Fundamentals of Artificial Intelligence Chapter 04: Beyond Classical Search

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto.sebastiani@unitn. it
http://disi.unitn.it/rseba/DIDATTICA/fai_2021/

Teaching assistant: Mauro Dragoni - dragoni@fbk.eu http://www.maurodragoni.com/teaching/fai/
M.S. Course "Artificial Intelligence Systems", academic year 2021-2022

Last update: Sunday $17^{\text {th }}$ October, 2021, 20:37

[^0] including explicitly figures from the above-mentioned book, so that their copyright is detained by the authors. A few other material (text, figures, examples) is authored by (in alphabetical order): Pieter Abbeel, Bonnie J. Dorr, Anca Dragan, Dan Klein, Nikita Kitaev, Tom Lenaerts, Michela Milano, Dana Nau, Maria Simi, who detain its copyright.

These slides cannot can be displayed in public without the permission of the author.

Generalities

- So far we addresses a single category of problems:
(2) observable,
(3) with known environment,

4. s.t. the solution is a sequence of actions.

- What happens when these assumptions are relaxed?
- In order we will:

Generalities

- So far we addresses a single category of problems:
(1) observable,
(3) deterministic, with known environment,
(9) s.t. the solution is a sequence of actions.
- What happens when these assumptions are relaxed?
- In order we will:

Generalities

- So far we addresses a single category of problems:
(1) observable,
(2) deterministic,
(3) with known environment,
(4) s.t. the solution is a sequence of actions.
- What happens when these assumptions are relaxed?
- In order we will:

Generalities

- So far we addresses a single category of problems:
(1) observable,
(2) deterministic,
(3) with known environment,
s.t. the solution is a sequence of actions.
- What happens when these assumptions are relaxed?
- In order we will:

Generalities

- So far we addresses a single category of problems:
(1) observable,
(2) deterministic,
(3) with known environment,
(4) s.t. the solution is a sequence of actions.
- What happens when these assumptions are relaxed?
- In order we will:

Generalities

- So far we addresses a single category of problems:
(1) observable,
(2) deterministic,
(3) with known environment,
(4) s.t. the solution is a sequence of actions.
- What happens when these assumptions are relaxed?
- In order we will:

Generalities

- So far we addresses a single category of problems:
(1) observable,
(2) deterministic,
(3) with known environment,
(4) s.t. the solution is a sequence of actions.
- What happens when these assumptions are relaxed?
- In order we will:
- release condition $4 \Longrightarrow$ local search
- release condition $2 \Longrightarrow$ search with non-deterministic actions
- release condition $1 \Longrightarrow$ search with no observability or with partial observability
- release condition $3 \Longrightarrow$ online search

Generalities

- So far we addresses a single category of problems:
(1) observable,
(2) deterministic,
(3) with known environment,
(4) s.t. the solution is a sequence of actions.
- What happens when these assumptions are relaxed?
- In order we will:
- release condition $4 \Longrightarrow$ local search
- release condition $2 \Longrightarrow$ search with non-deterministic actions
- release condition $1 \Longrightarrow$ search with no observability or with partial observability
- release condition $3 \Longrightarrow$ online search

Generalities

- So far we addresses a single category of problems:
(1) observable,
(2) deterministic,
(3) with known environment,
(4) s.t. the solution is a sequence of actions.
- What happens when these assumptions are relaxed?
- In order we will:
- release condition $4 \Longrightarrow$ local search
- release condition $2 \Longrightarrow$ search with non-deterministic actions
- release condition $1 \Longrightarrow$ search with no observability or with partial observability
- release condition $3 \Longrightarrow$ online search

Generalities

- So far we addresses a single category of problems:
(1) observable,
(2) deterministic,
(3) with known environment,
(9) s.t. the solution is a sequence of actions.
- What happens when these assumptions are relaxed?
- In order we will:
- release condition $4 \Longrightarrow$ local search
- release condition $2 \Longrightarrow$ search with non-deterministic actions
- release condition $1 \Longrightarrow$ search with no observability or with partial observability
- release condition $3 \Longrightarrow$ online search

Generalities

- So far we addresses a single category of problems:
(1) observable,
(2) deterministic,
(3) with known environment,
(9) s.t. the solution is a sequence of actions.
- What happens when these assumptions are relaxed?
- In order we will:
- release condition $4 \Longrightarrow$ local search
- release condition $2 \Longrightarrow$ search with non-deterministic actions
- release condition $1 \Longrightarrow$ search with no observability or with partial observability
- release condition $3 \Longrightarrow$ online search

Outline

(1) Local Search and Optimization

- General Ideas
- Hill-Climbing
- Simulated Annealing
- Local Beam Search \& Genetic Algorithms
(2) Search with Nondeterministic Actions
(3) Search with Partial or No Observations (Deterministic/Nondeterministic Actions)
- Search with No Observations
- Search with Partial Observations
(4) Online Search

Outline

（1）Local Search and Optimization
－General Ideas
－Hill－Climbing
－Simulated Annealing
－Local Beam Search \＆Genetic Algorithms
2 Search with Nondeterministic Actions
（3）Search with Partial or No Observations（Deterministic／Nondeterministic Actions）
－Search with No Observations
－Search with Partial Observations
（4）Online Search

Outline

(1) Local Search and Optimization

- General Ideas
- Hill-Climbing
- Simulated Annealing
- Local Beam Search \& Genetic Algorithms

2 Search with Nondeterministic Actions
(3) Search with Partial or No Observations (Deterministic/Nondeterministic Actions)

- Search with No Observations
- Search with Partial Observations
(4) Online Search

General Ideas

- Search techniques: systematic exploration of search space
- solution to problem: the path to the goal state
- ex: 8-puzzle
- With many problems, the path to goal is irrelevant
- goals expressed as conditions, not as explicit list of goal states
- solution to problem: only the goal state itself
- ex: N-queens
- many important applications:
integrated-circuit design, factory-floor layout, job-shop scheduling, automatic programming, telecommunications network optimization, vehicle routing, portfolio management...
- The state space is a set of "complete" configurations
- decision problems: find goal configuration satisfying constraints/rules (ex: N-queens)
- optimization problems: find optimal configurations
(ex: Travelling Salesperson Problem, TSP)
- If so, we can use iterative-improvement alaorithms (in particular local search algorithms):
- keep a single "current" state, try to improve it

General Ideas

- Search techniques: systematic exploration of search space
- solution to problem: the path to the goal state
- ex: 8-puzzle
- With many problems, the path to goal is irrelevant
- goals expressed as conditions, not as explicit list of goal states
- solution to problem: only the goal state itself
- ex: N-queens
- many important applications:
integrated-circuit design, factory-floor layout, job-shop scheduling, automatic programming, telecommunications network optimization, vehicle routing, portfolio management...
- The state space is a set of "complete" configurations
- decision problems: find goal configuration satisfying constraints/rules (ex: N -queens)
- optimization problems: find optimal configurations (ex: Travelling Salesperson Problem, TSP)
- If so, we can use iterative-improvement algorithms (in particular local search algorithms):
- keep a single "current" state, try to improve it

General Ideas

－Search techniques：systematic exploration of search space
－solution to problem：the path to the goal state
－ex：8－puzzle
－With many problems，the path to goal is irrelevant
－goals expressed as conditions，not as explicit list of goal states
－solution to problem：only the goal state itself
－ex：N－queens
－many important applications：
integrated－circuit design，factory－floor layout，job－shop scheduling，automatic programming， telecommunications network optimization，vehicle routing，portfolio management．．．
－The state space is a set of＂complete＂configurations
－decision problems：find goal configuration satisfying constraints／rules（ex：N－queens）
－optimization problems：find optimal configurations （ex：Travelling Salesperson Problem，TSP）
－If so，we can use iterative－improvement algorithms（in particular local search algorithms）：
－keep a single＂current＂state，try to improve it

General Ideas

－Search techniques：systematic exploration of search space
－solution to problem：the path to the goal state
－ex：8－puzzle
－With many problems，the path to goal is irrelevant
－goals expressed as conditions，not as explicit list of goal states
－solution to problem：only the goal state itself
－ex：N－queens
－many important applications：
integrated－circuit design，factory－floor layout，job－shop scheduling，automatic programming， telecommunications network optimization，vehicle routing，portfolio management．．．
－The state space is a set of＂complete＂configurations
－decision problems：find goal configuration satisfying constraints／rules（ex：N－queens）
－optimization problems：find optimal configurations
（ex：Travelling Salesperson Problem，TSP）
－If so，we can use iterative－improvement algorithms（in particular local search algorithms）：
－keep a single＂current＂state，try to improve it

Local Search

- Idea: use single current state and move to "neighbouring" states
- operate using a single current node
- the paths followed by the search are not retained
- Two key advantages:
- Also useful for pure optimization problems
- find the best state according to an objective function
- often do not fit the "standard" search model of previous chapter
- ex: Darwinian survival of the fittest: metaphor for optimization, but no "goal test" and no "path cost"
- A complete local search algorithm: guaranteed to always find a solution (if exists)
- A optimal local search algorithm: guaranteed to always find a maximum/minimum solution
- maximization and minimization dual (switch sign)

Local Search

- Idea: use single current state and move to "neighbouring" states
- operate using a single current node
- the paths followed by the search are not retained
- Two key advantages:
- use very little memory (usually constant)
- can often find reasonable solutions in large or infinite (continuous) state spaces, for which systematic algorithms are unsuitable
- Also useful for pure optimization problems
- find the best state according to an objective function
- often do not fit the "standard" search model of previous chapter
- ex: Darwinian survival of the fittest: metaphor for optimization, but no "goal test" and no "path cost"
- A complete local search algorithm: guaranteed to always find a solution (if exists)
- A optimal local search algorithm: guaranteed to always find a maximum/minimum solution
- maximization and minimization dual (switch sign)

Local Search

- Idea: use single current state and move to "neighbouring" states
- operate using a single current node
- the paths followed by the search are not retained
- Two key advantages:
- use very little memory (usually constant)
- can often find reasonable solutions in large or infinite (continuous) state spaces, for which systematic algorithms are unsuitable
- Also useful for pure optimization problems
- find the best state according to an objective function
- often do not fit the "standard" search model of previous chapter
- ex: Darwinian survival of the fittest: metaphor for optimization, but no "goal test" and no "path cost"
- A complete local search algorithm: qua ranteed to always find a solution (if exists)
- A optimal local search algorithm: guaranteed to always find a maximum/minimum solution
- maximization and minimization dual (switch sign)

Local Search

－Idea：use single current state and move to＂neighbouring＂states
－operate using a single current node
－the paths followed by the search are not retained
－Two key advantages：
－use very little memory（usually constant）
－can often find reasonable solutions in large or infinite（continuous）state spaces， for which systematic algorithms are unsuitable
－Also useful for pure optimization problems
－find the best state according to an objective function
－often do not fit the＂standard＂search model of previous chapter
－ex：Darwinian survival of the fittest：metaphor for optimization， but no＂goal test＂and no＂path cost＂
－A complete local search algorithm：guaranteed to always find a solution（if exists）
－A optimal local search algorithm：guaranteed to always find a maximum／minimum solution
－maximization and minimization dual（switch sign）

Local Search

－Idea：use single current state and move to＂neighbouring＂states
－operate using a single current node
－the paths followed by the search are not retained
－Two key advantages：
－use very little memory（usually constant）
－can often find reasonable solutions in large or infinite（continuous）state spaces， for which systematic algorithms are unsuitable
－Also useful for pure optimization problems
－find the best state according to an objective function
－often do not fit the＂standard＂search model of previous chapter
－ex：Darwinian survival of the fittest：metaphor for optimization， but no＂goal test＂and no＂path cost＂
－A complete local search algorithm：guaranteed to always find a solution（if exists）
－A optimal local search algorithm：guaranteed to always find a maximum／minimum solution
－maximization and minimization dual（switch sign）

Local Search

- Idea: use single current state and move to "neighbouring" states
- operate using a single current node
- the paths followed by the search are not retained
- Two key advantages:
- use very little memory (usually constant)
- can often find reasonable solutions in large or infinite (continuous) state spaces, for which systematic algorithms are unsuitable
- Also useful for pure optimization problems
- find the best state according to an objective function
- often do not fit the "standard" search model of previous chapter
- ex: Darwinian survival of the fittest: metaphor for optimization, but no "goal test" and no "path cost"
- A complete local search algorithm: guaranteed to always find a solution (if exists)
- A optimal local search algorithm: guaranteed to always find a maximum/minimum solution
- maximization and minimization dual (switch sign)

Local Search Example: N-Queens

- One queen per column (incremental representation)
- Cost (h): \# of queen pairs on the same row, column, or diagonal
- Goal: h=0
- Step: move a queen vertically to reduce number of conflicts

(© S. Russell \& P. Norwig, AIMA)

[^1]
Local Search Example: N-Queens

- One queen per column (incremental representation)
- Cost (h): \# of queen pairs on the same row, column, or diagonal
- Goal: h=0
- Step: move a queen vertically to reduce number of conflicts

Almost always solves N -queens problems almost instantaneously for very large N (e.g., $\mathrm{N}=1$ million)

Optimization Local Search Example: TSP

Travelling Salesperson Problem (TSP)

Given an undirected graph, with n nodes and each arc associated with a positive value, find the Hamiltonian tour with the minimum total cost.

Very hard for classic search!

Optimization Local Search Example: TSP

Travelling Salesperson Problem (TSP)

Given an undirected graph, with n nodes and each arc associated with a positive value, find the Hamiltonian tour with the minimum total cost.

Very hard for classic search!

Optimization Local Search Example: TSP

- State represented as a permutation of numbers $(1,2, \ldots, n)$
- Cost (h): total cycle length
- Start with any complete tour
- Step: (2-swap) perform pairwise exchange

Optimization Local Search Example: TSP

- State represented as a permutation of numbers $(1,2, \ldots, n)$
- Cost (h): total cycle length
- Start with any complete tour
- Step: (2-swap) perform pairwise exchange

Variants of this approach get within 1% of optimal very quickly with thousands of cities

Local Search: State-Space Landscape

State-space landscape (Maximization)

- Local search algorithms explore state-space landscape
- state space n -dimensional (and typically discrete)
- move to "nearby" states (neighbours)
- NP-Hard problems may have exponentially-many local optima

Outline

(1) Local Search and Optimization

- General Ideas
- Hill-Climbing
- Simulated Annealing
- Local Beam Search \& Genetic Algorithms
(2) Search with Nondeterministic Actions
(3) Search with Partial or No Observations (Deterministic/Nondeterministic Actions)
- Search with No Observations
- Search with Partial Observations
(4) Online Search

Hill-Climbing Search (aka Greedy Local Search)

Hill-Climbing

- Very-basic local search algorithm
- Idea: a move is performed only if the solution it produces is better than the current solution
- (steepest-ascent version): selects the neighbour with best score improvement (select randomly among best neighbours if ≥ 1)
- does not look ahead of immediate neighbors of the current state
- stops as soon as it finds a (possibly local) minimum
- Several variants (Stochastic H.C., Random-Restart H.C., ...)
- Often used as part of more complex local-search algorithms
function Hill-CLIMBING(problem) returns a state that is a local maximum

$$
\text { current } \leftarrow \text { MAKE-NODE (problem.INITIAL-STATE) }
$$

loop do

neighbor \leftarrow a highest-valued successor of current
if neighbor. VALUE \leq current. VALUE then return current.STATE current \leftarrow neighbor

Hill-Climbing Search (aka Greedy Local Search)

Hill-Climbing

- Very-basic local search algorithm
- Idea: a move is performed only if the solution it produces is better than the current solution
- (steepest-ascent version): selects the neighbour with best score improvement (select randomly among best neighbours if ≥ 1)
- does not look ahead of immediate neighbors of the current state
- stops as soon as it finds a (possibly local) minimum
o Several variants (Stochastic H. G. Random-Restart H.C., ...)
- Often used as part of more complex local-search algorithms
function Hill-Climbing(problem) returns a state that is a local maximum

$$
\text { current } \leftarrow \text { MAKE-NODE(problem.Initial-State) }
$$

loop do

neighbor \leftarrow a highest-valued successor of current
if neighbor.VALUE \leq current. VALUE then return current.STATE current \leftarrow neighbor

Hill-Climbing Search (aka Greedy Local Search)

Hill-Climbing

- Very-basic local search algorithm
- Idea: a move is performed only if the solution it produces is better than the current solution
- (steepest-ascent version): selects the neighbour with best score improvement (select randomly among best neighbours if ≥ 1)
- does not look ahead of immediate neighbors of the current state
- Several variants (Stochastic H.C., Random-Restart H.C., ...)
- Often used as nart of more complex local-search algorithms
function Hill-Climbing(problem) returns a state that is a local maximum current \leftarrow MAKE-NODE $($ problem.Initial-State)

loop do

neighbor \leftarrow a highest-valued successor of current
if neighbor.VALUE \leq current. VALUE then return current.STATE current \leftarrow neighbor

Hill-Climbing Search (aka Greedy Local Search)

Hill-Climbing

- Very-basic local search algorithm
- Idea: a move is performed only if the solution it produces is better than the current solution
- (steepest-ascent version): selects the neighbour with best score improvement (select randomly among best neighbours if ≥ 1)
- does not look ahead of immediate neighbors of the current state
- stops as soon as it finds a (possibly local) minimum
- Several variants (Stochastic H.C., Random-Restart H.C., ...)
- Often used as part of more complex local-search algorithms
function Hill-Climbing(problem) returns a state that is a local maximum current \leftarrow MAKE-NODE $($ problem.Initial-State)

loop do

neighbor \leftarrow a highest-valued successor of current
if neighbor. VALUE \leq current. VALUE then return current.STATE current \leftarrow neighbor

Hill-Climbing Search (aka Greedy Local Search)

Hill-Climbing

- Very-basic local search algorithm
- Idea: a move is performed only if the solution it produces is better than the current solution
- (steepest-ascent version): selects the neighbour with best score improvement (select randomly among best neighbours if ≥ 1)
- does not look ahead of immediate neighbors of the current state
- stops as soon as it finds a (possibly local) minimum
- Several variants (Stochastic H.C., Random-Restart H.C., ...)
- Often used as part of more complex local-search algorithms
function Hill-Climbing(problem) returns a state that is a local maximum current \leftarrow MAKE-NODE $($ problem.Initial-State)

loop do

neighbor \leftarrow a highest-valued successor of current
if neighbor.VALUE \leq current. VALUE then return current.STATE current \leftarrow neighbor

Hill-Climbing Search (aka Greedy Local Search)

Hill-Climbing

- Very-basic local search algorithm
- Idea: a move is performed only if the solution it produces is better than the current solution
- (steepest-ascent version): selects the neighbour with best score improvement (select randomly among best neighbours if ≥ 1)
- does not look ahead of immediate neighbors of the current state
- stops as soon as it finds a (possibly local) minimum
- Several variants (Stochastic H.C., Random-Restart H.C., ...)
- Often used as part of more complex local-search algorithms
function Hill-Climbing (problem) returns a state that is a local maximum current \leftarrow MAKE-NODE $($ problem.Initial-State)

loop do

neighbor \leftarrow a highest-valued successor of current
if neighbor.VALUE \leq current. VALUE then return current.STATE current \leftarrow neighbor

Hill－Climbing Search：Example

8－queen puzzle（minimization）

－Neighbour states：generated by moving one queen vertically
－Cost（h）：\＃of queen pairs on the same row，column，or diagonal
－Goal：h＝0
－Two scenarios

18	12	14	13		312	12	14	14
14	16	13	15	12	214	14	12	16
14	12	18	13	15	512	12	14	14
15	14	14	単	13	116	16	13	16
単	14	17	15	柈	W 14	14	16	16
17	訾	16	18	15	5 曾	単	15	\＃
18	14	単	15	15	514	14	単	16
14	14	13	17	12	214	14	12	18

