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Games and AI

Games are a form of multi-agent environment
Q.: What do other agents do and how do they affect our success?
recall: cooperative vs. competitive multi-agent environments
competitive multi-agent environments give rise to adversarial problems (aka games)

Q.: Why study games in AI?
lots of fun, historically entertaining
easy to represent: agents restricted to small number of actions with precise rules
interesting also because computationally very hard
(ex: chess has b ≈ 35, #nodes ≈ 1040)
metaphor for important application domains
(e.g. competitive markets, life sciences, sport, politics, warfare, ...)
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Search and Games

Search (with no adversary)
solution is a (heuristic) method for finding a goal
heuristics techniques can find optimal solutions
evaluation function: estimate of cost from start to goal through given node
examples: path planning, scheduling activities, ...

Games (with adversary), aka adversarial search
solution is a strategy: specifies a move for every possible opponent reply
evaluation function (utility): evaluate “goodness” of game position
examples: tic-tac-toe, chess, checkers, Othello, backgammon, ...
often computationally very hard =⇒ time limits force an approximate solution
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Types of Games

Many different kinds of games
Relevant features:

deterministic vs. stochastic (with chance)
one, two, or more players
zero-sum vs. general games
perfect information (can you see the state?) vs. imperfect

Most common: deterministic, turn-taking, two-player, zero-sum games, perfect information
Want algorithms for calculating a strategy (aka policy):

recommends a move from each state: policy : S 7→ A

(*) “blind tictactoe”: a version of tic-tac-toe where the players don’t get to see each others’ moves.
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Games: Main Concepts

We first consider games with two players: “MAX” and “MIN”
MAX moves first;
they take turns moving until the game is over
at the end of the game, points are awarded to the winner and penalties are given to the loser

A game is a kind of search problem:
Initial state S0: specifies how the game is set up at the start
Player(s): defines which player has the move in a state
Actions(s): returns the set of legal moves in a state
Result(s, a): the transition model, defines the result of a move
TerminalTest(s): true iff the game is over (if so, s terminal state)
Utility(s, p): (aka objective function or payoff function):
defines the final numeric value for a game ending in state s for player p

ex: chess: 1 (win), 0 (loss), 1
2 (draw)

S0, Actions(s) and Result(s,a) recursively define the game tree
nodes are states, arcs are actions
ex: tic-tac-toe: ≈105 nodes, chess: ≈1040 nodes, ...
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Game Tree: Example

Partial game tree for tic-tac-toe (2-player, deterministic, turn-taking)

(© S. Russell & P. Norwig, AIMA)
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Zero-Sum Games vs. General Games

General Games
agents have independent utilities
cooperation, indifference, competition, and more are all possible

Zero-Sum Games: the total payoff to all players is the same for each game instance
adversarial, pure competition
agents have opposite utilities (values on outcomes)

=⇒ Idea: With two-player zero-sum games, we can use one single utility value
one agent maximizes it, the other minimizes it

=⇒ optimal adversarial search as min-max search
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Adversarial Search as Min-Max Search

Assume MAX and MIN are very smart and always play optimally
MAX must find a contingent strategy specifying:

MAX’s move in the initial state
MAX’s moves in the states resulting from every possible response by MIN,
MAX’s moves in the states resulting from every possible response by MIN to those moves,
...

(a single-agent move is called half-move or ply)
Analogous to the AND-OR search algorithm

MAX playing the role of OR
MIN playing the role of AND

Optimal strategy: for which Minimax(s) returns the highest value

Minimax(s)
def
=

 Utility(s) if TerminalTest(s)
maxa∈Actions(s)Minimax(Result(s,a)) if Player(s) = MAX
mina∈Actions(s)Minimax(Result(s,a)) if Player(s) = MIN
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Min-Max Search: Example

A two-ply game tree

∆ nodes are “MAX nodes”, ∇ nodes are “MIN nodes”,
terminal nodes show the utility values for MAX
the other nodes are labeled with their minimax value

Minimax maximizes the worst-case outcome for MAX
=⇒ MAX’s root best move is a1

(© S. Russell & P. Norwig, AIMA)

12 / 43



The Minimax Algorithm

Depth-First Search Minimax Algorithm

(© S. Russell & P. Norwig, AIMA)

13 / 43



Multi-Player Games: Optimal Decisions

Replace the single value for each node with a vector of values
terminal states: utility for each agent
agents, in turn, choose the action with best value for themselves

Alliances are possible!
e.g., if one agent is in dominant position, the other can ally
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Multiplayer Min-Max Search: Example

The first three plies of a game tree with three players (A, B, C)

Each node labeled with values from each player’s viewpoint
Agents choose the action with best value for themselves
If A and B are allied, then they may agree that B and then A choose (5,4,5) instead of (1,5,2)
=⇒ benefit for both

(© S. Russell & P. Norwig, AIMA)
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Exercise

Consider the Multiplayer Min-Max Search example of previous slide
Redo it with choice order A-C-B
Redo it with choice order C-A-B
Redo it with choice order C-B-A
Redo it with choice order B-A-C
Redo it with choice order B-C-A

Do they have all the same outcome?
For each case, try to define the best moves in case of alliance between the top two players
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The Minimax Algorithm: Properties

Complete? Yes, if tree is finite
Optimal? Yes, against an optimal opponent

What about non-optimal opponent?
=⇒ even better, but non optimal in this case

Time complexity? O(bm)

Space complexity? O(bm) (DFS)

For chess, b ≈ 35, m ≈ 100 =⇒ 35100 = 10154 (!)

