
Fundamentals of Artificial Intelligence
Chapter 11: Planning in the Real World

Roberto Sebastiani

DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fai_2020/

Teaching assistant: Mauro Dragoni – dragoni@fbk.eu
http://www.maurodragoni.com/teaching/fai/

M.S. Course “Artificial Intelligence Systems”, academic year 2020-2021
last update: Monday 30th November, 2020, 13:31

Copyright notice: Most examples and images displayed in the slides of this course are taken from
[Russell & Norwig, “Artificial Intelligence, a Modern Approach”, Pearson, 3rd ed.],

including explicitly figures from the above-mentioned book, and their copyright is detained by the authors.
A few other material (text, figures, examples) is authored by (in alphabetical order):

Pieter Abbeel, Bonnie J. Dorr, Anca Dragan, Dan Klein, Nikita Kitaev, Tom Lenaerts, Michela Milano, Dana Nau, Maria
Simi, who detain its copyright. These slides cannot can be displayed in public without the permission of the author.

1 / 46

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fai_2020/
dragoni@fbk.eu
http://www.maurodragoni.com/teaching/fai/

Outline

1 Time, Schedules & Resources

2 Hierarchical Planning

3 Planning & Acting in Non-Determistic Domains
Generalities
Sensorless Planning (aka Conformant Planning)
Conditional Planning (aka Contingent Planning)

2 / 46

Outline

1 Time, Schedules & Resources

2 Hierarchical Planning

3 Planning & Acting in Non-Determistic Domains
Generalities
Sensorless Planning (aka Conformant Planning)
Conditional Planning (aka Contingent Planning)

3 / 46

Planning with Time, Schedules and Resources

Planning so far: choice of actions
Real world: Planning with time/schedules

actions occur at certain moments in time
actions have a beginning and an end
actions have a duration

=⇒ Scheduling
Real world: Planning with resources

actions may require resources
ex: limited number of staff, planes, hoists, ...

Preconditions and effects can include
logical inferences
numeric computations
interactions with other software packages

Approach “plan first, schedule later”:
planning phase: build a (partial) plan, regardless action durations
scheduling phase: add temporal info to the plan, s.t. to meet
resource and deadline constrains

4 / 46

Planning with Time, Schedules and Resources

Planning so far: choice of actions
Real world: Planning with time/schedules

actions occur at certain moments in time
actions have a beginning and an end
actions have a duration

=⇒ Scheduling
Real world: Planning with resources

actions may require resources
ex: limited number of staff, planes, hoists, ...

Preconditions and effects can include
logical inferences
numeric computations
interactions with other software packages

Approach “plan first, schedule later”:
planning phase: build a (partial) plan, regardless action durations
scheduling phase: add temporal info to the plan, s.t. to meet
resource and deadline constrains

4 / 46

Planning with Time, Schedules and Resources

Planning so far: choice of actions
Real world: Planning with time/schedules

actions occur at certain moments in time
actions have a beginning and an end
actions have a duration

=⇒ Scheduling
Real world: Planning with resources

actions may require resources
ex: limited number of staff, planes, hoists, ...

Preconditions and effects can include
logical inferences
numeric computations
interactions with other software packages

Approach “plan first, schedule later”:
planning phase: build a (partial) plan, regardless action durations
scheduling phase: add temporal info to the plan, s.t. to meet
resource and deadline constrains

4 / 46

Planning with Time, Schedules and Resources

Planning so far: choice of actions
Real world: Planning with time/schedules

actions occur at certain moments in time
actions have a beginning and an end
actions have a duration

=⇒ Scheduling
Real world: Planning with resources

actions may require resources
ex: limited number of staff, planes, hoists, ...

Preconditions and effects can include
logical inferences
numeric computations
interactions with other software packages

Approach “plan first, schedule later”:
planning phase: build a (partial) plan, regardless action durations
scheduling phase: add temporal info to the plan, s.t. to meet
resource and deadline constrains

4 / 46

Planning with Time, Schedules and Resources

Planning so far: choice of actions
Real world: Planning with time/schedules

actions occur at certain moments in time
actions have a beginning and an end
actions have a duration

=⇒ Scheduling
Real world: Planning with resources

actions may require resources
ex: limited number of staff, planes, hoists, ...

Preconditions and effects can include
logical inferences
numeric computations
interactions with other software packages

Approach “plan first, schedule later”:
planning phase: build a (partial) plan, regardless action durations
scheduling phase: add temporal info to the plan, s.t. to meet
resource and deadline constrains

4 / 46

Planning with Time & Resources: Example
Planning Phase

Init(Chassis(C1) ∧ Chassis(C2) ∧ Engine(E1,C1,30)∧
Engine(E1,C2,60) ∧Wheels(W1,C1,30) ∧Wheels(W2,C2,15))

Goal(Done(C1) ∧ Done(C2))
Action(AddEngine(e, c,d)

PRECOND : Engine(e, c,d) ∧ Chassis(c) ∧ ¬EngineIn(c)
EFFECT : EngineIn(c) ∧ Duration(d)
Consume : LugNuts(20),Use : EngineHoists(1))

Action(AddWheels(w , c,d)
PRECOND : Wheels(w , c,d) ∧ Chassis(c)
EFFECT : WheelsOn(c) ∧ Duration(d)
Consume : LugNuts(20),Use : WheelStations(1))

Action(Inspect(c,10)
PRECOND : EngineIn(c) ∧WheelsOn(c) ∧ Chassis(c)
EFFECT : Done(c) ∧ Duration(10)
Use : Inspectors(1))

Solution (partial plan):{
AddEngine(E1,C1,30) ≺ AddWheels(W1,C1,30) ≺ Inspect(C1,10);
AddEngine(E2,C2,60) ≺ AddWheels(W2,C2,15) ≺ Inspect(C2,10)

}
5 / 46

Planning with Time & Resources: Example
Planning Phase

Init(Chassis(C1) ∧ Chassis(C2) ∧ Engine(E1,C1,30)∧
Engine(E1,C2,60) ∧Wheels(W1,C1,30) ∧Wheels(W2,C2,15))

Goal(Done(C1) ∧ Done(C2))
Action(AddEngine(e, c,d)

PRECOND : Engine(e, c,d) ∧ Chassis(c) ∧ ¬EngineIn(c)
EFFECT : EngineIn(c) ∧ Duration(d)
Consume : LugNuts(20),Use : EngineHoists(1))

Action(AddWheels(w , c,d)
PRECOND : Wheels(w , c,d) ∧ Chassis(c)
EFFECT : WheelsOn(c) ∧ Duration(d)
Consume : LugNuts(20),Use : WheelStations(1))

Action(Inspect(c,10)
PRECOND : EngineIn(c) ∧WheelsOn(c) ∧ Chassis(c)
EFFECT : Done(c) ∧ Duration(10)
Use : Inspectors(1))

Solution (partial plan):{
AddEngine(E1,C1,30) ≺ AddWheels(W1,C1,30) ≺ Inspect(C1,10);
AddEngine(E2,C2,60) ≺ AddWheels(W2,C2,15) ≺ Inspect(C2,10)

}
5 / 46

Planning with Time & Resources: Example
Planning Phase

Init(Chassis(C1) ∧ Chassis(C2) ∧ Engine(E1,C1,30)∧
Engine(E1,C2,60) ∧Wheels(W1,C1,30) ∧Wheels(W2,C2,15))

Goal(Done(C1) ∧ Done(C2))
Action(AddEngine(e, c,d)

PRECOND : Engine(e, c,d) ∧ Chassis(c) ∧ ¬EngineIn(c)
EFFECT : EngineIn(c) ∧ Duration(d)
Consume : LugNuts(20),Use : EngineHoists(1))

Action(AddWheels(w , c,d)
PRECOND : Wheels(w , c,d) ∧ Chassis(c)
EFFECT : WheelsOn(c) ∧ Duration(d)
Consume : LugNuts(20),Use : WheelStations(1))

Action(Inspect(c,10)
PRECOND : EngineIn(c) ∧WheelsOn(c) ∧ Chassis(c)
EFFECT : Done(c) ∧ Duration(10)
Use : Inspectors(1))

Solution (partial plan):{
AddEngine(E1,C1,30) ≺ AddWheels(W1,C1,30) ≺ Inspect(C1,10);
AddEngine(E2,C2,60) ≺ AddWheels(W2,C2,15) ≺ Inspect(C2,10)

}
5 / 46

Planning with Time & Resources: Example
Planning Phase

Init(Chassis(C1) ∧ Chassis(C2) ∧ Engine(E1,C1,30)∧
Engine(E1,C2,60) ∧Wheels(W1,C1,30) ∧Wheels(W2,C2,15))