（a）

（b）

Hill－Climbing Search：Example

8－queen puzzle（minimization）

－Neighbour states：generated by moving one queen vertically
－Cost（h）：\＃of queen pairs on the same row，column，or diagonal
－Goal：h＝0
－Two scenarios $((a) \longrightarrow$（b）in 5 steps）：
（a） 8 －queens state with heuristic cost estimate $\mathrm{h}=17$（12d，5h）
（b）local minimum： $\mathrm{h}=1$ ，but all neighbours have higher costs

18	12	14	13	13	12	14		14
14	16	13	15	12	14	12		16
14	12	18	13	15	12	14		14
15	14	14	些	13	16	13		16
単	14	17	15	些	14	16		16
17	断	16	18	15	些	15		巣
18	14	断	15	15	14	恶		16
14	14	13	17	12	14	12		18

（a）

（b）

Hill－Climbing Search：Example

8－queen puzzle（minimization）

－Neighbour states：generated by moving one queen vertically
－Cost（h）：\＃of queen pairs on the same row，column，or diagonal
－Goal：h＝0
－Two scenarios
（a）8－queens state with heuristic cost estimate $h=17$（12d， 5 h ）
（b）local minimum：$h=1$ ，but all neighbours have higher costs

18	12	14	13	13	12		14	14
14	16	13	15	12	14		12	16
14	12	18	13	15	12		14	14
15	14	14	断	13	16		13	16
䒼	14	17	15	㘳	14		16	16
17		16	18	15	䁬		15	単
18	14	㥪	15	15	14		ur	16
14	14	13	17	12	14		12	18

（a）

（b）

Hill－Climbing Search：Example

8－queen puzzle（minimization）

－Neighbour states：generated by moving one queen vertically
－Cost（h）：\＃of queen pairs on the same row，column，or diagonal
－Goal：h＝0
－Two scenarios $((a) \Longrightarrow(b)$ in 5 steps）：
（a）8－queens state with heuristic cost estimate $h=17$（12d， 5 h ）
（b）local minimum：$h=1$ ，but all neighbours have higher costs

18	12	14	13	13	12		14	14
14	16	13	15	12	14		12	16
14	12	18	13	15	12		14	14
15	14	14	断	13	16		13	16
断	14	17	15	断	14		16	16
17	皆	16	18	15	㬝		15	単
18	14	断	15	15	14		単	16
14	14	13	17	12	14		12	18

（a）

（b）

Hill－Climbing Search：Example

8－queen puzzle（minimization）

－Neighbour states：generated by moving one queen vertically
－Cost（h）：\＃of queen pairs on the same row，column，or diagonal
－Goal：h＝0
－Two scenarios $((a) \Longrightarrow(b)$ in 5 steps）：
（a）8－queens state with heuristic cost estimate $h=17$（12d，5h）
（b）local minimum：$h=1$ ，but all neighbours have higher costs

18	12	14	13	13	312	2		14
14	16	13	15	12	214	12		16
14	12	18	13	15	512	2		14
15	14	14	雨	13	1316	1613		16
単	14	17	15	楼	Wiel 14	146		16
17	単	16	18	15	15 単	15		些
18	14	雨	15	15	514	$\stackrel{\text { IVIV}}{ }$		16
14	14	13	17	12	214	412		

（a）

（b）

Hill-Climbing Search: Drawbacks

- Incomplete: gets stuck in local optima, flat local optima \& shoulders (aka plateaux), ridges (sequences of local optima)
- Ex: with 8-queens, gets stuck 86% of the time, fast when succeed note: converges very fast till (local) minima or plateaux
- Possible idea: allow 0-progress moves (aka sideways moves)

(© S. Russell \& P. Norwig, AIMA)

Hill-Climbing Search: Drawbacks

- Incomplete: gets stuck in local optima, flat local optima \& shoulders (aka plateaux), ridges (sequences of local optima)
- Ex: with 8-queens, gets stuck 86% of the time, fast when succeed note: converges very fast till (local) minima or plateaux
- Possible idea: allow 0-progress moves (aka sideways moves)
- pros: may allow getting out of shoulders
- cons: may cause infinite loops with flat local optima
set a limit to consecutive sideways moves (e.g. 100)
- Ex: with 8 -queens, pass from 14% to 94% success, slower

Hill-Climbing Search: Drawbacks

- Incomplete: gets stuck in local optima, flat local optima \& shoulders (aka plateaux), ridges (sequences of local optima)
- Ex: with 8-queens, gets stuck 86% of the time, fast when succeed note: converges very fast till (local) minima or plateaux
- Possible idea: allow 0-progress moves (aka sideways moves)
- pros: may allow getting out of shoulders
- cons: may cause infinite loops with flat local optima
set a limit to consecutive sideways moves (e.g. 100)
- Ex: with 8 -queens, pass from 14% to 94% success, slower

Hill-Climbing Search: Drawbacks

- Incomplete: gets stuck in local optima, flat local optima \& shoulders (aka plateaux), ridges (sequences of local optima)
- Ex: with 8-queens, gets stuck 86% of the time, fast when succeed note: converges very fast till (local) minima or plateaux
- Possible idea: allow 0-progress moves (aka sideways moves)
- pros: may allow getting out of shoulders
- cons: may cause infinite loops with flat local optima
set a limit to consecutive sideways moves (e.g. 100)
- Ex: with 8 -queens, pass from 14% to 94% success, slower

(© S. Russell \& P. Norwig, AIMA)

Hill-Climbing Search: Drawbacks

- Incomplete: gets stuck in local optima, flat local optima \& shoulders (aka plateaux), ridges (sequences of local optima)
- Ex: with 8-queens, gets stuck 86% of the time, fast when succeed note: converges very fast till (local) minima or plateaux
- Possible idea: allow 0-progress moves (aka sideways moves)
- pros: may allow getting out of shoulders
- cons: may cause infinite loops with flat local optima
\Longrightarrow set a limit to consecutive sideways moves (e.g. 100)
- Ex: with 8 -queens, pass from 14% to 94% success, slower

(© S. Russell \& P. Norwig, AIMA)

Hill-climbing: Variations

- Stochastic hill-climbing
- random selection among the uphill moves
- selection probability can vary with the steepness of uphill move
- sometimes slower, but often finds better solutions
- First-choice hill-climbing
- cfr. stochastic h.c., generates successors randomly until a better one is found
- good when there are large amounts of successors
- Random-restart hill-climbing
- conducts a series of hill-climbing searches from randomly generated initial states
- tries to avoid getting stuck in local maxima

Hill-climbing: Variations

- Stochastic hill-climbing
- random selection among the uphill moves
- selection probability can vary with the steepness of uphill move
- sometimes slower, but often finds better solutions
- First-choice hill-climbing
- cfr. stochastic h.c., generates successors randomly until a better one is found
- good when there are large amounts of successors
- Random-restart hill-climbing
- conducts a series of hill-climbing searches from randomly generated initial states
- tries to avoid getting stuck in local maxima

Hill-climbing: Variations

- Stochastic hill-climbing
- random selection among the uphill moves
- selection probability can vary with the steepness of uphill move
- sometimes slower, but often finds better solutions
- First-choice hill-climbing
- cfr. stochastic h.c., generates successors randomly until a better one is found
- good when there are large amounts of successors
- Random-restart hill-climbing
- conducts a series of hill-climbing searches from randomly generated initial states
- tries to avoid getting stuck in local maxima

Outline

(1) Local Search and Optimization

- General Ideas
- Hill-Climbing
- Simulated Annealing
- Local Beam Search \& Genetic Algorithms

2 Search with Nondeterministic Actions
(3) Search with Partial or No Observations (Deterministic/Nondeterministic Actions)

- Search with No Observations
- Search with Partial Observations
(4) Online Search

Simulated Annealing

- Inspired to statistical-mechanics analysis of metallurgical annealing (Boltzmann's state distributions)
- Idea: Escape local maxima by allowing "bad" moves...
- "bad move": move toward states with worse value
- typically pick a move taken at random ("random walk")
- ... but gradually decrease their size and frequency.
- sideways moves progressively less likely
- Analogy: get a ball into the deepest crevice in a bumpy surface
- initially shaking hard ("high temperature")
- progressively shaking less hard ("decrease the temperature")

Widely used in large-scale optimization tasks (e.g. VSLI layout problems, factory scheduling,...)

Simulated Annealing [cont.]

Simulated Annealing (maximization)

- A "temperature" parameter T slowly decreases with steps ("schedule")
- The probability of picking a "bad move":
- decreases exponentially with the "badness" of the move $|\Delta E|$
- decreases as the "temperature" T goes down
- If schedule lowers T slowly enough, then the algorithm will find a global optimum with probability approaching 1

```
function Simulated-AnNEALING( problem, schedule) returns a solution state
    inputs: problem, a problem
            schedule, a mapping from time to "temperature"
    current \(\leftarrow\) MAKE-NODE problem.InitiAL-STATE)
    for \(t=1\) to \(\infty\) do
        \(T \leftarrow\) schedule \((t)\)
        if \(T=0\) then return current
        next \(\leftarrow\) a randomly selected successor of current
        \(\Delta E \leftarrow n e x t\).VALUE - current. VALUE
        if \(\Delta E>0\) then current \(\leftarrow\) next
        else current \(\leftarrow\) next only with probability \(e^{\Delta E / T}\)
```


Outline

(1) Local Search and Optimization

- General Ideas
- Hill-Climbing
- Simulated Annealing
- Local Beam Search \& Genetic Algorithms

2) Search with Nondeterministic Actions

3 Search with Partial or No Observations (Deterministic/Nondeterministic Actions)

- Search with No Observations
- Search with Partial Observations

4 Online Search

Local Beam Search

Local Beam Search

- Idea: keep track of k states instead of one
- Initially: k random states
- Step:
- Different from k searches run in parallel:
- searches that find good states recruit other searches to join them \longrightarrow information is shared among k search threads
- Lack of diversity: quite often, all k states end up same local hill Stochastic Local Beam: choose k successors randomly. with probability proportional to state success.

[^2]
Local Beam Search

Local Beam Search

- Idea: keep track of k states instead of one
- Initially: k random states
- Step:
- Different from k searches run in parallel:
- searches that find good states recruit other searches to join them \Longrightarrow information is shared among k search threads
- Lack of diversity: quite often, all k states end up same local hill Stochastic Local Beam: choose k successors randomly. with probability proportional to state success.

[^3]
Local Beam Search

Local Beam Search

- Idea: keep track of k states instead of one
- Initially: k random states
- Step:
(1) determine all successors of k states

2 if any of successors is goal \Longrightarrow finished
(3) else select k best from successors

- Different from k searches run in parallel:
- searches that find good states recruit other searches to join them \Longrightarrow information is shared among k search threads
- Lack of diversity: quite often, all k states end up same local hill Stochastic Local Beam: choose k successors randomly, with probability proportional to state success.

[^4]
Local Beam Search

Local Beam Search

- Idea: keep track of k states instead of one
- Initially: k random states
- Step:
(1) determine all successors of k states
(3) if any of successors is goal \Longrightarrow finished
(0) else select k best from successors
- Different from k searches run in parallel:
- searches that find good states recruit other searches to join them \Longrightarrow information is shared among k search threads
- Lack of diversity: quite often, all k states end up same local hill Stochastic Local Beam: choose k successors randomly. with probability proportional to state success.

[^5]
Local Beam Search

Local Beam Search

- Idea: keep track of k states instead of one
- Initially: k random states
- Step:
(1) determine all successors of k states
(2) if any of successors is goal \Longrightarrow finished
- Different from k searches run in parallel:
- searches that find good states recruit other searches to join them \Longrightarrow information is shared among k search threads
- Lack of diversity: quite often, all k states end up same local hill Stochastic Local Beam: choose k successors randomly, with probability proportional to state success.

[^6]
Local Beam Search

Local Beam Search

- Idea: keep track of k states instead of one
- Initially: k random states
- Step:
(1) determine all successors of k states
(2) if any of successors is goal \Longrightarrow finished
(3) else select k best from successors
- Different from k searches run in parallel:
- searches that find good states recruit other searches to join them \Longrightarrow information is shared among k search threads
- Lack of diversity: quite often, all k states end up same local hill Stochastic Local Beam: choose k successors randomly, with probability proportional to state success.

[^7]
Local Beam Search

Local Beam Search

- Idea: keep track of k states instead of one
- Initially: k random states
- Step:
(1) determine all successors of k states
(2) if any of successors is goal \Longrightarrow finished
(3) else select k best from successors
- Different from k searches run in parallel:
- searches that find good states recruit other searches to join them \Longrightarrow information is shared among k search threads
- Lack of diversity: quite often, all k states end up same local hill

Stochastic Local Beam: choose k successors randomly,
with probability proportional to state success.

[^8]
Local Beam Search

Local Beam Search

- Idea: keep track of k states instead of one
- Initially: k random states
- Step:
(1) determine all successors of k states
(2) if any of successors is goal \Longrightarrow finished
(3) else select k best from successors
- Different from k searches run in parallel:
- searches that find good states recruit other searches to join them \Longrightarrow information is shared among k search threads
- Lack of diversity: quite often, all k states end up same local hill

Stochastic Local Beam: choose k successors randomly,
with probability proportional to state success.

[^9]
Local Beam Search

Local Beam Search

- Idea: keep track of k states instead of one
- Initially: k random states
- Step:
(1) determine all successors of k states
(2) if any of successors is goal \Longrightarrow finished
(3) else select k best from successors
- Different from k searches run in parallel:
- searches that find good states recruit other searches to join them \Longrightarrow information is shared among k search threads
- Lack of diversity: quite often, all k states end up same local hill
\Longrightarrow Stochastic Local Beam: choose k successors randomly, with probability proportional to state success.

[^10]
Local Beam Search

Local Beam Search

- Idea: keep track of k states instead of one
- Initially: k random states
- Step:
(1) determine all successors of k states
(2) if any of successors is goal \Longrightarrow finished
(3) else select k best from successors
- Different from k searches run in parallel:
- searches that find good states recruit other searches to join them \Longrightarrow information is shared among k search threads
- Lack of diversity: quite often, all k states end up same local hill
\Longrightarrow Stochastic Local Beam: choose k successors randomly, with probability proportional to state success.

Resembles natural selection with asexual reproduction:
the successors (offspring) of a state (organism) populate the next generation according to its value (fitness), with a random component.

Genetic Algorithms

- Variant of local beam search: successor states generated by combining two parent states (rather than one single state)
- States represented as strings over a finite alphabet (e.g. $\{0,1\}$)
- Initially: pick k random states
- Step:
- Ends when some state is fit enough (or timeout)
- Manv alaorithm variants available

Genetic Algorithms

- Variant of local beam search: successor states generated by combining two parent states (rather than one single state)
- States represented as strings over a finite alphabet (e.g. $\{0,1\}$)
- Initially: pick k random states
- Step:
- Ends when some state is fit enough (or timeout)
- Manv alaorithm variants available

Genetic Algorithms

- Variant of local beam search: successor states generated by combining two parent states (rather than one single state)
- States represented as strings over a finite alphabet (e.g. $\{0,1\}$)
- Initially: pick k random states
- Step:
- Ends when some state is fit enough (or timeout)
- Manv alaorithm variants available

Genetic Algorithms

- Variant of local beam search: successor states generated by combining two parent states (rather than one single state)
- States represented as strings over a finite alphabet (e.g. $\{0,1\}$)
- Initially: pick k random states
- Step:
(1) parent states are rated according to a fitness function

2 k parent pairs are selected at random for reproduction,
with probability increasing with their fitness
(3) for each parent pair

- Ends when some state is fit enough (or timeout)
- Manv alaorithm variants available

Genetic Algorithms

- Variant of local beam search: successor states generated by combining two parent states (rather than one single state)
- States represented as strings over a finite alphabet (e.g. $\{0,1\}$)
- Initially: pick k random states
- Step:
(1) parent states are rated according to a fitness function
(2) k parent pairs are selected at random for reproduction,
with probability increasing with their fitness

C for each parent pair

- Ends when some state is fit enough (or timeout)
- Manv alaorithm variants available

Genetic Algorithms

- Variant of local beam search: successor states generated by combining two parent states (rather than one single state)
- States represented as strings over a finite alphabet (e.g. $\{0,1\}$)
- Initially: pick k random states
- Step:
(1) parent states are rated according to a fitness function
(2) k parent pairs are selected at random for reproduction, with probability increasing with their fitness
- gender and monogamy not considered

C for each parent pair

- Ends when some state is fit enough (or timeout)
- Manv alaorithm variants available

Genetic Algorithms

- Variant of local beam search: successor states generated by combining two parent states (rather than one single state)
- States represented as strings over a finite alphabet (e.g. $\{0,1\}$)
- Initially: pick k random states
- Step:
(1) parent states are rated according to a fitness function
(2) k parent pairs are selected at random for reproduction, with probability increasing with their fitness
- gender and monogamy not considered
(3) for each parent pair
- Ends when some state is fit enough (or timeout)
- Manv alaorithm variants available

Genetic Algorithms

- Variant of local beam search: successor states generated by combining two parent states (rather than one single state)
- States represented as strings over a finite alphabet (e.g. $\{0,1\}$)
- Initially: pick k random states
- Step:
(1) parent states are rated according to a fitness function
(2) k parent pairs are selected at random for reproduction,
with probability increasing with their fitness
- gender and monogamy not considered
(3) for each parent pair
(1) a crossover point is chosen randomly
(3) a new state is created by crossing over the parent strings
(3) the offspring state is subject to (low-probability) random mutation
- Ends when some state is fit enough (or timeout)
- Many algorithm variants available

Genetic Algorithms

- Variant of local beam search: successor states generated by combining two parent states (rather than one single state)
- States represented as strings over a finite alphabet (e.g. $\{0,1\}$)
- Initially: pick k random states
- Step:
(1) parent states are rated according to a fitness function
(2) k parent pairs are selected at random for reproduction,
with probability increasing with their fitness
- gender and monogamy not considered
(3) for each parent pair
(1) a crossover point is chosen randomly
(3) a new state is created by crossing over the parent strings
(3) the offspring state is subject to (low-probability) random mutation
- Ends when some state is fit enough (or timeout)
- Manv alaorithm variants available

Genetic Algorithms

- Variant of local beam search: successor states generated by combining two parent states (rather than one single state)
- States represented as strings over a finite alphabet (e.g. $\{0,1\}$)
- Initially: pick k random states
- Step:
(1) parent states are rated according to a fitness function
(2) k parent pairs are selected at random for reproduction,
with probability increasing with their fitness
- gender and monogamy not considered
(3) for each parent pair
(1) a crossover point is chosen randomly
(2) a new state is created by crossing over the parent strings
(the offspring state is subject to (low-probability) random mutation
- Ends when some state is fit enough (or timeout)
- Manv alaorithm variants available

Resembles natural selection, with sexual reproduction

Genetic Algorithms

- Variant of local beam search: successor states generated by combining two parent states (rather than one single state)
- States represented as strings over a finite alphabet (e.g. $\{0,1\}$)
- Initially: pick k random states
- Step:
(1) parent states are rated according to a fitness function
(2) k parent pairs are selected at random for reproduction,
with probability increasing with their fitness
- gender and monogamy not considered
(3) for each parent pair
(1) a crossover point is chosen randomly
(2) a new state is created by crossing over the parent strings
(3) the offspring state is subject to (low-probability) random mutation
- Ends when some state is fit enough (or timeout)
- Many algorithm variants available

Resembles natural selection, with sexual reproduction

Genetic Algorithms

- Variant of local beam search: successor states generated by combining two parent states (rather than one single state)
- States represented as strings over a finite alphabet (e.g. $\{0,1\}$)
- Initially: pick k random states
- Step:
(1) parent states are rated according to a fitness function
(2) k parent pairs are selected at random for reproduction,
with probability increasing with their fitness
- gender and monogamy not considered
(3) for each parent pair
(1) a crossover point is chosen randomly
(2) a new state is created by crossing over the parent strings
(3) the offspring state is subject to (low-probability) random mutation
- Ends when some state is fit enough (or timeout)
- Many algorithm variants available