We need to prune the tree!
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Pruning Min-Max Search: Example
Consider the previous execution of the Minimax algorithm
Let [min,max ] track the currently-known bounds for the search

(a): B labeled with [−∞, 3] (MIN will not choose values ≥ 3 for B)
(c): B labeled with [3, 3] (MIN cannot find values ≤ 3 for B)
(d): Is it necessary to evaluate the remaining leaves of C?
NO! They cannot produce an upper bound ≥ 2
=⇒ MAX cannot update the min = 3 bound due to C
(e): MAX updates the upper bound to 14 (D is last subtree)
(f): D labeled [2, 2] =⇒ MAX updates the upper bound to 3

=⇒ 3 final value

(© S. Russell & P. Norwig, AIMA)
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Alpha-Beta Pruning Technique for Min-Max Search
Idea: consider a node n (terminal or intermediate)

If player has a better choice m at the parent node of n or at any choice point further up,
n will never be reached in actual play

=⇒ if we know enough of n to draw this conclusion, we can prune n

Alpha-Beta Pruning: nodes labeled with [α, β] s.t.:
α : best value for MAX (highest) so far off the current path

=⇒ lower bound for future values
β : best value for MIN (lowest) so far off the current path

=⇒ upper bound for future values

=⇒ Prune n if its value is worse (lower)
than the current α value for MAX (dual for β, MIN)

(© S. Russell & P. Norwig, AIMA)
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The Alpha-Beta Search Algorithm

(© S. Russell & P. Norwig, AIMA)
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Example revisited: Alpha-Beta Cuts

Notation: ≥ α; ≤ β;

(© S. Russell & P. Norwig, AIMA)
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Properties of Alpha-Beta Search

Pruning does not affect the final result =⇒ correctness preserved
Good move ordering improves effectiveness of pruning

Ex: if MIN expands 3rd child of D first, the others are pruned
try to examine first the successors that are likely to be best

With “perfect” ordering, time complexity reduces to O(bm/2)

aka “killer-move heuristic”
=⇒ doubles solvable depth!

With “random” ordering, time complexity reduces to O(b3m/4)

“Graph-based” version further improves performances
track explored states via hash table
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Exercise I

Apply alpha-beta search to the following tree

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)
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Exercise II

Apply alpha-beta search to the following tree

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)
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Adversarial Search with Resource Limits

Problem: In realistic games, full search is impractical!

Complexity: bd (ex. chess: ≈ 35100)
Idea [Shannon, 1949]: Depth-limited search

cut off minimax search earlier, after limited depth
replace terminal utility function with evaluation for
non-terminal nodes

Ex (chess): depth d = 8 (decent)
=⇒ α-β: 358/2 = 105 (feasible)
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Adversarial Search with Resource Limits [cont.]

Idea:
cut off the search earlier, at limited depths
apply a heuristic evaluation function to states in the search

=⇒ effectively turning nonterminal nodes into terminal leaves

Modify Minimax() or Alpha-Beta search in two ways:
replace the utility function Utility(s) by a heuristic evaluation function Eval(s), which estimates the
position’s utility
replace the terminal test TerminalTest(s) by a cutoff test CutOffTest(s, d), that decides when to
apply Eval()
plus some bookkeeping to increase depth d at each recursive call

=⇒ Heuristic variant of Minimax():

H-Minimax(s, d) def
=


Eval(s) if CutOffTest(s, d)
maxa∈Actions(s)H-Minimax(Result(s, a), d + 1) if Player(s) = MAX
mina∈Actions(s) H-Minimax(Result(s, a), d + 1) if Player(s) = MIN

=⇒ Heuristic variant of alpha-beta: substitute the terminal test with
If CutOffTest(s) then return Eval(s)

28 / 43



Evaluation Functions

Eval(s)

Should be relatively cheap to compute
Returns an estimate of the expected utility from a given position

Ideal function: returns the actual minimax value of the position

Should order terminal states the same way as the utility function
e.g., wins > draws > losses

For nonterminal states, should be strongly correlated with the actual chances of winning
Defines equivalence classes of positions (same Eval(s) value)

e.g. returns a value reflecting the % of states with each outcome

Typically weighted linear sum of features:
Eval(s) = w1 · f1(s) + w2 · f2(s) + ...+ wn · fn(s)

ex (chess): fqueens(s) = #white queens −#black queens,
wpawns = 1: wbishops = wknights = 3, wrooks = 5, wqueens = 9

May depend on depth (ex: knights vs. rooks)
May be very inaccurate for some positions
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Example

Two same-score positions (White: -8, Black: -3)
(a) Black has an advantage of a knight and two pawns,

