
Fundamentals of Artificial Intelligence
Chapter 12: Knowledge Representation

Roberto Sebastiani

DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fai_2020/

Teaching assistant: Mauro Dragoni – dragoni@fbk.eu
http://www.maurodragoni.com/teaching/fai/

M.S. Course “Artificial Intelligence Systems”, academic year 2020-2021
Last update: Wednesday 9th December, 2020, 13:59

Copyright notice: Most examples and images displayed in the slides of this course are taken from
[Russell & Norwig, “Artificial Intelligence, a Modern Approach”, Pearson, 3rd ed.],

including explicitly figures from the above-mentioned book, and their copyright is detained by the authors.
A few other material (text, figures, examples) is authored by (in alphabetical order):

Pieter Abbeel, Bonnie J. Dorr, Anca Dragan, Dan Klein, Nikita Kitaev, Tom Lenaerts, Michela Milano, Dana Nau, Maria
Simi, who detain its copyright. These slides cannot can be displayed in public without the permission of the author.

1 / 52

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fai_2020/
dragoni@fbk.eu
http://www.maurodragoni.com/teaching/fai/

Outline

1 Ontologies and Ontological Engineering

2 Categories and Objects

3 Events

4 Reasoning about Knowledge

5 Reasoning about Categories
Semantic Networks
Description Logics

2 / 52

Outline

1 Ontologies and Ontological Engineering

2 Categories and Objects

3 Events

4 Reasoning about Knowledge

5 Reasoning about Categories
Semantic Networks
Description Logics

3 / 52

Generalities

Q: What content do we put into an agent’s KB?
how do we organize such content?
how do we represent facts about the world?

A whole AI field: Knowledge Representation, KR
often combined with Automated Reasoning on KB

=⇒ Knowledge Representation & Reasoning, KRR

KR: use FOL to represent the most important aspects of the real
world, such as action, space, time, knowledge, belief
Topics:

ontologies and ontological engineering
objects and categories, composite objects, measurements, ...
actions and change, events, temporal intervals, ...
reasoning about knowledge & beliefs
reasoning about categories
default reasoning
...

4 / 52

Generalities

Q: What content do we put into an agent’s KB?
how do we organize such content?
how do we represent facts about the world?

A whole AI field: Knowledge Representation, KR
often combined with Automated Reasoning on KB

=⇒ Knowledge Representation & Reasoning, KRR

KR: use FOL to represent the most important aspects of the real
world, such as action, space, time, knowledge, belief
Topics:

ontologies and ontological engineering
objects and categories, composite objects, measurements, ...
actions and change, events, temporal intervals, ...
reasoning about knowledge & beliefs
reasoning about categories
default reasoning
...

4 / 52

Generalities

Q: What content do we put into an agent’s KB?
how do we organize such content?
how do we represent facts about the world?

A whole AI field: Knowledge Representation, KR
often combined with Automated Reasoning on KB

=⇒ Knowledge Representation & Reasoning, KRR

KR: use FOL to represent the most important aspects of the real
world, such as action, space, time, knowledge, belief
Topics:

ontologies and ontological engineering
objects and categories, composite objects, measurements, ...
actions and change, events, temporal intervals, ...
reasoning about knowledge & beliefs
reasoning about categories
default reasoning
...

4 / 52

Generalities

Q: What content do we put into an agent’s KB?
how do we organize such content?
how do we represent facts about the world?

A whole AI field: Knowledge Representation, KR
often combined with Automated Reasoning on KB

=⇒ Knowledge Representation & Reasoning, KRR

KR: use FOL to represent the most important aspects of the real
world, such as action, space, time, knowledge, belief
Topics:

ontologies and ontological engineering
objects and categories, composite objects, measurements, ...
actions and change, events, temporal intervals, ...
reasoning about knowledge & beliefs
reasoning about categories
default reasoning
...

4 / 52

Knowledge Engineering and Ontological Engineering

Knowledge Engineering

The activity to formalize a specific problem or task domain
Relevant questions to be addressed:

What are the relevant facts, objects, relations ... ?
Which is the right level of abstraction?
What are the queries to the KB (inferences)?

Ontological Engineering
The activity to build general-purpose ontologies

should be applicable in any special-purpose domain
(with the addition of domain-specific axioms)
In non trivial domains, reasoning and problem solving could
involve several areas of knowledge simultaneously
=⇒ different areas of knowledge must be combined

Several attempts to build general-purpose ontologies
CYC, DBpedia, TextRunner, ...
not very successful so far

5 / 52

Knowledge Engineering and Ontological Engineering

Knowledge Engineering

The activity to formalize a specific problem or task domain
Relevant questions to be addressed:

What are the relevant facts, objects, relations ... ?
Which is the right level of abstraction?
What are the queries to the KB (inferences)?

Ontological Engineering
The activity to build general-purpose ontologies

should be applicable in any special-purpose domain
(with the addition of domain-specific axioms)
In non trivial domains, reasoning and problem solving could
involve several areas of knowledge simultaneously
=⇒ different areas of knowledge must be combined

Several attempts to build general-purpose ontologies
CYC, DBpedia, TextRunner, ...
not very successful so far

5 / 52

Knowledge Engineering and Ontological Engineering

Knowledge Engineering

The activity to formalize a specific problem or task domain
Relevant questions to be addressed:

What are the relevant facts, objects, relations ... ?
Which is the right level of abstraction?
What are the queries to the KB (inferences)?

Ontological Engineering
The activity to build general-purpose ontologies

should be applicable in any special-purpose domain
(with the addition of domain-specific axioms)
In non trivial domains, reasoning and problem solving could
involve several areas of knowledge simultaneously
=⇒ different areas of knowledge must be combined

Several attempts to build general-purpose ontologies
CYC, DBpedia, TextRunner, ...
not very successful so far

5 / 52

Knowledge Engineering and Ontological Engineering

Knowledge Engineering

The activity to formalize a specific problem or task domain
Relevant questions to be addressed:

What are the relevant facts, objects, relations ... ?
Which is the right level of abstraction?
What are the queries to the KB (inferences)?

Ontological Engineering
The activity to build general-purpose ontologies

should be applicable in any special-purpose domain
(with the addition of domain-specific axioms)
In non trivial domains, reasoning and problem solving could
involve several areas of knowledge simultaneously
=⇒ different areas of knowledge must be combined

Several attempts to build general-purpose ontologies
CYC, DBpedia, TextRunner, ...
not very successful so far

5 / 52

Knowledge Engineering and Ontological Engineering

Knowledge Engineering

The activity to formalize a specific problem or task domain
Relevant questions to be addressed:

What are the relevant facts, objects, relations ... ?
Which is the right level of abstraction?
What are the queries to the KB (inferences)?

Ontological Engineering
The activity to build general-purpose ontologies

should be applicable in any special-purpose domain
(with the addition of domain-specific axioms)
In non trivial domains, reasoning and problem solving could
involve several areas of knowledge simultaneously
=⇒ different areas of knowledge must be combined

Several attempts to build general-purpose ontologies
CYC, DBpedia, TextRunner, ...
not very successful so far

5 / 52

A General-Purpose/Upper Ontology

An upper ontology of the world

Link: the lower concept is a specialization of the upper one
Note: physical objects specialization of generalized events
(see later)

(c© S. Russell & P. Norwig, AIMA) 6 / 52

Outline

1 Ontologies and Ontological Engineering

2 Categories and Objects

3 Events

4 Reasoning about Knowledge

5 Reasoning about Categories
Semantic Networks
Description Logics

7 / 52

Categories and Objects
Categories, Objects, Members and Subclasses

KR requires the organisation of objects into categories
interaction at the level of the object
reasoning at the level of categories
ex: typically we want to buy a basketball, rather than a particular
basketball instance

Categories play a role in predictions about objects
agent infers the presence of certain objects from perceptual input
infers category from the perceived properties of the objects,
uses category information to make predictions about the objects

Categories can be represented in two ways by FOL
predicates (ex Basketball(x)): relations
reification of categories into objects (ex Basketballs): sets
=⇒ allows categories to be argument of predicates/functions

Membership of a category as set membership
ex: Member(b,Basketballs) (abbr. b ∈ Basketballs)

Subcategories (aka subclasses) are (strict) subsets
ex: Subset(Basketballs, Balls) (abbr Basketballs ⊂ Balls)

8 / 52

Categories and Objects
Categories, Objects, Members and Subclasses

KR requires the organisation of objects into categories
interaction at the level of the object
reasoning at the level of categories
ex: typically we want to buy a basketball, rather than a particular
basketball instance

Categories play a role in predictions about objects
agent infers the presence of certain objects from perceptual input
infers category from the perceived properties of the objects,
uses category information to make predictions about the objects

Categories can be represented in two ways by FOL
predicates (ex Basketball(x)): relations
reification of categories into objects (ex Basketballs): sets
=⇒ allows categories to be argument of predicates/functions

Membership of a category as set membership
ex: Member(b,Basketballs) (abbr. b ∈ Basketballs)

Subcategories (aka subclasses) are (strict) subsets
ex: Subset(Basketballs, Balls) (abbr Basketballs ⊂ Balls)

8 / 52

Categories and Objects
Categories, Objects, Members and Subclasses

KR requires the organisation of objects into categories
interaction at the level of the object
reasoning at the level of categories
ex: typically we want to buy a basketball, rather than a particular
basketball instance

Categories play a role in predictions about objects
agent infers the presence of certain objects from perceptual input
infers category from the perceived properties of the objects,
uses category information to make predictions about the objects

Categories can be represented in two ways by FOL
predicates (ex Basketball(x)): relations
reification of categories into objects (ex Basketballs): sets
=⇒ allows categories to be argument of predicates/functions

Membership of a category as set membership
ex: Member(b,Basketballs) (abbr. b ∈ Basketballs)

Subcategories (aka subclasses) are (strict) subsets
ex: Subset(Basketballs, Balls) (abbr Basketballs ⊂ Balls)

8 / 52

Categories and Objects
Categories, Objects, Members and Subclasses

KR requires the organisation of objects into categories
interaction at the level of the object
reasoning at the level of categories
ex: typically we want to buy a basketball, rather than a particular
basketball instance

Categories play a role in predictions about objects
agent infers the presence of certain objects from perceptual input
infers category from the perceived properties of the objects,
uses category information to make predictions about the objects

Categories can be represented in two ways by FOL
predicates (ex Basketball(x)): relations
reification of categories into objects (ex Basketballs): sets
=⇒ allows categories to be argument of predicates/functions

Membership of a category as set membership
ex: Member(b,Basketballs) (abbr. b ∈ Basketballs)

Subcategories (aka subclasses) are (strict) subsets
ex: Subset(Basketballs, Balls) (abbr Basketballs ⊂ Balls)

8 / 52

Categories and Objects
Categories, Objects, Members and Subclasses

KR requires the organisation of objects into categories
interaction at the level of the object
reasoning at the level of categories
ex: typically we want to buy a basketball, rather than a particular
basketball instance

Categories play a role in predictions about objects
agent infers the presence of certain objects from perceptual input
infers category from the perceived properties of the objects,
uses category information to make predictions about the objects

Categories can be represented in two ways by FOL
predicates (ex Basketball(x)): relations
reification of categories into objects (ex Basketballs): sets
=⇒ allows categories to be argument of predicates/functions

Membership of a category as set membership
ex: Member(b,Basketballs) (abbr. b ∈ Basketballs)

Subcategories (aka subclasses) are (strict) subsets
ex: Subset(Basketballs, Balls) (abbr Basketballs ⊂ Balls)

8 / 52

Categories and Objects [cont.]