Resembles natural selection, with sexual reproduction

Genetic Algorithms

- Variant of local beam search: successor states generated by combining two parent states (rather than one single state)
- States represented as strings over a finite alphabet (e.g. $\{0,1\}$)
- Initially: pick k random states
- Step:
(1) parent states are rated according to a fitness function
(2) k parent pairs are selected at random for reproduction,
with probability increasing with their fitness
- gender and monogamy not considered
(3) for each parent pair
(1) a crossover point is chosen randomly
(2) a new state is created by crossing over the parent strings
(3) the offspring state is subject to (low-probability) random mutation
- Ends when some state is fit enough (or timeout)
- Many algorithm variants available

Genetic Algorithms

- Variant of local beam search: successor states generated by combining two parent states (rather than one single state)
- States represented as strings over a finite alphabet (e.g. $\{0,1\}$)
- Initially: pick k random states
- Step:
(1) parent states are rated according to a fitness function
(2) k parent pairs are selected at random for reproduction,
with probability increasing with their fitness
- gender and monogamy not considered
(3) for each parent pair
(1) a crossover point is chosen randomly
(2) a new state is created by crossing over the parent strings
(3) the offspring state is subject to (low-probability) random mutation
- Ends when some state is fit enough (or timeout)
- Many algorithm variants available

Resembles natural selection, with sexual reproduction

Genetic Algorithms

function GENETIC-ALGORITHM (population, FITNESS-FN) returns an individual inputs: population, a set of individuals

Fitness-Fn, a function that measures the fitness of an individual

repeat

new_population \leftarrow empty set
for $i=1$ to SIZE(population) do
$x \leftarrow$ RANDOM-SELECTION (population, FITNESS-FN)
$y \leftarrow$ RANDOM-SELECTION (population, Fitness-FN)
child $\leftarrow \operatorname{REPRODUCE}(x, y)$
if (small random probability) then child $\leftarrow \operatorname{MUTATE}$ (child)
add child to new_population
population \leftarrow new_population
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to FITNESS-FN
function $\operatorname{REPRODUCE}(x, y)$ returns an individual inputs: x, y, parent individuals
$n \leftarrow \operatorname{LENGTH}(x) ; c \leftarrow$ random number from 1 to n return $\operatorname{Append}(\operatorname{Substring}(x, 1, c), \operatorname{Substring}(y, c+1, n))$
(C) S. Russell \& P. Norwig, AIMA)

Genetic Algorithms: Example

Example: 8-Queens

state[i]: (upward) position of the queen in ith column

Fitness Selection
Pairs
Cross-Over
Mutation

$327 \mid 52411$

Genetic Algorithms: Intuitions, Pros \& Cons

Intuitions

- Selection drives the population toward high fitness
- Crossover combines good parts from good solutions (but it might achieve the opposite effect)
- Mutation introduces diversity

Pros \& Cons

Widespread impact on optimization problems, i.e. circuit layout and job-shop scheduling

Genetic Algorithms: Intuitions, Pros \& Cons

Intuitions

- Selection drives the population toward high fitness
- Crossover combines good parts from good solutions (but it might achieve the opposite effect)
- Mutation introduces diversity

Genetic Algorithms: Intuitions, Pros \& Cons

Intuitions

- Selection drives the population toward high fitness
- Crossover combines good parts from good solutions (but it might achieve the opposite effect)
- Mutation introduces diversity

Genetic Algorithms: Intuitions, Pros \& Cons

Intuitions

- Selection drives the population toward high fitness
- Crossover combines good parts from good solutions (but it might achieve the opposite effect)
- Mutation introduces diversity

Genetic Algorithms: Intuitions, Pros \& Cons

Intuitions

- Selection drives the population toward high fitness
- Crossover combines good parts from good solutions (but it might achieve the opposite effect)
- Mutation introduces diversity

```
Pros & Cons
    - Pros
        - extremely simple
        - general purpose
    - tractable theoretical models
    - Cons:
    - not completely understood
    - good coding is crucial (e.g., Gray codes for numbers)
    - too simple genetic operators
```


Genetic Algorithms: Intuitions, Pros \& Cons

Intuitions

- Selection drives the population toward high fitness
- Crossover combines good parts from good solutions (but it might achieve the opposite effect)
- Mutation introduces diversity

Pros \& Cons

- Pros:
- extremely simple
- general purpose
- tractable theoretical models
- Cons:
- not completely understood
- good coding is crucial (e.g., Gray codes for numbers)
- too simple genetic operators

Genetic Algorithms: Intuitions, Pros \& Cons

Intuitions

- Selection drives the population toward high fitness
- Crossover combines good parts from good solutions (but it might achieve the opposite effect)
- Mutation introduces diversity

Pros \& Cons

- Pros:
- extremely simple
- general purpose
- tractable theoretical models
- Cons:
- not completely understood
- good coding is crucial (e.g., Gray codes for numbers)
- too simple genetic operators

Genetic Algorithms: Intuitions, Pros \& Cons

Intuitions

- Selection drives the population toward high fitness
- Crossover combines good parts from good solutions (but it might achieve the opposite effect)
- Mutation introduces diversity

Pros \& Cons

- Pros:
- extremely simple
- general purpose
- tractable theoretical models
- Cons:
- not completely understood
- good coding is crucial (e.g., Gray codes for numbers)
- too simple genetic operators

Widespread impact on optimization problems, i.e. circuit layout and job-shop scheduling

Outline

(1) Local Search and Optimization

- General Ideas
- Hill-Climbing
- Simulated Annealing
- Local Beam Search \& Genetic Algorithms
(2) Search with Nondeterministic Actions

3 Search with Partial or No Observations (Deterministic/Nondeterministic Actions)

- Search with No Observations
- Search with Partial Observations

4 Online Search

Generalities

- Assumptions so far (see ch. 2 and 3):
- the environment is deterministic
- the environment is fully observable
- the agent knows the effects of each action
\Rightarrow The agent does not need perception:
- can calculate which state results from any sequence of actions
- always knows which state it is in
- If one of the above does not hold, then percepts are useful
- the future percepts cannot be determined in advance
- the agent's future actions will depend on future percepts
- Solution: not a sequence but a contingency plan (aka conditional plan, strategy)
- specifies the actions depending on what percepts are received
- We analyze first the case of nondeterministic environments

Generalities

- Assumptions so far (see ch. 2 and 3):
- the environment is deterministic
- the environment is fully observable
- the agent knows the effects of each action
\Longrightarrow The agent does not need perception:
- can calculate which state results from any sequence of actions
- always knows which state it is in
- If one of the above does not hold, then percepts are useful
- the future percepts cannot be determined in advance
- the agent's future actions will depend on future percepts
- Solution: not a sequence but a contingency plan (aka conditional plan, strategy)
- specifies the actions depending on what percepts are received
- We analvze first the case of nondeterministic environments

Generalities

- Assumptions so far (see ch. 2 and 3):
- the environment is deterministic
- the environment is fully observable
- the agent knows the effects of each action
\Longrightarrow The agent does not need perception:
- can calculate which state results from any sequence of actions
- always knows which state it is in
- If one of the above does not hold, then percepts are useful
- the future percepts cannot be determined in advance
- the agent's future actions will depend on future percepts
- Solution: not a sequence but a contingency plan (aka conditional plan, strategy)
- specifies the actions depending on what percepts are received
- We analvze first the case of nondeterministic environments

Generalities

- Assumptions so far (see ch. 2 and 3):
- the environment is deterministic
- the environment is fully observable
- the agent knows the effects of each action
\Longrightarrow The agent does not need perception:
- can calculate which state results from any sequence of actions
- always knows which state it is in
- If one of the above does not hold, then percepts are useful
- the future percepts cannot be determined in advance
- the agent's future actions will depend on future percepts
- Solution: not a sequence but a contingency plan (aka conditional plan, strategy)
- specifies the actions depending on what percepts are received
- We analyze first the case of nondeterministic environments

Generalities

- Assumptions so far (see ch. 2 and 3):
- the environment is deterministic
- the environment is fully observable
- the agent knows the effects of each action
\Longrightarrow The agent does not need perception:
- can calculate which state results from any sequence of actions
- always knows which state it is in
- If one of the above does not hold, then percepts are useful
- the future percepts cannot be determined in advance
- the agent's future actions will depend on future percepts
- Solution: not a sequence but a contingency plan (aka conditional plan, strategy)
- specifies the actions depending on what percepts are received
- We analyze first the case of nondeterministic environments

Example: The Erratic Vacuum Cleaner

Erratic Vacuum-Cleaner Example

- actions: Left, Right, Suck
- goal: A and B cleaned (states 7, 8)
- if environment is observable, deterministic, and completely known \Longrightarrow solvable by search algos
- ex: if initially in 1 , then [suck,right,suck] leads to 8 : [1,5,6,8]

(c) S. Russell \& P. Norwig, AIMA)

8

- Nondeterministic version (erratic vacuum cleaner):
- if dirty square: cleans the square, sometimes cleans also the other square. Ex: $1 \stackrel{\text { suck }}{\longrightarrow}\{5,7$
- if clean square: sometimes deposits dirt on the carpet

Example: The Erratic Vacuum Cleaner

Erratic Vacuum-Cleaner Example

- actions: Left, Right, Suck
- goal: A and B cleaned (states 7, 8)
- if environment is observable, deterministic, and completely known \Longrightarrow solvable by search algos
- ex: if initially in 1, then [suck,right,suck] leads to 8 : [1,5,6,8]
- Nondeterministic version (erratic vacuum cleaner):

- If dirty square: cleans the square, sometimes cleans also the other square. Ex: $1 \stackrel{\text { suck }}{ }\{5,7\}$
- if clean square: sometimes deposits dirt on the carpet

Example: The Erratic Vacuum Cleaner

Erratic Vacuum-Cleaner Example

- actions: Left, Right, Suck
- goal: A and B cleaned (states 7, 8)
- if environment is observable, deterministic, and completely known \Longrightarrow solvable by search algos
- ex: if initially in 1, then [suck,right,suck] leads to 8 : [1,5,6,8]

2

00_{0}^{080}	$\underset{\substack{\text { aioi }}}{\infty}$

- Nondeterministic version (erratic vacuum cleaner):
(© S. Russell \& P. Norwig, AIMA)
- if dirty square: cleans the square, sometimes cleans also the other square. Ex: $1 \stackrel{\text { suck }}{\Longrightarrow}\{5,7\}$
- if clean square: sometimes deposits dirt on the carpet Ex: $5 \xrightarrow{\text { suck }}\{1,5\}$

Searching with Nondeterministic Actions

Generalized notion of transition model

- Results(S,A) returns a set of possible outcomes states
- Ex: RESULTS(1,SUCK) $=\{5,7\}$, RESULTS(5, SUCK) $=\{1,5\}, \ldots$
- A solution is a contingency plan (aka conditional plan, strateay)
- contains nested conditions on future percepts (if-then-else, case-switch, ...)
- Ex: from state 1 we can act the following contingency plan: [SUCK, IF STATE $=5$ THEN [RIGHT, SUCK] ELSE []]
- Can cause loops (see later)

Searching with Nondeterministic Actions

Generalized notion of transition model

- Results(S,A) returns a set of possible outcomes states
- Ex: Results(1,Suck)=\{5,7\}, Results(5,Suck) $=\{1,5\}, \ldots$
- A solution is a contingency plan (aka conditional plan, strategy)
- contains nested conditions on future percepts (if-then-else, case-switch, ...)
- Ex: from state 1 we can act the following contingency plan:
[SUCK, IF STATE $=5$ THEN [RIGHT, SUCK] ELSE []]
- Can cause loops (see later)

Searching with Nondeterministic Actions

Generalized notion of transition model

- Results(S,A) returns a set of possible outcomes states
- Ex: Results(1, Suck) $=\{5,7\}$, Results(5, Suck) $=\{1,5\}, \ldots$
- A solution is a contingency plan (aka conditional plan, strategy)
- contains nested conditions on future percepts (if-then-else, case-switch, ...)
- Ex: from state 1 we can act the following contingency plan:
[Suck, if State = 5 then [Right, Suck] else []]
- Can cause loops (see later)

Searching with Nondeterministic Actions

Generalized notion of transition model

- Results(S,A) returns a set of possible outcomes states
- Ex: Results(1,Suck)=\{5,7\}, Results(5,Suck) $=\{1,5\}, \ldots$
- A solution is a contingency plan (aka conditional plan, strategy)
- contains nested conditions on future percepts (if-then-else, case-switch, ...)
- Ex: from state 1 we can act the following contingency plan: [Suck, if State = 5 then [Right, Suck] else []]
- Can cause loops (see later)

Searching with Nondeterministic Actions [cont.]

And-Or Search Trees

- In a deterministic environment, branching on agent's choices
\Longrightarrow OR nodes, hence OR search trees
- In a nondeterministic environment, branching also on environment's choice of outcome for each action
- A solution for an AND-OR search problem is a subtree s.t.:
- has a goal node at every leaf
- specifies one action at each of its OR nodes
- includes all outcome branches at each of its AND nodes

OR tree: AND-OR tree with 1 outcome each AND node (determinism)

Searching with Nondeterministic Actions [cont.]

And-Or Search Trees

- In a deterministic environment, branching on agent's choices
\Longrightarrow OR nodes, hence OR search trees
- In a nondeterministic environment, branching also on environment's choice of outcome for each action
- A solution for an AND-OR search problem is a subtree s.t.:
- has a goal node at every leaf
- specifies one action at each of its OR nodes
- includes all outcome branches at each of its AND nodes

OR tree: AND-OR tree with 1 outcome each AND node (determinism)

Searching with Nondeterministic Actions [cont.]

And-Or Search Trees

- In a deterministic environment, branching on agent's choices
\Longrightarrow OR nodes, hence OR search trees
- OR nodes correspond to states
- In a nondeterministic environment, branching also on environment's choice of outcome for each action
- A solution for an AND-OR search problem is a subtree s.t.:
- has a goal node at every leaf
- specifies one action at each of its OR nodes
- includes all outcome branches at each of its AND nodes

[^11]
Searching with Nondeterministic Actions [cont.]

And-Or Search Trees

- In a deterministic environment, branching on agent's choices
\Longrightarrow OR nodes, hence OR search trees
- OR nodes correspond to states
- In a nondeterministic environment, branching also on environment's choice of outcome for each action
- the agent has to handle all such outcomes

AND nodes, hence AND-OR search trees

- AND nodes correspond to actions
- leaf nodes are goal, dead-end or loop OR nodes
- A solution for an AND-OR search problem is a subtree s.t.
- has a goal node at every leaf
- specifies one action at each of its OR nodes
- includes all outcome branches at each of its AND nodes

[^12]
Searching with Nondeterministic Actions [cont.]

And-Or Search Trees

- In a deterministic environment, branching on agent's choices
\Longrightarrow OR nodes, hence OR search trees
- OR nodes correspond to states
- In a nondeterministic environment, branching also on environment's choice of outcome for each action
- the agent has to handle all such outcomes
\Longrightarrow AND nodes, hence AND-OR search trees
- leaf nodes are goal, dead-end or loop OR nodes
- A solution for an AND-OR search problem is a subtree s.t.:
- has a goal node at every leaf
- specifies one action at each of its OR nodes
- includes all outcome branches at each of its AND nodes

[^13]
Searching with Nondeterministic Actions [cont.]

And-Or Search Trees

- In a deterministic environment, branching on agent's choices
\Longrightarrow OR nodes, hence OR search trees
- OR nodes correspond to states
- In a nondeterministic environment, branching also on environment's choice of outcome for each action
- the agent has to handle all such outcomes
\Longrightarrow AND nodes, hence AND-OR search trees
- AND nodes correspond to actions
- leaf nodes are goal, dead-end or loop OR nodes
- A solution for an AND-OR search problem is a subtree s.t.:
- has a goal node at every leaf
- specifies one action at each of its OR nodes
- includes all outcome branches at each of its AND nodes

[^14]
Searching with Nondeterministic Actions [cont.]

And-Or Search Trees

- In a deterministic environment, branching on agent's choices
\Longrightarrow OR nodes, hence OR search trees
- OR nodes correspond to states
- In a nondeterministic environment, branching also on environment's choice of outcome for each action
- the agent has to handle all such outcomes
\Longrightarrow AND nodes, hence AND-OR search trees
- AND nodes correspond to actions
- leaf nodes are goal, dead-end or loop OR nodes
- A solution for an AND-OR search problem is a subtree s.t.:
- has a goal node at every leaf
- specifies one action at each of its OR nodes
- includes all outcome branches at each of its AND nodes

[^15]
Searching with Nondeterministic Actions [cont.]

And-Or Search Trees

- In a deterministic environment, branching on agent's choices
\Longrightarrow OR nodes, hence OR search trees
- OR nodes correspond to states
- In a nondeterministic environment, branching also on environment's choice of outcome for each action
- the agent has to handle all such outcomes
\Longrightarrow AND nodes, hence AND-OR search trees
- AND nodes correspond to actions
- leaf nodes are goal, dead-end or loop OR nodes
- A solution for an AND-OR search problem is a subtree s.t.:
- has a goal node at every leaf
- specifies one action at each of its OR nodes
- includes all outcome branches at each of its AND nodes

Searching with Nondeterministic Actions [cont.]

And-Or Search Trees

- In a deterministic environment, branching on agent's choices
\Longrightarrow OR nodes, hence OR search trees
- OR nodes correspond to states
- In a nondeterministic environment, branching also on environment's choice of outcome for each action
- the agent has to handle all such outcomes
\Longrightarrow AND nodes, hence AND-OR search trees
- AND nodes correspond to actions
- leaf nodes are goal, dead-end or loop OR nodes
- A solution for an AND-OR search problem is a subtree s.t.:
- has a goal node at every leaf
- specifies one action at each of its OR nodes
- includes all outcome branches at each of its AND nodes

OR tree: AND-OR tree with 1 outcome each AND node (determinism)

And-Or Search Trees: Example

(Part of) And-Or Search Tree for Erratic Vacuum Cleaner Example.
Problem: Init: 1, Goal: 7,8.
Solution: [SUCK, IF STATE $=5$ THEN [RIGHT, SUCK] ELSE []] (solid arcs)

And-Or Search Trees: Example

(Part of) And-Or Search Tree for Erratic Vacuum Cleaner Example.
Problem: Init: 1, Goal: 7,8.
Solution: [Suck, if State = 5 then [Right, Suck] else []] (solid arcs)

AND-OR Search

Recursive Depth-First (Tree-based) AND-OR Search

function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure Or-SEARCH(problem.Initial-State, problem, [])
function OR-SEARCH(state, problem, path) returns a conditional plan, or failure
if problem.GOAL-TEST(state) then return the empty plan
if state is on path then return failure
for each action in problem. Actions(state) do
plan $\leftarrow \operatorname{AND}-\operatorname{SEARCH}(\operatorname{RESULTS}($ state, action $)$, problem, $[$ state \mid path $])$
if plan \neq failure then return $[$ action \mid plan]
return failure
function AND-SEARCH(states, problem, path) returns a conditional plan, or failure for each s_{i} in states do
plan $_{i} \leftarrow$ OR-SEARCH $\left(s_{i}\right.$, problem, path $)$
if plan $_{i}=$ failure then return failure
return [if s_{1} then plan $_{1}$ else if s_{2} then plan $_{2}$ else \ldots if s_{n-1} then plan $_{n-1}$ else plan ${ }_{n}$]

Note: nested if-then-else can be rewritten as case-switch

AND-OR Search [cont.]

Recursive Depth-First (Tree-based) AND-OR Search

- Cycles: if the current state already occurs in the path \Longrightarrow failure
- cycle detection like with ordinary DFS
- does not mean "no solution"
- means "if there is a non-cyclic solution,
it must be reachable from the earlier incarnation of the current state"
\Rightarrow Complete (if state space finite): every path must reach a goal, a dead-end or loop state
- Can be augmented with "explored" data structure for avoiding redundant branches (graph-based search)
- Can also be explored by breadth-first or best-first method
- e.g. A* variant for AND-OR search available (see AIMA book)

AND-OR Search [cont.]