Goal(Done(C1) ∧ Done(C2))
Action(AddEngine(e, c,d)

PRECOND : Engine(e, c,d) ∧ Chassis(c) ∧ ¬EngineIn(c)
EFFECT : EngineIn(c) ∧ Duration(d)
Consume : LugNuts(20),Use : EngineHoists(1))

Action(AddWheels(w , c,d)
PRECOND : Wheels(w , c,d) ∧ Chassis(c)
EFFECT : WheelsOn(c) ∧ Duration(d)
Consume : LugNuts(20),Use : WheelStations(1))

Action(Inspect(c,10)
PRECOND : EngineIn(c) ∧WheelsOn(c) ∧ Chassis(c)
EFFECT : Done(c) ∧ Duration(10)
Use : Inspectors(1))

Solution (partial plan):{
AddEngine(E1,C1,30) ≺ AddWheels(W1,C1,30) ≺ Inspect(C1,10);
AddEngine(E2,C2,60) ≺ AddWheels(W2,C2,15) ≺ Inspect(C2,10)

}
5 / 46

Job-Shop Scheduling

Problem:
complete a set of jobs,
a job consists of a collection of actions with ordering constraints
an action has a duration and is subject to resource constraints
resource constraints specify

the type of resource (e.g., bolts, wrenches, or pilots),
the number of that resource required
if the resource is consumable (e.g., bolts) or reusable (e.g. pilot)
resources can be produced by actions with negative consumption

Solution (aka Schedule):
specify the start times for each action
must satisfy all the temporal ordering constraints and resource
constraints

Cost function
may be very complicate (e.g. non-linear constraints)
we assume is the total duration of the plan (makespan)

=⇒ Determine a schedule that minimizes the makespan, respecting
all temporal and resource constraints

6 / 46

Job-Shop Scheduling

Problem:
complete a set of jobs,
a job consists of a collection of actions with ordering constraints
an action has a duration and is subject to resource constraints
resource constraints specify

the type of resource (e.g., bolts, wrenches, or pilots),
the number of that resource required
if the resource is consumable (e.g., bolts) or reusable (e.g. pilot)
resources can be produced by actions with negative consumption

Solution (aka Schedule):
specify the start times for each action
must satisfy all the temporal ordering constraints and resource
constraints

Cost function
may be very complicate (e.g. non-linear constraints)
we assume is the total duration of the plan (makespan)

=⇒ Determine a schedule that minimizes the makespan, respecting
all temporal and resource constraints

6 / 46

Job-Shop Scheduling

Problem:
complete a set of jobs,
a job consists of a collection of actions with ordering constraints
an action has a duration and is subject to resource constraints
resource constraints specify

the type of resource (e.g., bolts, wrenches, or pilots),
the number of that resource required
if the resource is consumable (e.g., bolts) or reusable (e.g. pilot)
resources can be produced by actions with negative consumption

Solution (aka Schedule):
specify the start times for each action
must satisfy all the temporal ordering constraints and resource
constraints

Cost function
may be very complicate (e.g. non-linear constraints)
we assume is the total duration of the plan (makespan)

=⇒ Determine a schedule that minimizes the makespan, respecting
all temporal and resource constraints

6 / 46

Job-Shop Scheduling

Problem:
complete a set of jobs,
a job consists of a collection of actions with ordering constraints
an action has a duration and is subject to resource constraints
resource constraints specify

the type of resource (e.g., bolts, wrenches, or pilots),
the number of that resource required
if the resource is consumable (e.g., bolts) or reusable (e.g. pilot)
resources can be produced by actions with negative consumption

Solution (aka Schedule):
specify the start times for each action
must satisfy all the temporal ordering constraints and resource
constraints

Cost function
may be very complicate (e.g. non-linear constraints)
we assume is the total duration of the plan (makespan)

=⇒ Determine a schedule that minimizes the makespan, respecting
all temporal and resource constraints

6 / 46

Solving Scheduling Problems
Critical-Path Method

A path is a ordered sequence of actions from Start to Finish
The critical path is the path with maximum total duration

delaying the start of any action on it slows down the whole plan
=⇒ determines the duration of the entire plan

shortening other paths does not shorten the plan as a whole
Actions off the critical path have a window of time in which they
can be executed: [ES,LS]

ES: earliest possible start time
LS: latest possible start time
LS-ES: slack of the action

LS & ES for all actions can be computed recursively:
ES(Start) = 0
ES(B) = max{A |A≺B}(ES(A) + Duration(A))
LS(Finish) = ES(Finish)
LS(A) = min{B |B�A}(LS(B)− Duration(A))

Complexity: O(Nb), N: #actions, b: max branching factor
7 / 46

Solving Scheduling Problems
Critical-Path Method

A path is a ordered sequence of actions from Start to Finish
The critical path is the path with maximum total duration

delaying the start of any action on it slows down the whole plan
=⇒ determines the duration of the entire plan

shortening other paths does not shorten the plan as a whole
Actions off the critical path have a window of time in which they
can be executed: [ES,LS]

ES: earliest possible start time
LS: latest possible start time
LS-ES: slack of the action

LS & ES for all actions can be computed recursively:
ES(Start) = 0
ES(B) = max{A |A≺B}(ES(A) + Duration(A))
LS(Finish) = ES(Finish)
LS(A) = min{B |B�A}(LS(B)− Duration(A))

Complexity: O(Nb), N: #actions, b: max branching factor
7 / 46

Solving Scheduling Problems
Critical-Path Method

A path is a ordered sequence of actions from Start to Finish
The critical path is the path with maximum total duration

delaying the start of any action on it slows down the whole plan
=⇒ determines the duration of the entire plan

shortening other paths does not shorten the plan as a whole
Actions off the critical path have a window of time in which they
can be executed: [ES,LS]

ES: earliest possible start time
LS: latest possible start time
LS-ES: slack of the action

LS & ES for all actions can be computed recursively:
ES(Start) = 0
ES(B) = max{A |A≺B}(ES(A) + Duration(A))
LS(Finish) = ES(Finish)
LS(A) = min{B |B�A}(LS(B)− Duration(A))

Complexity: O(Nb), N: #actions, b: max branching factor
7 / 46

Solving Scheduling Problems
Critical-Path Method

A path is a ordered sequence of actions from Start to Finish
The critical path is the path with maximum total duration

delaying the start of any action on it slows down the whole plan
=⇒ determines the duration of the entire plan

shortening other paths does not shorten the plan as a whole
Actions off the critical path have a window of time in which they
can be executed: [ES,LS]

ES: earliest possible start time
LS: latest possible start time
LS-ES: slack of the action

LS & ES for all actions can be computed recursively:
ES(Start) = 0
ES(B) = max{A |A≺B}(ES(A) + Duration(A))
LS(Finish) = ES(Finish)
LS(A) = min{B |B�A}(LS(B)− Duration(A))

Complexity: O(Nb), N: #actions, b: max branching factor
7 / 46

Solving Scheduling Problems
Critical-Path Method

A path is a ordered sequence of actions from Start to Finish
The critical path is the path with maximum total duration

delaying the start of any action on it slows down the whole plan
=⇒ determines the duration of the entire plan

shortening other paths does not shorten the plan as a whole
Actions off the critical path have a window of time in which they
can be executed: [ES,LS]

ES: earliest possible start time
LS: latest possible start time
LS-ES: slack of the action

LS & ES for all actions can be computed recursively:
ES(Start) = 0
ES(B) = max{A |A≺B}(ES(A) + Duration(A))
LS(Finish) = ES(Finish)
LS(A) = min{B |B�A}(LS(B)− Duration(A))

Complexity: O(Nb), N: #actions, b: max branching factor
7 / 46

Solving Scheduling Problems
Critical-Path Method

A path is a ordered sequence of actions from Start to Finish
The critical path is the path with maximum total duration

delaying the start of any action on it slows down the whole plan
=⇒ determines the duration of the entire plan

shortening other paths does not shorten the plan as a whole
Actions off the critical path have a window of time in which they
can be executed: [ES,LS]

ES: earliest possible start time
LS: latest possible start time
LS-ES: slack of the action

LS & ES for all actions can be computed recursively:
ES(Start) = 0
ES(B) = max{A |A≺B}(ES(A) + Duration(A))
LS(Finish) = ES(Finish)
LS(A) = min{B |B�A}(LS(B)− Duration(A))

Complexity: O(Nb), N: #actions, b: max branching factor
7 / 46

Planning with Time & Resources: Example [cont.]

