
Fundamentals of Artificial Intelligence
Laboratory

Dr. Mauro Dragoni

Department of Information Engineering and Computer Science
Academic Year 2020/2021

Exercise 3.10

page
02

 Apply both the iterative deepening depth-first search and the bidirectional
search for reaching the goal (N-17) from the start (N-0)

Exercise 3.10 - Solution

page
03

 In order to avoid misunderstanding and to do not create confusion, we apply the
algorithm as it is explained in the book without considering possible variants.

 Iterative deepening
d0 = {0}
d1 = {0,1,2,4,7,14}
d2 = {0,1,2,4,7,14,5,8,11}
d3 = {0,1,2,4,7,14,5,8,11,6,9,15}
d4 = {0,1,2,4,7,14,5,8,11,6,9,15,13,17}

Exercise 3.10 - Solution

page
04

 In order to avoid misunderstanding and to do not create confusion, we apply the
algorithm as it is explained in the book without considering possible variants.

 Bidirectional search (by applying breadth-first)
Step0 = {0} {17}
Step1 = {0,1,2,4,7,14} {17,3,10,13,15,16}
Step2 = {0,1,2,4,7,14,5,8,11} {17, 3,10,13,15,16,9,12,11}

 Bidirectional search (by applying breadth-first)
Step0 = {0} {17}
Step1 = {0,1} {17,3}
Step2 = {0,1,5} {17,3,10}
Step3 = {0,1,5,6} {17,3,10,13}
Step4 = {0,1,5,6,9} {17,3,10,13,9}

Exercise 3.11

page
05

 Apply the greedy best-first search strategy for finding the route from Lugoj to
Bucharest.

Exercise 3.11 - Solution

page
06

 Apply the greedy best-first search strategy for finding the route from Lugoj to
Bucharest.

 Initial state: Lugoj(244)

Step1, expanding Lugoj: Mehadia(241), Timisoara(329)

Step2, expanding Mehadia: Lugoj(244), Drobeta(242)

Step3, expanding Drobeta: Mehadia(241), Craiova(160)

Step4, expanding Craiova: Drobeta(242), Rimnicu Vilcea(193), Pitesti(100)

Step4, expanding Pitesti: Craiova(160), Rimnicu Vilcea(193), Bucharest(0)

Exercise 3.12

page
07

 A* algorithm

WHILE (QUEUE not empty && first path not reach goal) DO

Remove first path from QUEUE

Create paths to all children

Reject paths with loops

Add paths and sort QUEUE (by f = cost + heuristic)

IF QUEUE contains paths: P, Q

AND P ends in node Ni && Q contains node Ni

AND cost(P) ≥ cost(Q)

THEN remove P

IF goal reached THEN success ELSE failure

Exercise 3.12

page
08

f = accumulated path cost + heuristic

QUEUE = path containing root

QUEUE = <S>

Exercise 3.12

page
09

f = accumulated path cost + heuristic

Remove first path, Create paths to all children,
Reject loops and Add paths. SORT QUEUE by f

QUEUE = <SB,SA>

Exercise 3.12

page
010

f = accumulated path cost + heuristic

Remove first path, Create paths to all children,
Reject loops and Add paths. SORT QUEUE by f

QUEUE = <SA,SBC,SBG,SBA>

Exercise 3.12

page
011

f = accumulated path cost + heuristic

IF QUEUE contains paths: P, Q

AND P ends in node Ni && Q contains node Ni

AND cost(P) ≥ cost(Q)

THEN remove P

QUEUE = <SA,SBC,SBG,SBA>

Exercise 3.12

page
012

f = accumulated path cost + heuristic

Remove first path, Create paths to all children,
Reject loops and Add paths. SORT QUEUE by f

QUEUE = <SBC,SBG,SAB>

Exercise 3.12

page
013

f = accumulated path cost + heuristic

IF QUEUE contains paths: P, Q

AND P ends in node Ni && Q contains node Ni

AND cost(P) ≥ cost(Q)

THEN remove P

QUEUE = < SBC,SBG,SAB>

Exercise 3.12

page
014

f = accumulated path cost + heuristic

Remove first path, Create paths to all children,
Reject loops and Add paths. SORT QUEUE by f

QUEUE = <SBCG,SBG>

Exercise 3.12

page
015

f = accumulated path cost + heuristic

IF QUEUE contains paths: P, Q

AND P ends in node Ni && Q contains node Ni

AND cost(P) ≥ cost(Q)

THEN remove P

QUEUE = < SBCG,SBG>

Exercise 3.12

page
016

f = accumulated path cost + heuristic

SUCCESS

QUEUE = < SBCG>

Exercise 3.13

page
017

 Perform the A* Algorithm on the following figure. Explicitly write down the queue
at each step.

Exercise 3.13

page
018

 Step 1

Exercise 3.13

page
019

 Step 2

Exercise 3.13

page
020

 Step 3

Exercise 3.13

page
021

 Step 4

Exercise 3.13

page
022

 Step 5

Exercise 3.13

page
023

 Step 6

Exercise 3.13

page
024

 Step 7

Exercise 3.13

page
025

 Step 8

Exercise 3.13

page
026

 Step 9

Exercise 3.13

page
027

 Step 10

Exercise 3.13

page
028

 Step 11

Exercise 3.14

page
029

 Design a genetic algorithm for solving a Sudoku puzzle.

• Provide the data structure needed and define the parameters.

• Define the fitness function.

• Define the selection operator.

• Define the crossover operator.

• Define the mutation operator.

Exercise 3.14

page
030

 Design a genetic algorithm for solving a Sudoku puzzle.