Inheritance and Taxonomies
A subcategory inherits the properties of the category

ex:
if ∀x .(x ∈ Food → Edible(x)), Fruit ⊂ Food , Apples ⊂ Fruit
then ∀x .(x ∈ Apple→ Edible(x))

A member inherits the properties of the category
if a ∈ Apples, then Edible(a)

Subclass relation organize categories into taxonomies
(aka taxonomic hierarchies)

ex: taxonomy of >10M living&extinct species
ex: Dewey Decimal System: taxonomy of all fields of knowledge

9 / 52

Categories and Objects [cont.]

Inheritance and Taxonomies
A subcategory inherits the properties of the category

ex:
if ∀x .(x ∈ Food → Edible(x)), Fruit ⊂ Food , Apples ⊂ Fruit
then ∀x .(x ∈ Apple→ Edible(x))

A member inherits the properties of the category
if a ∈ Apples, then Edible(a)

Subclass relation organize categories into taxonomies
(aka taxonomic hierarchies)

ex: taxonomy of >10M living&extinct species
ex: Dewey Decimal System: taxonomy of all fields of knowledge

9 / 52

Categories and Objects [cont.]

Inheritance and Taxonomies
A subcategory inherits the properties of the category

ex:
if ∀x .(x ∈ Food → Edible(x)), Fruit ⊂ Food , Apples ⊂ Fruit
then ∀x .(x ∈ Apple→ Edible(x))

A member inherits the properties of the category
if a ∈ Apples, then Edible(a)

Subclass relation organize categories into taxonomies
(aka taxonomic hierarchies)

ex: taxonomy of >10M living&extinct species
ex: Dewey Decimal System: taxonomy of all fields of knowledge

9 / 52

Categories and Objects [cont.]

FOL Reasoning about Categories

FOL allows to state facts about categories:
an object is a member of a category
BB9 ∈ Basketballs
a category is a subclass of another category
Basketballs ⊂ Balls
all members of a category have some properties
∀x .(x ∈ Basketballs → Spherical(x))
members of a category can be recognized by some properties
∀x .((Orange(x) ∧ Round(x) ∧ Diameter(x) = 9.5” ∧ x ∈ Balls)
→ x ∈ Basketballs)

category as a whole has some properties
Dogs ∈ DomesticatedSpecies

New categories can be defined by providing necessary and
sufficient conditions for membership

∀x .(x ∈ Bachelors ↔ (Unmarried(x) ∧ x ∈ Adults ∧ x ∈ Males))

10 / 52

Categories and Objects [cont.]

FOL Reasoning about Categories

FOL allows to state facts about categories:
an object is a member of a category
BB9 ∈ Basketballs
a category is a subclass of another category
Basketballs ⊂ Balls
all members of a category have some properties
∀x .(x ∈ Basketballs → Spherical(x))
members of a category can be recognized by some properties
∀x .((Orange(x) ∧ Round(x) ∧ Diameter(x) = 9.5” ∧ x ∈ Balls)
→ x ∈ Basketballs)

category as a whole has some properties
Dogs ∈ DomesticatedSpecies

New categories can be defined by providing necessary and
sufficient conditions for membership

∀x .(x ∈ Bachelors ↔ (Unmarried(x) ∧ x ∈ Adults ∧ x ∈ Males))

10 / 52

Categories and Objects [cont.]

FOL Reasoning about Categories

FOL allows to state facts about categories:
an object is a member of a category
BB9 ∈ Basketballs
a category is a subclass of another category
Basketballs ⊂ Balls
all members of a category have some properties
∀x .(x ∈ Basketballs → Spherical(x))
members of a category can be recognized by some properties
∀x .((Orange(x) ∧ Round(x) ∧ Diameter(x) = 9.5” ∧ x ∈ Balls)
→ x ∈ Basketballs)

category as a whole has some properties
Dogs ∈ DomesticatedSpecies

New categories can be defined by providing necessary and
sufficient conditions for membership

∀x .(x ∈ Bachelors ↔ (Unmarried(x) ∧ x ∈ Adults ∧ x ∈ Males))

10 / 52

Categories and Objects [cont.]

Derived relations
Two or more categories in a set s are disjoint iff they have no
members in common

Disjoint(s)↔ (∀c1c2. ((c1 ∈ s ∧ c2 ∈ s ∧ c1 6= c2)
→ Intersection(c1, c2) = ∅)

ex:
Disjoint({Animals,Vegetables}),
Disjoint({Insects,Birds,Mammals,Reptiles}),

A set of categories s is an exhaustive decomposition of a
category c iff all members of c are covered by categories in s

ExaustiveDecomposition(s, c)↔ ∀i .(i∈c ↔ (∃c2.(c2∈s ∧ i∈c2)))
ex: E .D.({Americans,Canadians,Mexicans},NorthAmericans)

A disjoint exhaustive decomposition is a partition
Partition(s, c)↔ (Disjoint(s) ∧ ExhaustiveDecomposition(s, c))
ex: Partition({Males,Females},Animals)

11 / 52

Categories and Objects [cont.]

Derived relations
Two or more categories in a set s are disjoint iff they have no
members in common

Disjoint(s)↔ (∀c1c2. ((c1 ∈ s ∧ c2 ∈ s ∧ c1 6= c2)
→ Intersection(c1, c2) = ∅)

ex:
Disjoint({Animals,Vegetables}),
Disjoint({Insects,Birds,Mammals,Reptiles}),

A set of categories s is an exhaustive decomposition of a
category c iff all members of c are covered by categories in s

ExaustiveDecomposition(s, c)↔ ∀i .(i∈c ↔ (∃c2.(c2∈s ∧ i∈c2)))
ex: E .D.({Americans,Canadians,Mexicans},NorthAmericans)

A disjoint exhaustive decomposition is a partition
Partition(s, c)↔ (Disjoint(s) ∧ ExhaustiveDecomposition(s, c))
ex: Partition({Males,Females},Animals)

11 / 52

Categories and Objects [cont.]

Derived relations
Two or more categories in a set s are disjoint iff they have no
members in common

Disjoint(s)↔ (∀c1c2. ((c1 ∈ s ∧ c2 ∈ s ∧ c1 6= c2)
→ Intersection(c1, c2) = ∅)

ex:
Disjoint({Animals,Vegetables}),
Disjoint({Insects,Birds,Mammals,Reptiles}),

A set of categories s is an exhaustive decomposition of a
category c iff all members of c are covered by categories in s

ExaustiveDecomposition(s, c)↔ ∀i .(i∈c ↔ (∃c2.(c2∈s ∧ i∈c2)))
ex: E .D.({Americans,Canadians,Mexicans},NorthAmericans)

A disjoint exhaustive decomposition is a partition
Partition(s, c)↔ (Disjoint(s) ∧ ExhaustiveDecomposition(s, c))
ex: Partition({Males,Females},Animals)

11 / 52

Digression: Natural Kinds

Many categories have no clear-cut definition (ex: chair, bush, ...)
Ex: tomatoes are sometimes green, red, yellow, black; they are
mostly round

One useful solution: category “Typical(.)”, s.t. Typical(c) ⊆ c
=⇒ most knowledge about natural kinds will actually be about their

typical instances
ex: ∀x .(x ∈ Typical(Tomatoes)→ (Red(x) ∧ Round(x)))

=⇒ We can write down useful facts about categories without
providing exact definitions

Note
Quine (1953) challenged the utility of the notion of strict definition.

Ex: “bachelor”: is the Pope a bachelor?
=⇒ technically yes, but misleading

12 / 52

Digression: Natural Kinds

Many categories have no clear-cut definition (ex: chair, bush, ...)
Ex: tomatoes are sometimes green, red, yellow, black; they are
mostly round

One useful solution: category “Typical(.)”, s.t. Typical(c) ⊆ c
=⇒ most knowledge about natural kinds will actually be about their

typical instances
ex: ∀x .(x ∈ Typical(Tomatoes)→ (Red(x) ∧ Round(x)))

=⇒ We can write down useful facts about categories without
providing exact definitions

Note
Quine (1953) challenged the utility of the notion of strict definition.

Ex: “bachelor”: is the Pope a bachelor?
=⇒ technically yes, but misleading

12 / 52

Digression: Natural Kinds

Many categories have no clear-cut definition (ex: chair, bush, ...)
Ex: tomatoes are sometimes green, red, yellow, black; they are
mostly round

One useful solution: category “Typical(.)”, s.t. Typical(c) ⊆ c
=⇒ most knowledge about natural kinds will actually be about their

typical instances
ex: ∀x .(x ∈ Typical(Tomatoes)→ (Red(x) ∧ Round(x)))

=⇒ We can write down useful facts about categories without
providing exact definitions

Note
Quine (1953) challenged the utility of the notion of strict definition.

Ex: “bachelor”: is the Pope a bachelor?
=⇒ technically yes, but misleading

12 / 52

Digression: Natural Kinds

Many categories have no clear-cut definition (ex: chair, bush, ...)
Ex: tomatoes are sometimes green, red, yellow, black; they are
mostly round

One useful solution: category “Typical(.)”, s.t. Typical(c) ⊆ c
=⇒ most knowledge about natural kinds will actually be about their

typical instances
ex: ∀x .(x ∈ Typical(Tomatoes)→ (Red(x) ∧ Round(x)))

=⇒ We can write down useful facts about categories without
providing exact definitions

Note
Quine (1953) challenged the utility of the notion of strict definition.