Scheduling Phase

(c© S. Russell & P. Norwig, AIMA)

8 / 46

Planning with Time & Resources: Example [cont.]

Scheduling Phase

(c© S. Russell & P. Norwig, AIMA)

9 / 46

Planning with Time & Resources: Example [cont.]

Scheduling Phase

(c© S. Russell & P. Norwig, AIMA)

9 / 46

Adding Resources

Critical-path problems (without resources) computationally easy:
conjunction of linear inequalities on the start and end times:
ex: (ES2 ≥ ES1 + duration1) ∧ (ES3 ≥ ES2 + duration2) ∧ ...

Reusable resources: R(k) (ex: Use: EngineHoists(1))
k units of resource are required by the action.
is a pre-requisite before the action can be performed.
resource can not be used for k time units by other.

Adding resources makes problems much harder
“cannot overlap” constraint is disjunction of linear inequalities
ex: ((ES2 ≥ ES1 + duration1) ∨ (ES1 ≥ ES2 + duration2)) ∧ ...

=⇒ NP-hard
Various techniques:

branch-and-bound, simulated annealing, tabu search, ...
reduction to constraint optimization problems
reduction to optimization modulo theories (combined SAT+LP)

Integrate planning and scheduling

10 / 46

Adding Resources

Critical-path problems (without resources) computationally easy:
conjunction of linear inequalities on the start and end times:
ex: (ES2 ≥ ES1 + duration1) ∧ (ES3 ≥ ES2 + duration2) ∧ ...

Reusable resources: R(k) (ex: Use: EngineHoists(1))
k units of resource are required by the action.
is a pre-requisite before the action can be performed.
resource can not be used for k time units by other.

Adding resources makes problems much harder
“cannot overlap” constraint is disjunction of linear inequalities
ex: ((ES2 ≥ ES1 + duration1) ∨ (ES1 ≥ ES2 + duration2)) ∧ ...

=⇒ NP-hard
Various techniques:

branch-and-bound, simulated annealing, tabu search, ...
reduction to constraint optimization problems
reduction to optimization modulo theories (combined SAT+LP)

Integrate planning and scheduling

10 / 46

Adding Resources

Critical-path problems (without resources) computationally easy:
conjunction of linear inequalities on the start and end times:
ex: (ES2 ≥ ES1 + duration1) ∧ (ES3 ≥ ES2 + duration2) ∧ ...

Reusable resources: R(k) (ex: Use: EngineHoists(1))
k units of resource are required by the action.
is a pre-requisite before the action can be performed.
resource can not be used for k time units by other.

Adding resources makes problems much harder
“cannot overlap” constraint is disjunction of linear inequalities
ex: ((ES2 ≥ ES1 + duration1) ∨ (ES1 ≥ ES2 + duration2)) ∧ ...

=⇒ NP-hard
Various techniques:

branch-and-bound, simulated annealing, tabu search, ...
reduction to constraint optimization problems
reduction to optimization modulo theories (combined SAT+LP)

Integrate planning and scheduling

10 / 46

Adding Resources

Critical-path problems (without resources) computationally easy:
conjunction of linear inequalities on the start and end times:
ex: (ES2 ≥ ES1 + duration1) ∧ (ES3 ≥ ES2 + duration2) ∧ ...

Reusable resources: R(k) (ex: Use: EngineHoists(1))
k units of resource are required by the action.
is a pre-requisite before the action can be performed.
resource can not be used for k time units by other.

Adding resources makes problems much harder
“cannot overlap” constraint is disjunction of linear inequalities
ex: ((ES2 ≥ ES1 + duration1) ∨ (ES1 ≥ ES2 + duration2)) ∧ ...

=⇒ NP-hard
Various techniques:

branch-and-bound, simulated annealing, tabu search, ...
reduction to constraint optimization problems
reduction to optimization modulo theories (combined SAT+LP)

Integrate planning and scheduling

10 / 46

Adding Resources

Critical-path problems (without resources) computationally easy:
conjunction of linear inequalities on the start and end times:
ex: (ES2 ≥ ES1 + duration1) ∧ (ES3 ≥ ES2 + duration2) ∧ ...

Reusable resources: R(k) (ex: Use: EngineHoists(1))
k units of resource are required by the action.
is a pre-requisite before the action can be performed.
resource can not be used for k time units by other.

Adding resources makes problems much harder
“cannot overlap” constraint is disjunction of linear inequalities
ex: ((ES2 ≥ ES1 + duration1) ∨ (ES1 ≥ ES2 + duration2)) ∧ ...

=⇒ NP-hard
Various techniques:

branch-and-bound, simulated annealing, tabu search, ...
reduction to constraint optimization problems
reduction to optimization modulo theories (combined SAT+LP)

Integrate planning and scheduling

10 / 46

Adding Resources

Critical-path problems (without resources) computationally easy:
conjunction of linear inequalities on the start and end times:
ex: (ES2 ≥ ES1 + duration1) ∧ (ES3 ≥ ES2 + duration2) ∧ ...

Reusable resources: R(k) (ex: Use: EngineHoists(1))
k units of resource are required by the action.
is a pre-requisite before the action can be performed.
resource can not be used for k time units by other.

Adding resources makes problems much harder
“cannot overlap” constraint is disjunction of linear inequalities
ex: ((ES2 ≥ ES1 + duration1) ∨ (ES1 ≥ ES2 + duration2)) ∧ ...

=⇒ NP-hard
Various techniques:

branch-and-bound, simulated annealing, tabu search, ...
reduction to constraint optimization problems
reduction to optimization modulo theories (combined SAT+LP)

Integrate planning and scheduling

10 / 46

Planning with Time & Resources: Example [cont.]

Scheduling Phase

(c© S. Russell & P. Norwig, AIMA)

left-hand margin lists the three reusable resources
two possible schedules: which assembly uses the hoist first
shortest-duration solution, which takes 115 minutes

11 / 46

Exercise

Consider the previous example
find another solution
draw the diagram
check its length and compare it with that in the previous slide

12 / 46

Outline

1 Time, Schedules & Resources

2 Hierarchical Planning

3 Planning & Acting in Non-Determistic Domains
Generalities
Sensorless Planning (aka Conformant Planning)
Conditional Planning (aka Contingent Planning)

13 / 46

Hierarchical Planning: Generalities

Real-World planning problems often too complex to handle
Hierarchical Planners manage the creation of complex plans at
different levels of abstraction, by considering the simplest details
only after finding a solution for the most difficult ones.
Hierarchical plan: hierarchy of action sequences (or partial
orders) at distinct abstraction levels

each action, in turn, can be decomposed further, until we reach
the level of actions that can be directly executed
designed by hierarchical decomposition (like, e.g., SW design)

Ex (vacation plan): “Go to San Francisco airport; take Hawaiian
Airlines flight 11 to Honolulu; do vacation for two weeks; take
Hawaiian Airlines flight 12 back to San Francisco; go home.”

“Go to San Francisco airport” can be viewed as a planning task
=⇒ “Drive to the long-term parking lot; park; take the shuttle to the

terminal.” or (simplier): “take a taxi to San Francisco airport”
“Drive to the long-term parking lot”: plan a route

We need a language that enables operators at different levels
14 / 46

Hierarchical Planning: Generalities

Real-World planning problems often too complex to handle
Hierarchical Planners manage the creation of complex plans at
different levels of abstraction, by considering the simplest details
only after finding a solution for the most difficult ones.
Hierarchical plan: hierarchy of action sequences (or partial
orders) at distinct abstraction levels

each action, in turn, can be decomposed further, until we reach
the level of actions that can be directly executed
designed by hierarchical decomposition (like, e.g., SW design)

Ex (vacation plan): “Go to San Francisco airport; take Hawaiian
Airlines flight 11 to Honolulu; do vacation for two weeks; take
Hawaiian Airlines flight 12 back to San Francisco; go home.”

“Go to San Francisco airport” can be viewed as a planning task
=⇒ “Drive to the long-term parking lot; park; take the shuttle to the

terminal.” or (simplier): “take a taxi to San Francisco airport”
“Drive to the long-term parking lot”: plan a route

We need a language that enables operators at different levels
14 / 46

Hierarchical Planning: Generalities

Real-World planning problems often too complex to handle
Hierarchical Planners manage the creation of complex plans at
different levels of abstraction, by considering the simplest details
only after finding a solution for the most difficult ones.
Hierarchical plan: hierarchy of action sequences (or partial
orders) at distinct abstraction levels

each action, in turn, can be decomposed further, until we reach
the level of actions that can be directly executed
designed by hierarchical decomposition (like, e.g., SW design)

Ex (vacation plan): “Go to San Francisco airport; take Hawaiian
Airlines flight 11 to Honolulu; do vacation for two weeks; take
Hawaiian Airlines flight 12 back to San Francisco; go home.”

