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 Apply both the iterative deepening depth-first search and the bidirectional 
search for reaching the goal (N-17) from the start (N-0)
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 In order to avoid misunderstanding and to do not create confusion, we apply the 
algorithm as it is explained in the book without considering possible variants.

 Iterative deepening
d0 = {0}
d1 = {0,1,2,4,7,14}
d2 = {0,1,2,4,7,14,5,8,11}
d3 = {0,1,2,4,7,14,5,8,11,6,9,15}
d4 = {0,1,2,4,7,14,5,8,11,6,9,15,13,17}
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 In order to avoid misunderstanding and to do not create confusion, we apply the 
algorithm as it is explained in the book without considering possible variants.

 Bidirectional search (by applying breadth-first)
Step0 = {0} {17}
Step1 = {0,1,2,4,7,14} {17,3,10,13,15,16}
Step2 = {0,1,2,4,7,14,5,8,11} {17, 3,10,13,15,16,9,12,11}

 Bidirectional search (by applying breadth-first)
Step0 = {0} {17}
Step1 = {0,1} {17,3}
Step2 = {0,1,5} {17,3,10}
Step3 = {0,1,5,6} {17,3,10,13}
Step4 = {0,1,5,6,9} {17,3,10,13,9}
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 Apply the greedy best-first search strategy for finding the route from Lugoj to 
Bucharest.
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 Apply the greedy best-first search strategy for finding the route from Lugoj to 
Bucharest.

 Initial state: Lugoj(244)

Step1, expanding Lugoj:  Mehadia(241), Timisoara(329)

Step2, expanding Mehadia: Lugoj(244), Drobeta(242)

Step3, expanding Drobeta: Mehadia(241), Craiova(160)

Step4, expanding Craiova: Drobeta(242), Rimnicu Vilcea(193), Pitesti(100)

Step4, expanding Pitesti: Craiova(160), Rimnicu Vilcea(193), Bucharest(0)
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 A* algorithm

-------------------
WHILE (QUEUE not empty && first path not reach goal) DO

Remove first path from QUEUE

Create paths to all children

Reject paths with loops

Add paths and sort QUEUE (by f = cost + heuristic)

IF QUEUE contains paths: P, Q

AND P ends in node Ni && Q contains node Ni

AND cost(P) ≥ cost(Q)

THEN remove P

IF goal reached THEN success ELSE failure

-------------------
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f = accumulated path cost + heuristic

QUEUE = path containing root

QUEUE = <S>
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f = accumulated path cost + heuristic

Remove first path, Create paths to all children, 
Reject loops and Add paths. SORT QUEUE by f

QUEUE = <SB,SA>
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f = accumulated path cost + heuristic

Remove first path, Create paths to all children, 
Reject loops and Add paths. SORT QUEUE by f

QUEUE = <SA,SBC,SBG,SBA>
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f = accumulated path cost + heuristic

IF QUEUE contains paths: P, Q

AND P ends in node Ni && Q contains node Ni

AND cost(P) ≥ cost(Q)

THEN remove P

QUEUE = <SA,SBC,SBG,SBA>
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f = accumulated path cost + heuristic

Remove first path, Create paths to all children, 
Reject loops and Add paths. SORT QUEUE by f

QUEUE = <SBC,SBG,SAB>
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f = accumulated path cost + heuristic

IF QUEUE contains paths: P, Q

AND P ends in node Ni && Q contains node Ni

AND cost(P) ≥ cost(Q)

THEN remove P

QUEUE = < SBC,SBG,SAB>
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f = accumulated path cost + heuristic

Remove first path, Create paths to all children, 
Reject loops and Add paths. SORT QUEUE by f

QUEUE = <SBCG,SBG>
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f = accumulated path cost + heuristic

IF QUEUE contains paths: P, Q

AND P ends in node Ni && Q contains node Ni

AND cost(P) ≥ cost(Q)

THEN remove P

QUEUE = < SBCG,SBG>
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f = accumulated path cost + heuristic

SUCCESS

QUEUE = < SBCG>
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 Perform the A* Algorithm on the following figure. Explicitly write down the queue 
at each step.
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 Step 1
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 Step 2
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 Step 3
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 Step 4
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 Step 5
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 Step 6
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 Step 7
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 Step 8
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 Step 9



Exercise 3.13

page
027

 Step 10
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 Step 11
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 Design a genetic algorithm for solving a Sudoku puzzle.

• Provide the data structure needed and define the parameters.

• Define the fitness function.

• Define the selection operator.

• Define the crossover operator.

• Define the mutation operator.
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 Design a genetic algorithm for solving a Sudoku puzzle.