Ex: “bachelor”: is the Pope a bachelor?
=⇒ technically yes, but misleading

12 / 52

Physical Composition

PartOf (., .) relation: One object may be part of another
PartOf (Bucharest ,Romania)
PartOf (Romania,EasternEurope)
PartOf (EasternEurope,Europe)

PartOf (., .) is reflexive and transitive:
∀x .PartOf (x , x)
∀x , y , z.((PartOf (x , y) ∧ PartOf (y , z))→ PartOf (x , z))

=⇒ PartOf (Bucharest ,Europe)

Categories of composite objects are often characterized by
structural relations among parts. Ex: Biped

(c© S. Russell & P. Norwig, AIMA)

Other concepts & relations: PartPartition, BunchOf...
13 / 52

Physical Composition

PartOf (., .) relation: One object may be part of another
PartOf (Bucharest ,Romania)
PartOf (Romania,EasternEurope)
PartOf (EasternEurope,Europe)

PartOf (., .) is reflexive and transitive:
∀x .PartOf (x , x)
∀x , y , z.((PartOf (x , y) ∧ PartOf (y , z))→ PartOf (x , z))

=⇒ PartOf (Bucharest ,Europe)

Categories of composite objects are often characterized by
structural relations among parts. Ex: Biped

(c© S. Russell & P. Norwig, AIMA)

Other concepts & relations: PartPartition, BunchOf...
13 / 52

Physical Composition

PartOf (., .) relation: One object may be part of another
PartOf (Bucharest ,Romania)
PartOf (Romania,EasternEurope)
PartOf (EasternEurope,Europe)

PartOf (., .) is reflexive and transitive:
∀x .PartOf (x , x)
∀x , y , z.((PartOf (x , y) ∧ PartOf (y , z))→ PartOf (x , z))

=⇒ PartOf (Bucharest ,Europe)

Categories of composite objects are often characterized by
structural relations among parts. Ex: Biped

(c© S. Russell & P. Norwig, AIMA)

Other concepts & relations: PartPartition, BunchOf...
13 / 52

Physical Composition

PartOf (., .) relation: One object may be part of another
PartOf (Bucharest ,Romania)
PartOf (Romania,EasternEurope)
PartOf (EasternEurope,Europe)

PartOf (., .) is reflexive and transitive:
∀x .PartOf (x , x)
∀x , y , z.((PartOf (x , y) ∧ PartOf (y , z))→ PartOf (x , z))

=⇒ PartOf (Bucharest ,Europe)

Categories of composite objects are often characterized by
structural relations among parts. Ex: Biped

(c© S. Russell & P. Norwig, AIMA)

Other concepts & relations: PartPartition, BunchOf...
13 / 52

Measurements

Quantitative Measurements
Objects may have “quantitative” properties

e.g. height, mass, cost, ...

Values that we assign to these properties are measures
Can be represented by unit functions

ex Length(L1) = Inches(1.5) ∧ Inches(1.5) = Centimeters(3.81)

Conversion between units:
∀i . Centimeters(2.54× i) = Inches(i)

Measures can be used to describe objects:
ex: Diameter(Basketball12) = Inches(9.5)
ex: ListPrice(Basketball12) = $(19)
ex: ∀d .(d ∈ Days → Duration(d) = Hours(24))

14 / 52

Measurements

Quantitative Measurements
Objects may have “quantitative” properties

e.g. height, mass, cost, ...

Values that we assign to these properties are measures
Can be represented by unit functions

ex Length(L1) = Inches(1.5) ∧ Inches(1.5) = Centimeters(3.81)

Conversion between units:
∀i . Centimeters(2.54× i) = Inches(i)

Measures can be used to describe objects:
ex: Diameter(Basketball12) = Inches(9.5)
ex: ListPrice(Basketball12) = $(19)
ex: ∀d .(d ∈ Days → Duration(d) = Hours(24))

14 / 52

Measurements

Quantitative Measurements
Objects may have “quantitative” properties

e.g. height, mass, cost, ...

Values that we assign to these properties are measures
Can be represented by unit functions

ex Length(L1) = Inches(1.5) ∧ Inches(1.5) = Centimeters(3.81)

Conversion between units:
∀i . Centimeters(2.54× i) = Inches(i)

Measures can be used to describe objects:
ex: Diameter(Basketball12) = Inches(9.5)
ex: ListPrice(Basketball12) = $(19)
ex: ∀d .(d ∈ Days → Duration(d) = Hours(24))

14 / 52

Measurements

Quantitative Measurements
Objects may have “quantitative” properties

e.g. height, mass, cost, ...

Values that we assign to these properties are measures
Can be represented by unit functions

ex Length(L1) = Inches(1.5) ∧ Inches(1.5) = Centimeters(3.81)

Conversion between units:
∀i . Centimeters(2.54× i) = Inches(i)

Measures can be used to describe objects:
ex: Diameter(Basketball12) = Inches(9.5)
ex: ListPrice(Basketball12) = $(19)
ex: ∀d .(d ∈ Days → Duration(d) = Hours(24))

14 / 52

Measurements

Quantitative Measurements
Objects may have “quantitative” properties

e.g. height, mass, cost, ...

Values that we assign to these properties are measures
Can be represented by unit functions

ex Length(L1) = Inches(1.5) ∧ Inches(1.5) = Centimeters(3.81)

Conversion between units:
∀i . Centimeters(2.54× i) = Inches(i)

Measures can be used to describe objects:
ex: Diameter(Basketball12) = Inches(9.5)
ex: ListPrice(Basketball12) = $(19)
ex: ∀d .(d ∈ Days → Duration(d) = Hours(24))

14 / 52

Measurements [cont.]

Qualitative Measurements
Some measures have no scale

ex: beauty, deliciousness, difficulty,...
Most important aspect of measures: they are orderable

Ex: Deliciousness(SacherTorte) > Deliciousness(BrussellSprout)
Ex: Beauty(PaulNewmann) > Beauty(MartyFeldman)
Ex: Difficulty(ProveP 6=NP) > Difficulty(SolvePuzzle)

Allow for reasoning by exploiting transitivity of monotonicity:
∀e1e2.((e1∈Exercises ∧ e2∈Exercises∧

Wrote(Norvig,e1) ∧Wrote(Russell ,e2))
→ Difficulty(e1) > Difficulty(e2))

∀e1e2.((e1∈Exercises ∧ e2∈Exercises ∧ Difficulty(e1) > Difficulty(e2))
→ ExpectedScore(e1) < ExpectedScore(e2))

∀e1e2.(ExpectedScore(e1)<ExpectedScore(e2)→ Pick(e1,e2)=e2
Then: (Wrote(Norvig,E1) ∧Wrote(Russell ,E2)) |= Pick(E1,E2)=E2

Qualitative physics: a subfield of AI that investigates how to
reason about physical systems without numerical computations

15 / 52

Measurements [cont.]

Qualitative Measurements
Some measures have no scale

ex: beauty, deliciousness, difficulty,...
Most important aspect of measures: they are orderable

Ex: Deliciousness(SacherTorte) > Deliciousness(BrussellSprout)
Ex: Beauty(PaulNewmann) > Beauty(MartyFeldman)
Ex: Difficulty(ProveP 6=NP) > Difficulty(SolvePuzzle)

Allow for reasoning by exploiting transitivity of monotonicity:
∀e1e2.((e1∈Exercises ∧ e2∈Exercises∧

Wrote(Norvig,e1) ∧Wrote(Russell ,e2))
→ Difficulty(e1) > Difficulty(e2))

∀e1e2.((e1∈Exercises ∧ e2∈Exercises ∧ Difficulty(e1) > Difficulty(e2))
→ ExpectedScore(e1) < ExpectedScore(e2))

∀e1e2.(ExpectedScore(e1)<ExpectedScore(e2)→ Pick(e1,e2)=e2
Then: (Wrote(Norvig,E1) ∧Wrote(Russell ,E2)) |= Pick(E1,E2)=E2

Qualitative physics: a subfield of AI that investigates how to
reason about physical systems without numerical computations

15 / 52

Measurements [cont.]

Qualitative Measurements
Some measures have no scale

ex: beauty, deliciousness, difficulty,...
Most important aspect of measures: they are orderable

Ex: Deliciousness(SacherTorte) > Deliciousness(BrussellSprout)
Ex: Beauty(PaulNewmann) > Beauty(MartyFeldman)
Ex: Difficulty(ProveP 6=NP) > Difficulty(SolvePuzzle)

Allow for reasoning by exploiting transitivity of monotonicity:
∀e1e2.((e1∈Exercises ∧ e2∈Exercises∧

Wrote(Norvig,e1) ∧Wrote(Russell ,e2))
→ Difficulty(e1) > Difficulty(e2))

∀e1e2.((e1∈Exercises ∧ e2∈Exercises ∧ Difficulty(e1) > Difficulty(e2))
→ ExpectedScore(e1) < ExpectedScore(e2))

∀e1e2.(ExpectedScore(e1)<ExpectedScore(e2)→ Pick(e1,e2)=e2
Then: (Wrote(Norvig,E1) ∧Wrote(Russell ,E2)) |= Pick(E1,E2)=E2

Qualitative physics: a subfield of AI that investigates how to
reason about physical systems without numerical computations

15 / 52

Objects vs Stuff

There are countable objects
e,g, apples, holes, theorems, ...

... and mass objects, aka stuff or substances
e.g. butter, water, energy, ...

=⇒ Intuitive meaning “an amount/quantity of...”
ex: b ∈ butter : “b is an amount/quantity of butter”

Any part of stuff is still stuff:
ex: ∀b,p.((b ∈ Butter ∧ PartOf (p,b))→ p ∈ Butter)

Can define sub-categories, which are stuff
ex: UnsaltedButter ⊂ Butter

Stuff has a number of intrinsic properties, shared by its subparts
e.g., color, fat content, density ...
ex: ∀b.(b ∈ Butter → MeltingPoint(b,Centigrade(30)))

Stuff has no extrinsic properties
e.g., weight, length, shape, ...

16 / 52

Objects vs Stuff

There are countable objects
e,g, apples, holes, theorems, ...

... and mass objects, aka stuff or substances
e.g. butter, water, energy, ...

=⇒ Intuitive meaning “an amount/quantity of...”
ex: b ∈ butter : “b is an amount/quantity of butter”

Any part of stuff is still stuff:
ex: ∀b,p.((b ∈ Butter ∧ PartOf (p,b))→ p ∈ Butter)

Can define sub-categories, which are stuff
ex: UnsaltedButter ⊂ Butter

Stuff has a number of intrinsic properties, shared by its subparts
e.g., color, fat content, density ...
ex: ∀b.(b ∈ Butter → MeltingPoint(b,Centigrade(30)))

Stuff has no extrinsic properties
e.g., weight, length, shape, ...

16 / 52

Objects vs Stuff

There are countable objects
e,g, apples, holes, theorems, ...

... and mass objects, aka stuff or substances
e.g. butter, water, energy, ...

=⇒ Intuitive meaning “an amount/quantity of...”
ex: b ∈ butter : “b is an amount/quantity of butter”

Any part of stuff is still stuff:
ex: ∀b,p.((b ∈ Butter ∧ PartOf (p,b))→ p ∈ Butter)

Can define sub-categories, which are stuff
ex: UnsaltedButter ⊂ Butter

Stuff has a number of intrinsic properties, shared by its subparts
e.g., color, fat content, density ...
ex: ∀b.(b ∈ Butter → MeltingPoint(b,Centigrade(30)))

Stuff has no extrinsic properties
e.g., weight, length, shape, ...

16 / 52

Objects vs Stuff

There are countable objects
e,g, apples, holes, theorems, ...

... and mass objects, aka stuff or substances
e.g. butter, water, energy, ...

=⇒ Intuitive meaning “an amount/quantity of...”
ex: b ∈ butter : “b is an amount/quantity of butter”

Any part of stuff is still stuff:
ex: ∀b,p.((b ∈ Butter ∧ PartOf (p,b))→ p ∈ Butter)

Can define sub-categories, which are stuff
ex: UnsaltedButter ⊂ Butter

Stuff has a number of intrinsic properties, shared by its subparts
e.g., color, fat content, density ...
ex: ∀b.(b ∈ Butter → MeltingPoint(b,Centigrade(30)))

Stuff has no extrinsic properties
e.g., weight, length, shape, ...

