domain $D_{i}=\{$ red, green, blue $\}, \forall i$
- Constraints: adjacent regions must have different colours
- e.g. (explicit enumeration): $\langle W A, N T\rangle \in\{\langle r e d$, green \rangle,\langle red, blue \rangle, or (implicit, if language allows it): $W A \neq N T$
- A solution: $\{W A=r e d, N T=$ green, $\mathrm{Q}=\mathrm{red}, \mathrm{NSW}=$ green, $\mathrm{V}=\mathrm{red}, \mathrm{SA}=\mathrm{blue}, \mathrm{T}=$ green $\}$

(© S. Russell \& P. Norwig, AIMA)

Constraint Graphs

- Useful to visualize a CSP as a constraint graph (aka network)
- the nodes of the graph correspond to variables of the problem
- an edge connects any two variables that participate in a constrain
- CSP algorithms use the graph structure to speed up search
- Ex: Tasmania is an independent subproblem!

Example: Map Coloring

Varieties of CSPs

- Discrete variables

- Finite domains (ex: Booleans, bounded integers, lists of values)
- domain size $\mathrm{d} \Longrightarrow d^{n}$ complete assignments (candidate solutions)
- e.g. Boolean CSPs, incl. Boolean satisfiability (NP-complete)
- possible to define constraints by enumerating all combinations (although unpractical)
- Infinite domains (ex: unbounded integers)
- infinite domain size \Longrightarrow infinite \# of complete assignments
- e.g. job scheduling: variables are start/end days for each job
- need a constraint language (ex: StartJob $b_{1}+5 \leq$ StartJob $_{3}$)
- linear constraints \Longrightarrow solvable (but NP-Hard)
- non-linear constraints \Longrightarrow undecidable (ex: $x^{n}+y^{n}=z^{n}, n>2$)
- Continuous variables (ex: reals, rationals)
- linear constraints solvable in poly time by LP methods
- non-linear constraints solvable (e.g. by Cylindrical Algebraic Decomposition) but dramatically hard

The same problem may have distinct formulations as CSP!

Example: N-Queens

Formulation \#1

- variables $X_{i j}, i, j=1$.. N
- domains: $\{0,1\}$
- constraints (explicit):
- $\forall i, j, k\left\langle X_{i j}, X_{i k}\right\rangle \in\{\langle 0,0\rangle,\langle 1,0\rangle,\langle 0,1\rangle\}$ (row)
- $\forall i, j, k\left\langle X_{i j}, X_{k j}\right\rangle \in\{\langle 0,0\rangle,\langle 1,0\rangle,\langle 0,1\rangle\}$ (column)
- $\forall i, j, k\left\langle X_{i j}, X_{i+k, j+k}\right\rangle \in\{\langle 0,0\rangle,\langle 1,0\rangle,\langle 0,1\rangle\}$ (upward diagonal)
- $\forall i, j, k\left\langle X_{i j}, X_{i+k, j-k}\right\rangle \in\{\langle 0,0\rangle,\langle 1,0\rangle,\langle 0,1\rangle\}$ (downward diagonal)
- explicit representation
- very inefficient

Example: N-Queens [cont.]

Formulation \#2

- variables $Q_{k}, k=1$.. N (row)
- domains: $\{1$.. $N\}$ (column position)
- constraints (implicit): Nonthreatening $\left(Q_{k}, Q_{k^{\prime}}\right)$:
- none (row)
- $Q_{i} \neq Q_{j}$ (column)
- $Q_{i} \neq Q_{j+k}+k$ (downward diagonal)
- $Q_{i} \neq Q_{j+k}-k$ (upward diagonal)
- implicit representation
- much more efficient

Varieties of Constraints

- Unary constraints: involve one single variable
- ex: $(S A \neq$ green $)$
- Binary constraints: involve pairs of variables
- ex: $(S A \neq W A)$
- Higher-order constraints: involve ≥ 3 variables
- ex: cryptarithmetic column constraints
- can be represented by constraint hypergraphs (hypernodes represent n -ary constraints, squares in cryptarithmetic example)
- Global constraints: involve an arbitrary number of variables
- ex: $\operatorname{AllDiff}\left(X_{1}, \ldots, X_{k}\right)$
- note: maximum domain size $\geq k$, otherwise AllDiff() unsatisfiable
- compact, specialized routines for handling them
- Preference constraints (aka soft constraints): describe preferences between/among solutions
- ex: "l'd rather WA in red than in blue or green"
- can often be encoded as costs/rewards for variables/constraints:
\Longrightarrow solved by cost-optimization search techniques (Constraint Optimization Problems (COPs))