=⇒ should be enough to win the game
(b) White will capture the queen,

=⇒ give it an advantage that should be strong enough to win

(Personal note: only very-stupid black player would get into (b))

(© S. Russell & P. Norwig, AIMA) 30 / 43



Cutting-off the Search

CutOffTest(state,depth)

Most straightforward approach: set a fixed depth limit
d chosen s.t. a move is selected within the allocated time
sometimes may produce very inaccurate outcomes (see previous example)

More robust approach: apply Iterative Deepening
More sophisticate: apply Eval() only to quiescent states

quiescent: unlikely to exhibit wild swings in value in the near future
e.g. positions with direct favorable captures are not quiescent
(previous example (b))

=⇒ further expand non-quiescent states until quiescence is reached
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Remark

Exact values don’t matter!

Behaviour preserved under any monotonic transformation of Eval()

Only the order matters!
payoff in deterministic games acts as an ordinal utility function

(© S. Russell & P. Norwig, AIMA)
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Deterministic Games in Practice

Checkers: (1994) Chinook ended 40-year-reign of world champion Marion Tinsley
used an endgame database defining perfect play for all positions involving 8 or fewer pieces on
the board
a total of 443,748,401,247 positions

Chess: (1997) Deep Blue defeated world champion Gary Kasparov in a six-game match
searches 200 million positions per second
uses very sophisticated evaluation, and undisclosed methods

Othello:
Human champions refuse to compete against computers, which are too good

Go: (2016) AlphaGo beats world champion Lee Sedol
number of possible positions > number of atoms in the universe
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AlphaGo beats GO world champion, Lee Sedol (2016)
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Stochastic Games: Generalities

In real life, unpredictable external events may occur
Stochastic Games mirror unpredictability by random steps:

e.g. dice throwing, card-shuffling, coin flipping, tile extraction, ...

Ex: Backgammon
Cannot calculate definite minimax value, only expected values
Uncertain outcomes controlled by chance, not an adversary!

adversarial =⇒ worst case
chance =⇒ average case

Ex: if chance is 0.5 each (coin):
minimax: 10
average: (100+9)/2=54.5

(© D. Klein, P. Abbeel, S. Levine, S. Russell, U. Berkeley)
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An Example: Backgammon

Rules
15 pieces each
white moves clockwise to 25, black moves counterclockwise to 0
a piece can move to a position unless ≥ 2 opponent pieces there
if there is one opponent, it is captured and must start over
termination: all whites in 25 or all blacks in 0

Ex: Possible white moves:
(5-10,5-11)
(5-11,19-24)
(5-10,10-16)
(5-11,11-16)

Combines strategy with luck
=⇒ stochastic component (dice)

double rolls (1-1),...,(6-6)
have 1/36 probability each
other 15 distinct rolls
have a 1/18 probability each (© S. Russell & P. Norwig, AIMA)
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Stochastic Games Trees
Idea: A game tree for a stochastic game includes chance nodes in addition to MAX and MIN
nodes.

chance nodes above agent represent stochastic events for agent (e.g. dice roll)
outcoming arcs represent stochastic event outcomes
labeled with stochastic event and relative probability

(© S. Russell & P. Norwig, AIMA)
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Algorithm for Stochastic Games: ExpectMinimax()

Extension of Minimax(), handling also chance nodes

ExpectMinimax(s) def
=


Utility(s) if TerminalTest(s)
maxa∈Actions(s)ExpectMinimax(Result(s, a)) if Player(s) = MAX
mina∈Actions(s)ExpectMinimax(Result(s, a)) if Player(s) = MIN∑

r P(r) · ExpectMinimax(Result(s, r)) if Player(s) = Chance
P(r): probability of stochastic event outcome r
chance seen as an actor,
stochastic event outcomes r (e.g., dice values) seen as actions

=⇒ returns the weighted average of the minimax outcomes
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Simple Example with Coin-Flipping

(© S. Russell & P. Norwig, AIMA)

40 / 43



Example (Non-uniform Probabilities)

(© S. Russell & P. Norwig, AIMA)
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Remark (compare with deterministic case)

Exact values do matter!

Behaviour not preserved under monotonic transformations of Utility()

preserved only by positive linear transformation of Utility()

hint: p1v1 ≥ p2v2 =⇒ p1(av1 + b) ≥ p2(av2 + b) if a ≥ 0

=⇒ Utility() should be proportional to the expected payoff

(© S. Russell & P. Norwig, AIMA) 42 / 43



Stochastic Games in Practice

Dice rolls increase b: 21 possible rolls with 2 dice
=⇒ O(bm · nm), n being the number of distinct roll

Ex: Backgammon has ≈ 20 moves
=⇒ depth 4: 20 · (21× 20)3 ≈ 109 (!)

Alpha-beta pruning much less effective than with deterministic games
=⇒ Unrealistic to consider high depths in most stochastic games

Heuristic variants of ExpectMinimax() effective, low cutoff depths
Ex: TD-GGAMMON uses depth-2 search + very-good Eval()

Eval() “learned” by running million training games
competitive with world champions
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