
Fundamentals of Artificial Intelligence
Laboratory

Dr. Mauro Dragoni

Department of Information Engineering and Computer Science
Academic Year 2020/2021



Exercise 10.1

page
02

 The monkey-and-bananas problem is faced by a monkey in a laboratory with some bananas 
hanging out of reach from the ceiling. A box is available that will enable the monkey to 
reach the bananas if he climbs on it. Initially, the monkey is at A, the bananas at B, and the 
box at C. The monkey and box have height Low , but if the monkey climbs onto the box he 
will have height High, the same as the bananas. The actions available to the monkey 
include Go from one place to another, Push an object from one place to another, ClimbUp
onto or ClimbDown from an object, and Grasp or Ungrasp an object. The result of a Grasp is 
that the monkey holds the object if the monkey and object are in the same place at the 
same height.

a. Write down the initial state description.

b. Write the six action schemas.

c. Suppose the monkey wants to fool the scientists, who are off to tea, by grabbing the 
bananas, but leaving the box in its original place. Write this as a general goal (i.e., not 
assuming that the box is necessarily at C) in the language of situation calculus. Can 
this goal be solved by a classical planning system?



Exercise 10.1

page
03

a. Write down the initial state description.

At(Monkey, A) ∧
At(Bananas, B) ∧
At(Box, C) ∧
Height(Monkey, Low) ∧
Height(Box, Low) ∧
Height(Bananas, High) ∧
Pushable(Box) ∧
Climbable(Box)



Exercise 10.1

page
04

b. Write the six action schemas.

Action(ACTION: Go(x, y), PRECOND: At(Monkey, x), 
EFFECT: At(Monkey, y) ∧ ¬(At(Monkey, x)))

Action(ACTION: Push(b, x, y), PRECOND: At(Monkey, x) ∧ Pushable(b),
EFFECT: At(b, y) ∧ At(Monkey, y) ∧ ¬At(b, x) ∧ ¬At(Monkey, x))

Action(ACTION: ClimbUp(b), PRECOND: At(Monkey, x) ∧ At(b, x) ∧ Climbable(b),
EFFECT: On(Monkey, b) ∧ ¬Height(Monkey, High))

Action(ACTION: Grasp(b), PRECOND: Height(Monkey, h) ∧ Height(b, h) ∧ At(Monkey, x) ∧ At(b, x),
EFFECT: Have(Monkey, b))

Action(ACTION: ClimbDown(b), PRECOND: On(Monkey, b) ∧ Height(Monkey, High),
EFFECT: ¬On(Monkey, b) ∧ ¬Height(Monkey, High) ∧ Height(Monkey, Low)

Action(ACTION: UnGrasp(b), PRECOND: Have(Monkey, b),
EFFECT: ¬Have(Monkey, b))



Exercise 10.1

page
05

c. Suppose the monkey wants to fool the scientists, who are off to tea, by grabbing the 
bananas, but leaving the box in its original place. Write this as a general goal (i.e., not 
assuming that the box is necessarily at C) in the language of situation calculus. Can 
this goal be solved by a classical planning system?

Have(Monkey, Bananas, s) ∧ (∃x At(Box, x, s0) ∧ At(Box, x, s))

In STRIPS, we can only talk about the goal state; there is no way of representing the fact
that there must be some relation (such as equality of location of an object) between two
states within the plan. So there is no way to represent this goal.



Exercise 10.2

page
06

 The figure shows a version of Shakey’s world consisting of four rooms lined up along a 
corridor, where each room has a door and a light switch. The actions in Shakey’s world 
include moving from place to place, pushing movable objects (such as boxes), climbing 
onto and down from rigid objects (such as boxes), and turning light switches on and off. 
The robot itself could not climb on a box or toggle a switch, but the planner was capable of 
finding and printing out plans that were beyond the robot’s abilities. Shakey’s six actions 
are the following:

• Go(x, y, r), which requires that Shakey be At x and that x and y are locations In the same 
room r. By convention a door between two rooms is in both of them.