16 / 52

Objects vs Stuff

There are countable objects
e,g, apples, holes, theorems, ...

... and mass objects, aka stuff or substances
e.g. butter, water, energy, ...

=⇒ Intuitive meaning “an amount/quantity of...”
ex: b ∈ butter : “b is an amount/quantity of butter”

Any part of stuff is still stuff:
ex: ∀b,p.((b ∈ Butter ∧ PartOf (p,b))→ p ∈ Butter)

Can define sub-categories, which are stuff
ex: UnsaltedButter ⊂ Butter

Stuff has a number of intrinsic properties, shared by its subparts
e.g., color, fat content, density ...
ex: ∀b.(b ∈ Butter → MeltingPoint(b,Centigrade(30)))

Stuff has no extrinsic properties
e.g., weight, length, shape, ...

16 / 52

Objects vs Stuff

There are countable objects
e,g, apples, holes, theorems, ...

... and mass objects, aka stuff or substances
e.g. butter, water, energy, ...

=⇒ Intuitive meaning “an amount/quantity of...”
ex: b ∈ butter : “b is an amount/quantity of butter”

Any part of stuff is still stuff:
ex: ∀b,p.((b ∈ Butter ∧ PartOf (p,b))→ p ∈ Butter)

Can define sub-categories, which are stuff
ex: UnsaltedButter ⊂ Butter

Stuff has a number of intrinsic properties, shared by its subparts
e.g., color, fat content, density ...
ex: ∀b.(b ∈ Butter → MeltingPoint(b,Centigrade(30)))

Stuff has no extrinsic properties
e.g., weight, length, shape, ...

16 / 52

Outline

1 Ontologies and Ontological Engineering

2 Categories and Objects

3 Events

4 Reasoning about Knowledge

5 Reasoning about Categories
Semantic Networks
Description Logics

17 / 52

[Recall from Ch.10:] Situation Calculus
Basic concepts

Situation:
the initial state is a situation
if s is a situation and a is an action, then Result(s,a) is a situation
Result() injective: Result(s,a)=Result(s′,a′)↔ (s =s′ ∧ a=a′)
a solution is a situation that satisfies the goal

Action preconditions: Φ(s)→ Poss(a, s)

Φ(s) describes preconditions
ex: (Alive(Agent , s) ∧ Have(Agent ,Arrow , s))→ Poss(Shoot , s)

Successor-state axioms (similar to propositional case):

[Action is possible]→

 [Fluent is true in result state]↔
([Action’s effect made it true]∨
([It was true before] ∧ [action left it alone]))

ex: Poss(a, s)→[

Holding(Agent ,g,Result(a, s))↔
a = Grab(g) ∨ (Holding(Agent ,g, s) ∧ a 6= Release(g))

]
Unique action axioms: Ai (x , ...) 6= Aj (y , ...); Ai injective

ex Shoot(x) 6= Grab(y)
18 / 52

[Recall from Ch.10:] Situation Calculus: Example

Situations as the results of actions in the Wumpus world

(c© S. Russell & P. Norwig, AIMA)
19 / 52

Limitation of Situation Calculus

Situation calculus is limited in its applicability:
single agent
actions are discrete and instantaneous (no duration in time)
actions happen one at a time:
=⇒ no concurrency, no simultaneous actions
only primitive actions: no way to combine actions
(no conditionals, no iterations, ...)

20 / 52

Event Calculus

Based on events, points in time, intervals rather than situations
Reification of fluents

a fluent is an object represented by a term
(ex: At(Shankar ,Berkeley))
=⇒ does not say if it is true
T (True): asserts that a fluent is true at some point in time t
ex: T (At(Shankar ,Berkeley), t)

Reification of events
events are described as instances of event categories
ex: event E1: Shankar flies from San Francisco to WashingtonDC:
E1 ∈ Flyings ∧ Flyer(E1,Shankar)∧
Origin(E1,SF) ∧ Destination(E1,DC)
reification allows for adding arbitrary information about fluents
ex: Shankar’s flight was bumpy: Bumpy(E1)

21 / 52

Event Calculus

Based on events, points in time, intervals rather than situations
Reification of fluents

a fluent is an object represented by a term
(ex: At(Shankar ,Berkeley))
=⇒ does not say if it is true
T (True): asserts that a fluent is true at some point in time t
ex: T (At(Shankar ,Berkeley), t)

Reification of events
events are described as instances of event categories
ex: event E1: Shankar flies from San Francisco to WashingtonDC:
E1 ∈ Flyings ∧ Flyer(E1,Shankar)∧
Origin(E1,SF) ∧ Destination(E1,DC)
reification allows for adding arbitrary information about fluents
ex: Shankar’s flight was bumpy: Bumpy(E1)

21 / 52

Event Calculus

Based on events, points in time, intervals rather than situations
Reification of fluents

a fluent is an object represented by a term
(ex: At(Shankar ,Berkeley))
=⇒ does not say if it is true
T (True): asserts that a fluent is true at some point in time t
ex: T (At(Shankar ,Berkeley), t)

Reification of events
events are described as instances of event categories
ex: event E1: Shankar flies from San Francisco to WashingtonDC:
E1 ∈ Flyings ∧ Flyer(E1,Shankar)∧
Origin(E1,SF) ∧ Destination(E1,DC)
reification allows for adding arbitrary information about fluents
ex: Shankar’s flight was bumpy: Bumpy(E1)

21 / 52

Event Calculus

Based on events, points in time, intervals rather than situations
Reification of fluents

a fluent is an object represented by a term
(ex: At(Shankar ,Berkeley))
=⇒ does not say if it is true
T (True): asserts that a fluent is true at some point in time t
ex: T (At(Shankar ,Berkeley), t)

Reification of events
events are described as instances of event categories
ex: event E1: Shankar flies from San Francisco to WashingtonDC:
E1 ∈ Flyings ∧ Flyer(E1,Shankar)∧
Origin(E1,SF) ∧ Destination(E1,DC)
reification allows for adding arbitrary information about fluents
ex: Shankar’s flight was bumpy: Bumpy(E1)

21 / 52

Event Calculus

Based on events, points in time, intervals rather than situations
Reification of fluents

a fluent is an object represented by a term
(ex: At(Shankar ,Berkeley))
=⇒ does not say if it is true
T (True): asserts that a fluent is true at some point in time t
ex: T (At(Shankar ,Berkeley), t)

Reification of events
events are described as instances of event categories
ex: event E1: Shankar flies from San Francisco to WashingtonDC:
E1 ∈ Flyings ∧ Flyer(E1,Shankar)∧
Origin(E1,SF) ∧ Destination(E1,DC)
reification allows for adding arbitrary information about fluents
ex: Shankar’s flight was bumpy: Bumpy(E1)

21 / 52

Event Calculus: Intervals

A time interval i.e. a pair of times (start ,end)

i.e., i = (t1, t2) is the time interval that starts at t1 and ends at t2
The list of predicates for (one version of) the event calculus:
T (f , t): fluent f is true at time t
Happens(e, i): event e happens over the time interval i
Initiates(e, f , t): event e causes fluent f to start to hold at time t
Terminates(e, f , t): event e causes fluent f to cease to hold at

time t
Clipped(f , i): fluent f ceases to be true at some point during time

interval i
Restored(f , i): fluent f becomes true sometime during time

interval i
A distinguished event, Start, describes the initial state

22 / 52

Event Calculus: Intervals

A time interval i.e. a pair of times (start ,end)

i.e., i = (t1, t2) is the time interval that starts at t1 and ends at t2
The list of predicates for (one version of) the event calculus:
T (f , t): fluent f is true at time t
Happens(e, i): event e happens over the time interval i
Initiates(e, f , t): event e causes fluent f to start to hold at time t
Terminates(e, f , t): event e causes fluent f to cease to hold at

time t
Clipped(f , i): fluent f ceases to be true at some point during time

interval i
Restored(f , i): fluent f becomes true sometime during time

interval i
A distinguished event, Start, describes the initial state

22 / 52

Event Calculus: Intervals

A time interval i.e. a pair of times (start ,end)

i.e., i = (t1, t2) is the time interval that starts at t1 and ends at t2
The list of predicates for (one version of) the event calculus:
T (f , t): fluent f is true at time t
Happens(e, i): event e happens over the time interval i
Initiates(e, f , t): event e causes fluent f to start to hold at time t
Terminates(e, f , t): event e causes fluent f to cease to hold at

time t
Clipped(f , i): fluent f ceases to be true at some point during time

interval i
Restored(f , i): fluent f becomes true sometime during time

interval i
A distinguished event, Start, describes the initial state

22 / 52

Event Calculus: Intervals [cont.]

Some definitions of the predicates (universal quantifications omitted)

Definition of T:
a fluent f holds at time t if the fluent was initiated by an event e at
some time t1 in the past and was not made false (clipped) by an
intervening event
(Happens(e, (t1, t2))∧ Initiates(e, f , t1)∧¬Clipped(f , (t1, t))∧ t1 < t)
→ T (f , t)
a fluent f does not hold at time t if the fluent was terminated by an
event at some time t2 in the past and was not restored by an event
occurring at a later time
(Happens(e, (t1, t2)) ∧ Terminates(e, f , t1) ∧ ¬Restored(f , (t1, t)) ∧
t1 < t)→ ¬T (f , t)

Extension of T to intervals:
a fluent f holds over an interval (t1, t2) if it holds on every point
within the interval:
T (f , (t1, t2))↔ [∀t .(t1 ≤ t ∧ t < t2)→ T (f , t)]

...
23 / 52

Event Calculus: Intervals [cont.]

Some definitions of the predicates (universal quantifications omitted)

Definition of T:
a fluent f holds at time t if the fluent was initiated by an event e at
some time t1 in the past and was not made false (clipped) by an
intervening event
(Happens(e, (t1, t2))∧ Initiates(e, f , t1)∧¬Clipped(f , (t1, t))∧ t1 < t)
→ T (f , t)
a fluent f does not hold at time t if the fluent was terminated by an
event at some time t2 in the past and was not restored by an event
occurring at a later time
(Happens(e, (t1, t2)) ∧ Terminates(e, f , t1) ∧ ¬Restored(f , (t1, t)) ∧
t1 < t)→ ¬T (f , t)

Extension of T to intervals:
a fluent f holds over an interval (t1, t2) if it holds on every point
within the interval:
T (f , (t1, t2))↔ [∀t .(t1 ≤ t ∧ t < t2)→ T (f , t)]

...
23 / 52

Actions in the Event Calculus

Fluents and actions are related with domain-specific axioms
similar to successor-state axioms

Ex: “the only way to use up an arrow is to shoot it”, assuming the
agent has an arrow in the initial situation:

Initiates(e,HaveArrow(a), t)↔ e = Start
Terminates(e,HaveArrow(a), t)↔ e ∈ Shootings(a)

We can extend event calculus to make it possible to represent
simultaneous events (e.g. two people needed to ride a seesaw)
exogenous events (e.g. the wind moves an object)
continuous events (e.g. bathtub water level continuously rising)
...