“Go to San Francisco airport” can be viewed as a planning task
=⇒ “Drive to the long-term parking lot; park; take the shuttle to the

terminal.” or (simplier): “take a taxi to San Francisco airport”
“Drive to the long-term parking lot”: plan a route

We need a language that enables operators at different levels
14 / 46

Hierarchical Planning: Generalities

Real-World planning problems often too complex to handle
Hierarchical Planners manage the creation of complex plans at
different levels of abstraction, by considering the simplest details
only after finding a solution for the most difficult ones.
Hierarchical plan: hierarchy of action sequences (or partial
orders) at distinct abstraction levels

each action, in turn, can be decomposed further, until we reach
the level of actions that can be directly executed
designed by hierarchical decomposition (like, e.g., SW design)

Ex (vacation plan): “Go to San Francisco airport; take Hawaiian
Airlines flight 11 to Honolulu; do vacation for two weeks; take
Hawaiian Airlines flight 12 back to San Francisco; go home.”

“Go to San Francisco airport” can be viewed as a planning task
=⇒ “Drive to the long-term parking lot; park; take the shuttle to the

terminal.” or (simplier): “take a taxi to San Francisco airport”
“Drive to the long-term parking lot”: plan a route

We need a language that enables operators at different levels
14 / 46

Hierarchical Planning: Generalities

Real-World planning problems often too complex to handle
Hierarchical Planners manage the creation of complex plans at
different levels of abstraction, by considering the simplest details
only after finding a solution for the most difficult ones.
Hierarchical plan: hierarchy of action sequences (or partial
orders) at distinct abstraction levels

each action, in turn, can be decomposed further, until we reach
the level of actions that can be directly executed
designed by hierarchical decomposition (like, e.g., SW design)

Ex (vacation plan): “Go to San Francisco airport; take Hawaiian
Airlines flight 11 to Honolulu; do vacation for two weeks; take
Hawaiian Airlines flight 12 back to San Francisco; go home.”

“Go to San Francisco airport” can be viewed as a planning task
=⇒ “Drive to the long-term parking lot; park; take the shuttle to the

terminal.” or (simplier): “take a taxi to San Francisco airport”
“Drive to the long-term parking lot”: plan a route

We need a language that enables operators at different levels
14 / 46

Hierarchical Planning: Generalities

Real-World planning problems often too complex to handle
Hierarchical Planners manage the creation of complex plans at
different levels of abstraction, by considering the simplest details
only after finding a solution for the most difficult ones.
Hierarchical plan: hierarchy of action sequences (or partial
orders) at distinct abstraction levels

each action, in turn, can be decomposed further, until we reach
the level of actions that can be directly executed
designed by hierarchical decomposition (like, e.g., SW design)

Ex (vacation plan): “Go to San Francisco airport; take Hawaiian
Airlines flight 11 to Honolulu; do vacation for two weeks; take
Hawaiian Airlines flight 12 back to San Francisco; go home.”

“Go to San Francisco airport” can be viewed as a planning task
=⇒ “Drive to the long-term parking lot; park; take the shuttle to the

terminal.” or (simplier): “take a taxi to San Francisco airport”
“Drive to the long-term parking lot”: plan a route

We need a language that enables operators at different levels
14 / 46

High-Level Actions & Refinements

Hierarchical Task Networks (HTN)
We assume full observability, determinism and the availability of
a set of actions (primitive actions, PAs)
High-level action (HLA):

has one or more possible refinements
each refinement is a sequence (or p.o.) of actions (PAs or HLAs)
may be recursive

A HLA refinement containing only primitive actions is an
implementation of the HLA
An implementation of a high-level plan is the concatenation/p.o.
of implementations of each HLA in the plan.
A high-level plan achieves the goal from a given state if at least
one of its implementations achieves the goal from that state

note: “at least one” implementation, not “all” implementations
implicitly, we trust our capability to achieve lower-level sub-plans

Q: How do we deal with multiple implementations?
15 / 46

High-Level Actions & Refinements

Hierarchical Task Networks (HTN)
We assume full observability, determinism and the availability of
a set of actions (primitive actions, PAs)
High-level action (HLA):

has one or more possible refinements
each refinement is a sequence (or p.o.) of actions (PAs or HLAs)
may be recursive

A HLA refinement containing only primitive actions is an
implementation of the HLA
An implementation of a high-level plan is the concatenation/p.o.
of implementations of each HLA in the plan.
A high-level plan achieves the goal from a given state if at least
one of its implementations achieves the goal from that state

note: “at least one” implementation, not “all” implementations
implicitly, we trust our capability to achieve lower-level sub-plans

Q: How do we deal with multiple implementations?
15 / 46

High-Level Actions & Refinements

Hierarchical Task Networks (HTN)
We assume full observability, determinism and the availability of
a set of actions (primitive actions, PAs)
High-level action (HLA):

has one or more possible refinements
each refinement is a sequence (or p.o.) of actions (PAs or HLAs)
may be recursive

A HLA refinement containing only primitive actions is an
implementation of the HLA
An implementation of a high-level plan is the concatenation/p.o.
of implementations of each HLA in the plan.
A high-level plan achieves the goal from a given state if at least
one of its implementations achieves the goal from that state

note: “at least one” implementation, not “all” implementations
implicitly, we trust our capability to achieve lower-level sub-plans

Q: How do we deal with multiple implementations?
15 / 46

High-Level Actions & Refinements

Hierarchical Task Networks (HTN)
We assume full observability, determinism and the availability of
a set of actions (primitive actions, PAs)
High-level action (HLA):

has one or more possible refinements
each refinement is a sequence (or p.o.) of actions (PAs or HLAs)
may be recursive

A HLA refinement containing only primitive actions is an
implementation of the HLA
An implementation of a high-level plan is the concatenation/p.o.
of implementations of each HLA in the plan.
A high-level plan achieves the goal from a given state if at least
one of its implementations achieves the goal from that state

note: “at least one” implementation, not “all” implementations
implicitly, we trust our capability to achieve lower-level sub-plans

Q: How do we deal with multiple implementations?
15 / 46

High-Level Actions & Refinements

Hierarchical Task Networks (HTN)
We assume full observability, determinism and the availability of
a set of actions (primitive actions, PAs)
High-level action (HLA):

has one or more possible refinements
each refinement is a sequence (or p.o.) of actions (PAs or HLAs)
may be recursive

A HLA refinement containing only primitive actions is an
implementation of the HLA
An implementation of a high-level plan is the concatenation/p.o.
of implementations of each HLA in the plan.
A high-level plan achieves the goal from a given state if at least
one of its implementations achieves the goal from that state

note: “at least one” implementation, not “all” implementations
implicitly, we trust our capability to achieve lower-level sub-plans

Q: How do we deal with multiple implementations?
15 / 46

High-Level Actions & Refinements

Hierarchical Task Networks (HTN)
We assume full observability, determinism and the availability of
a set of actions (primitive actions, PAs)
High-level action (HLA):

has one or more possible refinements
each refinement is a sequence (or p.o.) of actions (PAs or HLAs)
may be recursive

A HLA refinement containing only primitive actions is an
implementation of the HLA
An implementation of a high-level plan is the concatenation/p.o.
of implementations of each HLA in the plan.
A high-level plan achieves the goal from a given state if at least
one of its implementations achieves the goal from that state

note: “at least one” implementation, not “all” implementations
implicitly, we trust our capability to achieve lower-level sub-plans

Q: How do we deal with multiple implementations?
15 / 46

High-Level Actions & Refinements

Hierarchical Task Networks (HTN)
We assume full observability, determinism and the availability of
a set of actions (primitive actions, PAs)
High-level action (HLA):

has one or more possible refinements
each refinement is a sequence (or p.o.) of actions (PAs or HLAs)
may be recursive

A HLA refinement containing only primitive actions is an
implementation of the HLA
An implementation of a high-level plan is the concatenation/p.o.
of implementations of each HLA in the plan.
A high-level plan achieves the goal from a given state if at least
one of its implementations achieves the goal from that state

note: “at least one” implementation, not “all” implementations
implicitly, we trust our capability to achieve lower-level sub-plans

Q: How do we deal with multiple implementations?
15 / 46

High-Level Actions & Refinements: Examples

(c© S. Russell & P. Norwig, AIMA)

16 / 46

High-Level Actions & Refinements: Examples

(c© S. Russell & P. Norwig, AIMA)

16 / 46

Searching for Primitive Solutions

Formulation of HTN Planning

Often formulated with a single “top level” HLA Act s.t.
for each ai , provide one refinement of ai with steps: [ai ,Act]
one refinement of Act with empty steps and a goal as precondition

=⇒ when goal is achieved, do nothing
hint: “one plan is given by an action, followed by a plan”

General Algorithm Schema:
Repeat

choose an HLA in the current plan
replace it with one of its refinements

Until the plan achieves the goas
Many variants: breadth-first (next slide), depth-first,
iterative-deepening, graph-based, ...