• Push a box b from location x to location y within the same room: Push(b, x, y, r). You will 
need the predicate Box and constants for the boxes.

• Climb onto a box from position x: ClimbUp(x, b); climb down from a box to position x: 
ClimbDown(b, x). We will need the predicate On and the constant Floor.

• Turn a light switch on or off: TurnOn(s, b); TurnOff(s, b). To turn a light on or off, Shakey
must be on top of a box at the light switch’s location.

Write PDDL sentences for Shakey’s six actions and the initial state from the Figure.
Construct a plan for Shakey to get Box2 into Room2 .



Exercise 10.2

page
07



Exercise 10.2

page
08

Initial state:

In(Switch1, Room1) ∧ In(Door1, Room1) ∧ In(Door1, Corridor)
In(Switch1, Room2) ∧ In(Door2, Room2) ∧ In(Door2, Corridor)
In(Switch1, Room3) ∧ In(Door3, Room3) ∧ In(Door3, Corridor)
In(Switch1, Room4) ∧ In(Door4, Room4) ∧ In(Door4, Corridor)
In(Shakey, Room3) ∧ At(Shakey, XS)
In(Box1, Room1) ∧ In(Box2, Room1) ∧ In(Box3, Room1) ∧ In(Box4, Room1)
Climbable(Box1) ∧ Climbable(Box2) ∧ Climbable(Box3) ∧ Climbable(Box4)
Pushable(Box1) ∧ Pushable(Box2) ∧ Pushable(Box3) ∧ Pushable(Box4)
At(Box1, X1) ∧ At(Box2, X2) ∧ At(Box3, X3) ∧ At(Box4, X4)
TurnedOn(Switch1) ∧ TurnedOn(Switch4)



Exercise 10.2

page
09

Actions:

Action(ACTION: Go(x, y), PRECOND: At(Shakey, x) ∧ In(x, r) ∧ In(y, r),
EFFECT: At(Shakey, y) ∧ ¬(At(Shakey, x)))

Action(ACTION: Push(b, x, y), PRECOND: At(Shakey, x) ∧ Pushable(b),
EFFECT: At(b, y) ∧ At(Shakey, y) ∧ ¬At(b, x) ∧ ¬At(Shakey, x))

Action(ACTION: ClimbUp(b), PRECOND: At(Shakey, x) ∧ At(b, x) ∧ Climbable(b),
EFFECT: On(Shakey, b) ∧ ¬On(Shakey, Floor))

Action(ACTION: ClimbDown(b), PRECOND: On(Shakey, b),
EFFECT: On(Shakey, Floor) ∧ ¬On(Shakey, b))

Action(ACTION: TurnOn(l), PRECOND: On(Shakey, b) ∧ At(Shakey, x) ∧ At(l, x),
EFFECT: TurnedOn(l))

Action(ACTION: TurnOff(l), PRECOND: On(Shakey, b) ∧ At(Shakey, x) ∧ At(l, x),
EFFECT: ¬TurnedOn(l))



Exercise 10.2

page
010

Plan:

Go(XS, Door3)
Go(Door3, Door1)
Go(Door1, X2)
Push(Box2, X2, Door1)
Push(Box2, Door1, Door2)
Push(Box2, Door2, Switch2)



Exercise 10.3

page
011

 A finite Turing machine has a finite one-dimensional tape of cells, each cell containing one 
of a finite number of symbols. One cell has a read and write head above it. There is a finite 
set of states the machine can be in, one of which is the accept state. At each time step, 
depending on the symbol on the cell under the head and the machine’s current state, there 
are a set of actions we can choose from. Each action involves writing a symbol to the cell 
under the head, transitioning the machine to a state, and optionally moving the head left or 
right. The mapping that determines which actions are allowed is the Turing machine’s 
program. Your goal is to control the machine into the accept state. Represent the Turing 
machine acceptance problem as a planning problem. If you can do this, it demonstrates 
that determining whether a planning problem has a solution is at least as hard as the Turing 
acceptance problem, which is PSPACE-hard.



Exercise 10.3

page
012

One possible representation.

 HeadAt(c): tape head at cell location c, true for exactly one cell.