Recursive Depth-First (Tree-based) AND-OR Search

- Cycles: if the current state already occurs in the path \Longrightarrow failure
- cycle detection like with ordinary DFS
- does not mean "no solution"
- means "if there is a non-cyclic solution, it must be reachable from the earlier incarnation of the current state"
\Longrightarrow Complete (if state space finite): every path must reach a goal, a dead-end or loop state
- Can be augmented with "explored" data structure for avoiding redundant branches (graph-based search)
- Can also be explored by breadth-first or best-first method
- e.g. A* variant for AND-OR search available (see AIMA book)

AND-OR Search [cont.]

Recursive Depth-First (Tree-based) AND-OR Search

- Cycles: if the current state already occurs in the path \Longrightarrow failure
- cycle detection like with ordinary DFS
- does not mean "no solution"
- means "if there is a non-cyclic solution, it must be reachable from the earlier incarnation of the current state"
\Longrightarrow Complete (if state space finite): every path must reach a goal, a dead-end or loop state
- Can be augmented with "explored" data structure for avoiding redundant branches (graph-based search)
- Can also be explored by breadth-first or best-first method
- e.g. A* variant for AND-OR search available (see AIMA book)

AND-OR Search [cont.]

Recursive Depth-First (Tree-based) AND-OR Search

- Cycles: if the current state already occurs in the path \Longrightarrow failure
- cycle detection like with ordinary DFS
- does not mean "no solution"
- means "if there is a non-cyclic solution, it must be reachable from the earlier incarnation of the current state"
\Longrightarrow Complete (if state space finite): every path must reach a goal, a dead-end or loop state
- Can be augmented with "explored" data structure for avoiding redundant branches (graph-based search)
- Can also be explored by breadth-first or best-first method
- e.g. A^{*} variant for AND-OR search available (see AIMA book)

AND-OR Search: Cyclic Solutions

- Some problems have no acyclic solutions
- A cyclic plan may be considered a cyclic solution provided that:
- every leaf is a goal state (loop states not considered leaves), and
- a leaf is reachable from every point in the plan
- Can be expressed by means of introducing
- labels, and backward goto's to labels
- loop syntax (e.g., while-do)

Executing a cyclic solution eventually reaches a goal,
provided that each outcome of a nondeterministic action eventually occurs

AND-OR Search: Cyclic Solutions

- Some problems have no acyclic solutions
- A cyclic plan may be considered a cyclic solution provided that:
- every leaf is a goal state (loop states not considered leaves), and
- a leaf is reachable from every point in the plan
- Can be expressed by means of introducing
- labels, and backward goto's to labels
- loop syntax (e.g., while-do)

Executing a cyclic solution eventually reaches a goal,
provided that each outcome of a nondeterministic action eventually occurs

AND-OR Search: Cyclic Solutions

- Some problems have no acyclic solutions
- A cyclic plan may be considered a cyclic solution provided that:
- every leaf is a goal state (loop states not considered leaves), and
- a leaf is reachable from every point in the plan
- Can be expressed by means of introducing
- labels, and backward goto's to labels
- loop syntax (e.g., while-do)

Executing a cyclic solution eventually reaches a goal,
provided that each outcome of a nondeterministic action eventually occurs

AND-OR Search: Cyclic Solutions

- Some problems have no acyclic solutions
- A cyclic plan may be considered a cyclic solution provided that:
- every leaf is a goal state (loop states not considered leaves), and
- a leaf is reachable from every point in the plan
- Can be expressed by means of introducing
- labels, and backward goto's to labels
- loop syntax (e.g., while-do)
\Longrightarrow Executing a cyclic solution eventually reaches a goal, provided that each outcome of a nondeterministic action eventually occurs

AND-OR Search: Cyclic Solutions

- Some problems have no acyclic solutions
- A cyclic plan may be considered a cyclic solution provided that:
- every leaf is a goal state (loop states not considered leaves), and
- a leaf is reachable from every point in the plan
- Can be expressed by means of introducing
- labels, and backward goto's to labels
- loop syntax (e.g., while-do)
\Longrightarrow Executing a cyclic solution eventually reaches a goal, provided that each outcome of a nondeterministic action eventually occurs
- Is this assumption reasonable?
- Yes, provided we distinguish: \langle nondeterministic, observable $\rangle \neq\langle$ deterministic, partially-observable $)$
- Ex: device may not always work \neq device is broken (but we don't know it)

AND-OR Search: Cyclic Solutions

- Some problems have no acyclic solutions
- A cyclic plan may be considered a cyclic solution provided that:
- every leaf is a goal state (loop states not considered leaves), and
- a leaf is reachable from every point in the plan
- Can be expressed by means of introducing
- labels, and backward goto's to labels
- loop syntax (e.g., while-do)
\Longrightarrow Executing a cyclic solution eventually reaches a goal, provided that each outcome of a nondeterministic action eventually occurs
- Is this assumption reasonable?
- Yes, provided we distinguish:
\langle nondeterministic, observable $\rangle \neq\langle$ deterministic, partially-observable \rangle
- Ex: device may not always work \neq device is broken (but we don't know it)

AND-OR Search: Cyclic Solutions

- Some problems have no acyclic solutions
- A cyclic plan may be considered a cyclic solution provided that:
- every leaf is a goal state (loop states not considered leaves), and
- a leaf is reachable from every point in the plan
- Can be expressed by means of introducing
- labels, and backward goto's to labels
- loop syntax (e.g., while-do)
\Longrightarrow Executing a cyclic solution eventually reaches a goal, provided that each outcome of a nondeterministic action eventually occurs
- Is this assumption reasonable?
- Yes, provided we distinguish:
\langle nondeterministic, observable $\rangle \neq\langle$ deterministic, partially-observable \rangle
- Ex: device may not always work \neq device is broken (but we don't know it)

Cyclic Solution: Example

Example: Slippery Vacuum Cleaner

- Movement actions may fail: e.g., Results(1, Right) $=\{1,2\}$
- A cyclic solution
- Use labels: [Suck, L1: Right, if State $=5$ then L1 else Suck]
- Use cycles: [Suck, While State $=5$ do Riaht, Suck]

Cyclic Solution: Example

Example: Slippery Vacuum Cleaner

- Movement actions may fail: e.g., Results(1, Right) $=\{1,2\}$
- A cyclic solution
- Use labels: [Suck, L1 : Right, if State $=5$ then L1 else Suck]
- Use cycles: [Suck, While State $=5$ do Right, Suck]

Cyclic Solution: Example

Example: Slippery Vacuum Cleaner

- Movement actions may fail: e.g., Results(1, Right) $=\{1,2\}$
- A cyclic solution
- Use labels: [Suck, L1 : Right, if State =5 then L1 else Suck]
- Use cycles: [Suck, While State $=5$ do Right, Suck]

Cyclic Solution: Example

Example: Slippery Vacuum Cleaner

- Movement actions may fail: e.g., Results(1, Right) $=\{1,2\}$
- A cyclic solution
- Use labels: [Suck, L1 : Right, if State = 5 then L1 else Suck]
- Use cycles: [Suck, While State = 5 do Right, Suck]

Outline

(1) Local Search and Optimization

- General Ideas
- Hill-Climbing
- Simulated Annealing
- Local Beam Search \& Genetic Algorithms

2) Search with Nondeterministic Actions
(3) Search with Partial or No Observations (Deterministic/Nondeterministic Actions)

- Search with No Observations
- Search with Partial Observations

4 Online Search

Generalities

Partial Observability

- Partial observability: percepts do not capture the whole state
- partial state corresponds to a set of possible physical states
- If the agent is in one of several possible physical states, then an action may lead to one of several possible outcomes, even if the environment is deterministic

Belief States

Generalities

Partial Observability

- Partial observability: percepts do not capture the whole state
- partial state corresponds to a set of possible physical states
- If the agent is in one of several possible physical states, then an action may lead to one of several possible outcomes, even if the environment is deterministic

Generalities

Partial Observability

- Partial observability: percepts do not capture the whole state
- partial state corresponds to a set of possible physical states
- If the agent is in one of several possible physical states, then an action may lead to one of several possible outcomes, even if the environment is deterministic

Belief States

- Belief state: the agent's current belief about the possible physical states it might be in, given the previous sequence of actions and percepts
- is a set of physical states: the agent is in one of these states (but does not know in which one)
- contains the actual physical state the agent is in
- ex: $\{1,2\}$: the agent is either in state 1 or in state 2 (but it does not know in which one)
- if the belief state contains only one state, then the agent knows it is in that state

Generalities

Partial Observability

- Partial observability: percepts do not capture the whole state
- partial state corresponds to a set of possible physical states
- If the agent is in one of several possible physical states, then an action may lead to one of several possible outcomes, even if the environment is deterministic

Belief States

- Belief state: the agent's current belief about the possible physical states it might be in, given the previous sequence of actions and percepts
- is a set of physical states: the agent is in one of these states (but does not know in which one)
- contains the actual physical state the agent is in
- ex: $\{1,2\}$: the agent is either in state 1 or in state 2 (but it does not know in which one)
- if the belief state contains only one state, then the agent knows it is in that state

Generalities

Partial Observability

- Partial observability: percepts do not capture the whole state
- partial state corresponds to a set of possible physical states
- If the agent is in one of several possible physical states, then an action may lead to one of several possible outcomes, even if the environment is deterministic

Belief States

- Belief state: the agent's current belief about the possible physical states it might be in, given the previous sequence of actions and percepts
- is a set of physical states: the agent is in one of these states (but does not know in which one)
- contains the actual physical state the agent is in
- ex: $\{1,2\}$: the agent is either in state 1 or in state 2 (but it does not know in which one)
- if the belief state contains only one state, then the agent knows it is in that state

Generalities

Partial Observability

- Partial observability: percepts do not capture the whole state
- partial state corresponds to a set of possible physical states
- If the agent is in one of several possible physical states, then an action may lead to one of several possible outcomes, even if the environment is deterministic

Belief States

- Belief state: the agent's current belief about the possible physical states it might be in, given the previous sequence of actions and percepts
- is a set of physical states: the agent is in one of these states (but does not know in which one)
- contains the actual physical state the agent is in
- ex: $\{1,2\}$: the agent is either in state 1 or in state 2 (but it does not know in which one)
- if the belief state contains only one state, then the agent knows it is in that state
- 2^{n} possible belief states out of n possible physical states!

Outline

(1) Local Search and Optimization

- General Ideas
- Hill-Climbing
- Simulated Annealing
- Local Beam Search \& Genetic Algorithms

2) Search with Nondeterministic Actions
(3) Search with Partial or No Observations (Deterministic/Nondeterministic Actions)

- Search with No Observations
- Search with Partial Observations

4) Online Search

Search with No Observation

Search with No Observation (aka Sensorless Search or Conformant Search)
 - Idea: To solve sensorless problems, the agent searches in the space of belief states rather than in that of physical states

- Main drawback: 2^{N} candidate states rather than N

Search with No Observation

Search with No Observation (aka Sensorless Search or Conformant Search)

- Idea: To solve sensorless problems, the agent searches in the space of belief states rather than in that of physical states
- fully observable, because the agent knows its own belief space
- solutions are always sequences of actions (no contingency plan), because percepts are always empty and thus predictable
- Main drawback: 2^{N} candidate states rather than N

Search with No Observation

Search with No Observation (aka Sensorless Search or Conformant Search)

- Idea: To solve sensorless problems, the agent searches in the space of belief states rather than in that of physical states
- fully observable, because the agent knows its own belief space
- solutions are always sequences of actions (no contingency plan), because percepts are always empty and thus predictable
- Main drawback: 2^{N} candidate states rather than N

Search with No Observation

Search with No Observation (aka Sensorless Search or Conformant Search)

- Idea: To solve sensorless problems, the agent searches in the space of belief states rather than in that of physical states
- fully observable, because the agent knows its own belief space
- solutions are always sequences of actions (no contingency plan), because percepts are always empty and thus predictable
- Main drawback: 2^{N} candidate states rather than N

Search with No Observation

Search with No Observation (aka Sensorless Search or Conformant Search)

- Idea: To solve sensorless problems, the agent searches in the space of belief states rather than in that of physical states
- fully observable, because the agent knows its own belief space
- solutions are always sequences of actions (no contingency plan), because percepts are always empty and thus predictable
- Main drawback: 2^{N} candidate states rather than N

Search with No Observation: Example

Example: Sensorless Vacuum Cleaner

- the vacuum cleaner knows the geography of its world,
but it doesn't know its location or the distribution of dirt

\bigcirc	¢ั\%

Search with No Observation: Example

Example: Sensorless Vacuum Cleaner

- the vacuum cleaner knows the geography of its world, but it doesn't know its location or the distribution of dirt
- initial state
- after action RIGHT, state is $\{2,4,6,8\}$
- after action sequence [RIGHT,SUCK],
state is $\{4,8\}$
- after action sequence [RIGHT,SUCK,LEFT,SUCK], state is

3

7

8

Search with No Observation: Example

Example: Sensorless Vacuum Cleaner

- the vacuum cleaner knows the geography of its world, but it doesn't know its location or the distribution of dirt
- initial state: $\{1,2,3,4,5,6,7,8\}$
- after action RIGHT, state is $\{2,4,6,8\}$
- after action sequence [RIGHT,SUCK],
state is $\{4,8\}$
- after action sequence [RIGHT,SUCK,LEFT,SUCK], state is

3

7

8

Search with No Observation: Example

Example: Sensorless Vacuum Cleaner

- the vacuum cleaner knows the geography of its world, but it doesn't know its location or the distribution of dirt
- initial state: $\{1,2,3,4,5,6,7,8\}$
- after action RIGHT, state is $\{2,4,6,8\}$
- after action sequence [RIGHT,SUCK],
state is $\{4,8\}$
- after action sequence [RIGHT,SUCK,LEFT,SUCK], state is

3

7

8

Search with No Observation: Example

Example: Sensorless Vacuum Cleaner

- the vacuum cleaner knows the geography of its world, but it doesn't know its location or the distribution of dirt
- initial state: $\{1,2,3,4,5,6,7,8\}$
- after action Right, state is $\{2,4,6,8\}$
- after action sequence [RIGHT,SUCK], state is $\{4,8\}$
- after action sequence [RIGHT,SUCK,LEFT,SUCK], state is

3

7

8

Search with No Observation: Example

Example: Sensorless Vacuum Cleaner

- the vacuum cleaner knows the geography of its world, but it doesn't know its location or the distribution of dirt
- initial state: $\{1,2,3,4,5,6,7,8\}$
- after action Right, state is $\{2,4,6,8\}$
- after action sequence [RIGHT,SUCK], state is $\{4,8\}$
- after action sequence [RIGHT,SUCK,LEFT,SUCK], state is $\{7\}$

3

7

4

8

Belief-State Problem Formulation

- Belief states: subsets of physical states
- If P has N states, then the sensorless problem has up to 2^{N} states
- Initial state: typically the set of all physical states in P
- Actions: (assumption: illegal actions have no effects)
- Actions $(b) \stackrel{\text { def }}{=}$ । 1 . Actionso(s)
- Transition model:
- for deterministic actions: $b^{\prime}=\operatorname{Result}(b, a) \stackrel{\text { def }}{=}\left\{s^{\prime} \mid s^{\prime}=\operatorname{Result}(s, a)\right.$ and $\left.s \in b\right\}$
- for nondeterministic actions:
$b^{\prime}=\operatorname{Result}(b, a) \xlongequal{\operatorname{Ref}}\left\{s^{\prime} \mid s^{\prime} \in \operatorname{Resultp}(s, a)\right.$ and $\left.s \in b\right\}=\bigcup_{s \in b} \operatorname{Resultp}(s, a)$
- This step is called Prediction: $b^{\prime} \stackrel{\text { def }}{=} \operatorname{Predict}(b, a)$

Goal test: GoalTest(b) holds iff GoalTestp(s) holds, $\forall s \in b$

- Path cost: (assumption: cost of an action the same in all states)
- StepCost($a, b) \xlongequal{\operatorname{Sten}} \operatorname{Steptp}(a, s), \forall s \in b$

Actions $_{P}()$, Result $_{P}()$, GoalTest $P_{P}()$, StepCost $_{P}()$ refer to physical System P

Belief-State Problem Formulation

- Belief states: subsets of physical states
- If P has N states, then the sensorless problem has up to 2^{N} states
- Initial state: typically the set of all physical states in P
- Actions: (assumption: illegal actions have no effects)
- Actions $(b) \stackrel{\text { def }}{=} \bigcup_{s \in b}$ Actionsp (s)
- Transition model:
- for deterministic actions: $b^{\prime}=\operatorname{Result}(b, a) \stackrel{\text { det }}{=}\left\{s^{\prime} \mid s^{\prime}=\operatorname{Resultp}(s, a)\right.$ and $\left.s \in b\right\}$
- for nondeterministic actions:
$b^{\prime}=\operatorname{Result}(b, a) \stackrel{A}{=}\left\{s^{\prime} \mid s^{\prime} \in \operatorname{Resultp}(s, a)\right.$ and $\left.s \in b\right\}=\bigcup_{s \in b} \operatorname{Resultp}(s, a)$
- This step is called Prediction: $b^{\prime} \stackrel{\text { det }}{=} \operatorname{Predict}(b, a)$
- Goal test: GoalTest(b) holds iff GoalTestp(s) holds, $\forall s \in b$
- Path cost: (assumption: cost of an action the same in all states)
- StenCost(a. b) $\xlongequal{\text { del }} \operatorname{StenCostp}(a . s) . \forall s \in b$

Actions $_{P}()$, Result $_{P}()$, GoalTest $_{P}()$, Step $^{(0 s t}{ }_{P}()$ refer to physical System P

Belief-State Problem Formulation

- Belief states: subsets of physical states
- If P has N states, then the sensorless problem has up to 2^{N} states
- Initial state: typically the set of all physical states in P
- Actions: (assumption: illegal actions have no effects)
- Actions $(b) \stackrel{\text { def }}{=} \bigcup_{s \in b}$ Actionsp (s)
- Transition model:
- for deterministic actions: $b^{\prime}=\operatorname{Result}(b, a) \xlongequal{a}\left\{s^{\prime} \mid s^{\prime}=\operatorname{Resultp}(s, a)\right.$ and $\left.s \in b\right\}$
- for nondeterministic actions:

- This step is called Prediction: $b^{\prime} \stackrel{\text { det }}{=} \operatorname{Predict}(b, a)$
- Goal test: GoalTest(b) holds iff GoalTestp(s) holds, $\forall s \in b$
- Path cost: (assumption: cost of an action the same in all states)
- StepCost($a, b) \xlongequal{=} \operatorname{StepCostp}(a, s), \forall s \in b$

Actions $_{P}()$, Result $_{P}()$, GoalTest $P_{(}()$, StepCoste () refer to physical System P

Belief-State Problem Formulation

- Belief states: subsets of physical states
- If P has N states, then the sensorless problem has up to 2^{N} states
- Initial state: typically the set of all physical states in P
- Actions: (assumption: illegal actions have no effects)
- Actions $(b) \stackrel{\text { def }}{=} \bigcup_{s \in b}$ Actions $_{P}(s)$
- Transition model:
- for deterministic actions: $b^{\prime}=\operatorname{Result}(b, a) \stackrel{\text { def }}{=}\left\{s^{\prime} \mid s^{\prime}=\operatorname{Result}(s, a)\right.$ and $s \in b$
- for nondeterministic actions:
- This step is called Prediction: $b^{\prime} \stackrel{\text { det }}{=} \operatorname{Predict}(b, a)$

Goal test: GoalTest(b) holds iff GoalTestp(s) holds $\forall s \in b$

- Path cost: (assumption: cost of an action the same in all states)
- StepCost($a, b) \xlongequal{=} \operatorname{StepCostp}(a, s), \forall s \in b$

Actions $_{P}()$, Result $_{P}()$, GoalTest $_{P}()$, StepCost $_{P}()$ refer to physical System P

