Fundamentals of Artificial Intelligence Laboratory

Dr. Mauro Dragoni

Department of Information Engineering and Computer Science Academic Year 2020/2021

Algorithms source code

- https://github.com/aimacode/aima-java
- Simplified and self-contained version of minimax on the laboratory website.

4-Queen problem

page 04

4-Queen problem

page 05

4-Queen problem

page 07

4-Queen problem

page 012

- Scheduling activities
 - Variables: A, B, C, D, E (starting time of activity)
 - Domains: D_i = {1, 2, 3, 4}, for i = A, B, ..., E
 - Constraints:

$$(B \neq 3)$$
 $(C \neq 2)$
 $(A \neq B)$
 $(B \neq C)$
 $(C < D)$
 $(C < D)$
 $(E < D)$
 $(E < B)$

$$(E < C)$$

$$(E < D)$$

$$(B \neq D)$$

Draw the constraint network and find a solution.

Arc-consistency:

Given binary-constraint $C_{X,Y}$: D_X , D_Y are arc consistent (or 2-consistent) if $\forall x \in D_x \exists y \in D_y \text{ s.t. } \langle x, y \rangle \in C_{x, y}$

• E.g.: $D_A = \{1, 2, 3, 4\}, D_B = \{1, 2, 3, 4\}, and C_{A,B} = B < A$ is **NOT** arc consistent as A = 1 is not consistent with $C_{A,B}$

 \Rightarrow use D'_A = { -, 2, 3, 4} and D'_B = {1, 2, 3, -}

Consider the following binary constraint network:

- There are 4 variables: X1, X2, X3, X4
- Domains: D1={1,2,3,4}, D2={3,4,5,8,9}, D3={2,3,5,6,7,9}, D4={3,5,7,8,9}
- The constraints are
 - \circ X1 \geq X2
 - X2>X3 or X3-X2=2
 - X3≠X4.
- Tasks:
 - Is the network arc-consistent? If not, compute the arc-consistent network. **a**. (show the whole process of enforcing arc-consistency and not just the final network)
 - **b.** Is the network consistent? If yes, give a solution.

Task (a)

No, it is not arc-consistent. Enforce arc-consistency between X_1 and X_2 : $D_1 = \{3, 4\}$ $D_2 = \{3, 4\}$ X_2 and X_3 : $D_2 = \{3, 4\}$ $D_3 = \{2, 3, 5, 6\}$ X_3 and X_4 : $D_3 = \{2, 3, 5, 6\}$ $D_4 = \{3, 5, 7, 8, 9\}$ So the arc-consistent domains are $D_1 = \{3, 4\}$ $D_2 = \{3, 4\}$ $D_3 = \{2, 3, 5, 6\}$ $D_4 = \{3, 5, 7, 8, 9\}$

Task (b)

$$X_1 = 4$$
, $X_2 = 4$, $X_3 = 3$, $X_4 = 9$

Download "Problem 6.4 Text" from the laboratory website.

Question 1

5 variables: AR-1, AR-2, MLR, CR, IWR

4 constraints:

1. IAR says \leq 1 of 15-381, 15-681, and 19-601 can be assigned to the 5 variables. 2. BAR says \leq 1 of 15-211 and 70-122 can be assigned to the 5 variables 3. OR says \leq 1 of 21-484 and 70-311 can be assigned to the 5 variables 4. No double counting says if a variable is assigned to one variable it can't be

assigned to another variable

Initial domains:

```
AR-1: 15-211, 15-212, 15-381, 15-681, 21-484
```

```
AR-2: 15-211, 15-212, 15-381, 15-681, 21-484
```

- MLR: 15-381, 15-681, 80-310
- CR: 21-484, 70-122, 70-311

```
IWR:
      15-381, 19-601
```


Question 2

Exercise 6.5 - Homework

Consider the 8 squares positioned as follows:

The task is to label the boxes above with the numbers 1-8 such that the labels of any pair of adjacent squares (i.e. horizontal, vertical or diagonal) differ by at least 2 (i.e. 2 or more).

- a. Write all constraints and draw the constraint graph.
- Is the network arc-consistent? If not, compute the arc-consistent network. (show the whole process of enforcing arc-consistency and not just the final arc-consistent network)
- c. Is the network consistent? If yes, give a solution.