Fundamentals of Artificial Intelligence Laboratory

Dr. Mauro Dragoni

Algorithms source code

- https://github.com/aimacode/aima-java
- Simplified and self-contained version of minimax on the laboratory website.

Exercise 6.1

- 4-Queen problem

Exercise 6.1

- 4-Queen problem

Exercise 6.1

- 4-Queen problem

Exercise 6.1

- 4-Queen problem

$\left.\right|^{80900}$

Exercise 6.1

- 4-Queen problem

Exercise 6.1

- 4-Queen problem

Exercise 6.2

- Scheduling activities
- Variables: A, B, C, D, E (starting time of activity)
- Domains: $D_{i}=\{1,2,3,4\}$, for $\mathbf{i}=\mathbf{A}, \mathbf{B}, \ldots, E$
- Constraints:
- $(B \neq 3)$
- $(C \neq 2)$
- $(A \neq B)$
- $(B \neq C)$
- $(C<D)$
- $(A=D)$
- $(E<A)$
- $(E<B)$
- $(E<C)$
- $(E<D)$
- $(B \neq D)$
- Draw the constraint network and find a solution.

Exercise 6.2

- Arc-consistency:

Given binary-constraint $\mathrm{C}_{X, Y}: \mathrm{D}_{X}, \mathrm{D}_{\mathrm{Y}}$ are arc consistent (or 2-consistent) if $\forall x \in D_{X} \quad \exists y \in D_{Y}$ s.t. $\langle x, y\rangle \in C_{X, Y}$

- E.g.: $D_{A}=\{1,2,3,4\}, D_{B}=\{1,2,3,4\}$, and $C_{A, B}=B<A$ is NOT arc consistent as $A=1$ is not consistent with $C_{A, B}$
\Rightarrow use $D_{A}^{\prime}=\{-, 2,3,4\}$ and $D_{B}^{\prime}=\{1,2,3,-\}$

Exercise 6.2 - Solution

- Constraints network

Exercise 6.2-Solution

- Constraints network

Exercise 6.2-Solution

- Constraints network

Exercise 6.2-Solution

- Constraints network

Exercise 6.3

- Consider the following binary constraint network:
- There are 4 variables: $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4$
- Domains: D1=\{1,2,3,4\}, D2=\{3,4,5,8,9\}, D3=\{2,3,5,6,7,9\}, D4=\{3,5,7,8,9\}
- The constraints are
- $\mathrm{X} 1 \geq \mathrm{X} 2$
- $\mathrm{X} 2>\mathrm{X} 3$ or $\mathrm{X} 3-\mathrm{X} 2=2$
- $\mathrm{X} 3 \neq \mathrm{X} 4$.
- Tasks:
a. Is the network arc-consistent? If not, compute the arc-consistent network. (show the whole process of enforcing arc-consistency and not just the final network)
b. Is the network consistent? If yes, give a solution.

Exercise 6.3-Solution

- Task (a)

No, it is not arc-consistent.
Enforce arc-consistency between X_{1} and $X_{2}: D_{1}=\{3,4\} \quad D_{2}=\{3,4\}$
X_{2} and $X_{3}: D_{2}=\{3,4\} \quad D_{3}=\{2,3,5,6\}$
X_{3} and $X_{4}: D_{3}=\{2,3,5,6\} \quad D_{4}=\{3,5,7,8,9\}$
So the arc-consistent domains are
$D_{1}=\{3,4\} \quad D_{2}=\{3,4\} \quad D_{3}=\{2,3,5,6\} \quad D_{4}=\{3,5,7,8,9\}$

- Task (b)

$$
X_{1}=4, X_{2}=4, X_{3}=3, X_{4}=9
$$

Exercise 6.4

- Download "Problem 6.4 Text" from the laboratory website.

021

Exercise 6.4-Solution

- Question 1

5 variables: AR-1, AR-2, MLR, CR, IWR

4 constraints:

1. IAR says ≤ 1 of $15-381,15-681$, and $19-601$ can be assigned to the 5 variables.
2. BAR says ≤ 1 of $15-211$ and $70-122$ can be assigned to the 5 variables
3. OR says ≤ 1 of $21-484$ and $70-311$ can be assigned to the 5 variables
4. No double counting says if a variable is assigned to one variable it can't be assigned to another variable

Initial domains:
AR-1: 15-211, 15-212, 15-381, 15-681, 21-484
AR-2: 15-211, 15-212, 15-381, 15-681, 21-484
MLR: 15-381, 15-681, 80-310
CR: 21-484, 70-122, 70-311
IWR: 15-381, 19-601

Exercise 6.4 - Solution

- Question 2

Exercise 6.4-Solution

- Question 2

Exercise 6.4 - Solution

- Question 2

Exercise 6.5 - Homework

- Consider the 8 squares positioned as follows:

The task is to label the boxes above with the numbers 1-8 such that the labels of any pair of adjacent squares (i.e. horizontal, vertical or diagonal) differ by at least 2
(i.e. 2 or more).
a. Write all constraints and draw the constraint graph.
b. Is the network arc-consistent? If not, compute the arc-consistent network. (show the whole process of enforcing arc-consistency and not just the final arc-consistent network)
c. Is the network consistent? If yes, give a solution.