Belief-State Problem Formulation

- Belief states: subsets of physical states
- If P has N states, then the sensorless problem has up to 2^{N} states
- Initial state: typically the set of all physical states in P
- Actions: (assumption: illegal actions have no effects)
- Actions $(b) \stackrel{\text { def }}{=} \bigcup_{s \in b}$ Actions $_{P}(s)$
- Transition model:
- for deterministic actions: $b^{\prime}=\operatorname{Result}(b, a) \stackrel{\text { det }}{=}\left\{s^{\prime} \mid s^{\prime}=\operatorname{Result}(s, a)\right.$ and $\left.s \in b\right\}$
- for nondeterministic actions:

$$
b^{\prime}=\operatorname{Result}(b, a) \stackrel{\text { def }}{=}\left\{s^{\prime} \mid s^{\prime} \in \operatorname{Result} p(s, a) \text { and } s \in b\right\}=\bigcup_{s \in b} \operatorname{Result} t_{p}(s, a)
$$

- This step is called Prediction: $b^{\prime} \stackrel{\text { def }}{=} \operatorname{Predict}(b, a)$
- Goal test:
- Path cost: (assumption: cost of an action the same in all states)
- StenCost (a $h) \stackrel{\text { del }}{=}$ StenCosto(a.s). $\forall s \in h$

Actions $_{P}()$, Result $_{P}()$, GoalTestp(), StepCoste () refer to physical System P

Belief-State Problem Formulation

- Belief states: subsets of physical states
- If P has N states, then the sensorless problem has up to 2^{N} states
- Initial state: typically the set of all physical states in P
- Actions: (assumption: illegal actions have no effects)
- Actions $(b) \stackrel{\text { def }}{=} \bigcup_{s \in b}$ Actions $P(s)$
- Transition model:
- for deterministic actions: $b^{\prime}=\operatorname{Result}(b, a) \stackrel{\text { def }}{=}\left\{s^{\prime} \mid s^{\prime}=\operatorname{Result}(s, a)\right.$ and $\left.s \in b\right\}$
- for nondeterministic actions:

$$
b^{\prime}=\operatorname{Result}(b, a) \stackrel{\text { def }}{=}\left\{s^{\prime} \mid s^{\prime} \in \operatorname{Result} p(s, a) \text { and } s \in b\right\}=\bigcup_{s \in b} \operatorname{Result} t_{p}(s, a)
$$

- This step is called Prediction: $b^{\prime} \stackrel{\text { def }}{=} \operatorname{Predict}(b, a)$
- Goal test: GoalTest(b) holds iff GoalTestp(s) holds, $\forall s \in b$
- Path cost: (assumption: cost of an action the same in all states)
- StepCost $(a, b) \stackrel{\text { det }}{=} \operatorname{StepCostp}(a, s), \forall s \in b$

Actions $_{P}()$, Result $_{P}()$, GoalTest $P_{(}()$, Step $^{\text {Cost }}(\mathrm{(})$ refer to physical System P

Belief-State Problem Formulation

- Belief states: subsets of physical states
- If P has N states, then the sensorless problem has up to 2^{N} states
- Initial state: typically the set of all physical states in P
- Actions: (assumption: illegal actions have no effects)
- Actions (b) $\stackrel{\text { def }}{=} \bigcup_{s \in b}$ Actions $_{P}(s)$
- Transition model:
- for deterministic actions: $b^{\prime}=\operatorname{Result}(b, a) \stackrel{\text { def }}{=}\left\{s^{\prime} \mid s^{\prime}=\operatorname{Result}(s, a)\right.$ and $\left.s \in b\right\}$
- for nondeterministic actions:

$$
b^{\prime}=\operatorname{Result}(b, a) \stackrel{\text { def }}{=}\left\{s^{\prime} \mid s^{\prime} \in \operatorname{Result} p_{p}(s, a) \text { and } s \in b\right\}=\bigcup_{s \in b} \operatorname{Result} t_{p}(s, a)
$$

- This step is called Prediction: $b^{\prime} \stackrel{\text { def }}{=} \operatorname{Predict}(b, a)$
- Goal test: GoalTest(b) holds iff GoalTestp(s) holds, $\forall s \in b$
- Path cost: (assumption: cost of an action the same in all states)
- $\operatorname{Step} \operatorname{Cost}(a, b) \stackrel{\text { def }}{=} \operatorname{Step} \operatorname{Cost}_{p}(a, s), \forall s \in b$

Actions $_{P}()$, Resultp(), GoalTestP(), StepCostp() refer to physical System P

Belief-State Problem Formulation [cont.]

Example: Sensorless Vacuum Cleaner, plain and slippery versions

Prediction: Result($\{1,3\}$, Right), deterministic (a) and nondeterministic action (b)

Belief-State Problem Formulation [cont.]

Example: Sensorless Vacuum Cleaner, plain and slippery versions

Prediction: Result($\{1,3\}$, Right), deterministic (a) and nondeterministic action (b)

Belief-State Problem Formulation [cont.]

Belief-State Problem Formulation [cont.]

Exercises

```
Exercises
Draw the Belief State Space in case of:
- Erratic vacuum cleaner
- Slippery vacuum cleaner
```


Belief-State Problem Formulation [cont.]

Remarks

- if $b \subseteq b^{\prime}$, then Result $(b, a) \subseteq \operatorname{Result}\left(b^{\prime}, a\right)$
- If a is deterministic, then $|\operatorname{Result}(b, a)| \leq \mid b$
- The agent might achieve the goal earlier than GoalTest(b) holds, but it does not know it

Properties

We can apply to the Belief-State space any search algorithm.

Belief-State Problem Formulation [cont.]

Remarks

- if $b \subseteq b^{\prime}$, then Result $(b, a) \subseteq \operatorname{Result}\left(b^{\prime}, a\right)$
- If a is deterministic, then $|\operatorname{Result}(b, a)| \leq \mid b$
- The agent might achieve the goal earlier than GoalTest(b) holds, but it does not know it

Properties

We can apply to the Belief-State space any search algorithm

Belief-State Problem Formulation [cont.]

Remarks

- if $b \subseteq b^{\prime}$, then $\operatorname{Result}(b, a) \subseteq \operatorname{Result}\left(b^{\prime}, a\right)$
- If a is deterministic, then $|\operatorname{Result}(b, a)| \leq|b|$
- The agent might achieve the goal earlier than GoalTest(b) holds, but it does not know it

We can apply to the Belief-State space any search algorithm

Belief-State Problem Formulation [cont.]

Remarks

- if $b \subseteq b^{\prime}$, then $\operatorname{Result}(b, a) \subseteq \operatorname{Result}\left(b^{\prime}, a\right)$
- If a is deterministic, then $|\operatorname{Result}(b, a)| \leq|b|$
- The agent might achieve the goal earlier than GoalTest(b) holds, but it does not know it

We can apply to the Belief-State space any search algorithm

Belief-State Problem Formulation [cont.]

Remarks

- if $b \subseteq b^{\prime}$, then $\operatorname{Result}(b, a) \subseteq \operatorname{Result}\left(b^{\prime}, a\right)$
- If a is deterministic, then $|\operatorname{Result}(b, a)| \leq|b|$
- The agent might achieve the goal earlier than GoalTest(b) holds, but it does not know it

Properties

- An action sequence is a solution for b iff it leads b to to a goal
- If an action sequence is a solution for a belief state b, then it is also a solution for any belief state b^{\prime} s.t. $b^{\prime} \subseteq b$
- if b
then b
We can apply to the Belief-State space any search algorithm.

Belief-State Problem Formulation [cont.]

Remarks

- if $b \subseteq b^{\prime}$, then $\operatorname{Result}(b, a) \subseteq \operatorname{Result}\left(b^{\prime}, a\right)$
- If a is deterministic, then $|\operatorname{Result}(b, a)| \leq|b|$
- The agent might achieve the goal earlier than GoalTest(b) holds, but it does not know it

Properties

- An action sequence is a solution for b iff it leads b to to a goal
- If an action sequence is a solution for a belief state b, then it is also a solution for any belief state b^{\prime} s.t. $b^{\prime} \subseteq b$
- if b

We can apply to the Belief-State space any search algorithm.

Belief-State Problem Formulation [cont.]

Remarks

- if $b \subseteq b^{\prime}$, then Result $(b, a) \subseteq \operatorname{Result}\left(b^{\prime}, a\right)$
- If a is deterministic, then $|\operatorname{Result}(b, a)| \leq|b|$
- The agent might achieve the goal earlier than GoalTest(b) holds, but it does not know it

Properties

- An action sequence is a solution for b iff it leads b to to a goal
- If an action sequence is a solution for a belief state b, then it is also a solution for any belief state b^{\prime} s.t. $b^{\prime} \subseteq b$
- if $b \stackrel{a_{j}}{\mapsto} \ldots \stackrel{a_{h}}{\mapsto} g$, then $b^{\prime} \stackrel{a_{j}}{\mapsto} \ldots . . \stackrel{a_{h}}{\mapsto} g$

We can apply to the Belief-State space any search algorithm.

Belief-State Problem Formulation [cont.]

Remarks

- if $b \subseteq b^{\prime}$, then Result $(b, a) \subseteq \operatorname{Result}\left(b^{\prime}, a\right)$
- If a is deterministic, then $|\operatorname{Result}(b, a)| \leq|b|$
- The agent might achieve the goal earlier than GoalTest(b) holds, but it does not know it

Properties

- An action sequence is a solution for b iff it leads b to to a goal
- If an action sequence is a solution for a belief state b, then it is also a solution for any belief state b^{\prime} s.t. $b^{\prime} \subseteq b$
- if $b \stackrel{a_{j}}{\mapsto} \ldots \stackrel{a_{h}}{\mapsto} g$, then $b^{\prime} \stackrel{a_{j}}{\mapsto} \ldots . \stackrel{a_{h}}{\mapsto} g$

We can apply to the Belief-State space any search algorithm.

- we can discard a path reaching a belief state b if $b^{\prime} \subseteq b$ has already been generated and discarded
- if a solution for b has been found, then any $b^{\prime} \subseteq b$ is solvable Dramatically improves efficiency

Belief-State Problem Formulation [cont.]

Remarks

- if $b \subseteq b^{\prime}$, then Result $(b, a) \subseteq \operatorname{Result}\left(b^{\prime}, a\right)$
- If a is deterministic, then $|\operatorname{Result}(b, a)| \leq|b|$
- The agent might achieve the goal earlier than GoalTest(b) holds, but it does not know it

Properties

- An action sequence is a solution for b iff it leads b to to a goal
- If an action sequence is a solution for a belief state b, then it is also a solution for any belief state b^{\prime} s.t. $b^{\prime} \subseteq b$
- if $b \stackrel{a_{j}}{\mapsto} \ldots \stackrel{a_{k}}{\mapsto} g$, then $b^{\prime} \stackrel{a_{〕}}{\mapsto} \ldots . . \stackrel{a_{h}}{\mapsto} g$

We can apply to the Belief-State space any search algorithm.

- we can discard a path reaching a belief state b if $b^{\prime} \subseteq b$ has already been generated and discarded
- if a solution for b has been found, then any $b^{\prime} \subseteq b$ is solvable Dramatically improves efficiency

Belief-State Problem Formulation [cont.]

Remarks

- if $b \subseteq b^{\prime}$, then Result $(b, a) \subseteq \operatorname{Result}\left(b^{\prime}, a\right)$
- If a is deterministic, then $|\operatorname{Result}(b, a)| \leq|b|$
- The agent might achieve the goal earlier than GoalTest(b) holds, but it does not know it

Properties

- An action sequence is a solution for b iff it leads b to to a goal
- If an action sequence is a solution for a belief state b, then it is also a solution for any belief state b^{\prime} s.t. $b^{\prime} \subseteq b$
- if $b \stackrel{a_{j}}{\mapsto} \ldots \stackrel{a_{k}}{\mapsto} g$, then $b^{\prime} \stackrel{a_{〕}}{\mapsto} \ldots . . \stackrel{a_{h}}{\mapsto} g$

We can apply to the Belief-State space any search algorithm.

- we can discard a path reaching a belief state b if $b^{\prime} \subseteq b$ has already been generated and discarded
- if a solution for b has been found, then any $b^{\prime} \subseteq b$ is solvable

Belief-State Problem Formulation [cont.]

Remarks

- if $b \subseteq b^{\prime}$, then Result $(b, a) \subseteq \operatorname{Result}\left(b^{\prime}, a\right)$
- If a is deterministic, then $|\operatorname{Result}(b, a)| \leq|b|$
- The agent might achieve the goal earlier than GoalTest(b) holds, but it does not know it

Properties

- An action sequence is a solution for b iff it leads b to to a goal
- If an action sequence is a solution for a belief state b, then it is also a solution for any belief state b^{\prime} s.t. $b^{\prime} \subseteq b$
- if $b \stackrel{a_{l}}{\mapsto} \ldots \stackrel{a_{h}}{\mapsto} g$, then $b^{\prime} \stackrel{a_{j}}{\mapsto} \ldots . . \stackrel{a_{h}}{\mapsto} g$

We can apply to the Belief-State space any search algorithm.

- we can discard a path reaching a belief state b if $b^{\prime} \subseteq b$ has already been generated and discarded
- if a solution for b has been found, then any $b^{\prime} \subseteq b$ is solvable
\Longrightarrow Dramatically improves efficiency

Outline

(1) Local Search and Optimization

- General Ideas
- Hill-Climbing
- Simulated Annealing
- Local Beam Search \& Genetic Algorithms
(2) Search with Nondeterministic Actions
(3) Search with Partial or No Observations (Deterministic/Nondeterministic Actions)
- Search with No Observations
- Search with Partial Observations

4 Online Search

Search with Observations

Perception and Belief-State Problem Formulation

- Percept(s) returns the percept received in state s
(if sensing is nondeterministic, a function Percepts(s) returns a set of possible percepts)
- Partial observations: many states can produce the same percept
- ex: Percept(1) $=\operatorname{Percept}(3)=[$ A, Dirty $]$
\Longrightarrow Percepts(s) may correspond to many different candidate states
- Actions(), StepCost(), GoalTest(): as with sensorless case

Search with Observations

Perception and Belief-State Problem Formulation

- Percept(s) returns the percept received in state s (if sensing is nondeterministic, a function Percepts(s) returns a set of possible percepts)
- ex: local-sensing vacuum cleaner, can perceive dirty/clean only on the current position: Percept $(1)=[$ A, Dirty $]$
- with fully observable problems: $\operatorname{Percept}(s)=s, \forall s$
- with sensorless problems: Percept $(s)=$ null, $\forall s$
- Partial observations: many states can produce the same percept
- ex: Percept(1) $=\operatorname{Percept}(3)=[$ A, Dirty]

Percepts(s) may correspond to many different candidate states

- Actions(), StepCost(), GoalTest(): as with sensorless case

Search with Observations

Perception and Belief-State Problem Formulation

- Percept(s) returns the percept received in state s (if sensing is nondeterministic, a function Percepts(s) returns a set of possible percepts)
- ex: local-sensing vacuum cleaner, can perceive dirty/clean only on the current position: Percept $(1)=[$ A, Dirty $]$
- with fully observable problems:
- with sensorless problems: Percept(s)
- Partial observations: many states can produce the same percept
- ex: Percept(1) $=\operatorname{Percept}(3)=[$ A, Dirty]

Percepts(s) may correspond to many different candidate states

- Actions(), StepCost(), GoalTest(): as with sensorless case

Search with Observations

Perception and Belief-State Problem Formulation

- Percept(s) returns the percept received in state s (if sensing is nondeterministic, a function Percepts(s) returns a set of possible percepts)
- ex: local-sensing vacuum cleaner, can perceive dirty/clean only on the current position:

Percept(1) $=[A$, Dirty]

- with fully observable problems: Percept $(s)=s, \forall s$
- with sensorless problems:
- Partial observations: many states can produce the same percept
- ex: Percept(1) $=\operatorname{Percept}(3)=\lceil A$, Dirty $]$

Percepts(s) may correspond to many different candidate states

- Actions(), StepCost(), GoalTest(): as with sensorless case

Search with Observations

Perception and Belief-State Problem Formulation

- Percept(s) returns the percept received in state s (if sensing is nondeterministic, a function Percepts(s) returns a set of possible percepts)
- ex: local-sensing vacuum cleaner, can perceive dirty/clean only on the current position:

Percept(1) $=[A$, Dirty]

- with fully observable problems: Percept $(s)=s, \forall s$
- with sensorless problems: Percept $(s)=$ null, $\forall s$
- Partial observations: many states can produce the same percept
- ex: Percept(1) $=\operatorname{Percept}(3)=[$ A, Dirty $]$

Percepts(s) may correspond to many different candidate states

- Actions(), StepCost(), GoalTest(): as with sensorless case

Search with Observations

Perception and Belief-State Problem Formulation

- Percept(s) returns the percept received in state s (if sensing is nondeterministic, a function Percepts(s) returns a set of possible percepts)
- ex: local-sensing vacuum cleaner, can perceive dirty/clean only on the current position:

Percept(1) $=[A$, Dirty]

- with fully observable problems: Percept $(s)=s, \forall s$
- with sensorless problems: Percept $(s)=$ null, $\forall s$
- Partial observations: many states can produce the same percept
- ex: Percept(1) $=\operatorname{Percept}(3)=[A$, Dirty]
\Longrightarrow Percepts(s) may correspond to many different candidate states
- Actions(), StepCost(), GoalTest(): as with sensorless case

Search with Observations

Perception and Belief-State Problem Formulation

- Percept(s) returns the percept received in state s (if sensing is nondeterministic, a function Percepts(s) returns a set of possible percepts)
- ex: local-sensing vacuum cleaner, can perceive dirty/clean only on the current position:

Percept(1) $=[$ A, Dirty]

- with fully observable problems: $\operatorname{Percept}(s)=s, \forall s$
- with sensorless problems: Percept $(s)=$ null, $\forall s$
- Partial observations: many states can produce the same percept
- ex: $\operatorname{Percept}(1)=\operatorname{Percept}(3)=[$ A, Dirty]
\Longrightarrow Percepts(s) may correspond to many different candidate states
- Actions(), StepCost(), GoalTest(): as with sensorless case

Transition Model with Perceptions

The Prediction-Observation-Update process

- Three steps:
(1) Prediction: (same as for sensorless):
$\hat{b}=\operatorname{Predict}(b, a) \stackrel{\text { def }}{=} \operatorname{Result}_{\text {(sensorless) }}(b, a)=\left\{s^{\prime} \mid s^{\prime}=\operatorname{Result}_{p}(s, a)\right.$ and $\left.s \in b\right\}$
belief state: PossiblePercepts $(\hat{b}) \xlongequal{\text { dat }}\{0 \mid 0=\operatorname{Percept}(s)$ and $s \in \hat{b}\}$
(3) Update: for each percept o, determine the belief state b_{0}, i.e., the subset of states in \hat{b} that could have produced the percept o:
- $b_{0}=\operatorname{Update}(\hat{b}, o) \stackrel{\text { det }}{=}\{s \mid s \in \hat{b}$ and $o=\operatorname{Percept}(s)\}$
$\operatorname{Result}(b, a)=\left\{\begin{array}{l|l}b_{0} & \begin{array}{c}b_{0}=\operatorname{Update}(\operatorname{Predict}(b, a), o) \text { and } \\ 0 \in \operatorname{PossiblePercepts}(\operatorname{Predict}(b, a))\end{array}\end{array}\right\}$

Non-deterministic belief-state problem

- due to the inability to predict exactly the next percept

Transition Model with Perceptions

The Prediction-Observation-Update process

- Three steps:
(1) Prediction: (same as for sensorless):
$\hat{b}=\operatorname{Predict}(b, a) \stackrel{\text { def }}{=} \operatorname{Result}_{\text {(sensorless) }}(b, a)=\left\{s^{\prime} \mid s^{\prime}=\operatorname{Result}_{p}(s, a)\right.$ and $\left.s \in b\right\}$
(2) Observation prediction: determines the set of percepts that could be observed in the predicted belief state: PossiblePercepts $(\hat{b}) \stackrel{\text { def }}{=}\{0 \mid 0=\operatorname{Percept}(s)$ and $s \in \hat{b}\}$
(3) Update: for each percept o, determine the belief state b_{o}, i.e., the subset of states in \hat{b} that could have produced the percept o:
- $b_{0}=\operatorname{Update}(\hat{b}, o) \stackrel{\text { def }}{=}\{s \mid s \in \hat{b}$ and $o=\operatorname{Percept}(s)\}$
$\operatorname{Result}(b, a)=\left\{\begin{array}{l|l}b_{0} & \begin{array}{c}b_{0}=\operatorname{Update}(\operatorname{Predict}(b, a), o) \text { and } \\ 0 \in \operatorname{PossiblePercepts}(\operatorname{Predict}(b, a))\end{array}\end{array}\right\}$