Example: Cryptarithmetic Puzzle

- Variables: F, T, U, W, R, O, plus C_{1}, C_{2}, C_{3} (carry)
- Domains: $F, T, U, W, R, O \in\{0,1, \ldots, 9\} ; C_{1}, C_{2}, C_{3} \in\{0,1\}$
- Constraints: $\left\{\begin{array}{l}\text { AllDiff }(F, T, U, W, R, O), \\ O+O=R+10 \cdot C_{1} \\ W+W+C_{1}=U+10 \cdot C_{2} \\ T+T+C_{2}=10 \cdot C_{3}+O \\ F=C_{3}, F \neq 0, T \neq 0\end{array}\right\}$
- (one) solution: $\{F=1, T=7, \mathrm{U}=2, \mathrm{~W}=1, \mathrm{R}=8, \mathrm{O}=4\}(714+714=1428)$

$$
\begin{array}{r}
T W O \\
+T W O \\
\hline F O U R
\end{array}
$$

Example: Job-Shop Scheduling

- Scheduling the assembling of a car requires several tasks
- ex: installing axles, installing wheels, tightening nuts, put on hubcap, inspect
- Variables X_{t} (for each task t): starting times of the tasks
- Domain: (bounded) integers (time units)
- Constraints:
- Precedence: $\left(X_{T}+\right.$ duration $\left._{T} \leq X_{T^{\prime}}\right)$ (task T precedes task $\left.T^{\prime}\right)$
- duration T_{T} constant value (ex: $\left.\left(X_{a x l e A}+10 \leq X_{a x l e b}\right)\right)$
- Alternative precedence (combine arithmetic and logic):
$\left(X_{T}+\right.$ duration $\left._{T} \leq X_{T^{\prime}}\right)$ or $\left(X_{T^{\prime}}+\right.$ duration $\left._{T^{\prime}} \leq X_{T}\right)$

Real-World CSPs

- Task-Assignment problems
- Ex: who teaches which class?
- Timetabling problems
- Ex: which class is offered when and where?
- Hardware configuration
- Ex: which component is placed where? with which connections?
- Transportation scheduling
- Ex: which van goes where?
- Factory scheduling
- Ex: which machine/worker takes which task? in which order?
- ...

Remarks

- many real-world problems involve real/rational-valued variables
- many real-world problems involve combinatorics and logic
- many real-world problems require optimization

Outline

(4) Defining Constraint Satisfaction Problems (CSPs)

(2) Inference in CSPs: Constraint Propagation
(3) Backtracking Search with CSPs

4 Local Search with CSPs
(5) Exploiting Structure of CSPs

Remark

- k-ary constraints can be transformed into sets of binary constraints
- hint: add enough auxiliary variables (see ex. 6.6 in AIMA book)
\Longrightarrow often CSP solvers work with binary constraints only
- In this chapter (unless specified otherwise) we assume we have only binary constraints in the CSP
- We call neighbours two variables sharing a binary constraint

Constraint Propagation

- In state-space search, an algorithm can only search
- With CSPs, an algorithm can
- search: pick a new variable assignment
- infer (apply constraint propagation):
use the constraints to reduce the set of legal candidate values for a variable
- Constraint propagation can either:
- be interleaved with search
- be performed as a preprocessing step
- Intuition: preserve and propagate local consistency
- enforcing local consistency in each part of the constraint graph
\Longrightarrow inconsistent values eliminated throughout the graph
- Different types of local consistency:
- node consistency (aka 1-consistency)
- arc consistency (aka 2-consistency)
- path consistency (aka 3-consistency)
- k-consistency and strong k-consistency, $k \geq 1$

Node Consistency (aka 1-Consistency)

- X_{i} is node-consistent if all the values in the variable's domain satisfy its unary constraints
- A CSP is node-consistent if every variable is node-consistent
- Node-consistency propagation:
remove all values from the domain D_{i} of X_{i} which violate unary constraints on X_{i}
- ex: if the constraint $W A \neq$ green is added to map-coloring problem then WA domain $\{$ red, green, blue $\}$ is reduced to $\{$ red, blue $\}$
- ex: if the constraint $W A=$ green is added to map-coloring problem then WA domain $\{$ red, green, blue\} is reduced to $\{$ green $\}$
- Unary constraints can be removed a priori by node consistency propagation

Arc Consistency (aka 2-Consistency)

