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Bayesian Networks

Bayesian Networks (aka Belief Networks):
allow for compact specification of full joint distributions
represent explicit conditional dependencies among variables:
an arc from X to Y means that X has a direct influence on Y

Syntax: a directed acyclic graph (DAG):
each node represents a random variable (discrete or continuous)
directed arcs connect pairs of nodes: X → Y (X is a parent of Y)
a conditional distribution P(Xi |Parents(Xi)) for each node Xi

Conditional distribution represented as a conditional probability
table (CPT)

distribution over Xi for each combination of parent values
Topology encodes conditional independence assertions:

Toothache and Catch conditionally
independent given Cavity
Tootchache, Catch depend
on Cavity
Weather independent from others

No arc⇐⇒ independence ( c© S. Russell & P. Norwig, AIMA)
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Example (from Judea Pearl, UCLA)

“The burglary alarm goes off very likely on burglary and occasionally
on earthquakes. John and Mary are neighbors who agreed to call
when the alarm goes off. Their reliability is different ...”

Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

A burglar can set the alarm off
An earthquake can set the alarm off
The alarm can cause Mary to call
The alarm can cause John to call

CPTs:
alarm setoff if bunglar
in 94% of cases
alarm setoff if hearthq.
in 29% of cases
false alarm setoff
in 0.1% of cases

( c© S. Russell & P. Norwig, AIMA)
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Compactness of Bayesian Networks

In most domains, it is reasonable to suppose that each random
variable is directly influenced by at most k others, for some k.
A CPT for Boolean Xi with k Boolean parents has

2k rows for the combinations of parent values
each row requires one number p for P(Xi = true)
(P(Xi = false) = 1− P(Xi = true))

=⇒ If each variable has no more than k parents, the complete
network requires O(n · 2k ) numbers

a full joint distribution requires 2n − 1 numbers
linear vs. exponential!

Ex: for burglary example:
1 + 1 + 4 + 2 + 2 = 10 numbers vs. 25 − 1 = 31
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Global Semantics of Bayesian Networks

Global semantics defines the full joint distribution as the product
of the local conditional distributions:
P(X1, ...,XN) =

∏
i=1 P(Xi |parents(Xi))

if Xi has no parent, then prior probability P(Xi)

Intuition: order X1, ...,Xn s.t. parents(Xi) ≺ Xi for each i :
P(X1, ...,Xn) =

∏n
i=1 P(Xi |X1, ...,Xi−1)) // chain rule

=
∏

i=1 P(XI |parents(Xi)) // conditional independence
=⇒ A Bayesian network is a distributed representation of the full joint

distribution
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Global Semantics: Example

P(X1, ...,XN) =
∏

i=1 P(Xi |parents(Xi))

Ex: “Prob. that both John and Mary call, the alarm sets off but no
burglary nor earthquake”
P(j ∧m ∧ a ∧ ¬b ∧ ¬e) =
P(j |m∧a∧¬b ∧ ¬e)P(m|a∧¬b ∧ ¬e)P(a|¬b∧ ¬e)P(¬b|¬e)P(¬e) =
P(j |a) P(m|a) P(a|¬b ∧ ¬e) P(¬b) P(¬e) =
0.9 · 0.7 · 0.001 · 0.999 · 0.998
≈ 0.00063

( c© S. Russell & P. Norwig, AIMA)
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Exercises

Compute:
The probability that John calls and Mary does not, the alarm is not
set off with a burglar entering during an earthquake
The probability that John calls and Mary does not, given a burglar
entering the house
The probability of an earthquake given the fact that John has
called
...
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Local Semantics

Local Semantics: each node is conditionally independent of its
nondescendants given its parents:
P(X |U1, ..,Um,Z1j , ...,Znj) = P(X |U1, ..,Um), for each X
Theorem: Local semantics holds iff global semantics holds:
P(X1, ...,XN) =

∏
i=1 P(Xi |parents(Xi))

( c© S. Russell & P. Norwig, AIMA)
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Local Semantics: Example

Ex: JohnCalls is independent of Burglary, Earthquake, and MaryCalls
given the value of Alarm

P(JohnCalls|Alarm,Burglary ,Earthquake,MaryCalls) =
P(JohnCalls|Alarm)

( c© S. Russell & P. Norwig, AIMA)
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Independence Property: Markov Blanket

In an B.N., each node is conditionally independent of all others given
its Markov blanket: parents + children + children’s parents:
P(X |U1, ..,Um,Y1, ..,Yn,Z1j , ...,Znj ,W1, ...,Wk ) =
P(X |U1, ..,Um,Y1, ..,Yn,Z1j , ...,Znj), for each X

( c© S. Russell & P. Norwig, AIMA) 12 / 35



Markov Blanket: Example

Ex: Burglary is independent of JohnCalls and MaryCalls, given Alarm
and Earthquake

P(Burglary |Alarm,Earthquake, JohnCalls,MaryCalls) =
P(Burglary |Alarm,Earthquake)

( c© S. Russell & P. Norwig, AIMA)
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Exercise