17 / 46

Searching for Primitive Solutions

Formulation of HTN Planning

Often formulated with a single “top level” HLA Act s.t.
for each ai , provide one refinement of ai with steps: [ai ,Act]
one refinement of Act with empty steps and a goal as precondition

=⇒ when goal is achieved, do nothing
hint: “one plan is given by an action, followed by a plan”

General Algorithm Schema:
Repeat

choose an HLA in the current plan
replace it with one of its refinements

Until the plan achieves the goas
Many variants: breadth-first (next slide), depth-first,
iterative-deepening, graph-based, ...

17 / 46

Searching for Primitive Solutions

Formulation of HTN Planning

Often formulated with a single “top level” HLA Act s.t.
for each ai , provide one refinement of ai with steps: [ai ,Act]
one refinement of Act with empty steps and a goal as precondition

=⇒ when goal is achieved, do nothing
hint: “one plan is given by an action, followed by a plan”

General Algorithm Schema:
Repeat

choose an HLA in the current plan
replace it with one of its refinements

Until the plan achieves the goas
Many variants: breadth-first (next slide), depth-first,
iterative-deepening, graph-based, ...

17 / 46

Searching for Primitive Solutions

Formulation of HTN Planning

Often formulated with a single “top level” HLA Act s.t.
for each ai , provide one refinement of ai with steps: [ai ,Act]
one refinement of Act with empty steps and a goal as precondition

=⇒ when goal is achieved, do nothing
hint: “one plan is given by an action, followed by a plan”

General Algorithm Schema:
Repeat

choose an HLA in the current plan
replace it with one of its refinements

Until the plan achieves the goas
Many variants: breadth-first (next slide), depth-first,
iterative-deepening, graph-based, ...

17 / 46

Hierarchical Forward-Planning Search

A breadth-first implementation

(c© S. Russell & P. Norwig, AIMA)

REFINEMENTS(HLA,OUTCOME,HIERARCHY)
returns a set of action sequences, one for each refinement of the HLA,
whose preconditions are satisfied by the specified state: outcome.

18 / 46

Exercise

Consider the refinements of Go(Home,SFO) of last example
Apply Hierarchical-Search procedure to that example

19 / 46

Remark

The key to HTN planning

The construction of a plan library containing known methods for
implementing complex, high-level actions

One method: learn them via problem-solving experience
key issue: the ability to generalize the methods that are
constructed,

eliminating detail that is specific to the problem instance
Ex: Drive(Home,ParkingOf (SFO)),Shuttle(ParkingOf (SFO),SFO)])
=⇒ Drive(x ,ParkingOf (y)),Shuttle(ParkingOf (y), y)])

(See AIMA book, Ch.19 if interested)

20 / 46

Remark

The key to HTN planning

The construction of a plan library containing known methods for
implementing complex, high-level actions

One method: learn them via problem-solving experience
key issue: the ability to generalize the methods that are
constructed,

eliminating detail that is specific to the problem instance
Ex: Drive(Home,ParkingOf (SFO)),Shuttle(ParkingOf (SFO),SFO)])
=⇒ Drive(x ,ParkingOf (y)),Shuttle(ParkingOf (y), y)])

(See AIMA book, Ch.19 if interested)

20 / 46

Remark

The key to HTN planning

The construction of a plan library containing known methods for
implementing complex, high-level actions

One method: learn them via problem-solving experience
key issue: the ability to generalize the methods that are
constructed,

eliminating detail that is specific to the problem instance
Ex: Drive(Home,ParkingOf (SFO)),Shuttle(ParkingOf (SFO),SFO)])
=⇒ Drive(x ,ParkingOf (y)),Shuttle(ParkingOf (y), y)])

(See AIMA book, Ch.19 if interested)

20 / 46

Remark

The key to HTN planning

The construction of a plan library containing known methods for
implementing complex, high-level actions

One method: learn them via problem-solving experience
key issue: the ability to generalize the methods that are
constructed,

eliminating detail that is specific to the problem instance
Ex: Drive(Home,ParkingOf (SFO)),Shuttle(ParkingOf (SFO),SFO)])
=⇒ Drive(x ,ParkingOf (y)),Shuttle(ParkingOf (y), y)])

(See AIMA book, Ch.19 if interested)

20 / 46

Outline

1 Time, Schedules & Resources

2 Hierarchical Planning

3 Planning & Acting in Non-Determistic Domains
Generalities
Sensorless Planning (aka Conformant Planning)
Conditional Planning (aka Contingent Planning)

21 / 46

Outline

1 Time, Schedules & Resources

2 Hierarchical Planning

3 Planning & Acting in Non-Determistic Domains
Generalities
Sensorless Planning (aka Conformant Planning)
Conditional Planning (aka Contingent Planning)

22 / 46

Generalities [also recall Ch.04]
Assumptions so far:

the environment is deterministic
the environment is fully observable
the environment is static
the agent knows the effects of each action

=⇒ The agent does not need perception:
can calculate which state results from any sequence of actions
always knows which state it is in

In the real world, the environment may be uncertain
partially observable and/or nondeterministic environment
incorrect information (differences between world and model)

=⇒ If one of the above assumptions does not hold, use percepts
the agent’s future actions will depend on future percepts
the future percepts cannot be determined in advance

Use percepts:
perceive the changes in the world
act accordingly
adapt plan when necessary

23 / 46

Generalities [also recall Ch.04]
Assumptions so far:

the environment is deterministic
the environment is fully observable
the environment is static
the agent knows the effects of each action

=⇒ The agent does not need perception:
can calculate which state results from any sequence of actions
always knows which state it is in

In the real world, the environment may be uncertain
partially observable and/or nondeterministic environment
incorrect information (differences between world and model)

=⇒ If one of the above assumptions does not hold, use percepts
the agent’s future actions will depend on future percepts
the future percepts cannot be determined in advance

Use percepts:
perceive the changes in the world
act accordingly
adapt plan when necessary

23 / 46

Generalities [also recall Ch.04]
Assumptions so far:

the environment is deterministic
the environment is fully observable
the environment is static
the agent knows the effects of each action

=⇒ The agent does not need perception:
can calculate which state results from any sequence of actions
always knows which state it is in

In the real world, the environment may be uncertain
partially observable and/or nondeterministic environment
incorrect information (differences between world and model)

=⇒ If one of the above assumptions does not hold, use percepts
the agent’s future actions will depend on future percepts
the future percepts cannot be determined in advance

Use percepts:
perceive the changes in the world
act accordingly
adapt plan when necessary

23 / 46

Generalities [also recall Ch.04]
Assumptions so far:

the environment is deterministic
the environment is fully observable
the environment is static
the agent knows the effects of each action

=⇒ The agent does not need perception:
can calculate which state results from any sequence of actions
always knows which state it is in

In the real world, the environment may be uncertain
partially observable and/or nondeterministic environment
incorrect information (differences between world and model)

=⇒ If one of the above assumptions does not hold, use percepts
the agent’s future actions will depend on future percepts
the future percepts cannot be determined in advance

Use percepts:
perceive the changes in the world
act accordingly
adapt plan when necessary

23 / 46

Generalities [also recall Ch.04]
Assumptions so far:

the environment is deterministic
the environment is fully observable
the environment is static
the agent knows the effects of each action

=⇒ The agent does not need perception:
can calculate which state results from any sequence of actions
always knows which state it is in

In the real world, the environment may be uncertain
partially observable and/or nondeterministic environment
incorrect information (differences between world and model)

=⇒ If one of the above assumptions does not hold, use percepts
the agent’s future actions will depend on future percepts
the future percepts cannot be determined in advance

Use percepts:
perceive the changes in the world
act accordingly
adapt plan when necessary

23 / 46

Handling Indeterminacy

Sensorless planning (aka conformant planning):
find plan that achieves goal in all possible circumstances
(regardless of initial state and action effects)

for environments with no observations

Conditional planning (aka contingency planning):
construct conditional plan with different branches for possible
contingencies

for partially-observable and nondeterministic environments

Execution monitoring and replanning:
while constructing plan, judge whether plan requires revision

for partially-known or evolving environments

Differences wrt. general Search (Ch.04)

planners deal with factored representations rather than atomic
different representation of actions and observation
different representation of belief states