- X_{i} is arc-consistent wrt. X_{j} iff for every value d_{i} of X_{i} in D_{i} exists a value d_{j} for X_{j} in D_{j} which satisfy all binary constraints on $\left\langle X_{i}, X_{j}\right\rangle$
- A CSP is arc-consistent if every variable is arc consistent with every other variable
- Forward Checking: remove values from unassigned variables which are not arc consistent with assigned variables
- ensure arcs from assigned to unassigned variables are arc consistent
- Arc-consistency propagation: remove all values from the domains of every variable which are not arc-consistent with these of some other variables
- ensure all arcs are arc consistent!
- A well-known algorithm: AC-3
\Longrightarrow every arc is arc-consistent, or some variable domain is empty
- complexity: $O\left(|C| \cdot|D|^{3}\right)$ worst-case
- AC-4 is $O\left(|C| \cdot|D|^{2}\right)$ worst-case, but worse than AC-3 on average
- Can be interleaved with search or used as a preprocessing step

Forward Checking

- Simplest form of propagation
- Idea: propagate information from assigned to unassigned variables
- pick variable assignment
- update remaining legal values for unassigned variables
- Does not provide early detection for all failures
- If X loses a value, neighbors of X need to be rechecked!
- ex: SA single value is incompatible with NT single value
- Can we conclude anything?
- NT and SA cannot both be blue!
- Why didn't we detect this inconsistency yet?

The Arc-Consistency Propagation Algorithm AC-3

```
function \(\mathrm{AC}-3(c s p)\) returns false if an inconsistency is found and true otherwise
    inputs: \(c s p\), a binary CSP with components \((X, D, C)\)
    local variables: queue, a queue of arcs, initially all the arcs in csp
    while queue is not empty do
        \(\left(X_{i}, X_{j}\right) \leftarrow\) Remove-First \((q u e u e)\)
        if \(\operatorname{REVISE}\left(c s p, X_{i}, X_{j}\right)\) then \(/ /\) makes \(\mathrm{X}_{\mathrm{i}}\) arc-consistent wrt. \(\mathrm{x}_{\mathrm{j}}\)
            if size of \(D_{i}=0\) then return false
            for each \(X_{k}\) in \(X_{i}\). Neighbors - \(\left\{X_{j}\right\}\) do
            add ( \(X_{k}, X_{i}\) ) to queue
    return true
```

function Revise (csp, X_{i}, X_{j}) returns true iff we revise the domain of X_{i}
revised \leftarrow false
for each x in D_{i} do
if no value y in D_{j} allows (x, y) to satisfy the constraint between X_{i} and X_{j} then
delete x from D_{i}
revised \leftarrow true
return revised

Arc-Consistency Propagation AC-3: Example

- Idea: If X loses a value, neighbors of X need to be rechecked
- Ex:
- Revise(SA,NSW) $\Longrightarrow D_{S A}$ unchanged
- ...
- Revise(NSW,SA) $\Longrightarrow D_{N S W}$ revised
- Revise $(\mathrm{V}, \mathrm{NSW}) \Longrightarrow D_{V}$ revised
- ...
- Revise(SA,NT) $\Longrightarrow D_{S A}$ revised
- Empty domain!
\Longrightarrow Arc-consistency propagation detects failure earlier than forward checking

Arc-Consistency Propagation AC-3: Example

- Idea: If X loses a value, neighbors of X need to be rechecked
- Ex:
- Revise(SA,NSW) $\Longrightarrow D_{S A}$ unchanged
- ...
- Revise(NSW,SA) $\Longrightarrow D_{N S W}$ revised
- Revise $(\mathrm{V}, \mathrm{NSW}) \Longrightarrow D_{V}$ revised
- ...
- Revise(SA,NT) $\Longrightarrow D_{S A}$ revised
- Empty domain!
\Longrightarrow Arc-consistency propagation detects failure earlier than forward checking

Arc-Consistency Propagation AC-3: Example

- Idea: If X loses a value, neighbors of X need to be rechecked
- Ex:
- Revise(SA,NSW) $\Longrightarrow D_{S A}$ unchanged
- ...
- Revise(NSW,SA) $\Longrightarrow D_{N S W}$ revised
- Revise $(\mathrm{V}, \mathrm{NSW}) \Longrightarrow D_{V}$ revised
- ...
- Revise(SA,NT) $\Longrightarrow D_{S A}$ revised
- Empty domain!
\Longrightarrow Arc-consistency propagation detects failure earlier than forward checking

Arc-Consistency Propagation AC-3: Example

- Idea: If X loses a value, neighbors of X need to be rechecked
- Ex:
- Revise(SA,NSW) $\Longrightarrow D_{S A}$ unchanged
- ...
- Revise(NSW,SA) $\Longrightarrow D_{N S W}$ revised
- Revise $(\mathrm{V}, \mathrm{NSW}) \Longrightarrow D_{V}$ revised
- ...
- Revise(SA,NT) $\Longrightarrow D_{S A}$ revised
- Empty domain!
\Longrightarrow Arc-consistency propagation detects failure earlier than forward checking