 State(s): machine state is s, true for exactly one cell.

 ValueOf(c, v): cell c’s value is v.

 LeftOf(c1, c2): cell c1 is one step left from cell c2 .

 TransitionLeft(s1, v1, s2, v2): the machine in state s1 upon reading a cell with value v1 may 
write value v2 to the cell, change state to s2 , and transition to the left.

 TransitionRight(s1, v1, s2, v2): the machine in state s1 upon reading a cell with value v1 may 
write value v2 to the cell, change state to s2, and transition to the right.

The predicates HeadAt, State, and ValueOf are fluents, the rest are constant descriptions of the 
machine and its tape.



Exercise 10.3

page
013

Actions:

Action(RunLeft(s1, c1, v1, s2, c2, v2),
PRECOND: State(s1) ∧ HeadAt(c1) ∧ ValueOf(c1, v1) ∧ TransitionLeft(s1, v1, s2, v2) ∧

LeftOf(c2, c1)
EFFECT: ¬State(s1) ∧ State(s2) ∧ ¬HeadAt(c1) ∧ HeadAt(c2) ∧ ¬ValueOf(c1, v1) ∧

ValueOf(c1, v2))

Action(RunRight(s1, c1, v1, s2, c2, v2),
PRECOND: State(s1) ∧ HeadAt(c1) ∧ ValueOf(c1, v1) ∧ TransitionRight(s1, v1, s2, v2) ∧

LeftOf(c1, c2)
EFFECT: ¬State(s1) ∧ State(s2) ∧ ¬HeadAt(c1) ∧ HeadAt(c2) ∧ ¬ValueOf(c1, v1) ∧

ValueOf(c1, v2))

The goal will typically be to reach a fixed accept state. A simple example problem is:

Init(HeadAt(C0) ∧ State(S1) ∧ ValueOf(C0, 1) ∧ ValueOf(C1, 1) ∧ ValueOf(C2, 1) ∧ ValueOf(C3, 0) 
∧ LeftOf(C0, C1) ∧ LeftOf(C1, C2) ∧ LeftOf(C2, C3) ∧ TransitionLeft(S1, 1, S1, 0) ∧
TransitionLeft(S1, 0, Saccept, 0) 

Goal(State(Saccept))



Recap planning graphs

page
014

 Start with initial conditions



Recap planning graphs

page
015

 Start with initial conditions
 Add actions with satisfied preconditions



Recap planning graphs

page
016

 Start with initial conditions
 Add actions with satisfied preconditions
 Add all effects of actions at previous levels



Recap planning graphs

page
017

 Start with initial conditions
 Add actions with satisfied preconditions
 Add all effects of actions at previous levels
 Add maintenance actions: these maintenance actions represent the possibility of having 

some proposition be true at step n because it was true at step n-2, and we didn’t do 
anything to make it false; that is, that we maintained its truth value.



Recap planning graphs

page
018

 Start with initial conditions
 Add actions with satisfied preconditions
 Add all effects of actions at previous levels
 Add maintenance actions: these maintenance actions represent the possibility of having 

some proposition be true at step n because it was true at step n-2, and we didn’t do 
anything to make it false; that is, that we maintained its truth value.



Recap planning graphs

page
019

 Start with initial conditions
 Add actions with satisfied preconditions
 Add all effects of actions at previous levels
 Add maintenance actions: these maintenance actions represent the possibility of having 

some proposition be true at step n because it was true at step n-2, and we didn’t do 
anything to make it false; that is, that we maintained its truth value.



Recap planning graphs

page
020

 Start with initial conditions
 Add actions with satisfied preconditions
 Add all effects of actions at previous levels
 Add maintenance actions: these maintenance actions represent the possibility of having 

some proposition be true at step n because it was true at step n-2, and we didn’t do 
anything to make it false; that is, that we maintained its truth value.



Recap planning graphs

page
021

• A mutex relation holds between two actions when:
 Inconsistent effects: one action negates the effect of another.
 Interference: one of the effects of one action is the negation of a 

precondition of the other.
 Competing needs: one of the preconditions of one action is mutually 

exclusive with the precondition of the other.