Verify numerically the two previous examples:
Local Semantics
Markov Blanket
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Constructing Bayesian Networks

Building the graph

Given a set of random variables
1. Choose an ordering {X1, ...,Xn}

in principle, any ordering will work (but some may cause blowups)
general rule: follow causality, X ≺ Y if X ∈ causes(Y )

2. For i=1 to n do
1. add Xi to the network
2. as Parents(Xi), choose a subset of {X1, ...,Xi−1} s.t.

P(Xi |Parents(Xi)) = P(Xi |X1, ...,Xi−1)

=⇒ Guarantees the global semantics by construction
P(X1, ...,XN) =

∏
i=1 P(Xi |parents(Xi))
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Constructing Bayesian Networks: Example

Suppose we choose the ordering {M, J,A,B,E} (non-causal ordering):

( c© S. Russell & P. Norwig, AIMA)
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Constructing Bayesian Networks: Example [cont.]

In non-causal directions
deciding conditional independence is hard
assessing conditional probabilities is hard
typically networks less compact

Ex: 1+2+4+2+4=13 numbers needed (rather than 10)
Can be much worse

ex: try {M, J,E ,B,A} (see AIMA)
Much better with causal orderings

ex: try either
{B,E ,A, J,M}
{E ,B,A, J,M}
{B,E ,A,M, J}
{E ,B,A,M, J}
i.e. {B,E} ≺ A ≺ {J,M}
(both B and E cause A,
A causes both M and J)

( c© S. Russell & P. Norwig, AIMA)
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Building Conditional Probability Tables, CPTs

Problem: CPT grow exponentially with number of parents
If the causes don’t interact: use a Noisy-OR distribution

let parents U1, ...,Uk include all causes (can add leak node)
add Independent failure probability qi for each cause Ui

=⇒ P(¬X |U1...Uj ,¬Uj+1...¬Uk ) =
∏j

i=1 qi
number of parameters linear in number of parents!

Ex: qCold = 0.6, qFlu = 0.2, qMalaria = 0.1:

( c© S. Russell & P. Norwig, AIMA)
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Exercises

1. Consider the probabilistic Wumpus World of previous chapter
(a) Describe it as a Bayesian network
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Exact inference in Bayesian Networks

Given:
X: the query variable (we assume one for simplicity)
E/e: the set of evidence variables {E1, ...,Em} and of evidence
values {e1, ...,em}
Y/y: the set of unknown variables (aka hidden variables)
{Y1, ...,Yl} and unknown values {y1, ..., yl}

=⇒ X = X ∪ E ∪ Y

A typical query asks for the posterior probability distribution:
P( X | E=e) (also written P( X | e))
Ex: P(Burglar |JohnCalls = true,MaryCalls = true)

query: Burglar
evidence variables: E = {JohnCalls,MaryCalls}
hidden variables: Y = {Earthquake,Alarm}
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Inference by Enumeration

We defined a procedure for the task as:
P(X |e) = αP(X ,e) = α

∑
y P(X ,e,y)

=⇒ P(X ,e,y) can be rewritten as product of prior and conditional
probabilities according to the Bayesian Network

then apply factorization and simplify algebraically when possible

Ex:
P(B|j ,m) =
α
∑

e
∑

a P(B,e,a, j ,m) =
α
∑

e
∑

a P(B)P(e)P(a|B,e)P(j |a)P(m|a) =
αP(B)

∑
e P(e)

∑
a P(a|B,e)P(j |a)P(m|a)

=⇒ P(b|j ,m) =
αP(b)

∑
e P(e)

∑
a P(a|b,e)P(j |a)P(m|a)

Recursive depth-first enumeration:
O(n) space, O(2n) time with n propositional variables
Enumeration is inefficient: repeated computation

( c© S. Russell & P. Norwig, AIMA)
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Enumeration Algorithm

( c© S. Russell & P. Norwig, AIMA)
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Inference by Enumeration: Example

P( b|j ,m) = αP( b)
∑

e P(e)
∑

a P(a| b,e)P(j |a)P(m|a) = α · 0.00059224
P(¬b|j ,m) = αP(¬b)

∑
e P(e)

∑
a P(a|¬b,e)P(j |a)P(m|a) = α · 0.0014919

=⇒ P(B|j ,m) = α · 〈0.00059224,0.0014919〉 = [normal .] ≈ 〈0.284,0.716〉

( c© S. Russell & P. Norwig, AIMA)

Repeated computation: P(j |a)P(m|a) & P(j |¬a)P(m|¬a) for each value of e
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Exercises

1. Consider the probabilistic Wumpus World of previous chapter
(a) Describe it as a Bayesian network
(b) Compute the query P(P1,3|b∗,p∗) via enumeration
(c) Compare the result with that of the example in Ch. 13
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Inference by Variable Elimination

Variable elimination:
carry out summations right-to-left (i.e., bottom-up in the tree)
store intermediate results (factors) to avoid recomputation

Ex: P(B|j ,m)

= α

B︷ ︸︸ ︷
P(B)

∑
e

E︷ ︸︸ ︷
P(e)