Example: Sudoku

(consider AllDiff() as a set of binary constraints)
Apply arc-consistency propagation:

- What about E6?
- arc-consistency propagation on column 6: drop 2,3,5,6,8,9
- arc-consistency propagation on square: drop $1,7 \Longrightarrow E 6=4$
- What about I6?
- arc-consistency propagation on column 6: drop 2,3,4,5,6,8,9
- arc-consistency propagation on square: drop $1 \Longrightarrow$ I6=7
- What about A6?
- arc-consistency propagation on column 6: drop 2,3,4,5,6,7.8,9 $\Longrightarrow A 6=1$
-...

Exercise: Show that AC-3 solves the whole puzzle

Example: Sudoku

(consider AllDiff() as a set of binary constraints)
Apply arc-consistency propagation:

- What about E6?
- arc-consistency propagation on column 6: drop 2,3,5,6,8,9
- arc-consistency propagation on square: drop $1,7 \Longrightarrow E 6=4$
- What about I6?
- arc-consistency propagation on column 6: drop 2,3,4,5,6,8,9
- arc-consistency propagation on square: drop $1 \Longrightarrow$ I6=7
- What about A6?
- arc-consistency propagation on column 6: drop 2,3,4,5,6,7.8,9 $\Longrightarrow A 6=1$
-...

Exercise: Show that AC-3 solves the whole puzzle

Example: Sudoku

(consider AllDiff() as a set of binary constraints)
Apply arc-consistency propagation:

- What about E6?
- arc-consistency propagation on column 6: drop 2,3,5,6,8,9
- arc-consistency propagation on square: drop $1,7 \Longrightarrow E 6=4$
- What about I6?
- arc-consistency propagation on column 6: drop 2,3,4,5,6,8,9
- arc-consistency propagation on square: drop $1 \Longrightarrow$ I6=7
- What about A6?
- arc-consistency propagation on column 6: drop 2,3,4,5,6,7.8,9 $\Longrightarrow A 6=1$
-...

Exercise: Show that AC-3 solves the whole puzzle

Example: Sudoku

(consider AllDiff() as a set of binary constraints)
Apply arc-consistency propagation:

- What about E6?
- arc-consistency propagation on column 6: drop 2,3,5,6,8,9
- arc-consistency propagation on square: drop $1,7 \Longrightarrow E 6=4$
- What about I6?
- arc-consistency propagation on column 6: drop 2,3,4,5,6,8,9
- arc-consistency propagation on square: drop $1 \Longrightarrow$ I6=7
- What about A6?
- arc-consistency propagation on column 6: drop 2,3,4,5,6,7.8,9 $\Longrightarrow A 6=1$
-...

Exercise: Show that AC-3 solves the whole puzzle

Example: Sudoku

(consider AllDiff() as a set of binary constraints)
Apply arc-consistency propagation:

- What about E6?
- arc-consistency propagation on column 6: drop 2,3,5,6,8,9
- arc-consistency propagation on square: drop $1,7 \Longrightarrow$ E6=4
- What about I6?
- arc-consistency propagation on column 6: drop 2,3,4,5,6,8,9
- arc-consistency propagation on square: drop $1 \Longrightarrow$ I6=7
- What about A6?
- arc-consistency propagation on column 6: drop $2,3,4,5,6,7.8,9 \Longrightarrow A 6=1$

	1	2	3	4	5	6	7	8	
A	4	8	3	9	2	1	6	5	7
B	9	6	7	3	4	5	8	2	1
C	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
E	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
H	8	1	4	2	5	3	7	6	9
,	6	9	5	4	1	7	3	8	2

Path Consistency \& K-Consistency

Path Consistency

A two-variable set $\left\{X_{i}, X_{j}\right\}$ is path-consistent wrt. a third variable X_{m} if, for every assignment $\left\{X_{i}=a, X_{j}=b\right\}$ consistent with the constraints on $\left\{X_{i}, X_{j}\right\}$, there is an assignment to X_{m} that satisfies the constraints on $\left\{X_{i}, X_{m}\right\}$ and $\left\{X_{m}, X_{j}\right\}$.

K-Consistency

- A CSP is k-consistent iff for any set of $k-1$ variables and for any consistent assignment to those variables, a consistent value can always be assigned to any other k-th variable
- 1-consistency is node consistency
- 2-consistency is arc consistency
- 3-consistency is path consistency
- Algorithm for 3-consistency available: PC-2
- generalization of AC-3
- Time and space complexity grow exponentially with k

Arc vs. Path Consistency

- Can we say anything about X1? We can drop red \& blue from D1
\Longrightarrow Infers the assignment $C 1=$ green
- Can arc-consistency propagation reveal it? NO!
- Can path-consistency propagation reveal it? YES!