24 / 46

Handling Indeterminacy

Sensorless planning (aka conformant planning):
find plan that achieves goal in all possible circumstances
(regardless of initial state and action effects)

for environments with no observations

Conditional planning (aka contingency planning):
construct conditional plan with different branches for possible
contingencies

for partially-observable and nondeterministic environments

Execution monitoring and replanning:
while constructing plan, judge whether plan requires revision

for partially-known or evolving environments

Differences wrt. general Search (Ch.04)

planners deal with factored representations rather than atomic
different representation of actions and observation
different representation of belief states

24 / 46

Handling Indeterminacy

Sensorless planning (aka conformant planning):
find plan that achieves goal in all possible circumstances
(regardless of initial state and action effects)

for environments with no observations

Conditional planning (aka contingency planning):
construct conditional plan with different branches for possible
contingencies

for partially-observable and nondeterministic environments

Execution monitoring and replanning:
while constructing plan, judge whether plan requires revision

for partially-known or evolving environments

Differences wrt. general Search (Ch.04)

planners deal with factored representations rather than atomic
different representation of actions and observation
different representation of belief states

24 / 46

Handling Indeterminacy

Sensorless planning (aka conformant planning):
find plan that achieves goal in all possible circumstances
(regardless of initial state and action effects)

for environments with no observations

Conditional planning (aka contingency planning):
construct conditional plan with different branches for possible
contingencies

for partially-observable and nondeterministic environments

Execution monitoring and replanning:
while constructing plan, judge whether plan requires revision

for partially-known or evolving environments

Differences wrt. general Search (Ch.04)

planners deal with factored representations rather than atomic
different representation of actions and observation
different representation of belief states

24 / 46

Open-World vs. Closed-World Assumption

Classical Planning based on Closed-World Assumption (CWA)
states contain only positive fluents
we assume that every fluent not mentioned in a state is false

Sensorless & Partially-observable Planning based on
Open-World Assumption (OWA)

states contain both positive and negative fluents
if a fluent does not appear in the state, its value is unknown

A belief state is represented by a logical formula
(instead of an explicitly-enumerated set of states)

=⇒ The belief state corresponds exactly to the set of possible worlds
that satisfy the formula representing it
The unknown information can be retrieved via sensing actions
(aka percept actions) added to the plan

25 / 46

Open-World vs. Closed-World Assumption

Classical Planning based on Closed-World Assumption (CWA)
states contain only positive fluents
we assume that every fluent not mentioned in a state is false

Sensorless & Partially-observable Planning based on
Open-World Assumption (OWA)

states contain both positive and negative fluents
if a fluent does not appear in the state, its value is unknown

A belief state is represented by a logical formula
(instead of an explicitly-enumerated set of states)

=⇒ The belief state corresponds exactly to the set of possible worlds
that satisfy the formula representing it
The unknown information can be retrieved via sensing actions
(aka percept actions) added to the plan

25 / 46

Open-World vs. Closed-World Assumption

Classical Planning based on Closed-World Assumption (CWA)
states contain only positive fluents
we assume that every fluent not mentioned in a state is false

Sensorless & Partially-observable Planning based on
Open-World Assumption (OWA)

states contain both positive and negative fluents
if a fluent does not appear in the state, its value is unknown

A belief state is represented by a logical formula
(instead of an explicitly-enumerated set of states)

=⇒ The belief state corresponds exactly to the set of possible worlds
that satisfy the formula representing it
The unknown information can be retrieved via sensing actions
(aka percept actions) added to the plan

25 / 46

Open-World vs. Closed-World Assumption

Classical Planning based on Closed-World Assumption (CWA)
states contain only positive fluents
we assume that every fluent not mentioned in a state is false

Sensorless & Partially-observable Planning based on
Open-World Assumption (OWA)

states contain both positive and negative fluents
if a fluent does not appear in the state, its value is unknown

A belief state is represented by a logical formula
(instead of an explicitly-enumerated set of states)

=⇒ The belief state corresponds exactly to the set of possible worlds
that satisfy the formula representing it
The unknown information can be retrieved via sensing actions
(aka percept actions) added to the plan

25 / 46

Open-World vs. Closed-World Assumption

Classical Planning based on Closed-World Assumption (CWA)
states contain only positive fluents
we assume that every fluent not mentioned in a state is false

Sensorless & Partially-observable Planning based on
Open-World Assumption (OWA)

states contain both positive and negative fluents
if a fluent does not appear in the state, its value is unknown

A belief state is represented by a logical formula
(instead of an explicitly-enumerated set of states)

=⇒ The belief state corresponds exactly to the set of possible worlds
that satisfy the formula representing it
The unknown information can be retrieved via sensing actions
(aka percept actions) added to the plan

25 / 46

A Case Study

The table & chair painting problem

Given a chair and a table, the goal is to have them of the same color.
In the initial state we have two cans of paint, but the colors of the
paint and the furniture are unknown.
Only the table is initially in the agent’s field of view

26 / 46

A Case Study [cont.]
The table & chair painting problem [cont.]

Initial state:
Init(Object(Table)∧Object(Chair)∧Can(C1)∧Can(C2)∧ InView(Table))

Goal: Goal(Color(Chair , c) ∧ Color(Table, c))
recall: in goal, variable c existentially quantified

Actions:
Action(RemoveLid(can),

Precond : Can(can)
Effect : Open(can))

Action(Paint(x , can),
Precond : Object(x) ∧ Can(can) ∧ Color(can, c) ∧Open(can)
Effect : Color(x , c))

c not part of action’s variable list (partially observable only)

Add an action causing objects to come into view (one at a time):
Action(LookAt(x),

Precond : InView(y) ∧ (x 6= y)
Effect : InView(x) ∧ ¬InView(y))

27 / 46

A Case Study [cont.]
The table & chair painting problem [cont.]

Initial state:
Init(Object(Table)∧Object(Chair)∧Can(C1)∧Can(C2)∧ InView(Table))

Goal: Goal(Color(Chair , c) ∧ Color(Table, c))
recall: in goal, variable c existentially quantified

Actions:
Action(RemoveLid(can),

Precond : Can(can)
Effect : Open(can))

Action(Paint(x , can),
Precond : Object(x) ∧ Can(can) ∧ Color(can, c) ∧Open(can)
Effect : Color(x , c))

c not part of action’s variable list (partially observable only)

Add an action causing objects to come into view (one at a time):
Action(LookAt(x),

Precond : InView(y) ∧ (x 6= y)
Effect : InView(x) ∧ ¬InView(y))

27 / 46

A Case Study [cont.]
The table & chair painting problem [cont.]

Initial state:
Init(Object(Table)∧Object(Chair)∧Can(C1)∧Can(C2)∧ InView(Table))

Goal: Goal(Color(Chair , c) ∧ Color(Table, c))
recall: in goal, variable c existentially quantified

Actions:
Action(RemoveLid(can),

Precond : Can(can)
Effect : Open(can))

Action(Paint(x , can),
Precond : Object(x) ∧ Can(can) ∧ Color(can, c) ∧Open(can)
Effect : Color(x , c))

c not part of action’s variable list (partially observable only)

Add an action causing objects to come into view (one at a time):
Action(LookAt(x),

Precond : InView(y) ∧ (x 6= y)
Effect : InView(x) ∧ ¬InView(y))

27 / 46

A Case Study [cont.]
The table & chair painting problem [cont.]

Initial state:
Init(Object(Table)∧Object(Chair)∧Can(C1)∧Can(C2)∧ InView(Table))

Goal: Goal(Color(Chair , c) ∧ Color(Table, c))
recall: in goal, variable c existentially quantified

Actions:
Action(RemoveLid(can),

Precond : Can(can)
Effect : Open(can))

Action(Paint(x , can),
Precond : Object(x) ∧ Can(can) ∧ Color(can, c) ∧Open(can)
Effect : Color(x , c))

c not part of action’s variable list (partially observable only)

Add an action causing objects to come into view (one at a time):
Action(LookAt(x),

Precond : InView(y) ∧ (x 6= y)
Effect : InView(x) ∧ ¬InView(y))

27 / 46

A Case Study [cont.]
The table & chair painting problem [cont.]