24 / 52

Actions in the Event Calculus

Fluents and actions are related with domain-specific axioms
similar to successor-state axioms

Ex: “the only way to use up an arrow is to shoot it”, assuming the
agent has an arrow in the initial situation:

Initiates(e,HaveArrow(a), t)↔ e = Start
Terminates(e,HaveArrow(a), t)↔ e ∈ Shootings(a)

We can extend event calculus to make it possible to represent
simultaneous events (e.g. two people needed to ride a seesaw)
exogenous events (e.g. the wind moves an object)
continuous events (e.g. bathtub water level continuously rising)
...

24 / 52

Actions in the Event Calculus

Fluents and actions are related with domain-specific axioms
similar to successor-state axioms

Ex: “the only way to use up an arrow is to shoot it”, assuming the
agent has an arrow in the initial situation:

Initiates(e,HaveArrow(a), t)↔ e = Start
Terminates(e,HaveArrow(a), t)↔ e ∈ Shootings(a)

We can extend event calculus to make it possible to represent
simultaneous events (e.g. two people needed to ride a seesaw)
exogenous events (e.g. the wind moves an object)
continuous events (e.g. bathtub water level continuously rising)
...

24 / 52

Processes (aka Liquid Events)

Events s.t., if they happen over an interval, they also happen
over any subinterval:
((e ∈ Processes) ∧ Happens(e, (t1, t4)) ∧ (t1 < t2 < t3 < t4))→
Happens(e, (t2, t3))

Distinction between liquid and nonliquid events is analogous to
that between substances and individual objects

“(t1 < t2 < t3 < t4 < ...)” shortcut for (t1 < t2) ∧ (t2 < t3) ∧ (t3 < t4) ∧ ...

25 / 52

Processes (aka Liquid Events)

Events s.t., if they happen over an interval, they also happen
over any subinterval:
((e ∈ Processes) ∧ Happens(e, (t1, t4)) ∧ (t1 < t2 < t3 < t4))→
Happens(e, (t2, t3))

Distinction between liquid and nonliquid events is analogous to
that between substances and individual objects

“(t1 < t2 < t3 < t4 < ...)” shortcut for (t1 < t2) ∧ (t2 < t3) ∧ (t3 < t4) ∧ ...

25 / 52

Time Intervals

Two kinds of time intervals:
Extended intervals
Moments, zero duration:
Partition({Moments,ExtendedIntervals}, Intervals)
i ∈ Moments ↔ Duration(i) = Seconds(0)

Some more vocabulary:
Time(x): points in a time scale, give absolute times in seconds
Begin(i),End(i): the earliest and latest moments in an interval
Duration(i): the duration of an interval

Examples: (Start at midnight (GMT) on January 1, 1900):
Interval(i)→ Duration(i) = (Time(End(i))− Time(Begin(i)))
Time(Begin(AD1900)) = Seconds(0)
Time(Begin(AD2001)) = Seconds(3187324800)
Time(End(AD2001)) = Seconds(3218860800)
Duration(AD2001) = Seconds(31536000)
Time(Begin(AD2001)) = Date(0,0,0,1, Jan,2001)
Date(0,20,21,24,1,1995) = Seconds(3000000000)

26 / 52

Time Intervals

Two kinds of time intervals:
Extended intervals
Moments, zero duration:
Partition({Moments,ExtendedIntervals}, Intervals)
i ∈ Moments ↔ Duration(i) = Seconds(0)

Some more vocabulary:
Time(x): points in a time scale, give absolute times in seconds
Begin(i),End(i): the earliest and latest moments in an interval
Duration(i): the duration of an interval

Examples: (Start at midnight (GMT) on January 1, 1900):
Interval(i)→ Duration(i) = (Time(End(i))− Time(Begin(i)))
Time(Begin(AD1900)) = Seconds(0)
Time(Begin(AD2001)) = Seconds(3187324800)
Time(End(AD2001)) = Seconds(3218860800)
Duration(AD2001) = Seconds(31536000)
Time(Begin(AD2001)) = Date(0,0,0,1, Jan,2001)
Date(0,20,21,24,1,1995) = Seconds(3000000000)

26 / 52

Time Intervals

Two kinds of time intervals:
Extended intervals
Moments, zero duration:
Partition({Moments,ExtendedIntervals}, Intervals)
i ∈ Moments ↔ Duration(i) = Seconds(0)

Some more vocabulary:
Time(x): points in a time scale, give absolute times in seconds
Begin(i),End(i): the earliest and latest moments in an interval
Duration(i): the duration of an interval

Examples: (Start at midnight (GMT) on January 1, 1900):
Interval(i)→ Duration(i) = (Time(End(i))− Time(Begin(i)))
Time(Begin(AD1900)) = Seconds(0)
Time(Begin(AD2001)) = Seconds(3187324800)
Time(End(AD2001)) = Seconds(3218860800)
Duration(AD2001) = Seconds(31536000)
Time(Begin(AD2001)) = Date(0,0,0,1, Jan,2001)
Date(0,20,21,24,1,1995) = Seconds(3000000000)

26 / 52

Allen’s Interval Algebra

(c© S. Russell & P. Norwig, AIMA)
27 / 52

Allen’s Interval Algebra: Example

Meets(ReignOf (GeorgeVI),ReignOf (ElizabethII))
Overlap(Fifties,ReignOf (Elvis))
Begin(Fifties) = Begin(AD1950)
End(Fifties) = End(AD1959)

Note
Overlap(., .) is not symmetric: Overlap(i , j) 6⇐⇒ Overlap(j , i)

28 / 52

Physical Objects as Generalized Event

Physical objects, when their properties change in time, are better
represented as events with a duration
Ex: President(USA) have different properties in different periods
Proposed solution: President(USA) denotes a single (abstract)
object that consists of different people at different times

T (Equals(President(USA),GeorgeWashington),AD1790)
T (Equals(President(USA), JohnAdams),AD1800)

”Equals”, not “=”:
a predicate cannot be
the argument of another
predicate in FOL
Not “President(USA, t)”:
time separate from fluents

(c© S. Russell & P. Norwig, AIMA)

29 / 52

Physical Objects as Generalized Event

Physical objects, when their properties change in time, are better
represented as events with a duration
Ex: President(USA) have different properties in different periods
Proposed solution: President(USA) denotes a single (abstract)
object that consists of different people at different times

T (Equals(President(USA),GeorgeWashington),AD1790)
T (Equals(President(USA), JohnAdams),AD1800)

”Equals”, not “=”:
a predicate cannot be
the argument of another
predicate in FOL
Not “President(USA, t)”:
time separate from fluents

(c© S. Russell & P. Norwig, AIMA)

29 / 52

Physical Objects as Generalized Event

Physical objects, when their properties change in time, are better
represented as events with a duration
Ex: President(USA) have different properties in different periods
Proposed solution: President(USA) denotes a single (abstract)
object that consists of different people at different times

T (Equals(President(USA),GeorgeWashington),AD1790)
T (Equals(President(USA), JohnAdams),AD1800)

”Equals”, not “=”:
a predicate cannot be
the argument of another
predicate in FOL
Not “President(USA, t)”:
time separate from fluents

(c© S. Russell & P. Norwig, AIMA)

29 / 52

Physical Objects as Generalized Event

Physical objects, when their properties change in time, are better
represented as events with a duration
Ex: President(USA) have different properties in different periods
Proposed solution: President(USA) denotes a single (abstract)
object that consists of different people at different times

T (Equals(President(USA),GeorgeWashington),AD1790)
T (Equals(President(USA), JohnAdams),AD1800)

”Equals”, not “=”:
a predicate cannot be
the argument of another
predicate in FOL
Not “President(USA, t)”:
time separate from fluents

(c© S. Russell & P. Norwig, AIMA)

29 / 52

Physical Objects as Generalized Event

Physical objects, when their properties change in time, are better
represented as events with a duration
Ex: President(USA) have different properties in different periods
Proposed solution: President(USA) denotes a single (abstract)
object that consists of different people at different times

T (Equals(President(USA),GeorgeWashington),AD1790)
T (Equals(President(USA), JohnAdams),AD1800)

”Equals”, not “=”:
a predicate cannot be
the argument of another
predicate in FOL
Not “President(USA, t)”:
time separate from fluents

(c© S. Russell & P. Norwig, AIMA)

29 / 52

Outline

1 Ontologies and Ontological Engineering

2 Categories and Objects

3 Events

4 Reasoning about Knowledge

5 Reasoning about Categories
Semantic Networks
Description Logics

30 / 52

Agents’ Attitudes

Intelligence is intrinsically social: agents need to negotiate and
coordinate with other agents
In multi-agents scenarios, to predict what other agents will do,
we need methods to model mental states of other agents

representations of other agents’ knowledge (and beliefs, goals)
Agent’s Propositional attitudes: Knows, Believes, Wants,...

ex “Lois Knows that Superman can fly”

Problem
Propositional attitudes do not behave as regular predicates

issue: Referential opacity vs. referential transparency

31 / 52

Agents’ Attitudes

Intelligence is intrinsically social: agents need to negotiate and
coordinate with other agents
In multi-agents scenarios, to predict what other agents will do,
we need methods to model mental states of other agents

representations of other agents’ knowledge (and beliefs, goals)
Agent’s Propositional attitudes: Knows, Believes, Wants,...

ex “Lois Knows that Superman can fly”

Problem
Propositional attitudes do not behave as regular predicates

issue: Referential opacity vs. referential transparency

31 / 52

Agents’ Attitudes

Intelligence is intrinsically social: agents need to negotiate and
coordinate with other agents
In multi-agents scenarios, to predict what other agents will do,
we need methods to model mental states of other agents

representations of other agents’ knowledge (and beliefs, goals)
Agent’s Propositional attitudes: Knows, Believes, Wants,...

ex “Lois Knows that Superman can fly”

Problem
Propositional attitudes do not behave as regular predicates

issue: Referential opacity vs. referential transparency

31 / 52

Agents’ Attitudes

Intelligence is intrinsically social: agents need to negotiate and
coordinate with other agents
In multi-agents scenarios, to predict what other agents will do,
we need methods to model mental states of other agents

representations of other agents’ knowledge (and beliefs, goals)
Agent’s Propositional attitudes: Knows, Believes, Wants,...

ex “Lois Knows that Superman can fly”

Problem
Propositional attitudes do not behave as regular predicates

issue: Referential opacity vs. referential transparency

31 / 52

Referential opacity vs. transparency

Consider the assertion “Lois knows that Superman can fly”
Consider the FOL formalization:
Knows(Lois,CanFly(Superman))

Minor Problem: CanFly(Superman) is a formula
=⇒ cannot occur as argument of a predicate
=⇒ must apply reification to make it a term (as with event calculus)
Major Problem (Referential Transparency of FOL):

since Superman is Clark Kent (but Lois doesn’t know it!), FOL
allows to conclude “Lois knows that Clark Kent can fly”:
Superman=Clark ∧ Knows(Lois,CanFly(Superman))
|=FOL Knows(Lois,CanFly(Clark))

=⇒ Wrong inference! (Lois doesn’t know Clark Kent can fly!)

Hint: FOL predicates transparent to equality reasoning:
t = s ∧ P(s, ...) |=FOL P(t , ...)