Arc vs. Path Consistency

- Can we say anything about X1? We can drop red \& blue from D1
\Longrightarrow Infers the assignment $C 1=$ green
- Can arc-consistency propagation reveal it? NO!
- Can path-consistency propagation reveal it? YES!

Arc vs. Path Consistency

- Can we say anything about X1? We can drop red \& blue from D1
\Longrightarrow Infers the assignment $C 1=$ green
- Can arc-consistency propagation reveal it? NO!
- Can path-consistency propagation reveal it? YES!

Arc vs. Path Consistency [cont.]

- Can we say anything?

The triplet is inconsistent

- Can arc-consistency propagation reveal it? NO!
- Can path-consistency propagation reveal it? YES!

Outline

(1) Defining Constraint Satisfaction Problems (CSPs)
2) Inference in CSPs: Constraint Propagation
(3) Backtracking Search with CSPs

4 Local Search with CSPs
(5) Exploiting Structure of CSPs

Backtracking Search: Generalities

Backtracking Search

- Basic uninformed algorithm for solving CSPs
- Idea 1: Pick one variable at a time
- variable assignments are commutative \Longrightarrow fix an ordering
- ex: $\{W A=$ red,$N T=$ green $\}$ same as $\{N T=$ green, $W A=r e d\}$
\Longrightarrow can consider assignments to a single variable at each step
- reasons on partial assignments
- Idea 2: Check constraints as long as you proceed
- pick only values which do not conflict with previous assignments
- requires some computation to check the constraints
\Longrightarrow "incremental goal test"
- can detect if a partial assignments violate a goal
\Longrightarrow early detection of inconsistencies
- Backtracking search: DFS with the two above improvements

Backtracking Search: Example

(Part of) Search Tree for Map-Coloring

Backtracking Search Algorithm

```
function BACK TRACKING-SEARCH \((c s p)\) returns a solution, or failure
    return BACKTRACK ( \(\}, c s p\) )
function BACK TRACK (assignment, csp) returns a solution, or failure
    if assignment is complete then return assignment
    var \(\leftarrow\) SELECT-UNASSIGNED-VARIABLE \((c s p)\)
    for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
        if value is consistent with assignment then
            add \(\{\) var \(=\) value \(\}\) to assignment
            inferences \(\leftarrow\) INFERENCE (csp, var, value)
            if inferences \(\neq\) failure then
                add inferences to assignment
                result \(\leftarrow\) BACKTRACK (assignment, csp)
                if result \(\neq\) failure then
                    return result
inside first "if"
remove \(\{\) var \(=\) value \(\}\) and inferences from assignment
    return failure
```


Backtracking Search Algorithm [cont.]

- General-purpose algorithm for generic CSPs
- The representation of CSPs is standardized
\Longrightarrow no need to provide a domain-specific initial state, action function, transition model, or goal test
- BacktrackingSearch() keeps a single representation of a state
- alters such representation rather than creating new ones
- We can add some sophistication to the unspecified functions:
- SelectUnassignedVariable(): which variable should be assigned next?
- OrderDomainValues(): in what order should its values be tried?
- Inference(): what inferences should be performed at each step?
- We can also wonder: when an assignment violates a constraint
- where should we backtrack s.t. to avoid usuless search?
- how can we avoid repeating the same failure in the future?

Variable Selection Heuristics

Minimum Remaining Values (MRV) heuristic

- Aka most constrained variable or fail-first heuristic
- MRV: Choose the variable with the fewest legal values
\Longrightarrow pick a variable that is most likely to cause a failure soon
- If X has no legal values left, MRV heuristic selects X
\Longrightarrow failure detected immediately
- avoid pointless search through other variables
- (Otherwise) If X has one legal value left, MRV selects X \Longrightarrow performs deterministic choices first!
- postpones nondeterministic steps as much as possible
- Pick $(W A=r e d),(N T=$ green $) \Longrightarrow(S A=$ blue $)$ (deterministic)
- Next? $(Q=r e d)$

Variable Selection Heuristics [cont.]