Initial state:
Init(Object(Table)∧Object(Chair)∧Can(C1)∧Can(C2)∧ InView(Table))

Goal: Goal(Color(Chair , c) ∧ Color(Table, c))
recall: in goal, variable c existentially quantified

Actions:
Action(RemoveLid(can),

Precond : Can(can)
Effect : Open(can))

Action(Paint(x , can),
Precond : Object(x) ∧ Can(can) ∧ Color(can, c) ∧Open(can)
Effect : Color(x , c))

c not part of action’s variable list (partially observable only)

Add an action causing objects to come into view (one at a time):
Action(LookAt(x),

Precond : InView(y) ∧ (x 6= y)
Effect : InView(x) ∧ ¬InView(y))

27 / 46

A Case Study [cont.]

The table & chair painting problem [cont.]

Partially-Observable Problems:
need to reason about percepts obtained during action

=⇒ Augment PDDL with percept schemata for each fluent. Ex:

Percept(Color(x , c),
Precond : Object(x) ∧ InView(x)

“if an object is in view, then the agent will perceive its color”
=⇒ perception will acquire the truth value of Color(x , c), for every x, c

Percept(Color(can, c),
Precond : Can(can) ∧ InView(can) ∧Open(can)

“if an open can is in view, then the agent perceives the color of the
paint in the can”

=⇒ perception will acquire the truth value of Color(can, c), f.e. can, c

Fully-Observable Problems:
=⇒ Percept schemata with no preconditions for each fluent. Ex:

Percept(Color(x , c))

Sensorless Agent: no percept schema
28 / 46

A Case Study [cont.]

The table & chair painting problem [cont.]

Partially-Observable Problems:
need to reason about percepts obtained during action

=⇒ Augment PDDL with percept schemata for each fluent. Ex:

Percept(Color(x , c),
Precond : Object(x) ∧ InView(x)

“if an object is in view, then the agent will perceive its color”
=⇒ perception will acquire the truth value of Color(x , c), for every x, c

Percept(Color(can, c),
Precond : Can(can) ∧ InView(can) ∧Open(can)

“if an open can is in view, then the agent perceives the color of the
paint in the can”

=⇒ perception will acquire the truth value of Color(can, c), f.e. can, c

Fully-Observable Problems:
=⇒ Percept schemata with no preconditions for each fluent. Ex:

Percept(Color(x , c))

Sensorless Agent: no percept schema
28 / 46

A Case Study [cont.]

The table & chair painting problem [cont.]

Partially-Observable Problems:
need to reason about percepts obtained during action

=⇒ Augment PDDL with percept schemata for each fluent. Ex:

Percept(Color(x , c),
Precond : Object(x) ∧ InView(x)

“if an object is in view, then the agent will perceive its color”
=⇒ perception will acquire the truth value of Color(x , c), for every x, c

Percept(Color(can, c),
Precond : Can(can) ∧ InView(can) ∧Open(can)

“if an open can is in view, then the agent perceives the color of the
paint in the can”

=⇒ perception will acquire the truth value of Color(can, c), f.e. can, c

Fully-Observable Problems:
=⇒ Percept schemata with no preconditions for each fluent. Ex:

Percept(Color(x , c))

Sensorless Agent: no percept schema
28 / 46

A Case Study [cont.]

The table & chair painting problem [cont.]

Partially-Observable Problems:
need to reason about percepts obtained during action

=⇒ Augment PDDL with percept schemata for each fluent. Ex:

Percept(Color(x , c),
Precond : Object(x) ∧ InView(x)

“if an object is in view, then the agent will perceive its color”
=⇒ perception will acquire the truth value of Color(x , c), for every x, c

Percept(Color(can, c),
Precond : Can(can) ∧ InView(can) ∧Open(can)

“if an open can is in view, then the agent perceives the color of the
paint in the can”

=⇒ perception will acquire the truth value of Color(can, c), f.e. can, c

Fully-Observable Problems:
=⇒ Percept schemata with no preconditions for each fluent. Ex:

Percept(Color(x , c))

Sensorless Agent: no percept schema
28 / 46

A Case Study [cont.]

The table & chair painting problem [cont.]

Partially-Observable Problems:
need to reason about percepts obtained during action

=⇒ Augment PDDL with percept schemata for each fluent. Ex:

Percept(Color(x , c),
Precond : Object(x) ∧ InView(x)

“if an object is in view, then the agent will perceive its color”
=⇒ perception will acquire the truth value of Color(x , c), for every x, c

Percept(Color(can, c),
Precond : Can(can) ∧ InView(can) ∧Open(can)

“if an open can is in view, then the agent perceives the color of the
paint in the can”

=⇒ perception will acquire the truth value of Color(can, c), f.e. can, c

Fully-Observable Problems:
=⇒ Percept schemata with no preconditions for each fluent. Ex:

Percept(Color(x , c))

Sensorless Agent: no percept schema
28 / 46

A Case Study [cont.]

The table & chair painting problem [cont.]

Partially-Observable Problems:
need to reason about percepts obtained during action

=⇒ Augment PDDL with percept schemata for each fluent. Ex:

Percept(Color(x , c),
Precond : Object(x) ∧ InView(x)

“if an object is in view, then the agent will perceive its color”
=⇒ perception will acquire the truth value of Color(x , c), for every x, c

Percept(Color(can, c),
Precond : Can(can) ∧ InView(can) ∧Open(can)

“if an open can is in view, then the agent perceives the color of the
paint in the can”

=⇒ perception will acquire the truth value of Color(can, c), f.e. can, c

Fully-Observable Problems:
=⇒ Percept schemata with no preconditions for each fluent. Ex:

Percept(Color(x , c))

Sensorless Agent: no percept schema
28 / 46

A Case Study [cont.]

The table & chair painting problem [cont.]

Partially-Observable Problems:
need to reason about percepts obtained during action

=⇒ Augment PDDL with percept schemata for each fluent. Ex:

Percept(Color(x , c),
Precond : Object(x) ∧ InView(x)

“if an object is in view, then the agent will perceive its color”
=⇒ perception will acquire the truth value of Color(x , c), for every x, c

Percept(Color(can, c),
Precond : Can(can) ∧ InView(can) ∧Open(can)

“if an open can is in view, then the agent perceives the color of the
paint in the can”

=⇒ perception will acquire the truth value of Color(can, c), f.e. can, c

Fully-Observable Problems:
=⇒ Percept schemata with no preconditions for each fluent. Ex:

Percept(Color(x , c))

Sensorless Agent: no percept schema
28 / 46

Handling Indeterminacy [cont.]

Sensorless planning (aka conformant planning):
find plan that achieves goal in all possible circumstances
(regardless of initial state and action effects)

for environments with no observations
ex: “Open any can of paint and apply it to both chair and table”

Conditional planning (aka contingency planning):
construct conditional plan with different branches for possible
contingencies

for partially-observable and nondeterministic environments
ex: “Sense color of table and chair;
if they are the same, then finish, else sense can paint;
if color(can) =color(furniture) then apply color to other piece;
else apply color to both”

Execution monitoring and replanning:
while constructing plan, judge whether plan requires revision

for partially-known or evolving environments
ex: Same as conditional, and can fix errors

29 / 46

Handling Indeterminacy [cont.]

Sensorless planning (aka conformant planning):
find plan that achieves goal in all possible circumstances
(regardless of initial state and action effects)

for environments with no observations
ex: “Open any can of paint and apply it to both chair and table”

Conditional planning (aka contingency planning):
construct conditional plan with different branches for possible
contingencies

for partially-observable and nondeterministic environments
ex: “Sense color of table and chair;
if they are the same, then finish, else sense can paint;
if color(can) =color(furniture) then apply color to other piece;
else apply color to both”

Execution monitoring and replanning:
while constructing plan, judge whether plan requires revision

for partially-known or evolving environments
ex: Same as conditional, and can fix errors

29 / 46

Handling Indeterminacy [cont.]

Sensorless planning (aka conformant planning):
find plan that achieves goal in all possible circumstances
(regardless of initial state and action effects)

for environments with no observations
ex: “Open any can of paint and apply it to both chair and table”

Conditional planning (aka contingency planning):
construct conditional plan with different branches for possible
contingencies

for partially-observable and nondeterministic environments
ex: “Sense color of table and chair;
if they are the same, then finish, else sense can paint;
if color(can) =color(furniture) then apply color to other piece;
else apply color to both”

Execution monitoring and replanning:
while constructing plan, judge whether plan requires revision

for partially-known or evolving environments
ex: Same as conditional, and can fix errors

29 / 46

Handling Indeterminacy [cont.]