Need a logic which is opaque to equality reasoning
(aka Referential Opacity): Modal Logics

32 / 52

Referential opacity vs. transparency

Consider the assertion “Lois knows that Superman can fly”
Consider the FOL formalization:
Knows(Lois,CanFly(Superman))

Minor Problem: CanFly(Superman) is a formula
=⇒ cannot occur as argument of a predicate
=⇒ must apply reification to make it a term (as with event calculus)
Major Problem (Referential Transparency of FOL):

since Superman is Clark Kent (but Lois doesn’t know it!), FOL
allows to conclude “Lois knows that Clark Kent can fly”:
Superman=Clark ∧ Knows(Lois,CanFly(Superman))
|=FOL Knows(Lois,CanFly(Clark))

=⇒ Wrong inference! (Lois doesn’t know Clark Kent can fly!)

Hint: FOL predicates transparent to equality reasoning:
t = s ∧ P(s, ...) |=FOL P(t , ...)

Need a logic which is opaque to equality reasoning
(aka Referential Opacity): Modal Logics

32 / 52

Referential opacity vs. transparency

Consider the assertion “Lois knows that Superman can fly”
Consider the FOL formalization:
Knows(Lois,CanFly(Superman))

Minor Problem: CanFly(Superman) is a formula
=⇒ cannot occur as argument of a predicate
=⇒ must apply reification to make it a term (as with event calculus)
Major Problem (Referential Transparency of FOL):

since Superman is Clark Kent (but Lois doesn’t know it!), FOL
allows to conclude “Lois knows that Clark Kent can fly”:
Superman=Clark ∧ Knows(Lois,CanFly(Superman))
|=FOL Knows(Lois,CanFly(Clark))

=⇒ Wrong inference! (Lois doesn’t know Clark Kent can fly!)

Hint: FOL predicates transparent to equality reasoning:
t = s ∧ P(s, ...) |=FOL P(t , ...)

Need a logic which is opaque to equality reasoning
(aka Referential Opacity): Modal Logics

32 / 52

Referential opacity vs. transparency

Consider the assertion “Lois knows that Superman can fly”
Consider the FOL formalization:
Knows(Lois,CanFly(Superman))

Minor Problem: CanFly(Superman) is a formula
=⇒ cannot occur as argument of a predicate
=⇒ must apply reification to make it a term (as with event calculus)
Major Problem (Referential Transparency of FOL):

since Superman is Clark Kent (but Lois doesn’t know it!), FOL
allows to conclude “Lois knows that Clark Kent can fly”:
Superman=Clark ∧ Knows(Lois,CanFly(Superman))
|=FOL Knows(Lois,CanFly(Clark))

=⇒ Wrong inference! (Lois doesn’t know Clark Kent can fly!)

Hint: FOL predicates transparent to equality reasoning:
t = s ∧ P(s, ...) |=FOL P(t , ...)

Need a logic which is opaque to equality reasoning
(aka Referential Opacity): Modal Logics

32 / 52

Referential opacity vs. transparency

Consider the assertion “Lois knows that Superman can fly”
Consider the FOL formalization:
Knows(Lois,CanFly(Superman))

Minor Problem: CanFly(Superman) is a formula
=⇒ cannot occur as argument of a predicate
=⇒ must apply reification to make it a term (as with event calculus)
Major Problem (Referential Transparency of FOL):

since Superman is Clark Kent (but Lois doesn’t know it!), FOL
allows to conclude “Lois knows that Clark Kent can fly”:
Superman=Clark ∧ Knows(Lois,CanFly(Superman))
|=FOL Knows(Lois,CanFly(Clark))

=⇒ Wrong inference! (Lois doesn’t know Clark Kent can fly!)

Hint: FOL predicates transparent to equality reasoning:
t = s ∧ P(s, ...) |=FOL P(t , ...)

Need a logic which is opaque to equality reasoning
(aka Referential Opacity): Modal Logics

32 / 52

Referential opacity vs. transparency

Consider the assertion “Lois knows that Superman can fly”
Consider the FOL formalization:
Knows(Lois,CanFly(Superman))

Minor Problem: CanFly(Superman) is a formula
=⇒ cannot occur as argument of a predicate
=⇒ must apply reification to make it a term (as with event calculus)
Major Problem (Referential Transparency of FOL):

since Superman is Clark Kent (but Lois doesn’t know it!), FOL
allows to conclude “Lois knows that Clark Kent can fly”:
Superman=Clark ∧ Knows(Lois,CanFly(Superman))
|=FOL Knows(Lois,CanFly(Clark))

=⇒ Wrong inference! (Lois doesn’t know Clark Kent can fly!)

Hint: FOL predicates transparent to equality reasoning:
t = s ∧ P(s, ...) |=FOL P(t , ...)

Need a logic which is opaque to equality reasoning
(aka Referential Opacity): Modal Logics

32 / 52

Modal Logics

Modal logics include special modal operators that take formulas
(not terms!) as arguments

“A knows P” is represented with KAP (P formula, not term!)
ex: “Lois knows that Superman can fly”: KLoisCanFly(Superman)
ex: “Lois knows Klark Kent knows if he is Superman or not”:
KLois(KClark Identity(Superman,Clark) ∨

KClark¬Identity(Superman,Clark))

The following axiom holds in all (normal) modal logics:
K : (KAφ ∧ KA(φ→ ψ)→ KAψ (distribution axiom)
=⇒ A is able to perform propositional inference

note: KA(P ∨Q) 6|= KAP ∨ KAQ (e.g. KA(P ∨ ¬P) 6|= KAP ∨ KA¬P)
The following axioms holds in some (normal) modal logics:
T : KAϕ→ ϕ (knowledge axiom)
4 : KAϕ→ KAKAϕ (positive-introspection axiom)
5 : ¬KAϕ→ KA¬KAϕ (negative-introspection axiom)
...
Referential Opacity of modal logics:
Superman=Clark ∧ KLoisCanFly(Superman) 6|= KLoisCanFly(Clark)

Reasoning in (propositional) Modal logics is NP-hard
33 / 52

Modal Logics

Modal logics include special modal operators that take formulas
(not terms!) as arguments

“A knows P” is represented with KAP (P formula, not term!)
ex: “Lois knows that Superman can fly”: KLoisCanFly(Superman)
ex: “Lois knows Klark Kent knows if he is Superman or not”:
KLois(KClark Identity(Superman,Clark) ∨

KClark¬Identity(Superman,Clark))

The following axiom holds in all (normal) modal logics:
K : (KAφ ∧ KA(φ→ ψ)→ KAψ (distribution axiom)
=⇒ A is able to perform propositional inference

note: KA(P ∨Q) 6|= KAP ∨ KAQ (e.g. KA(P ∨ ¬P) 6|= KAP ∨ KA¬P)
The following axioms holds in some (normal) modal logics:
T : KAϕ→ ϕ (knowledge axiom)
4 : KAϕ→ KAKAϕ (positive-introspection axiom)
5 : ¬KAϕ→ KA¬KAϕ (negative-introspection axiom)
...
Referential Opacity of modal logics:
Superman=Clark ∧ KLoisCanFly(Superman) 6|= KLoisCanFly(Clark)

Reasoning in (propositional) Modal logics is NP-hard
33 / 52

Modal Logics

Modal logics include special modal operators that take formulas
(not terms!) as arguments

“A knows P” is represented with KAP (P formula, not term!)
ex: “Lois knows that Superman can fly”: KLoisCanFly(Superman)
ex: “Lois knows Klark Kent knows if he is Superman or not”:
KLois(KClark Identity(Superman,Clark) ∨

KClark¬Identity(Superman,Clark))

The following axiom holds in all (normal) modal logics:
K : (KAφ ∧ KA(φ→ ψ)→ KAψ (distribution axiom)
=⇒ A is able to perform propositional inference

note: KA(P ∨Q) 6|= KAP ∨ KAQ (e.g. KA(P ∨ ¬P) 6|= KAP ∨ KA¬P)
The following axioms holds in some (normal) modal logics:
T : KAϕ→ ϕ (knowledge axiom)
4 : KAϕ→ KAKAϕ (positive-introspection axiom)
5 : ¬KAϕ→ KA¬KAϕ (negative-introspection axiom)
...
Referential Opacity of modal logics:
Superman=Clark ∧ KLoisCanFly(Superman) 6|= KLoisCanFly(Clark)

Reasoning in (propositional) Modal logics is NP-hard
33 / 52

Modal Logics

Modal logics include special modal operators that take formulas
(not terms!) as arguments

“A knows P” is represented with KAP (P formula, not term!)
ex: “Lois knows that Superman can fly”: KLoisCanFly(Superman)
ex: “Lois knows Klark Kent knows if he is Superman or not”:
KLois(KClark Identity(Superman,Clark) ∨

KClark¬Identity(Superman,Clark))

The following axiom holds in all (normal) modal logics:
K : (KAφ ∧ KA(φ→ ψ)→ KAψ (distribution axiom)
=⇒ A is able to perform propositional inference

note: KA(P ∨Q) 6|= KAP ∨ KAQ (e.g. KA(P ∨ ¬P) 6|= KAP ∨ KA¬P)
The following axioms holds in some (normal) modal logics:
T : KAϕ→ ϕ (knowledge axiom)
4 : KAϕ→ KAKAϕ (positive-introspection axiom)
5 : ¬KAϕ→ KA¬KAϕ (negative-introspection axiom)
...
Referential Opacity of modal logics:
Superman=Clark ∧ KLoisCanFly(Superman) 6|= KLoisCanFly(Clark)

Reasoning in (propositional) Modal logics is NP-hard
33 / 52

Modal Logics

Modal logics include special modal operators that take formulas
(not terms!) as arguments

“A knows P” is represented with KAP (P formula, not term!)
ex: “Lois knows that Superman can fly”: KLoisCanFly(Superman)
ex: “Lois knows Klark Kent knows if he is Superman or not”:
KLois(KClark Identity(Superman,Clark) ∨

KClark¬Identity(Superman,Clark))

The following axiom holds in all (normal) modal logics:
K : (KAφ ∧ KA(φ→ ψ)→ KAψ (distribution axiom)
=⇒ A is able to perform propositional inference

note: KA(P ∨Q) 6|= KAP ∨ KAQ (e.g. KA(P ∨ ¬P) 6|= KAP ∨ KA¬P)
The following axioms holds in some (normal) modal logics:
T : KAϕ→ ϕ (knowledge axiom)
4 : KAϕ→ KAKAϕ (positive-introspection axiom)
5 : ¬KAϕ→ KA¬KAϕ (negative-introspection axiom)
...
Referential Opacity of modal logics:
Superman=Clark ∧ KLoisCanFly(Superman) 6|= KLoisCanFly(Clark)

Reasoning in (propositional) Modal logics is NP-hard
33 / 52

Semantics of Modal Logics

A model (Kripke model) is a collection of possible worlds wi
worlds are connected in a graph by accessibility relations
one relation for each distinct modal operator KA

w1 is accessible from w0 wrt. KA if everything which holds in w1
is consistent with what A knows in w0

(written “Acc(KA,w0,w1)” or “w0
KA7−→ w1”)

=⇒ KAϕ holds in wo iff ϕ holds in every world wi accessible from w0
the more is known in w0, the less worlds are accessible from w0
two worlds may differ also for what is an agent knows there

Different modal logics differ by different properties of Acc(KA, ...)