Degree heuristic

- Used as tie-breaker in combination with MRV
- apply MRV; if ties, apply DH to these variables
- Pick the variable with most constraints on remaining variables
\Longrightarrow attempts to reduce the branching factor on future choices

Example: MRV+DH

- Pick $(S A=$ blue $),(N T=$ green $) \Longrightarrow(Q=$ red $)$ (deterministic)
- Next? (NSW=green)

Value Selection Heuristics

Least Constraining Value (LCS) heuristic

- Pick the value that rules out the fewest choices for the neighboring variables
\Longrightarrow tries maximum flexibility for subsequent variable assignments
- Look for the most likely values first
\Longrightarrow improve chances of finding solutions earlier
- Ex: MRV+DH+LCS allow for solving 1000-queens
- Pick $(S A=r e d),(N T=$ green $) \Longrightarrow(Q=$ red $)$ (preferred)
- Next? (SA=blue)

Inference

Interleaving search and inference

- After a choice, infer new domain reductions on other variables
- detect inconsistencies earlier
- reduce search spaces
- may produce unary domains (deterministic steps)
\Longrightarrow returned as assignments ("inferences")
- Tradeoff between effectiveness and efficiency
- Forward checking
- cheap
- ensures arc consistency of 〈assigned, unassigned〉 variable pairs
- AC-3
- more expensive
- ensure arc consistency of all variable pairs
- strategy (MAC):
- after X_{i} is assigned, start AC-3 with only the arcs $\left\langle X_{j}, X_{i}\right\rangle$ s.t. X_{j} unassigned neighbour variables of X_{i} \Longrightarrow much more effective than forward checking, more expensive

Backtracking with Forward Checking: Example

(© B.J.Dorr U.Md \& Tom Lenaerts, IRIDIA)
\ldots..(after trying $X 2=4$, failing and backtracking)...

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md \& Tom Lenaerts, IRIDIA)
\ldots...(after trying $X 2=4$, failing and backtracking)...

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md \& Tom Lenaerts, IRIDIA)
\ldots..(after trying $X 2=4$, failing and backtracking)...

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md \& Tom Lenaerts, IRIDIA)
\ldots..(after trying $X 2=4$, failing and backtracking)...

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md \& Tom Lenaerts, IRIDIA)
\ldots..(after trying $X 2=4$, failing and backtracking)...

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md \& Tom Lenaerts, IRIDIA)
\ldots..(after trying $X 2=4$, failing and backtracking)...

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md \& Tom Lenaerts, IRIDIA)
\ldots..(after trying $X 2=4$, failing and backtracking)...

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md \& Tom Lenaerts, IRIDIA)
\ldots..(after trying $X 2=4$, failing and backtracking)...

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md \& Tom Lenaerts, IRIDIA)
\ldots..(after trying $X 2=4$, failing and backtracking)...

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md \& Tom Lenaerts, IRIDIA)
\ldots..(after trying $X 2=4$, failing and backtracking)...

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md \& Tom Lenaerts, IRIDIA)
\ldots..(after trying $X 2=4$, failing and backtracking)...

Backtracking with Forward Checking: Example

4-Queens

(© B.J.Dorr U.Md \& Tom Lenaerts, IRIDIA)
\ldots..(after trying $X 2=4$, failing and backtracking)...

Standard Chronological Backtracking

- When a branch fails (empty domain for variable X_{i}):
(1) back up to the preceding variable (who still has an untried value)
- forward-propagated assignments and rightmost choices are skipped
(2) try a different value for it
- Problem: lots of search wasted!

Standard Chronological Backtracking: Example

Assume variable selection order: WA,NSW,T,NT,Q,V,SA

	step	assignment [domain]
(1)	pick	WA =r [rbg]
(2)	pick	$N S W=r[r b g]$
(3)	pick	$T=r[r b g]$
(4)	pick	$N T=g[b g]$
(5)	fc	$Q=b[b]$
(6)	pick	$V=b[b, g]$
(7)	$\xlongequal{f c}$	$S A=\{ \}[]$

- backtrack to (5), pick $V=g \Longrightarrow$ (7) again
- backtrack to (3), pick $N T=b \stackrel{\text { fc }}{\Longrightarrow} Q=g \Longrightarrow$ same subtree (6) \ldots
- backtrack to (2), pick $T=b \Longrightarrow$ same subtree (4)...
- backtrack to (2), pick $T=g \Longrightarrow$ same subtree (4)...
\Longrightarrow backtrack to (1), then assign NSW another value
\Longrightarrow lots of useless search on T and V values
- source of inconsistency not identified: $\{W A=r, N S W=r\}$

Standard Chronological Backtracking: Example [cont.]