Non-deterministic belief-state problem

- due to the inability to predict exactly the next percept

Transition Model with Perceptions

The Prediction-Observation-Update process

- Three steps:
(1) Prediction: (same as for sensorless):
$\hat{b}=\operatorname{Predict}(b, a) \stackrel{\text { def }}{=} \operatorname{Result}_{\text {(sensorless) }}(b, a)=\left\{s^{\prime} \mid s^{\prime}=\operatorname{Result}_{P}(s, a)\right.$ and $\left.s \in b\right\}$
(2) Observation prediction: determines the set of percepts that could be observed in the predicted belief state: PossiblePercepts $(\hat{b}) \stackrel{\text { def }}{=}\{0 \mid 0=\operatorname{Percept}(s)$ and $s \in \hat{b}\}$
() Update: for each percept 0 , determine the belief state b_{0}, i.e., the subset of states in \hat{b} that could have produced the percept o:
$\operatorname{Result}(b, a)=\left\{\begin{array}{l|r}b_{0} & \begin{array}{r}b_{0}=\operatorname{Update}(\operatorname{Predict}(b, a), o) \text { and } \\ 0 \in \operatorname{PossiblePercepts}(\operatorname{Predict}(b, a))\end{array}\end{array}\right\}$

Non-deterministic belief-state problem

- due to the inability to predict exactly the next percept

Transition Model with Perceptions

The Prediction-Observation-Update process

- Three steps:
(1) Prediction: (same as for sensorless):
$\hat{b}=\operatorname{Predict}(b, a) \stackrel{\text { def }}{=} \operatorname{Result}_{\text {(sensorless) }}(b, a)=\left\{s^{\prime} \mid s^{\prime}=\operatorname{Result}_{P}(s, a)\right.$ and $\left.s \in b\right\}$
(2) Observation prediction: determines the set of percepts that could be observed in the predicted
belief state: PossiblePercepts $(\hat{b}) \stackrel{\text { def }}{=}\{0 \mid 0=\operatorname{Percept}(s)$ and $s \in \hat{b}\}$
(3) Update: for each percept o, determine the belief state b_{o}, i.e., the subset of states in \hat{b} that could have produced the percept 0 :
- $b_{0}=\operatorname{Update}(\hat{b}, o) \stackrel{\text { def }}{=}\{s \mid s \in \hat{b}$ and $o=\operatorname{Percept}(s)\}$

Non-deterministic belief-state problem

- due to the inability to predict exactly the next percept

Transition Model with Perceptions

The Prediction-Observation-Update process

- Three steps:
(1) Prediction: (same as for sensorless):
$\hat{b}=\operatorname{Predict}(b, a) \stackrel{\text { def }}{=} \operatorname{Result}_{\text {(sensorless) }}(b, a)=\left\{s^{\prime} \mid s^{\prime}=\operatorname{Result}_{P}(s, a)\right.$ and $\left.s \in b\right\}$
(2) Observation prediction: determines the set of percepts that could be observed in the predicted belief state: PossiblePercepts $(\hat{b}) \stackrel{\text { def }}{=}\{0 \mid 0=\operatorname{Percept}(s)$ and $s \in \hat{b}\}$
(3) Update: for each percept o, determine the belief state b_{o}, i.e., the subset of states in \hat{b} that could have produced the percept o :
- $b_{o}=\operatorname{Update}(\hat{b}, o) \stackrel{\text { def }}{=}\{s \mid s \in \hat{b}$ and $o=\operatorname{Percept}(s)\}$
$\Longrightarrow \operatorname{Result}(b, a)=\left\{\begin{array}{l|l}b_{0} & \begin{array}{c}b_{0}=\operatorname{Update}(\operatorname{Predict}(b, a), o) \text { and } \\ 0 \in \operatorname{PossiblePercepts}(\operatorname{Predict}(b, a))\end{array}\end{array}\right\}$
- set (not union!) of belief states, one for each possible percepts o
- $b_{0} \subseteq \hat{b}, \forall o \Longrightarrow$ sensing reduces uncertainty!
- (if sensing is deterministic) the b_{0} 's are all disjoint (each s belongs to b_{0} s.t. $o=$ Percept(s))
$\Longrightarrow \hat{b}$ partitioned into smaller belief states, one for each possible next percept
Non-deterministic belief-state problem
- due to the inability to predict exactly the next percept

Transition Model with Perceptions

The Prediction-Observation-Update process

- Three steps:
(1) Prediction: (same as for sensorless):
$\hat{b}=\operatorname{Predict}(b, a) \stackrel{\text { def }}{=} \operatorname{Result}_{\text {(sensorless) }}(b, a)=\left\{s^{\prime} \mid s^{\prime}=\operatorname{Result}_{P}(s, a)\right.$ and $\left.s \in b\right\}$
(2) Observation prediction: determines the set of percepts that could be observed in the predicted belief state: PossiblePercepts $(\hat{b}) \stackrel{\text { def }}{=}\{0 \mid 0=\operatorname{Percept}(s)$ and $s \in \hat{b}\}$
(3) Update: for each percept o, determine the belief state b_{o}, i.e., the subset of states in \hat{b} that could have produced the percept o :
- $b_{o}=\operatorname{Update}(\hat{b}, o) \stackrel{\text { def }}{=}\{s \mid s \in \hat{b}$ and $o=\operatorname{Percept}(s)\}$
$\Longrightarrow \operatorname{Result}(b, a)=\left\{\begin{array}{l|l}b_{0} & \begin{array}{c}b_{0}=\operatorname{Update}(\operatorname{Predict}(b, a), o) \text { and } \\ o \in \operatorname{PossiblePercepts}(\operatorname{Predict}(b, a))\end{array}\end{array}\right\}$
- set (not union!) of belief states, one for each possible percepts o
- $b_{0} \subseteq b, \forall 0 \Longrightarrow$ sensing reduces uncertainty!
- (if sensing is deterministic) the b_{0} 's are all disjoint (each s belongs to b_{0} s.t. $o=\operatorname{Percept}(s)$) $\Longrightarrow \hat{b}$ partitioned into smaller belief states, one for each possible next percept
Non-deterministic belief-state problem
- due to the inability to predict exactly the next percept

Transition Model with Perceptions

The Prediction-Observation-Update process

- Three steps:
(1) Prediction: (same as for sensorless):
$\hat{b}=\operatorname{Predict}(b, a) \stackrel{\text { def }}{=} \operatorname{Result}_{\text {(sensorless) }}(b, a)=\left\{s^{\prime} \mid s^{\prime}=\operatorname{Result}_{P}(s, a)\right.$ and $\left.s \in b\right\}$
(2) Observation prediction: determines the set of percepts that could be observed in the predicted belief state: PossiblePercepts $(\hat{b}) \stackrel{\text { def }}{=}\{0 \mid 0=\operatorname{Percept}(s)$ and $s \in \hat{b}\}$
(3) Update: for each percept o, determine the belief state b_{o}, i.e., the subset of states in \hat{b} that could have produced the percept o :
- $b_{o}=\operatorname{Update}(\hat{b}, o) \stackrel{\text { def }}{=}\{s \mid s \in \hat{b}$ and $o=\operatorname{Percept}(s)\}$
$\Longrightarrow \operatorname{Result}(b, a)=\left\{\begin{array}{l|l}b_{0} & \begin{array}{c}b_{0}=\operatorname{Update}(\operatorname{Predict}(b, a), o) \text { and } \\ o \in \operatorname{PossiblePercepts}(\operatorname{Predict}(b, a))\end{array}\end{array}\right\}$
- set (not union!) of belief states, one for each possible percepts o
- $b_{0} \subseteq \hat{b}, \forall o \Longrightarrow$ sensing reduces uncertainty!
- (if sensing is deterministic) the b_{0} 's are all disjoint (each s belongs to b_{0} s.t. $o=\operatorname{Percept}(s)$)
$\Longrightarrow \hat{b}$ partitioned into smaller belief states, one for each possible next percept
Non-deterministic belief-state problem
- due to the inability to predict exactly the next percept

Transition Model with Perceptions

The Prediction-Observation-Update process

- Three steps:
(1) Prediction: (same as for sensorless):
$\hat{b}=\operatorname{Predict}(b, a) \stackrel{\text { def }}{=} \operatorname{Result}_{\text {(sensorless) }}(b, a)=\left\{s^{\prime} \mid s^{\prime}=\operatorname{Result}_{P}(s, a)\right.$ and $\left.s \in b\right\}$
(2) Observation prediction: determines the set of percepts that could be observed in the predicted belief state: PossiblePercepts $(\hat{b}) \stackrel{\text { def }}{=}\{0 \mid 0=\operatorname{Percept}(s)$ and $s \in \hat{b}\}$
(3) Update: for each percept o, determine the belief state b_{o}, i.e., the subset of states in \hat{b} that could have produced the percept o :
- $b_{o}=\operatorname{Update}(\hat{b}, o) \stackrel{\text { def }}{=}\{s \mid s \in \hat{b}$ and $o=\operatorname{Percept}(s)\}$
$\Longrightarrow \operatorname{Result}(b, a)=\left\{\begin{array}{l|l}b_{0} & \begin{array}{c}b_{o}=\operatorname{Update}(\operatorname{Predict}(b, a), o) \text { and } \\ o \in \operatorname{PossiblePercepts}(\operatorname{Predict}(b, a))\end{array}\end{array}\right\}$
- set (not union!) of belief states, one for each possible percepts o
- $b_{0} \subseteq \hat{b}, \forall o \Longrightarrow$ sensing reduces uncertainty!
- (if sensing is deterministic) the b_{0} 's are all disjoint (each s belongs to b_{0} s.t. $o=\operatorname{Percept}(s)$) $\Longrightarrow \hat{b}$ partitioned into smaller belief states, one for each possible next percept
Non-deterministic belief-state problem
- due to the inability to predict exactly the next percept

Transition Model with Perceptions

The Prediction-Observation-Update process

- Three steps:
(1) Prediction: (same as for sensorless):
$\hat{b}=\operatorname{Predict}(b, a) \stackrel{\text { def }}{=} \operatorname{Result}_{\text {(sensorless) }}(b, a)=\left\{s^{\prime} \mid s^{\prime}=\operatorname{Result}_{P}(s, a)\right.$ and $\left.s \in b\right\}$
(2) Observation prediction: determines the set of percepts that could be observed in the predicted belief state: PossiblePercepts $(\hat{b}) \stackrel{\text { def }}{=}\{0 \mid 0=\operatorname{Percept}(s)$ and $s \in \hat{b}\}$
(3) Update: for each percept o, determine the belief state b_{o}, i.e., the subset of states in \hat{b} that could have produced the percept o :
- $b_{o}=\operatorname{Update}(\hat{b}, o) \stackrel{\text { def }}{=}\{s \mid s \in \hat{b}$ and $o=\operatorname{Percept}(s)\}$
$\Longrightarrow \operatorname{Result}(b, a)=\left\{\begin{array}{l|l}b_{0} & \begin{array}{c}b_{0}=\operatorname{Update}(\operatorname{Predict}(b, a), o) \text { and } \\ o \in \operatorname{PossiblePercepts}(\operatorname{Predict}(b, a))\end{array}\end{array}\right\}$
- set (not union!) of belief states, one for each possible percepts o
- $b_{o} \subseteq \hat{b}, \forall o \Longrightarrow$ sensing reduces uncertainty!
- (if sensing is deterministic) the b_{0} 's are all disjoint (each s belongs to b_{0} s.t. $o=\operatorname{Percept}(s)$) $\Longrightarrow \hat{b}$ partitioned into smaller belief states, one for each possible next percept
\Longrightarrow Non-deterministic belief-state problem
- due to the inability to predict exactly the next percept

Transition Model with Perceptions: Example

Deterministic actions: Local-sensing vacuum cleaner

- $\hat{b}=\operatorname{Predict}(\{1,3\}$, Right $)=\{2,4\}$
- PossiblePercepts $(\hat{b})=\{[B$, Dirty $],[B$, Clean $]\}$
- Result $(\{1,3\}$, Right $)=\{\{2\},\{4\}\}$

Transition Model with Perceptions: Example

Nondeterministic actions: Slippery local-sensing vacuum cleaner

- $\hat{b}=\operatorname{Predict}(\{1,3\}$, Right $)=\{1,2,3,4\}$
- PossiblePercepts $(\hat{b})=\{[B$, Dirty $],[A$, Dirty $],[B$, Clean $]\}$
- Result $(\{1,3\}$, Right $)=\{\{2\},\{1,3\},\{4\}\}$

Solving Partially-Observable Problems

- Formulation as a nondeterministic belief-state search problem
- non-determinism due to different possible percepts

The AND-OR search alaorithms can be applied
The solution is a conditional plan
Solution for initial percept [A, Dirty] (deterministic): [Suck, Right, if Bstate $=\{6\}$ then Suck else []]
First level:

Solving Partially-Observable Problems

- Formulation as a nondeterministic belief-state search problem
- non-determinism due to different possible percepts

The AND-OR search algorithms can be applied
The solution is a conditional plan
Solution for initial percept [A, Dirty] (deterministic): [Suck, Right, if Bstate $=\{6\}$ then Suck else []] First level:

Solving Partially-Observable Problems

- Formulation as a nondeterministic belief-state search problem
- non-determinism due to different possible percepts
\Longrightarrow The AND-OR search algorithms can be applied

Solution for initial percept [A, Dirty] (deterministic): [Suck, Right, if Bstate $=\{6\}$ then Suck else []] First level:

Solving Partially-Observable Problems

- Formulation as a nondeterministic belief-state search problem
- non-determinism due to different possible percepts
\Longrightarrow The AND-OR search algorithms can be applied
\Longrightarrow The solution is a conditional plan

Solution for initial percept [A, Dirty] (deterministic): [Suck, Right, if Bstate $=\{6\}$ then Suck else []]

Solving Partially-Observable Problems

- Formulation as a nondeterministic belief-state search problem
- non-determinism due to different possible percepts
\Longrightarrow The AND-OR search algorithms can be applied
\Longrightarrow The solution is a conditional plan
Solution for initial percept [A, Dirty] (deterministic): [Suck, Right, if Bstate $=\{6\}$ then Suck else []] First level:

An Agent for Partially-Observable Environments

- Agent quite similar to the simple problem-solving agent [Ch.3]:
- Two main differences:
- State estimation resembles the prediction-observation-update process:
- simpler, because the percept o is given by the environment \Longrightarrow no need to calculate it
- given b, a and $o: b^{\prime}=U p d a t e(\operatorname{Predict}(b, a), o)$

[^16]
An Agent for Partially-Observable Environments

- Agent quite similar to the simple problem-solving agent [Ch.3]:
(1) formulates a problem (as a belief-state search)
(2) calls a search algorithm (an AND-OR-GRAPH one)
(3) executes the solution
- Two main differences:
- State estimation resembles the prediction-observation-update process:
- simpler, because the percept o is given by the environment \Longrightarrow no need to calculate it
- given b, a and $o: b^{\prime}=\operatorname{Update}(\operatorname{Predict}(b, a), o)$

Remark
The computation has to happen as fast as percepts are coming in
\Longrightarrow in some complex applications, compute approximate belief states

An Agent for Partially-Observable Environments

- Agent quite similar to the simple problem-solving agent [Ch.3]:
(1) formulates a problem (as a belief-state search)
(2) calls a search algorithm (an AND-OR-GRAPH one)
(8) executes the solution
- Two main differences:
- State estimation resembles the prediction-observation-update process:
- simpler, because the percept o is given by the environment \Longrightarrow no need to calculate it
- given b, a and $0: b^{\prime}=\operatorname{Update}(\operatorname{Predict}(b, a), o)$

Remark
The computation has to happen as fast as percepts are coming in
\Longrightarrow in some complex applications, compute approximate belief states

An Agent for Partially-Observable Environments

- Agent quite similar to the simple problem-solving agent [Ch.3]:
(1) formulates a problem (as a belief-state search)
(2) calls a search algorithm (an AND-OR-GRAPH one)
(3) executes the solution
- Two main differences:
- State estimation resembles the prediction-observation-update process:
- simpler, because the percept o is given by the environment \Longrightarrow no need to calculate it
- given b, a and $0: b^{\prime}=U p d a t e(\operatorname{Predict}(b, a), o)$

Remark
The computation has to happen as fast as percepts are coming in
\Longrightarrow in some complex applications, compute approximate belief states

An Agent for Partially-Observable Environments

- Agent quite similar to the simple problem-solving agent [Ch.3]:
(1) formulates a problem (as a belief-state search)
(2) calls a search algorithm (an AND-OR-GRAPH one)
(3) executes the solution
- Two main differences:
- State estimation resembles the prediction-observation-update process:
- simpler, because the percept o is given by the environment \Longrightarrow no need to calculate it
- given b, a and $o: b^{\prime}=U p d a t e(\operatorname{Predict}(b, a), o)$

Remark
The computation has to happen as fast as percepts are coming in
\Longrightarrow in some complex applications, compute approximate belief states

An Agent for Partially-Observable Environments

- Agent quite similar to the simple problem-solving agent [Ch.3]:
(1) formulates a problem (as a belief-state search)
(2) calls a search algorithm (an AND-OR-GRAPH one)
(3) executes the solution
- Two main differences:
- the solution is a conditional plan, not an action sequence
- in step (3) the agent needs to maintain its belief state as it performs actions and receives percepts (aka monitoring, filtering, state estimation)
- State estimation resembles the prediction-observation-update process:
- simpler, because the percept o is given by the environment
\Longrightarrow no need to calculate it
- given b, a and $o: b^{\prime}=U p d a t e(\operatorname{Predict}(b, a), o)$

Remark
The computation has to happen as fast as percepts are coming in
in some complex applications, compute approximate belief states

An Agent for Partially-Observable Environments

- Agent quite similar to the simple problem-solving agent [Ch.3]:
(1) formulates a problem (as a belief-state search)
(2) calls a search algorithm (an AND-OR-GRAPH one)
(3) executes the solution
- Two main differences:
- the solution is a conditional plan, not an action sequence
- in step (3) the agent needs to maintain its belief state as it performs actions and receives percepts (aka monitoring, filtering, state estimation)
- State estimation resembles the prediction-observation-update process:
- simpler, because the percept o is given by the environment
\Longrightarrow no need to calculate it
- given b, a and $0: b^{\prime}=U p d a t e(\operatorname{Predict}(b, a), o)$

Remark
The computation has to happen as fast as percepts are coming in
\Longrightarrow in some complex applications, compute approximate belief states

An Agent for Partially-Observable Environments

- Agent quite similar to the simple problem-solving agent [Ch.3]:
(1) formulates a problem (as a belief-state search)
(2) calls a search algorithm (an AND-OR-GRAPH one)
(3) executes the solution
- Two main differences:
- the solution is a conditional plan, not an action sequence
- in step (3) the agent needs to maintain its belief state as it performs actions and receives percepts (aka monitoring, filtering, state estimation)
- State estimation resembles the prediction-observation-update process:
- simpler, because the percept o is given by the environment \Longrightarrow no need to calculate it
- given b, a and $0: b^{\prime}=U p d a t e(\operatorname{Predict}(b, a), o)$

Remark
The computation has to happen as fast as percepts are coming in
in some complex applications, compute approximate belief states