∑
a

A︷ ︸︸ ︷
P(a|B,e)

J︷ ︸︸ ︷
P(j |a)

M︷ ︸︸ ︷
P(m|a)

= αP(B)
∑

e P(e)
∑

a P(a|B,e)P(j |a)× fM(A)
= αP(B)

∑
e P(e)

∑
a P(a|B,e)× fJ(A)× fM(A)

= αP(B)
∑

e P(e)
∑

a fA(A,B,E)× fJ(A)× fM(A)
= αP(B)

∑
e P(e)× fAJM(B,E) (sum out A)

= αP(B)
∑

e fE(E)× fAJM(B,E) (sum out A)
= αP(B)× fEAJM(B) (sum out E)
= α× fB(B)× fEAJM(B)

“×” is the pointwise product (see later)

fM(A) def
=

[
P(m| a)
P(m|¬a)

]
, fJ(A)

def
=

[
P(j | a)
P(j |¬a)

]
, ...

fA...(.): summation over the values of A...
( c© S. Russell & P. Norwig, AIMA)
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Variable Elimination: Basic Operations

Factor summation: f3(X1, ...,Xj) = f1(X1, ...,Xj) + f2(X1, ...,Xj)

standard matrix summation: a11 a21 ...
... ... ...
an1 an1 ...

+
 b11 b21 ...
... ... ...
bn1 bn1 ...

=
 a11 + b11 a21 + b21 ...
... ... ...
an1 + bn1 an1 + bn1 ...


must have the same argument variables

Pointwise product: Multiply the array elements for the same
variable values
Ex:

fJ(A)× fM(A) =
[

P(j | a)
P(j |¬a)

]
×
[

P(m| a)
P(m|¬a)

]
=

[
P(j | a)P(m| a)
P(j |¬a)P(m|¬a)

]
General case:
f3(X1, ...,Xj ,Y1, ...,Yk ,Z1, ...,Zl) =
f1(X1, ...,Xj ,Y1, ...,Yk )× f2(Y1, ...,Yk ,Z1, ...,Zl)

union of arguments
values: f3(x,y, z) = f1(x,y) · f2(y, z)
matrix size: f1 : 2j+k , f1 : 2k+l , f3 : 2j+k+l
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Variable Elimination: Basic Operations

f3(A,B,C) = f1(A,B)× f2(B,C)

Summing out one variable:
f (B,C) =

∑
a f3(A,B,C) = f3(a,B,C) + f3(¬a,B,C) =[

0.06 0.24
0.42 0.28

]
+

[
0.18 0.72
0.06 0.04

]
=

[
0.24 0.96
0.48 0.32

]

( c© S. Russell & P. Norwig, AIMA)
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Variable Elimination Algorithm

( c© S. Russell & P. Norwig, AIMA)

Efficiency depends on variable ordering ORDER(...)
Efficiency improvements:

factor out of summations factors not depending on sum variable
remove irrelevant variables
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Factor Out Constant Factors

If f1, ..., fi do not depend on X,
then move them out of a

∑
x(...):∑

x f1 × · · · × fk =
f1 × · · · × fi

∑
x(fi+1 × · · · × fk ) =

f1 × · · · × fi × fX
Ex:

∑
a f1(A,B)× f2(B,C)

= f2(B,C)×
∑

a F1(A,B)

Ex: P(JohnCalls|Burglary = true):
P(J|b) = α

∑
e
∑

a
∑

m P(J,m,b,e,a) =
α
∑

e
∑

a
∑

m P(b)P(e)P(a|b,e)P(J|a)P(m|a) =
αP(b)

∑
e P(e)

∑
a P(a|b,e)P(J|a)

∑
m P(m|a)

( c© S. Russell & P. Norwig, AIMA)
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Remove Irrelevant Variables

Sometimes we fave summations like
∑

y P(y |...)∑
y P(y |...) = 1 =⇒ can be dropped

Ex: P(JohnCalls|Burglary = true):
P(J|b) = ... =

αP(b)
∑

e P(e)
∑

a P(a|b,e)P(J|a)
1︷ ︸︸ ︷∑

m P(m|a)
αP(b)

∑
e P(e)

∑
a P(a|b,e)P(J|a)

Theorem: For query X and evidence E,
Y is irrelevant unless Y ∈ Ancestors(X ∪ E)
Ex: X = JohnCalls, E = {Burglary}, and
Ancestors({X} ∪ E) = {Alarm,Earthquake}

=⇒ MaryCalls is irrelevant
Related to backward-chaining with Horn clauses

( c© S. Russell & P. Norwig, AIMA)
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Exercises

1. Try to compute queries (your choice) on the burglary problem
using variable elimination

2. Consider the probabilistic Wumpus World of previous chapter
(a) Describe it as a Bayesian network
(b) Compute the query P(P1,3|b∗,p∗) via variable elimination
(c) Compare the result with that of the example in Ch. 13
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Complexity of Exact Inference

We can reduce 3SAT to exact inference in Bayesian Networks
=⇒ NP-Hard
Ex:

( c© S. Russell & P. Norwig, AIMA)
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