Nogoods \& Conflict Sets

- Nogood: subassignment which cannot be part of any solution
- ex: $\{W A=r, N S W=r\}$ (see previous example)
- Conflict set for X_{j} (aka explanations):
(minimal) set of value assignments which caused the reduction of D_{j} via forward checking (i.e., in direct conflict with some values of X_{j})
- ex: NSW=r,NT=g in conflict with r and g values for Q resp.
\Longrightarrow domain of Q reduced to $\{b\}$ via f.c.
- a conflict set of an empty-domain variable is a nogood

Conflict-Driven Backjumping

- Idea: When a branch fails (empty domain for variable X_{i}):
(1) identify nogood which caused the failure deterministically via forward checking
(2) backtrack to the most-recently assigned element in nogood,
(3) change its value
\Longrightarrow May jump much higher, lots of search saved
- Identify nogood:
(1) take the conflict set C_{i} of empty-domain X_{i} (initial nogood)
(2) backward-substitute deterministic unit assignments with their respective conflict set (until none is left)
\Longrightarrow Identify the most recent decision which caused the failure due to FC by "undoing" FC steps
- Many different strategies \& variants available

Conflict-Driven Backjumping: Example

- failed branch:

step	assign.[domain]	$\leftarrow\{$ conflict set $\}$
(1) pick	$W A=r[r b g]$	$\leftarrow\}$
(2) pick	$N S W=r[r b g]$	$\leftarrow\}$
(3) pick	$T=r[r b g]$	$\leftarrow\}$
(4) pick	$N T=g[b g]$	$\leftarrow\{W A=r\}$
(5) $\xlongequal{\text { fc }}$	$Q=b[b]$	$\leftarrow\{N S W=r, N T=g\}$
(6) pick	$V=b[b, g]$	$\leftarrow\{W A=r\}$
(7) $\xlongequal{\text { fc. }}$	$S A=\emptyset[]$	$\leftarrow\{W A=r, N T=g, Q=b\}$

- backward-substitute assignments

$$
\frac{\emptyset(7)}{\frac{\{W A=r, N T=g, Q=b\}}{\{W A=r, N T=g, N S W=r\}}}
$$

\Longrightarrow backtrack till (3), then assign NT $=b$

\Longrightarrow saves useless search on V values

Conflict-Driven Backjumping: Example [cont.]

- new failed branch:

step	assign.[domain]	\leftarrow \{conflict set $\}$
(1) pick	$W A=r[r b g]$	$\leftarrow\}$

(2) pick $N S W=r[r b g] \leftarrow\{ \}$
(3) pick $\quad T=r[r b g] \quad \leftarrow\{ \}$
(4) pick $\quad N T=b[b] \quad \leftarrow\{W A=r\}$
$(5) \stackrel{f c}{\Longrightarrow} \quad Q=g[g]$
$\leftarrow\{N S W=r, N T=b\}$
(6) pick $\quad V=b[b, g]$
$\leftarrow\{W A=r\}$
$(7) \stackrel{\text { fc }}{\Longrightarrow} S A=\emptyset[] \quad \leftarrow\{W A=r, N T=b, Q=g\}$

- backward-substitute assignments

$$
\begin{equation*}
\frac{\emptyset(7)}{\frac{\{W A=r, N T=b, Q=g\}}{\{W A=r, N T=b, N S W=r\}}}\left\{\frac{\{W A=r, N S W=r\}}{}\right. \tag{4}
\end{equation*}
$$

\Longrightarrow backtrack till (1), then assign NSW another value

\Longrightarrow saves useless search on T values
\Longrightarrow overall, saves lots of search wrt. chronological backtracking

Conflict-Driven Backjumping: Example [cont.]

Search Tree

(1)
(2)
(3)
(4)
(5)
(6)
(7)

Learning Nogoods

- Nogood can be learned (stored) for future search pruning:
- added to constraints (e.g. " $(W A \neq r)$ or $(N S W \neq r)$ ")
- added to explicit nogood list
- As soon as assignment contains all but one element of a nogood, drop the value of the remaining element from variable's domain
- Example:
- given nogood: $\{W A=r, N S W=r\}$
- as soon as $\{N S W=r\}$ is added to assignment r is dropped from WA domain
- Allows for
- early-reveal inconsistencies
- cause further constraint propagation
- Nogoods can be learned either temporarily or permanently
- pruning effectiveness vs. memory consumption \& overhead
- Many different strategies \& variants available

Outline

(1) Defining Constraint Satisfaction Problems (CSPs)
(2) Inference in CSPs: Constraint Propagation
(3) Backtracking Search with CSPs

4 Local Search with CSPs
(5) Exploiting Structure of CSPs

Local Search with CSPs

- Extension of Local Search to CSPs straightforward
- Use complete-state representation (complete assignments)
- allow states with unsatisfied constraints
- "neighbour states" differ for one variable value
- steps: reassign variable values
- Min-conflicts heuristic in hill-climbing:
- Variable selection: randomly select any conflicted variable
- Value selection: select new value that results in a minimum number of conflicts with the other variables
- Improvement: adaptive strategies giving different weights to constraints according to their criticality
- SLC variants [see Ch. 4] apply to CSPs as well
- random walk, simulated annealing, GAs, taboo search, ...
- ex: 1000-queens solved in few minutes