An Agent for Partially-Observable Environments

- Agent quite similar to the simple problem-solving agent [Ch.3]:
(1) formulates a problem (as a belief-state search)
(2) calls a search algorithm (an AND-OR-GRAPH one)
(3) executes the solution
- Two main differences:
- the solution is a conditional plan, not an action sequence
- in step (3) the agent needs to maintain its belief state as it performs actions and receives percepts (aka monitoring, filtering, state estimation)
- State estimation resembles the prediction-observation-update process:
- simpler, because the percept o is given by the environment \Longrightarrow no need to calculate it
- given b, a and $o: b^{\prime}=\operatorname{Update}(\operatorname{Predict}(b, a), o)$

Remark
The computation has to happen as fast as percepts are coming in
\Longrightarrow in some complex applications, compute approximate belief states

An Agent for Partially-Observable Environments

- Agent quite similar to the simple problem-solving agent [Ch.3]:
(1) formulates a problem (as a belief-state search)
(2) calls a search algorithm (an AND-OR-GRAPH one)
(3) executes the solution
- Two main differences:
- the solution is a conditional plan, not an action sequence
- in step (3) the agent needs to maintain its belief state as it performs actions and receives percepts (aka monitoring, filtering, state estimation)
- State estimation resembles the prediction-observation-update process:
- simpler, because the percept o is given by the environment \Longrightarrow no need to calculate it
- given b, a and $o: b^{\prime}=\operatorname{Update}(\operatorname{Predict}(b, a), o)$

Remark

The computation has to happen as fast as percepts are coming in
\Longrightarrow in some complex applications, compute approximate belief states

Example: Belief-State Maintenance

Example: Kindergarden Vacuum-Cleaner

- local sensing \Longrightarrow partially observable
- any square may become dirty at any time unless the agent is actively cleaning it at that moment \Longrightarrow nondeterministic
- Ex: Update(Predict(\{1,3\}, Suck), $[$ A, Clean $])=\{5,7\}$
- Ex: Update $(\operatorname{Predict}(\{5,7\}$, Right $),[B, \operatorname{Dirty}])=\{2,6\}$

Example: Belief-State Maintenance

Example: Kindergarden Vacuum-Cleaner

- local sensing \Longrightarrow partially observable
- any square may become dirty at any time unless the agent is actively cleaning it at that moment \Longrightarrow nondeterministic
- Ex: Update $(\overbrace{\text { Predict }(\{1,3\}, \text { Suck })}^{\{5,7\}},[A$, Clean $])=\{5,7\}$
- Ex: Update $(\overbrace{\operatorname{Predict}(\{5,7\}, \text { Right })},[B, \operatorname{Dirty}])=\{2,6\}$

Example: Belief-State Maintenance

Example: Kindergarden Vacuum-Cleaner

- local sensing \Longrightarrow partially observable
- any square may become dirty at any time unless the agent is actively cleaning it at that moment \Longrightarrow nondeterministic
$\{5,7\}$
- Ex: Update($\overbrace{\text { Predict }(\{1,3\}, \text { Suck })},[A$, Clean $])=\{5,7\}$
- Ex: Update $(\overbrace{\operatorname{Predict}(\{5,7\}}^{\{2,4,6,8\}}$, Right $),[B, \operatorname{Dirty}])=\{2,6\}$

Example:

- Knows the map, senses walls in the four directions (NESW)
- localization broken: does not know where it is
- navigation broken: does not know the direction is moving to \Longrightarrow move is nondeterministic
- goal: localization (know where it is)
- $b=\{$ all locations $\}, 0=$ NSW

\odot	\circ	\circ	\circ		\circ	\circ	\circ	\circ	\circ		\circ	\circ	\circ		\circ
		\circ	\circ		\circ			\circ		\circ		\circ			
	\circ	\circ	\circ		\circ			\circ	\circ	\circ	\circ	\circ			\circ
\odot	\circ		\circ	\circ	\circ		\circ	\circ	\circ	\circ		\circ	\circ	\circ	\circ

(a) Possible locations of robot after $\mathrm{E}_{1}=$ NSW

\circ	\circ	\circ	\circ		\circ	\circ	\circ	\circ	\circ		\circ	\circ	\circ		\circ
		\circ	\circ		\circ			\circ		\circ		\circ			
	\circ	\circ	\circ		\circ			\circ	\circ	\circ	\circ	\circ			\circ
\circ	\circ		\circ	\circ	\circ		\circ	\circ	\circ	\circ		\circ	\circ	\circ	\circ

(b) Possible locations of robot After $\mathrm{E}_{1}=$ NSW, $\mathrm{E}_{2}=\mathrm{NS}$
(©) S. Russell \& P. Norwig, AlMA)

Example:

- Knows the map, senses walls in the four directions (NESW)
- localization broken: does not know where it is
- navigation broken: does not know the direction is moving to \Longrightarrow move is nondeterministic
- goal: localization (know where it is)

\odot	\circ	\circ	\circ		\circ	\circ	\circ	\circ	\circ		\circ	\circ	\circ		\circ
		\circ	\circ		\circ			\circ		\circ		\circ			
	\circ	\circ	\circ		\circ			\circ	\circ	\circ	\circ	\circ			\circ
\odot	\circ		\circ	\circ	\circ		\circ	\circ	\circ	\circ		\circ	\circ	\circ	\circ

(a) Possible locations of robot after $E_{1}=$ NSW

(b) Possible locations of robot After $E_{1}=N S W, E_{2}=N S$

Example:

- Knows the map, senses walls in the four directions (NESW)
- localization broken: does not know where it is
- navigation broken: does not know the direction is moving to \Longrightarrow move is nondeterministic
- goal: localization (know where it is)
- $b=\{$ all locations $\}, o=$ NSW
(1) $b_{0}=$ Update $(b$, NSW $)=(a)$

\odot	\circ	\circ	\circ		\circ	\circ	\circ	\circ	\circ		\circ	\circ	\circ		\circ
		\circ	\circ		\circ			\circ		\circ		\circ			
	\circ	\circ	\circ		\circ			\circ	\circ	\circ	\circ	\circ			\circ
\odot	\circ		\circ	\circ	\circ		\circ	\circ	\circ	\circ		\circ	\circ	\circ	\circ

(a) Possible locations of robot after $E_{1}=$ NSW

(b) Possible locations of robot After $\mathrm{E}_{1}=$ NSW, $\mathrm{E}_{2}=\mathrm{NS}$

Example:

- Knows the map, senses walls in the four directions (NESW)
- localization broken: does not know where it is
- navigation broken: does not know the direction is moving to \Longrightarrow move is nondeterministic
- goal: localization (know where it is)
- $b=\{$ all locations $\}, o=$ NSW
(1) $b_{0}=\operatorname{Update}(b, N S W)=(a)$

\odot	\circ	\circ	\circ		\circ	\circ	\circ	\circ	\circ		\circ	\circ	\circ		\circ
		\circ	\circ		\circ			\circ		\circ		\circ			
	\circ	\circ	\circ		\circ			\circ	\circ	\circ	\circ	\circ			\circ
\odot	\circ		\circ	\circ	\circ		\circ	\circ	\circ	\circ		\circ	\circ	\circ	\circ

(a) Possible locations of robot after $E_{1}=$ NSW

(b) Possible locations of robot After $\mathrm{E}_{1}=\mathrm{NSW}, \mathrm{E}_{2}=\mathrm{NS}$

Example:

- Knows the map, senses walls in the four directions (NESW)
- localization broken: does not know where it is
- navigation broken: does not know the direction is moving to \Longrightarrow move is nondeterministic
- goal: localization (know where it is)
- $b=\{$ all locations $\}, o=$ NSW
(1) $b_{0}=\operatorname{Update}(b, N S W)=(a)$
(2) $b_{o}=\operatorname{Update}(\operatorname{Predict}(\operatorname{Update}(b, N S W)$, Move $), N S)=(b)$

\odot	\circ	\circ	\circ		\circ	\circ	\circ	\circ	\circ		\circ	\circ	\circ		\circ
		\circ	\circ		\circ			\circ		\circ		\circ			
	\circ	\circ	\circ		\circ			\circ	\circ	\circ	\circ	\circ			\circ
\odot	\circ		\circ	\circ	\circ		\circ	\circ	\circ	\circ		\circ	\circ	\circ	\circ

(a) Possible locations of robot after $E_{1}=$ NSW

(b) Possible locations of robot After $\mathrm{E}_{1}=$ NSW, $\mathrm{E}_{2}=\mathrm{NS}$

Outline

(1) Local Search and Optimization

- General Ideas
- Hill-Climbing
- Simulated Annealing
- Local Beam Search \& Genetic Algorithms
(2) Search with Nondeterministic Actions
(3) Search with Partial or No Observations (Deterministic/Nondeterministic Actions)
- Search with No Observations
- Search with Partial Observations
(4) Online Search
- • 氙

Generalities

Online vs. offline search

- So far: Offline search
- it computes a complete solutions before executing it
- Online search: agent interleaves computation and action
- it takes an action,
- then it observes the environment and computes the next action
- (repeat)
- Necessary in dynamic domains or unknown domains
- Useful in nondeterministic domains
- prevents search blowup

Must be solved by executing actions, rather than by pure computation

Generalities

Online vs. offline search

- So far: Offline search
- it computes a complete solutions before executing it
- Online search: agent interleaves computation and action
- it takes an action,
- then it observes the environment and computes the next action
- (repeat)
- Necessary in dynamic domains or unknown domains
- Useful in nondeterministic domains
- prevents search blowup

[^17]
Generalities

Online vs. offline search

- So far: Offline search
- it computes a complete solutions before executing it
- Online search: agent interleaves computation and action
- it takes an action,
- then it observes the environment and computes the next action
- (repeat)
- Necessary in dynamic domains or unknown domains
- Useful in nondeterministic domains
- prevents search blowup

Must be solved by executing actions, rather than by pure computation

Generalities

Online vs. offline search

- So far: Offline search
- it computes a complete solutions before executing it
- Online search: agent interleaves computation and action
- it takes an action,
- then it observes the environment and computes the next action
- (repeat)
- Necessary in dynamic domains or unknown domains
- cannot know the states and consequences of actions
- faces an exploration problem: must use actions as experiments in order to learn enough
- ex: a robot placed in a new building \Longrightarrow must explore it to build a map for getting from A to B
- ex: newborn baby \Longrightarrow acts to learn the outcome of his/her actions
- Useful in nondeterministic domains
- prevents search blowup

[^18]
Generalities

Online vs. offline search

- So far: Offline search
- it computes a complete solutions before executing it
- Online search: agent interleaves computation and action
- it takes an action,
- then it observes the environment and computes the next action
- (repeat)
- Necessary in dynamic domains or unknown domains
- cannot know the states and consequences of actions
- faces an exploration problem: must use actions as experiments in order to learn enough
- ex: a robot placed in a new building \Longrightarrow must explore it to build a map for getting from A to B
- ex: newborn baby \Longrightarrow acts to learn the outcome of his/her actions
- Useful in nondeterministic domains
- prevents search blowup

Must be solved by executing actions, rather than by pure computation

Generalities

Online vs. offline search

- So far: Offline search
- it computes a complete solutions before executing it
- Online search: agent interleaves computation and action
- it takes an action,
- then it observes the environment and computes the next action
- (repeat)
- Necessary in dynamic domains or unknown domains
- cannot know the states and consequences of actions
- faces an exploration problem: must use actions as experiments in order to learn enough
- ex: a robot placed in a new building \Longrightarrow must explore it to build a map for getting from A to B
- ex: newborn baby \Longrightarrow acts to learn the outcome of his/her actions
- Useful in nondeterministic domains
- prevents search blowup

[^19]
Generalities

Online vs. offline search

- So far: Offline search
- it computes a complete solutions before executing it
- Online search: agent interleaves computation and action
- it takes an action,
- then it observes the environment and computes the next action
- (repeat)
- Necessary in dynamic domains or unknown domains
- cannot know the states and consequences of actions
- faces an exploration problem: must use actions as experiments in order to learn enough
- ex: a robot placed in a new building \Longrightarrow must explore it to build a map for getting from A to B
- ex: newborn baby \Longrightarrow acts to learn the outcome of his/her actions
- Useful in nondeterministic domains
- prevents search blowup

[^20]
Generalities

Online vs. offline search

- So far: Offline search
- it computes a complete solutions before executing it
- Online search: agent interleaves computation and action
- it takes an action,
- then it observes the environment and computes the next action
- (repeat)
- Necessary in dynamic domains or unknown domains
- cannot know the states and consequences of actions
- faces an exploration problem: must use actions as experiments in order to learn enough
- ex: a robot placed in a new building \Longrightarrow must explore it to build a map for getting from A to B
- ex: newborn baby \Longrightarrow acts to learn the outcome of his/her actions
- Useful in nondeterministic domains
- prevents search blowup

Must be solved by executing actions, rather than by pure computation

Generalities

Online vs. offline search

- So far: Offline search
- it computes a complete solutions before executing it
- Online search: agent interleaves computation and action
- it takes an action,
- then it observes the environment and computes the next action
- (repeat)
- Necessary in dynamic domains or unknown domains
- cannot know the states and consequences of actions
- faces an exploration problem: must use actions as experiments in order to learn enough
- ex: a robot placed in a new building \Longrightarrow must explore it to build a map for getting from A to B
- ex: newborn baby \Longrightarrow acts to learn the outcome of his/her actions
- Useful in nondeterministic domains
- prevents search blowup

Must be solved by executing actions, rather than by pure computation

Generalities

Online vs. offline search

- So far: Offline search
- it computes a complete solutions before executing it
- Online search: agent interleaves computation and action
- it takes an action,
- then it observes the environment and computes the next action
- (repeat)
- Necessary in dynamic domains or unknown domains
- cannot know the states and consequences of actions
- faces an exploration problem: must use actions as experiments in order to learn enough
- ex: a robot placed in a new building \Longrightarrow must explore it to build a map for getting from A to B
- ex: newborn baby \Longrightarrow acts to learn the outcome of his/her actions
- Useful in nondeterministic domains
- prevents search blowup

Must be solved by executing actions, rather than by pure computation

Online Search

Working Hypotheses

- Assumption: a deterministic and fully observable environment
- The agent knows only
- Actions(s), which returns the list of actions allowed in s
- the step-cost function $c\left(s, a, s^{\prime}\right)$ (cannot be used until s^{\prime} is known)
- GoalTest(s)
- Remark: The agent cannot determine Result($s, a)$
- except by actually being in s and doing a
- The agent knows an admissible heuristic function $h(s)$, that estimates the distance from the current state to a goal state
- Objective: reach goal with mini nal cost
- Cost: total cost of traveled path
- Competitive ratio: ratio of cost over cost of the solution path if search space is known ($+\infty$ if agent in a deadend)

Online Search

Working Hypotheses

- Assumption: a deterministic and fully observable environment
- The agent knows only
- Actions(s), which returns the list of actions allowed in s
- the step-cost function $c\left(s, a, s^{\prime}\right)$ (cannot be used until s^{\prime} is known)
- GoalTest(s)
- Remark: The agent cannot determine Result(s, a)
- except by actually being in s and doing a
- The agent knows an admissible heuristic function $h(s)$, that estimates the distance from the current state to a goal state
- Objective: reach goal with min mal cost
- Cost: total cost of traveled path
- Competitive ratio: ratio of cost over cost of the solution path if search space is known ($+\infty$ if agent in a deadend)

Online Search

Working Hypotheses

- Assumption: a deterministic and fully observable environment
- The agent knows only
- Actions(s), which returns the list of actions allowed in s
- the step-cost function $c\left(s, a, s^{\prime}\right)$ (cannot be used until s^{\prime} is known)
- GoalTest(s)
- Remark: The agent cannot determine Result(s, a)
- except by actually being in s and doing a
- The agent knows an admissible heuristic furction h(S), that estimates the distance from the current state to a goal state
- Objective: reach goal with minimal cost
- Cost: total cost of traveled path
- Competitive ratio: ratio of cost over cost of the solution path if search space is known ($+\infty$ if agent in a deadend)

Online Search

Working Hypotheses

- Assumption: a deterministic and fully observable environment
- The agent knows only
- Actions(s), which returns the list of actions allowed in s
- the step-cost function $c\left(s, a, s^{\prime}\right)$ (cannot be used until s^{\prime} is known)
- GoalTest(s)
- Remark: The agent cannot determine Result($s, a)$
- except by actually being in s and doing a
- The agent knows an admissible heuristic function $h(s)$, that estimates the distance from the current state to a goal state
- Objective: reach goal with min mal cost
- Cost: total cost of traveled path
- Competitive ratio: ratio of cost over cost of the solution path if search space is known ($+\infty$ if agent in a deadend)

Online Search

Working Hypotheses

- Assumption: a deterministic and fully observable environment
- The agent knows only
- Actions(s), which returns the list of actions allowed in s
- the step-cost function $c\left(s, a, s^{\prime}\right)$ (cannot be used until s^{\prime} is known)
- GoalTest(s)
- Remark: The agent cannot determine Result($s, a)$
- except by actually being in s and doing a
- The agent knows an admissible heuristic function $h(s)$, that estimates the distance from the current state to a goal state
- Objective: reach goal with minimal cost
- Cost: total cost of traveled path
- Competitive ratio: ratio of cost over cost of the solution path if search space is known ($+\infty$ if agent in a deadend)

Online Search

Working Hypotheses

- Assumption: a deterministic and fully observable environment
- The agent knows only
- Actions(s), which returns the list of actions allowed in s
- the step-cost function $c\left(s, a, s^{\prime}\right)$ (cannot be used until s^{\prime} is known)
- GoalTest(s)
- Remark: The agent cannot determine $\operatorname{Result}(s, a)$
- except by actually being in s and doing a
- The agent knows an admissible heuristic function $h(s)$, that estimates the distance from the current state to a goal state
- Objective: reach goal with minimal cost
- Cost: total cost of traveled path
- Competitive ratio: ratio of cost over cost of the solution path if search space is known ($+\infty$ if agent in a deadend)

Online Search: Example

Example: a simple maze problem

- the agent does not know that going Up from $(1,1)$ leads to $(1,2)$
- having done that, it does not know that going Down leads to $(1,1)$
- the agent might know the location of the goal
- it may be able to use the Manhattan-distance heuristic

Online Search: Example

Example: a simple maze problem

- the agent does not know that going Up from $(1,1)$ leads to $(1,2)$
- having done that, it does not know that going Down leads to $(1,1)$
- the agent might know the location of the goal
- it may be able to use the Manhattan-distance heuristic

Online Search: Example

Example: a simple maze problem

- the agent does not know that going Up from $(1,1)$ leads to $(1,2)$
- having done that, it does not know that going Down leads to $(1,1)$
- the agent might know the location of the goal
- it may be able to use the Manhattan-distance heuristic

(© S. Russell \& P. Norwig, AIMA)

Online Search: Example

Example: a simple maze problem

- the agent does not know that going Up from $(1,1)$ leads to $(1,2)$
- having done that, it does not know that going Down leads to $(1,1)$
- the agent might know the location of the goal
- it may be able to use the Manhattan-distance heuristic

(© S. Russell \& P. Norwig, AIMA)

Online Search: Example

Example: a simple maze problem

- the agent does not know that going Up from $(1,1)$ leads to $(1,2)$
- having done that, it does not know that going Down leads to $(1,1)$
- the agent might know the location of the goal
- it may be able to use the Manhattan-distance heuristic

Online Search: Deadends

Inevitability of Deadends

- Online search may face deadends (e.g., with irreversible actions)
- No algorithm can avoid dead ends in all state spaces
- Adversary argument: for each algo, an adversary can construct the state space while the agent explores it
- If states S and A visit. What next?
\Longrightarrow if algo goes right, adversary builds (top), otherwise builds (bot) \Longrightarrow adversary builds
- Assumption the state space is safely explorable: some goal state is reachable from every reachable state (ex: reversible actions)

Online Search: Deadends

Inevitability of Deadends

- Online search may face deadends (e.g., with irreversible actions)
- No algorithm can avoid dead ends in all state spaces
- Adversary argument: for each algo, an adversary can construct the state space while the agent explores it
- If states S and A visit. What next?
\Longrightarrow if algo goes right, adversary builds (top), otherwise builds (bot) \Longrightarrow adversary builds
- Assumption the state space is safely explorable: some goal state is reachable from every reachable state (ex: reversible actions)