T : KAϕ→ ϕ holds iff Acc(KA, ...) reflexive
4 : KAϕ→ KAKAϕ holds iff Acc(KA, ...) transitive
5 : ¬KAϕ→ KA¬KAϕ holds iff Acc(KA, ...) euclidean
...

Notice the difference:
KA¬P: agent A knows that P does not hold
¬KAP: agent A does not know if P holds (or not)

34 / 52

Semantics of Modal Logics

A model (Kripke model) is a collection of possible worlds wi
worlds are connected in a graph by accessibility relations
one relation for each distinct modal operator KA

w1 is accessible from w0 wrt. KA if everything which holds in w1
is consistent with what A knows in w0

(written “Acc(KA,w0,w1)” or “w0
KA7−→ w1”)

=⇒ KAϕ holds in wo iff ϕ holds in every world wi accessible from w0
the more is known in w0, the less worlds are accessible from w0
two worlds may differ also for what is an agent knows there

Different modal logics differ by different properties of Acc(KA, ...)

T : KAϕ→ ϕ holds iff Acc(KA, ...) reflexive
4 : KAϕ→ KAKAϕ holds iff Acc(KA, ...) transitive
5 : ¬KAϕ→ KA¬KAϕ holds iff Acc(KA, ...) euclidean
...

Notice the difference:
KA¬P: agent A knows that P does not hold
¬KAP: agent A does not know if P holds (or not)

34 / 52

Semantics of Modal Logics

A model (Kripke model) is a collection of possible worlds wi
worlds are connected in a graph by accessibility relations
one relation for each distinct modal operator KA

w1 is accessible from w0 wrt. KA if everything which holds in w1
is consistent with what A knows in w0

(written “Acc(KA,w0,w1)” or “w0
KA7−→ w1”)

=⇒ KAϕ holds in wo iff ϕ holds in every world wi accessible from w0
the more is known in w0, the less worlds are accessible from w0
two worlds may differ also for what is an agent knows there

Different modal logics differ by different properties of Acc(KA, ...)

T : KAϕ→ ϕ holds iff Acc(KA, ...) reflexive
4 : KAϕ→ KAKAϕ holds iff Acc(KA, ...) transitive
5 : ¬KAϕ→ KA¬KAϕ holds iff Acc(KA, ...) euclidean
...

Notice the difference:
KA¬P: agent A knows that P does not hold
¬KAP: agent A does not know if P holds (or not)

34 / 52

Semantics of Modal Logics

A model (Kripke model) is a collection of possible worlds wi
worlds are connected in a graph by accessibility relations
one relation for each distinct modal operator KA

w1 is accessible from w0 wrt. KA if everything which holds in w1
is consistent with what A knows in w0

(written “Acc(KA,w0,w1)” or “w0
KA7−→ w1”)

=⇒ KAϕ holds in wo iff ϕ holds in every world wi accessible from w0
the more is known in w0, the less worlds are accessible from w0
two worlds may differ also for what is an agent knows there

Different modal logics differ by different properties of Acc(KA, ...)

T : KAϕ→ ϕ holds iff Acc(KA, ...) reflexive
4 : KAϕ→ KAKAϕ holds iff Acc(KA, ...) transitive
5 : ¬KAϕ→ KA¬KAϕ holds iff Acc(KA, ...) euclidean
...

Notice the difference:
KA¬P: agent A knows that P does not hold
¬KAP: agent A does not know if P holds (or not)

34 / 52

Semantics of Modal Logics: Example

Accessibility relations: KSuperman (solid arrows) and KLois (dotted arrows).
Legenda:

R: “the weather report says tomorrow will rain”
I: “Superman’s secret identity is Clark Kent.”
all worlds are self-accessible (self-loop arrows not reported)

Common knowledge:
Superman knows his own identity: KSupermanI, and
(a) neither he nor Lois has seen the weather report:
(¬KLoisR ∧ ¬KLois¬R) ∧ (¬KSupermanR ∧ ¬KSuperman¬R)
KLois(KSupermanI ∨ KSuperman¬I)

(c© S. Russell & P. Norwig, AIMA)
35 / 52

Semantics of Modal Logics: Example

Accessibility relations: KSuperman (solid arrows) and KLois (dotted arrows).
Legenda:

R: “the weather report says tomorrow will rain”
I: “Superman’s secret identity is Clark Kent.”
all worlds are self-accessible (self-loop arrows not reported)

Common knowledge:
Superman knows his own identity: KSupermanI, and
(b) Lois has seen the weather report, Superman has not:
(KLoisR ∨ KLois¬R)∧(¬KSupermanR ∧ ¬KSuperman¬R)
KLois(KSupermanI ∨ KSuperman¬I)∧KSuperman(KLoisR ∨ KLois¬R)

(c© S. Russell & P. Norwig, AIMA)
35 / 52

Semantics of Modal Logics: Example

Accessibility relations: KSuperman (solid arrows) and KLois (dotted arrows).
Legenda:

R: “the weather report says tomorrow will rain”
I: “Superman’s secret identity is Clark Kent.”
all worlds are self-accessible (self-loop arrows not reported)

Common knowledge:
Superman knows his own identity: KSupermanI, and
(c) Lois may or may not have seen the weather report, S. has not:
((¬KLoisR∧¬KLois¬R)∨(KLoisR∨KLois¬R))∧(¬KSup.R ∧ ¬KSup.¬R)
KLois(KSupermanI ∨ KSuperman¬I)

(c© S. Russell & P. Norwig, AIMA) 35 / 52

Semantics of Modal Logics: Example

Accessibility relations: KSuperman (solid arrows) and KLois (dotted arrows).
Legenda:

R: “the weather report says tomorrow will rain”
I: “Superman’s secret identity is Clark Kent.”
all worlds are self-accessible (self-loop arrows not reported)

Common knowledge:
Superman knows his own identity: KSupermanI, and
(c) Lois may or may not have seen the weather report, S. has not:
((¬KLoisR∧¬KLois¬R)∨(KLoisR∨KLois¬R))∧(¬KSup.R ∧ ¬KSup.¬R)
KLois(KSupermanI ∨ KSuperman¬I)

(c© S. Russell & P. Norwig, AIMA) 35 / 52

Exercise

Consider the previous example.
For each scenario (a), (b) and (c)

define doubly-nested knowledge in terms of

[¬]KLois[¬]KLois[¬]I,
[¬]KLois[¬]KLois[¬]R,
[¬]KSup.[¬]KSup.[¬]I,
[¬]KSup.[¬]KSup.[¬]R,

36 / 52

Exercise

Why does the third logician answers “Yes”?
Formalize and solve the problem by means of modal logic

(Courtesy of Maria Simi, UniPI)

37 / 52

Outline

1 Ontologies and Ontological Engineering

2 Categories and Objects

3 Events

4 Reasoning about Knowledge

5 Reasoning about Categories
Semantic Networks
Description Logics

38 / 52

Outline

1 Ontologies and Ontological Engineering

2 Categories and Objects

3 Events

4 Reasoning about Knowledge

5 Reasoning about Categories
Semantic Networks
Description Logics

39 / 52

Reasoning Systems for Categories

Q. How to organize and reason with categories?
Semantic Networks

allow to visualize knowledge bases
efficient algorithms for category membership inference
limited expressivity
many variants

Description Logics (DLs)
formal language for constructing and combining category
definitions
(relatively) efficient algorithms to decide subset and superset
relationships between categories
many DLs

up to very high expressivity
up to very high complexity (e.g., DOUBLY-EXPTIME)

40 / 52

Reasoning Systems for Categories

Q. How to organize and reason with categories?
Semantic Networks

allow to visualize knowledge bases
efficient algorithms for category membership inference
limited expressivity
many variants

Description Logics (DLs)
formal language for constructing and combining category
definitions
(relatively) efficient algorithms to decide subset and superset
relationships between categories
many DLs

up to very high expressivity
up to very high complexity (e.g., DOUBLY-EXPTIME)

40 / 52

Reasoning Systems for Categories

Q. How to organize and reason with categories?
Semantic Networks

allow to visualize knowledge bases
efficient algorithms for category membership inference
limited expressivity
many variants

Description Logics (DLs)
formal language for constructing and combining category
definitions
(relatively) efficient algorithms to decide subset and superset
relationships between categories
many DLs

up to very high expressivity
up to very high complexity (e.g., DOUBLY-EXPTIME)

40 / 52

Semantic Networks

Allow for representing individual objects, categories of objects,
and relations among objects
A Semantic Network is a graph where:

nodes, with a label, correspond to concepts
arcs, labelled and directed, correspond to binary relations
between concepts (aka roles)

Two kinds of nodes:
Generic concepts, corresponding to categories/classes
Individual concepts, corresponding to individuals

Two special relations are always present, with different names
IS-A, aka SubsetOf/SubclassOf (subclass)
InstanceOf aka MemberOf (membership)

Inheritance detection straightforward
Ability to represent default values for categories
Limited expressive power: cannot represent negation,
disjunction, nested function symbols, existential quantification

41 / 52

Semantic Networks

Allow for representing individual objects, categories of objects,
and relations among objects
A Semantic Network is a graph where:

nodes, with a label, correspond to concepts
arcs, labelled and directed, correspond to binary relations
between concepts (aka roles)

Two kinds of nodes:
Generic concepts, corresponding to categories/classes
Individual concepts, corresponding to individuals

Two special relations are always present, with different names
IS-A, aka SubsetOf/SubclassOf (subclass)
InstanceOf aka MemberOf (membership)

Inheritance detection straightforward
Ability to represent default values for categories
Limited expressive power: cannot represent negation,
disjunction, nested function symbols, existential quantification

41 / 52

Semantic Networks

Allow for representing individual objects, categories of objects,
and relations among objects
A Semantic Network is a graph where:

nodes, with a label, correspond to concepts
arcs, labelled and directed, correspond to binary relations
between concepts (aka roles)

Two kinds of nodes:
Generic concepts, corresponding to categories/classes
Individual concepts, corresponding to individuals

Two special relations are always present, with different names
IS-A, aka SubsetOf/SubclassOf (subclass)
InstanceOf aka MemberOf (membership)

Inheritance detection straightforward
Ability to represent default values for categories
Limited expressive power: cannot represent negation,
disjunction, nested function symbols, existential quantification

41 / 52

Semantic Networks

Allow for representing individual objects, categories of objects,
and relations among objects
A Semantic Network is a graph where:

nodes, with a label, correspond to concepts
arcs, labelled and directed, correspond to binary relations
between concepts (aka roles)

Two kinds of nodes:
Generic concepts, corresponding to categories/classes
Individual concepts, corresponding to individuals

Two special relations are always present, with different names
IS-A, aka SubsetOf/SubclassOf (subclass)
InstanceOf aka MemberOf (membership)

Inheritance detection straightforward
Ability to represent default values for categories
Limited expressive power: cannot represent negation,
disjunction, nested function symbols, existential quantification