The Min-Conflicts Heuristic

function Min-Conflicts(csp, max_steps) returns a solution or failure inputs: $c s p$, a constraint satisfaction problem max_steps, the number of steps allowed before giving up
current \leftarrow an initial complete assignment for csp
for $i=1$ to max_steps do
if current is a solution for csp then return current
var \leftarrow a randomly chosen conflicted variable from $c s p$.VARIABLES
value \leftarrow the value v for var that minimizes CONFLICTS(var, v, current, csp)
set $v a r=$ value in current
return failure

The Min-Conflicts Heuristic: Example

Two steps solution of 8-Queens problem

[^0]
Outline

(1) Defining Constraint Satisfaction Problems (CSPs)
(2) Inference in CSPs: Constraint Propagation
(3) Backtracking Search with CSPs

4 Local Search with CSPs
(5) Exploiting Structure of CSPs

Partitioning CFPs

"Divide \& Conquer" CSPs

- Idea (when applicable): Partition a CSP into independent CSPs
- identify strongly-connected components in constraint graph
- e.g. by Tarjan's algorithms (linear!)
- Ex: Tasmania and mainland are independent subproblems
- E.g. partition n-variable CSP into n / c CSPs w. c variables each:
- from d^{n} to $n / c \cdot d^{c}$ steps in worst-case
- if $n=80, d=2, c=20$, then from $2^{80} \approx 10^{24}$ to $4 \cdot 2^{20} \approx 4 \cdot 10^{6}$ \Longrightarrow from 4 billion years to 0.4 secs at 10 million steps $/ \mathrm{sec}$

Solving Tree-structured CSPs

Theorem:

- If the constraint graph has no loops, the CSP can be solved in $O\left(n d^{2}\right)$ time in worst case - general CSPs can be solved $O\left(d^{n}\right)$ time worst-case

Algorithm

(1) Choose a variable as root, order variables from root to leaves
(2) For $j \in n$.. 2 apply MakeArcConsistent(Parent $\left.\left(X_{j}\right), X_{j}\right)$
(3) For $j \in 2$..n, assign X_{j} consistently with $\operatorname{Parent}\left(X_{j}\right)$

Solving Tree-structured CSPs [cont.]

function TREE-CSP-SOLVER ($c s p$) returns a solution, or failure inputs: $c s p$, a CSP with components X, D, C
$n \leftarrow$ number of variables in X
assignment \leftarrow an empty assignment root \leftarrow any variable in X
$X \leftarrow$ TOPOLOGICALSORT(X, root) for $j=n$ down to 2 do

Make-Arc-Consistent(Parent $\left.\left(X_{j}\right), X_{j}\right)$
if it cannot be made consistent then return failure for $i=1$ to n do
assignment $\left[X_{i}\right] \leftarrow$ any consistent value from D_{i}
if there is no consistent value then return failure return assignment

Solving Nearly Tree-Structured CSPs

Cutset Conditioning

(1) Identify a (small) cycle cutset S : a set of variables s.t. the remaining constraint graph is a tree

- finding smallest cycle cutset is NP-hard
- fast approximated techniques known
(2) For each possible consistent assignment to the variables in S
a) remove from the domains of the remaining variables any values that are inconsistent with the assignment for S
b) apply the tree-structured CSP algorithm
(3) If $c \stackrel{\text { def }}{=}|S|$, then runtime is $O\left(d^{c} \cdot(n-c) d^{2}\right)$
\Longrightarrow much smaller than d^{n} if c small

Cutset Conditioning: Example

Exercise

- Solve the following 3-coloring problem by Cutset Conditioning

Breaking Value Symmetry

- Value symmetry: if domain size is n and no unary constraints
- every solution has n ! solutions obtained by permuting color names
- ex: 3-coloring, 3! $=6$ permutations for every solutions
- Symmetry Breaking: add symmetry-breaking constraints s.t. only one of the n ! solution is possible
\Longrightarrow reduce search space by n ! factor
- Add value-ordering constraints on n variables:
- give an ordering of values (ex: $r<b<g$)
- impose an ordering on the values of n variables s.t. $x_{i} \neq x_{j}$ (ex: WA $<N T<S A$)
\Longrightarrow only one solution out of $n!$

[^0]: (© S. Russell \& P. Norwig, AIMA)