• A mutex relation holds between two literals when:
 one is the negation of the other, or
 each possible action pair that could achieve the literals is mutex

(inconsistent support).



Exercise 10.4

page
022

Cake Example

 Init(Have(Cake))

 Goal(Have(Cake) ∧ Eaten(Cake))

 Action(Eat(Cake),
• PRECOND: Have(Cake)
• EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

 Action(Bake(Cake),
• PRECOND: ¬Have(Cake)
• EFFECT: Have(Cake))



Exercise 10.4

page
023

Create level 0 from initial problem state.



Exercise 10.4

page
024

Add all applicable actions.
Add all effects to the next state.



Exercise 10.4

page
025

Add persistence actions to map all literals in state Si to state Si+1



Exercise 10.4

page
026

Identify mutual exclusions between actions and literals based on potential conflicts.



Exercise 10.4

page
027

Level S1 contains all literals that could result from picking any subset of actions in A0

• Conflicts between literals that can not occur together (as a consequence of the 
selection action) are represented by mutex links.

• S1 defines multiple states and the mutex links are the constraints that define this set 
of states.



Exercise 10.4

page
028

Repeat process until graph levels off:
• two consecutive levels are identical, or
• contains the same amount of literals.



Exercise 10.5

page
029

Birthday Dinner Example

 Goal: ¬Garb ∧ Dinner ∧ Present

 Init: Garb ∧ Clean ∧ Quiet

 Actions:

• Cook   - Pre: Clean   - Effect: Dinner

• Wrap   - Pre: Quiet   - Effect: Present

• Carry   - Pre: Garb   - Effect: ¬Garb ∧ ¬Clean

• Dolly   - Pre: Garb   - Effect: ¬Garb ∧ ¬Quiet



Exercise 10.5

page
030

We start by putting in the initial conditions.



Exercise 10.5

page
031

Given those initial conditions, all four of our actions could possibly be executed on the first step, so 
we add them to the graph.



Exercise 10.5

page
032

Now we add all of our old propositions to the next layer, as well as all the propositions that could be 
effects of the actions. And we draw in the maintenance actions, as well.



Exercise 10.5

page
033

Now it’s time to do the mutexes. None of the initial propositions are mutex (or we’re starting in an 
impossible state). So, let’s look at the actions in layer 1.



Exercise 10.5

page
034

The first reason that actions can be mutex is due to inconsistent effects. So, carry and maintaining 
clean have inconsistent effects (because carry makes clean false).



Exercise 10.5

page
035

And maintaining garb has inconsistent effects with both carry and dolly (which make garb false).



Exercise 10.5

page
036

And maintaining quiet has inconsistent effects with dolly (which makes quiet false).



Exercise 10.5

page
037

Another kind of mutex is due to interference: one action negates the precondition of another. Here 
we have interference between cook and carry (carry makes clean false, which is required for cook).



Exercise 10.5

page
038

And we also have interference between wrap and dolly (dolly makes quiet false, which is required for 
wrap.)



Exercise 10.5

page
039

Finally, we have interference between carry and dolly, because they each require that garbage be 
present, and they each remove it. There are two other situations in which we could have action 
mutexes, but they don’t apply here.



Exercise 10.5

page
040

Now let’s do the mutexes on the propositions in layer 2.



Exercise 10.5

page
041

First of all, every proposition is mutex with its negation.



Exercise 10.5

page
042

Then, the other reason we might have mutexes is because of inconsistent support (all ways of 
achieving the propositions are pairwise mutex). So, here we have that garbage is mutex with not 
clean and with not quiet (the only way to make garbage true is to maintain it, which is mutex with 
carry and with dolly).



Exercise 10.5

page
043

Dinner is mutex with not clean because cook and carry, the only way of achieving these 
propositions, are mutex at the previous level.



Exercise 10.5

page
044

And present is mutex with not quiet because wrap and dolly are mutex at the previous level.



Exercise 10.5

page
045

Finally not clean is mutex with not quiet because carry and dolly are mutex at the previous level. 
That’s all the mutexes.