41 / 52

Semantic Networks

Allow for representing individual objects, categories of objects,
and relations among objects
A Semantic Network is a graph where:

nodes, with a label, correspond to concepts
arcs, labelled and directed, correspond to binary relations
between concepts (aka roles)

Two kinds of nodes:
Generic concepts, corresponding to categories/classes
Individual concepts, corresponding to individuals

Two special relations are always present, with different names
IS-A, aka SubsetOf/SubclassOf (subclass)
InstanceOf aka MemberOf (membership)

Inheritance detection straightforward
Ability to represent default values for categories
Limited expressive power: cannot represent negation,
disjunction, nested function symbols, existential quantification

41 / 52

Semantic Networks

Allow for representing individual objects, categories of objects,
and relations among objects
A Semantic Network is a graph where:

nodes, with a label, correspond to concepts
arcs, labelled and directed, correspond to binary relations
between concepts (aka roles)

Two kinds of nodes:
Generic concepts, corresponding to categories/classes
Individual concepts, corresponding to individuals

Two special relations are always present, with different names
IS-A, aka SubsetOf/SubclassOf (subclass)
InstanceOf aka MemberOf (membership)

Inheritance detection straightforward
Ability to represent default values for categories
Limited expressive power: cannot represent negation,
disjunction, nested function symbols, existential quantification

41 / 52

Semantic Networks

Allow for representing individual objects, categories of objects,
and relations among objects
A Semantic Network is a graph where:

nodes, with a label, correspond to concepts
arcs, labelled and directed, correspond to binary relations
between concepts (aka roles)

Two kinds of nodes:
Generic concepts, corresponding to categories/classes
Individual concepts, corresponding to individuals

Two special relations are always present, with different names
IS-A, aka SubsetOf/SubclassOf (subclass)
InstanceOf aka MemberOf (membership)

Inheritance detection straightforward
Ability to represent default values for categories
Limited expressive power: cannot represent negation,
disjunction, nested function symbols, existential quantification

41 / 52

Semantic Networks: Example

Notice
“HasMother” is a relation between persons (individuals)
(categories do not have mothers)
“HasMother” (double-boxed notation) means
∀x .(x ∈Persons → [∀y .(HasMother(x , y)→ y ∈FemalePersons)])
similar for “Legs”

(c© S. Russell & P. Norwig, AIMA)
42 / 52

Inheritance in Semantic Networks

Inheritance conveniently
implemented as link traversal

Q. How many legs has Clyde?
=⇒ follow the INST-OF/IS-A chain

until find the property NLegs

(Courtesy of Maria Simi, UniPI)

43 / 52

Inheritance in Semantic Networks

Inheritance conveniently
implemented as link traversal

Q. How many legs has Clyde?
=⇒ follow the INST-OF/IS-A chain

until find the property NLegs

(Courtesy of Maria Simi, UniPI)

43 / 52

Inheritance in Semantic Networks

Inheritance conveniently
implemented as link traversal

Q. How many legs has Clyde?
=⇒ follow the INST-OF/IS-A chain

until find the property NLegs

(Courtesy of Maria Simi, UniPI)

43 / 52

Inheritance with Exceptions

The presence of exceptions does not create any problem with S.N.

How many legs has Pat?
Just take the most specific
information: the first that is
found going up the hierarchy

=⇒ ability to represent default
values for categories

(Courtesy of Maria Simi, UniPI)

44 / 52

Inheritance with Exceptions

The presence of exceptions does not create any problem with S.N.

How many legs has Pat?
Just take the most specific
information: the first that is
found going up the hierarchy

=⇒ ability to represent default
values for categories

(Courtesy of Maria Simi, UniPI)

44 / 52

Inheritance with Exceptions

The presence of exceptions does not create any problem with S.N.

How many legs has Pat?
Just take the most specific
information: the first that is
found going up the hierarchy

=⇒ ability to represent default
values for categories

(Courtesy of Maria Simi, UniPI)

44 / 52

Encoding N-Ary Relations

Semantic networks allow only binary relations
Q. How to represent n-ary relations?

=⇒ Reify the proposition as an event belonging to an appropriate
event category

ex “Fly17” for Fly(Shankar ,NewYork ,NewDelhi ,Yesterday)

(c© S. Russell & P. Norwig, AIMA)

45 / 52

Encoding N-Ary Relations

Semantic networks allow only binary relations
Q. How to represent n-ary relations?

=⇒ Reify the proposition as an event belonging to an appropriate
event category

ex “Fly17” for Fly(Shankar ,NewYork ,NewDelhi ,Yesterday)

(c© S. Russell & P. Norwig, AIMA)

45 / 52

Encoding N-Ary Relations

Semantic networks allow only binary relations
Q. How to represent n-ary relations?

=⇒ Reify the proposition as an event belonging to an appropriate
event category

ex “Fly17” for Fly(Shankar ,NewYork ,NewDelhi ,Yesterday)

(c© S. Russell & P. Norwig, AIMA)

45 / 52

Outline

1 Ontologies and Ontological Engineering

2 Categories and Objects

3 Events

4 Reasoning about Knowledge

5 Reasoning about Categories
Semantic Networks
Description Logics

46 / 52

Description Logics

Designed to describe definitions and properties about categories
Principal inference tasks:

Subsumption: check if one category is the subset of another
Classification: check whether an object belongs to a category
Consistency: check if category membership criteria are satisfiable

Defaults and exceptions are lost

47 / 52

Description Logics

Designed to describe definitions and properties about categories
Principal inference tasks:

Subsumption: check if one category is the subset of another
Classification: check whether an object belongs to a category
Consistency: check if category membership criteria are satisfiable

Defaults and exceptions are lost

47 / 52

Description Logics

Designed to describe definitions and properties about categories
Principal inference tasks:

Subsumption: check if one category is the subset of another
Classification: check whether an object belongs to a category
Consistency: check if category membership criteria are satisfiable

Defaults and exceptions are lost

47 / 52

Concepts, Roles, Individuals

Concepts, corresponding to unary relations
operators for the construction of complex concepts: and (u), or
(t), not (¬), all (∀), some (∃), atleast (≥ n), atmost (≤ n), ...
ex: mothers of at least three female children:
Woman u ∃hasChildren.Person u ≥3 hasChild .Female
ex: articles that have authors and whose authors are all
journalists:
Article u hasAuthor .> u ∀hasAuthor .Journalist

Roles corresponding to binary relations
ex: hasAuthor, hasChild
can be combined with operators for constructing complex roles
hasChildren ≡ hasSon t hasDaughter

Individuals (used in assertions only)
ex Mary, John

48 / 52

Concepts, Roles, Individuals

Concepts, corresponding to unary relations
operators for the construction of complex concepts: and (u), or
(t), not (¬), all (∀), some (∃), atleast (≥ n), atmost (≤ n), ...
ex: mothers of at least three female children:
Woman u ∃hasChildren.Person u ≥3 hasChild .Female
ex: articles that have authors and whose authors are all
journalists:
Article u hasAuthor .> u ∀hasAuthor .Journalist

Roles corresponding to binary relations
ex: hasAuthor, hasChild
can be combined with operators for constructing complex roles
hasChildren ≡ hasSon t hasDaughter

Individuals (used in assertions only)
ex Mary, John

48 / 52

Concepts, Roles, Individuals

Concepts, corresponding to unary relations
operators for the construction of complex concepts: and (u), or
(t), not (¬), all (∀), some (∃), atleast (≥ n), atmost (≤ n), ...
ex: mothers of at least three female children:
Woman u ∃hasChildren.Person u ≥3 hasChild .Female
ex: articles that have authors and whose authors are all
journalists:
Article u hasAuthor .> u ∀hasAuthor .Journalist

Roles corresponding to binary relations
ex: hasAuthor, hasChild
can be combined with operators for constructing complex roles
hasChildren ≡ hasSon t hasDaughter

Individuals (used in assertions only)
ex Mary, John

48 / 52

T-Boxes and A-Boxes

Terminologies (T-Boxes): sets of
concepts definitions (C1 ≡ C2)
ex: Father ≡ Man u ∃hasChild .Person
or concept generalizations (C1 v C2)
ex: Woman v Person

Assertions (A-Boxes): assert
individuals as concept members i : C,
where i is an individual and C is a concept
ex: Mary : Person, John : Father
individual pairs as relation members 〈i , j〉 : R,
where i,j are individuals and R is a relation
ex: 〈John,Mary〉 : hasChild

49 / 52

T-Boxes and A-Boxes

Terminologies (T-Boxes): sets of
concepts definitions (C1 ≡ C2)
ex: Father ≡ Man u ∃hasChild .Person
or concept generalizations (C1 v C2)
ex: Woman v Person

Assertions (A-Boxes): assert
individuals as concept members i : C,
where i is an individual and C is a concept
ex: Mary : Person, John : Father
individual pairs as relation members 〈i , j〉 : R,
where i,j are individuals and R is a relation
ex: 〈John,Mary〉 : hasChild

49 / 52

T-Box: Example (Logic ALCN)

(Courtesy of Maria Simi, UniPI)

50 / 52

Reasoning Services for DLs

Design and management of ontologies
consistency checking of concepts, creation of hierarchies

Ontology integration
Relations between concepts of different ontologies
Consistency of integrated hierarchies

Queries
Determine whether facts are consistent wrt ontologies
Determine if individuals are instances of concepts
Retrieve individuals satisfying a query (concept)
Verify if a concept is more general than another (subsumption)

51 / 52

Reasoning Services for DLs

Design and management of ontologies
consistency checking of concepts, creation of hierarchies

Ontology integration
Relations between concepts of different ontologies
Consistency of integrated hierarchies

Queries
Determine whether facts are consistent wrt ontologies
Determine if individuals are instances of concepts
Retrieve individuals satisfying a query (concept)
Verify if a concept is more general than another (subsumption)

51 / 52

Reasoning Services for DLs

Design and management of ontologies
consistency checking of concepts, creation of hierarchies

Ontology integration
Relations between concepts of different ontologies
Consistency of integrated hierarchies

Queries
Determine whether facts are consistent wrt ontologies
Determine if individuals are instances of concepts
Retrieve individuals satisfying a query (concept)
Verify if a concept is more general than another (subsumption)

51 / 52

Querying a DL Ontology: Example

All the children of John are females. Mary is a child of John.
Tim is a friend of professor Blake. Prove that Mary is a female.

A def
= {john : ∀hasChild .female, (john,mary) : hasChild ,

(blake, tim) : hasFriend ,blake : professor}
Query: mary : female (or: is A umary : ¬female unsatisfiable?)
Yes

52 / 52

Querying a DL Ontology: Example

All the children of John are females. Mary is a child of John.
Tim is a friend of professor Blake. Prove that Mary is a female.

A def
= {john : ∀hasChild .female, (john,mary) : hasChild ,

(blake, tim) : hasFriend ,blake : professor}
Query: mary : female (or: is A umary : ¬female unsatisfiable?)
Yes

52 / 52

	Ontologies and Ontological Engineering
	Categories and Objects
	Events
	Reasoning about Knowledge
	Reasoning about Categories
	Semantic Networks
	Description Logics