Online Search: Deadends

Inevitability of Deadends

- Online search may face deadends (e.g., with irreversible actions)
- No algorithm can avoid dead ends in all state spaces
- Adversary argument: for each algo, an adversary can construct the state space while the agent explores it
- If states S and A visit. What next?
\Longrightarrow if algo goes right, adversary builds (top), otherwise builds (bot) \Longrightarrow adversary builds
- Assumption the state space is safely explorable: some goal state is reachable from every reachable state (ex: reversible actions)

Online Search: Deadends

Inevitability of Deadends

- Online search may face deadends (e.g., with irreversible actions)
- No algorithm can avoid dead ends in all state spaces
- Adversary argument: for each algo, an adversary can construct the state space while the agent explores it
- If states S and A visit. What next?
\Longrightarrow if algo goes right, adversary builds (top), otherwise builds (bot)
\Longrightarrow adversary builds
- Assumption the state space is safely explorable: some goal state is reachable from every reachable state (ex: reversible actions)

Online Search: Deadends

Inevitability of Deadends

- Online search may face deadends (e.g., with irreversible actions)
- No algorithm can avoid dead ends in all state spaces
- Adversary argument: for each algo, an adversary can construct the state space while the agent explores it
- If states S and A visit. What next?
\Longrightarrow if algo goes right, adversary builds (top), otherwise builds (bot)
\Longrightarrow adversary builds
- Assumption the state space is safely explorable: some goal state is reachable from every reachable state (ex: reversible actions)

Online Search Agents

Online Search Agents: Basic Ideas

- Idea: The agent creates \& maintains a map of the environment (result [s, a])
- map is updated based on percept input after every action
- map is used to decide next action
- Difference wrt. offline algorithms (ex A*, BFS)

Online Search Agents

Online Search Agents：Basic Ideas

－Idea：The agent creates \＆maintains a map of the environment（result $[s, a]$ ）
－map is updated based on percept input after every action
－map is used to decide next action
－Difference wrt．offline algorithms（ex $\left.A^{*}, B F S\right)$

Online Search Agents

Online Search Agents: Basic Ideas

- Idea: The agent creates \& maintains a map of the environment (result $[s, a]$)
- map is updated based on percept input after every action
- map is used to decide next action
- Difference wrt. offline algorithms (ex $\left.A^{*}, B F S\right)$
- Can only expand the node it is physically in
- Needs to backtrack physically
- Works only if actions are always reversible
- Worst case: each node is visited twice
- An agent can go on a long walk even it it is ciose to the solution
- an online iterative deepening approach solves this problem

Online Search Agents

Online Search Agents: Basic Ideas

- Idea: The agent creates \& maintains a map of the environment (result $[s, a]$)
- map is updated based on percept input after every action
- map is used to decide next action
- Difference wrt. offline algorithms (ex A^{*}, BFS)
- Can only expand the node it is physically in
\Longrightarrow expand nodes in local order
\Longrightarrow DFS natural candidate for an online version
- Needs to backtrack physically
- Works only if actions are always reversible
- Worst case: each node is visited twice
- An agent can go on a long walk even if it is close to the solution
- an online iterative deepening approach solves this problem

Online Search Agents

Online Search Agents: Basic Ideas

- Idea: The agent creates \& maintains a map of the environment (result $[s, a]$)
- map is updated based on percept input after every action
- map is used to decide next action
- Difference wrt. offline algorithms (ex A^{*}, BFS)
- Can only expand the node it is physically in
\Longrightarrow expand nodes in local order
\Longrightarrow DFS natural candidate for an online version
- Needs to backtrack physically
- DFS: go back to the state from which the agent most recently entered the current state
- must keep a table with the predecessor states of each state to which the agent has not yet backtracked (unbacktracked[s])
\Longrightarrow backtrack physically (find an action reversing the generation of s)
- Works only if actions are always reversible
- Worst case: each node is visited twice
- An agent can go on a long walk even if it is close to the solution
- an online iterative deepening approach solves this problem

Online Search Agents

Online Search Agents: Basic Ideas

- Idea: The agent creates \& maintains a map of the environment (result $[s, a]$)
- map is updated based on percept input after every action
- map is used to decide next action
- Difference wrt. offline algorithms (ex A^{*}, BFS)
- Can only expand the node it is physically in
\Longrightarrow expand nodes in local order
\Longrightarrow DFS natural candidate for an online version
- Needs to backtrack physically
- DFS: go back to the state from which the agent most recently entered the current state
- must keep a table with the predecessor states of each state to which the agent has not yet backtracked (unbacktracked[s])
\Longrightarrow backtrack physically (find an action reversing the generation of s)
- Works only if actions are always reversible
- Worst case: each node is visited twice
- An agent can go on a long walk even if it is close to the solution
- an online iterative deepening approach solves this problem

Online Search Agents

Online Search Agents: Basic Ideas

- Idea: The agent creates \& maintains a map of the environment (result $[s, a]$)
- map is updated based on percept input after every action
- map is used to decide next action
- Difference wrt. offline algorithms (ex A^{*}, BFS)
- Can only expand the node it is physically in
\Longrightarrow expand nodes in local order
\Longrightarrow DFS natural candidate for an online version
- Needs to backtrack physically
- DFS: go back to the state from which the agent most recently entered the current state
- must keep a table with the predecessor states of each state to which the agent has not yet backtracked (unbacktracked[s])
\Longrightarrow backtrack physically (find an action reversing the generation of s)
- Works only if actions are always reversible
- Worst case: each node is visited twice
- An agent can go on a long walk even if it is close to the solution
- an online iterative deepening approach solves this problem

Online Search Agents

Online Search Agents: Basic Ideas

- Idea: The agent creates \& maintains a map of the environment (result $[s, a]$)
- map is updated based on percept input after every action
- map is used to decide next action
- Difference wrt. offline algorithms (ex A^{*}, BFS)
- Can only expand the node it is physically in
\Longrightarrow expand nodes in local order
\Longrightarrow DFS natural candidate for an online version
- Needs to backtrack physically
- DFS: go back to the state from which the agent most recently entered the current state
- must keep a table with the predecessor states of each state to which the agent has not yet backtracked (unbacktracked[s])
\Longrightarrow backtrack physically (find an action reversing the generation of s)
- Works only if actions are always reversible
- Worst case: each node is visited twice
- An agent can go on a long walk even if it is close to the solution
- an online iterative deepening approach solves this problem

Online DFS Search Agents

function Online-DFS-AgEnt $\left(s^{\prime}\right)$ returns an action
inputs: s^{\prime}, a percept that identifies the current state
persistent: result, a table indexed by state and action, initially empty
untried, a table that lists, for each state, the actions not yet tried unbacktracked, a table that lists, for each state, the backtracks not yet tried s, a, the previous state and action, initially null
if Goal-TEST $\left(s^{\prime}\right)$ then return stop
if s^{\prime} is a new state (not in untried) then untried $\left[s^{\prime}\right] \leftarrow \operatorname{Actions}\left(s^{\prime}\right)$
if s is not null then
$\operatorname{result}[s, a] \leftarrow s^{\prime}$
add s to the front of unbacktracked $\left[s^{\prime}\right]$
if untried $\left[s^{\prime}\right]$ is empty then
if unbacktracked $\left[s^{\prime}\right]$ is empty then return stop
else $a \leftarrow$ an action b such that $\operatorname{result}\left[s^{\prime}, b\right]=\operatorname{POP}\left(\right.$ unbacktracked $\left.\left[s^{\prime}\right]\right)$
else $a \leftarrow \operatorname{POP}\left(\right.$ untried $\left.\left[s^{\prime}\right]\right)$
$s \leftarrow s^{\prime}$
return a

Online Local Search

- Hill Climbing natural candidate for online search
- locality of search
- only one state is stored
- unfortunately, stuck in local minima
- random restarts not possible
- Possible solution: Random Walk
- selects randomly one available actions from the current state
- preference can be given to actions that have not yet been tried
- eventually finds a goal or complete its exploration if space is finite
- unfortunately, very slow

Random Walk: example

- random walk takes exponentially many steps to find a goal (backward progress
is twice as likely as forward progress)

Online Local Search

- Hill Climbing natural candidate for online search
- locality of search
- only one state is stored
- unfortunately, stuck in local minima
- random restarts not possible
- Possible solution: Random Walk
- selects randomly one available actions from the current state
- preference can be given to actions that have not yet been tried
- eventually finds a goal or complete its exploration if space is finite
- unfortunately, very slow

Random Walk: example

- random walk takes exponentially many
steps to find a goal (backward progress
is twice as likely as forward progress)

Online Local Search

- Hill Climbing natural candidate for online search
- locality of search
- only one state is stored
- unfortunately, stuck in local minima
- random restarts not possible
- Possible solution: Random Walk
- selects randomly one available actions from the current state
- preference can be given to actions that have not yet been tried
- eventually finds a goal or complete its exploration if space is finite
- unfortunately, very slow

Random Walk: example

- random walk takes exponentially many
steps to find a goal (backward progress
is twice as likely as forward progress)

Online Local Search

- Hill Climbing natural candidate for online search
- locality of search
- only one state is stored
- unfortunately, stuck in local minima
- random restarts not possible
- Possible solution: Random Walk
- selects randomly one available actions from the current state
- preference can be given to actions that have not yet been tried
- eventually finds a goal or complete its exploration if space is finite
- unfortunately, very slow

Random Walk: example

- random walk takes exponentially many steps to find a goal (backward progress is twice as likely as forward progress)

Online A^{*} : LRTA*

LRTA*: General ideas

- Better possible solution: add memory to hill climbing
- Idea: store a "current best estimate" H(s) of the cost to reach the goal from each state that has been visited
- initially $h(s)$
- updated as the agent gains experience in the state space (recall that $h(s)$ is in general "too optimistic")
\Longrightarrow Learning Real-Time A^{*} (LRTA*)

Online A*: LRTA*

LRTA*: General ideas

- Better possible solution: add memory to hill climbing
- Idea: store a "current best estimate" $\mathrm{H}(\mathrm{s})$ of the cost to reach the goal from each state that has been visited
- initially $h(s)$
- updated as the agent gains experience in the state space
(recall that $h(s)$ is in general "too optimistic")
Learning Real-Time A* (LRTA*)

Online A*: LRTA*

LRTA*: General ideas

- Better possible solution: add memory to hill climbing
- Idea: store a "current best estimate" H(s) of the cost to reach the goal from each state that has been visited
- initially $h(s)$
- updated as the agent gains experience in the state space (recall that $h(s)$ is in general "too optimistic")

\Longrightarrow Learning Real-Time A^{*} (LRTA*)

Online A*: LRTA*

LRTA*: General ideas

- Better possible solution: add memory to hill climbing
- Idea: store a "current best estimate" H(s) of the cost to reach the goal from each state that has been visited
- initially $h(s)$
- updated as the agent gains experience in the state space (recall that $h(s)$ is in general "too optimistic")
\Longrightarrow Learning Real-Time A^{*} (LRTA*)
- builds a map of the environment in the result[s,a] table
- chooses the "apparently best" move a according to current $H()$
- updates the cost estimate $H(s)$ for the state s it has just left, using the cost estimate of the target state s^{\prime}
- $H(s):=c\left(s, a, s^{\prime}\right)+H\left(s^{\prime}\right)$
- "optimism under uncertainty": untried actions in s are assumed to lead immediately to the goal with the least possible cost $h(s)$
encourages the agent to explore new, possibly promising paths

Online A*: LRTA*

LRTA*: General ideas

- Better possible solution: add memory to hill climbing
- Idea: store a "current best estimate" H(s) of the cost to reach the goal from each state that has been visited
- initially $h(s)$
- updated as the agent gains experience in the state space (recall that $h(s)$ is in general "too optimistic")
\Longrightarrow Learning Real-Time A^{*} (LRTA*)
- builds a map of the environment in the result[$[\mathrm{s}, \mathrm{a}]$ table
- chooses the "apparently best" move a according to current H()
- updates the cost estimate $H(s)$ for the state s it has just left,
using the cost estimate of the target state s^{\prime}
- $H(s):=c\left(s, a, s^{\prime}\right)+H\left(s^{\prime}\right)$
- "optimism under uncertainty": untried actions in s are assumed to lead immediately to the goal with the least possible cost $h(s)$
encourages the agent to explore new, possibly promising paths

Online A*: LRTA*

LRTA*: General ideas

- Better possible solution: add memory to hill climbing
- Idea: store a "current best estimate" H(s) of the cost to reach the goal from each state that has been visited
- initially $h(s)$
- updated as the agent gains experience in the state space (recall that $h(s)$ is in general "too optimistic")
\Longrightarrow Learning Real-Time A^{*} (LRTA*)
- builds a map of the environment in the result[s,a] table
- chooses the "apparently best" move a according to current $H()$
- updates the cost estimate $H(s)$ for the state s it has just left, using the cost estimate of the target state s^{\prime}
- $H(s):=c\left(s, a, s^{\prime}\right)+H\left(s^{\prime}\right)$
- "optimism under uncertainty": untried actions in s are assumed to lead immediately to the goal with the least possible cost $h(s)$
encourages the agent to explore new, possibly promising paths

Online A*: LRTA*

LRTA*: General ideas

- Better possible solution: add memory to hill climbing
- Idea: store a "current best estimate" H(s) of the cost to reach the goal from each state that has been visited
- initially $h(s)$
- updated as the agent gains experience in the state space (recall that $h(s)$ is in general "too optimistic")
\Longrightarrow Learning Real-Time A^{*} (LRTA*)
- builds a map of the environment in the result[s,a] table
- chooses the "apparently best" move a according to current $H()$
- updates the cost estimate $H(s)$ for the state s it has just left, using the cost estimate of the target state s^{\prime}
- $H(s):=c\left(s, a, s^{\prime}\right)+H\left(s^{\prime}\right)$
- "optimism under uncertainty": untried actions in s are assumed to lead immediately to the goal with the least possible cost $h(s)$
encourages the agent to explore new, possibly promising paths

Online A*: LRTA*

LRTA*: General ideas

- Better possible solution: add memory to hill climbing
- Idea: store a "current best estimate" H(s) of the cost to reach the goal from each state that has been visited
- initially $h(s)$
- updated as the agent gains experience in the state space (recall that $h(s)$ is in general "too optimistic")
\Longrightarrow Learning Real-Time A^{*} (LRTA*)
- builds a map of the environment in the result[$[\mathrm{s}, \mathrm{a}]$ table
- chooses the "apparently best" move a according to current $H()$
- updates the cost estimate $H(s)$ for the state s it has just left, using the cost estimate of the target state s^{\prime}
- $H(s):=c\left(s, a, s^{\prime}\right)+H\left(s^{\prime}\right)$
- "optimism under uncertainty": untried actions in s are assumed to lead immediately to the goal with the least possible cost $h(s)$
\Longrightarrow encourages the agent to explore new, possibly promising paths

Online A*: LRTA*

LRTA*: General ideas

- Better possible solution: add memory to hill climbing
- Idea: store a "current best estimate" H(s) of the cost to reach the goal from each state that has been visited
- initially $h(s)$
- updated as the agent gains experience in the state space (recall that $h(s)$ is in general "too optimistic")
\Longrightarrow Learning Real-Time A^{*} (LRTA*)
- builds a map of the environment in the result[$[\mathrm{s}, \mathrm{a}]$ table
- chooses the "apparently best" move a according to current $H()$
- updates the cost estimate $H(s)$ for the state s it has just left, using the cost estimate of the target state s^{\prime}
- $H(s):=c\left(s, a, s^{\prime}\right)+H\left(s^{\prime}\right)$
- "optimism under uncertainty": untried actions in s are assumed to lead immediately to the goal with the least possible cost $h(s)$
\Longrightarrow encourages the agent to explore new, possibly promising paths
An $L R T A^{*}$ agent is guaranteed to find a goal in any finite, safely explorable environment.

Online A*: LRTA*

function LRTA*-AGENT $\left(s^{\prime}\right)$ returns an action
inputs: s^{\prime}, a percept that identifies the current state
persistent: result, a table, indexed by state and action, initially empty
H, a table of cost estimates indexed by state, initially empty
s, a, the previous state and action, initially null
if Goal-TESt $\left(s^{\prime}\right)$ then return stop
if s^{\prime} is a new state $(\operatorname{not}$ in $H)$ then $H\left[s^{\prime}\right] \leftarrow h\left(s^{\prime}\right)$
if s is not null

$$
\begin{aligned}
& \text { result }[s, a] \leftarrow s^{\prime} \\
& H[s] \leftarrow \min _{b \in \operatorname{ACTIONS}(s)} \operatorname{LRTA} *-\operatorname{Cost}(s, b, \operatorname{result}[s, b], H)
\end{aligned}
$$

$a \leftarrow$ an action b in ACTIONS $\left(s^{\prime}\right)$ that minimizes LRTA*-Cost $\left(s^{\prime}, b, \operatorname{result}\left[s^{\prime}, b\right], H\right)$
$s \leftarrow s^{\prime}$
return a
function LRTA*-CosT $\left(s, a, s^{\prime}, H\right)$ returns a cost estimate
if s^{\prime} is undefined then return $h(s)$
else return $c\left(s, a, s^{\prime}\right)+H\left[s^{\prime}\right]$

Example: LRTA*

Five iterations of LRTA* on a one-dimensional state space

- states labeled with current $\mathrm{H}(\mathrm{s})$, arcs labeled with step cost
- shaded state marks the location of the agent,
- updated cost estimates a each iteration are circled

[^0]: Copyright notice: Most examples and images displayed in the slides of this course are taken from [Russell \& Norwig, "Artificial Intelligence, a Modern Approach", $3^{\text {rd }}$ ed., Pearson],

[^1]: Almost always solves N -queens problems almost instantaneously for very large N
 (e.g., $\mathrm{N}=1$ million)

[^2]: Resembles natural selection with asexual reproduction:
 the successors (offspring) of a state (organism) populate the next generation according to its value (fitness), with a random component.

[^3]: Resembles natural selection with asexual reproduction:
 the successors (offspring) of a state (organism) populate the next generation according to its value (fitness), with a random component.

[^4]: Resembles natural selection with asexual reproduction:
 the successors (offspring) of a state (organism) populate the next generation according to its value (fitness), with a random component.

[^5]: Resembles natural selection with asexual reproduction
 the successors (offspring) of a state (organism) populate the next generation according to its value (fitness), with a random component.

[^6]: Resembles natural selection with asexual reproduction
 the successors (offspring) of a state (organism) populate the next generation according to its value (fitness), with a random component.

[^7]: Resembles natural selection with asexual reproduction:
 the successors (offspring) of a state (organism) populate the next generation according to its value (fitness), with a random component.

[^8]: Resembles natural selection with asexual reproduction:
 the successors (offspring) of a state (organism) populate the next generation according to its value (fitness), with a random component.

[^9]: Resembles natural selection with asexual reproduction:
 the successors (offspring) of a state (organism) populate the next generation according to its value (fitness), with a random component.

[^10]: Resembles natural selection with asexual reproduction:
 the successors (offspring) of a state (organism) populate the next generation according to its value (fitness), with a random component.

[^11]: OR tree: AND-OR tree with 1 outcome each AND node (determinism)

[^12]: OR tree: AND-OR tree with 1 outcome each AND node (determinism)

[^13]: OR tree: AND-OR tree with 1 outcome each AND node (determinism)

[^14]: OR tree: AND-OR tree with 1 outcome each AND node (determinism)

[^15]: OR tree: AND-OR tree with 1 outcome each AND node (determinism)

[^16]: Remark
 The computation has to happen as fast as percepts are coming in
 \Longrightarrow in some complex applications, compute approximate belief states

[^17]: Must be solved by executing actions, rather than by pure computation

[^18]: Must be solved by executing actions, rather than by pure computation

[^19]: Must be solved by executing actions, rather than by pure computation

[^20]: Must be solved by executing actions, rather than by pure computation