Exercise 10.5

page
046

So first of all, let's try to ask the question, could the goal conceivably be true? 
Our goal is not garbage and dinner and present. 
Layer 2 contains not garbage and dinner and present. So it looks like these could possibly be true. 
They're not obviously inconsistent.



Exercise 10.5

page
047

So, we’ll start looking for a plan by finding a way to make not garbage true.



Exercise 10.5

page
048

We’ll try using the carry action.



Exercise 10.5

page
049

Now, we’ll try to make dinner true the only way we can, with the cook action.



Exercise 10.5

page
050

But cook and carry are mutex, so this won’t work.



Exercise 10.5

page
051

Because there aren’t any other ways to make dinner, we fail, and have to try a different way of 
making not garbage true. This time, we’ll try dolly.



Exercise 10.5

page
052

Now, we can cook dinner, and we don’t have any mutex problems with dolly.



Exercise 10.5

page
053

We have to make present true as well. The only way of doing that is with wrap, but wrap is mutex
with dolly. So, we fail completely.



Exercise 10.5

page
054

There’s no way to achieve all of these goals in parallel. So we have to consider a depth two plan. 
We start by adding another layer to the plan graph.



Exercise 10.5

page
055

We have the same set of mutexes on actions that we had before.



Exercise 10.5

page
056

There is also a large set of additional mutexes between maintenance actions for not garbage, not 
clean, and not quiet. I’m going to leave them out of this graph, in the interests of making it readable 
(and they’re not going to affect the planning process in this example).



Exercise 10.5

page
057

So let’s look at the proposition mutexes in layer 4. We still have that every proposition is mutex with 
its negation.



Exercise 10.5

page
058

And we get some of the same mutexes that we had in the previous proposition layer.



Exercise 10.5

page
059

In layer 2, we had a mutex between dinner and not clean. But we don’t have it in layer 4, because it’s 
possible to make dinner true by maintaining it, and making not clean true by carry. And those two 
actions are consistent with one another at level 3.



Exercise 10.5

page
060

Similarly, in layer 2 we had a mutex between present and not quiet. But we don’t have it here 
because we can make present true by maintaining it and make not quiet true by dolly.



Exercise 10.5

page
061

It’s important to see that, by giving ourselves an added time step, there are fewer mutexes, and so 
more things we can accomplish.



Exercise 10.5

page
062

Now it’s time to try to find a plan again. All of our goal conditions are present in the last layer, so let’s 
start searching.



Exercise 10.5

page
063

Starting with not garbage, let’s try to satisfy it with carry.



Exercise 10.5

page
064

Now we need to satisfy dinner. Since we already know that cook won’t be compatible with carry at 
this level, let’s try maintaining dinner from the previous time step. (Of course, it’s hard to make a 
computer as clever as we are, but these are the kinds of tricks that people do when they’re making a 
planner really work efficiently).



Exercise 10.5

page
065

Last, we need to satisfy present. Let’s try doing it with wrap.



Exercise 10.5

page
066

We found a way to satisfy all of our conditions at level 4. So now we have to take all the 
preconditions of the actions we picked and see if we can satisfy them at level 2. Now our subgoals
are garbage and dinner and quiet.



Exercise 10.5

page
067

Let’s start by satisfying garbage by maintaining it. (We don’t have any way to make garbage. Though 
usually when I cook, it makes garbage).



Exercise 10.5

page
068

We can also easily satisfy quiet by maintaining it.



Exercise 10.5

page
069

And we can satisfy dinner with the cook action.



Exercise 10.5

page
070

Now we have to be sure that we can satisfy all of these preconditions at level 0. Our subgoals now 
are garbage, clean, and quiet. They’re all true at level 0, so we’re done! There were actually a lot of 
plans that would have worked, but here’s one of them. If we’re going to do actions in order, this plan 
will allow us to do cook then wrap then carry, or cook then carry, then wrap. The crucial thing is that 
it forces us to do cook before carry, which we couldn’t enforce in a depth 1 plan.