Sensorless planning (aka conformant planning):
find plan that achieves goal in all possible circumstances
(regardless of initial state and action effects)

for environments with no observations
ex: “Open any can of paint and apply it to both chair and table”

Conditional planning (aka contingency planning):
construct conditional plan with different branches for possible
contingencies

for partially-observable and nondeterministic environments
ex: “Sense color of table and chair;
if they are the same, then finish, else sense can paint;
if color(can) =color(furniture) then apply color to other piece;
else apply color to both”

Execution monitoring and replanning:
while constructing plan, judge whether plan requires revision

for partially-known or evolving environments
ex: Same as conditional, and can fix errors

29 / 46

Handling Indeterminacy [cont.]

Sensorless planning (aka conformant planning):
find plan that achieves goal in all possible circumstances
(regardless of initial state and action effects)

for environments with no observations
ex: “Open any can of paint and apply it to both chair and table”

Conditional planning (aka contingency planning):
construct conditional plan with different branches for possible
contingencies

for partially-observable and nondeterministic environments
ex: “Sense color of table and chair;
if they are the same, then finish, else sense can paint;
if color(can) =color(furniture) then apply color to other piece;
else apply color to both”

Execution monitoring and replanning:
while constructing plan, judge whether plan requires revision

for partially-known or evolving environments
ex: Same as conditional, and can fix errors

29 / 46

Outline

1 Time, Schedules & Resources

2 Hierarchical Planning

3 Planning & Acting in Non-Determistic Domains
Generalities
Sensorless Planning (aka Conformant Planning)
Conditional Planning (aka Contingent Planning)

30 / 46

[Recall from Ch.04]: Search with No Observation

Search with No Observation
aka Sensorless Search or Conformant Search
Idea: To solve sensorless problems, the agent searches in the
space of belief states rather than in that of physical states

fully observable, because the agent knows its own belief space
solutions are always sequences of actions (no contingency plan),
because percepts are always empty and thus predictable

Main drawback: 2N candidate states rather than N

31 / 46

[Recall from Ch.04]: Belief-State Problem Formulation
Example: Sensorless Vacuum Cleaner: Belief State Space
(note: self-loops are omitted)

(c© S. Russell & P. Norwig, AIMA)

=⇒ [Left,Suck,Right,Suck] contingent plan
32 / 46

[Recall from Ch.04]: Belief-State Problem Formulation
Example: Sensorless Vacuum Cleaner: Belief State Space
(note: self-loops are omitted)

(c© S. Russell & P. Norwig, AIMA)

=⇒ [Left,Suck,Right,Suck] contingent plan
32 / 46

Sensorless Planning

Main idea [see ch.04]: see a sensorless planning problem as a
belief-state planning problem
Main differences:

planners deal with factored representations rather than atomic
physical transition model is a collection of action schemata
the belief state represented by a logical formula instead of an
explicitly-enumerated set of states

Open-World Assumption =⇒ a belief state corresponds to the
set of possible worlds that satisfy the formula representing it
All belief states (implicitly) include unchanging facts (invariants)
ex: Object(Table) ∧Object(Chair) ∧ Can(C1) ∧ Can(C2)

Initial belief state includes facts that part of the agent’s domain
knowledge

Ex: “objects and cans have colors”
∀x .∃c. Color(x , c) =⇒ (Skolemization)

=⇒ b0 : Color(x ,C(x))

33 / 46

Sensorless Planning

Main idea [see ch.04]: see a sensorless planning problem as a
belief-state planning problem
Main differences:

planners deal with factored representations rather than atomic
physical transition model is a collection of action schemata
the belief state represented by a logical formula instead of an
explicitly-enumerated set of states

Open-World Assumption =⇒ a belief state corresponds to the
set of possible worlds that satisfy the formula representing it
All belief states (implicitly) include unchanging facts (invariants)
ex: Object(Table) ∧Object(Chair) ∧ Can(C1) ∧ Can(C2)

Initial belief state includes facts that part of the agent’s domain
knowledge

Ex: “objects and cans have colors”
∀x .∃c. Color(x , c) =⇒ (Skolemization)

=⇒ b0 : Color(x ,C(x))

33 / 46

Sensorless Planning

Main idea [see ch.04]: see a sensorless planning problem as a
belief-state planning problem
Main differences:

planners deal with factored representations rather than atomic
physical transition model is a collection of action schemata
the belief state represented by a logical formula instead of an
explicitly-enumerated set of states

Open-World Assumption =⇒ a belief state corresponds to the
set of possible worlds that satisfy the formula representing it
All belief states (implicitly) include unchanging facts (invariants)
ex: Object(Table) ∧Object(Chair) ∧ Can(C1) ∧ Can(C2)

Initial belief state includes facts that part of the agent’s domain
knowledge

Ex: “objects and cans have colors”
∀x .∃c. Color(x , c) =⇒ (Skolemization)

=⇒ b0 : Color(x ,C(x))

33 / 46

Sensorless Planning

Main idea [see ch.04]: see a sensorless planning problem as a
belief-state planning problem
Main differences:

planners deal with factored representations rather than atomic
physical transition model is a collection of action schemata
the belief state represented by a logical formula instead of an
explicitly-enumerated set of states

Open-World Assumption =⇒ a belief state corresponds to the
set of possible worlds that satisfy the formula representing it
All belief states (implicitly) include unchanging facts (invariants)
ex: Object(Table) ∧Object(Chair) ∧ Can(C1) ∧ Can(C2)

Initial belief state includes facts that part of the agent’s domain
knowledge

Ex: “objects and cans have colors”
∀x .∃c. Color(x , c) =⇒ (Skolemization)

=⇒ b0 : Color(x ,C(x))

33 / 46

Sensorless Planning

Main idea [see ch.04]: see a sensorless planning problem as a
belief-state planning problem
Main differences:

planners deal with factored representations rather than atomic
physical transition model is a collection of action schemata
the belief state represented by a logical formula instead of an
explicitly-enumerated set of states

Open-World Assumption =⇒ a belief state corresponds to the
set of possible worlds that satisfy the formula representing it
All belief states (implicitly) include unchanging facts (invariants)
ex: Object(Table) ∧Object(Chair) ∧ Can(C1) ∧ Can(C2)

Initial belief state includes facts that part of the agent’s domain
knowledge

Ex: “objects and cans have colors”
∀x .∃c. Color(x , c) =⇒ (Skolemization)

=⇒ b0 : Color(x ,C(x))

33 / 46

Sensorless Planning [cont.]

In belief state b, it is possible to apply every action a s.t.
b |= Precond(a)

e.g., RemoveLid(Can1) applicable in b0 since Can(C1) true in b0

Result(b,a) is computed:
start from b
set to false any atom that appears in Del(a) (after unification)
set to true any atom that appears in Add(a) (after unification)

(i.e., conjoint Effects(a) to b)

Property
If the belief state starts as a conjunction of literals, then any update
will yield a conjunction of literals

with n fluents, any belief state can be very-compactly
represented by a conjunction of size O(n)

=⇒ much simplifies complexity of belief-state reasoning

34 / 46

Sensorless Planning [cont.]

In belief state b, it is possible to apply every action a s.t.
b |= Precond(a)

e.g., RemoveLid(Can1) applicable in b0 since Can(C1) true in b0

Result(b,a) is computed:
start from b
set to false any atom that appears in Del(a) (after unification)
set to true any atom that appears in Add(a) (after unification)

(i.e., conjoint Effects(a) to b)

Property
If the belief state starts as a conjunction of literals, then any update
will yield a conjunction of literals

with n fluents, any belief state can be very-compactly
represented by a conjunction of size O(n)

=⇒ much simplifies complexity of belief-state reasoning

34 / 46

Sensorless Planning [cont.]

In belief state b, it is possible to apply every action a s.t.
b |= Precond(a)

e.g., RemoveLid(Can1) applicable in b0 since Can(C1) true in b0

Result(b,a) is computed:
start from b
set to false any atom that appears in Del(a) (after unification)
set to true any atom that appears in Add(a) (after unification)

(i.e., conjoint Effects(a) to b)

Property
If the belief state starts as a conjunction of literals, then any update
will yield a conjunction of literals

with n fluents, any belief state can be very-compactly
represented by a conjunction of size O(n)

=⇒ much simplifies complexity of belief-state reasoning

34 / 46

Sensorless Planning: Example

Start from b0 : Color(x ,C(x))
Apply RemoveLid(Can1) in b0 and obtain:
b1 : Color(x ,C(x)) ∧Open(Can1)

Apply Paint(Chair ,Can1) in b1 using {x/Can1, c/C(Can1)}:
b2 : Color(x ,C(x)) ∧Open(Can1) ∧ Color(Chair ,C(Can1))

Apply Paint(Table,Can1) in b2 :
b3 : Color(x ,C(x)) ∧Open(Can1) ∧ Color(Chair ,C(Can1)) ∧
Color(Table,C(Can1))

b3 Satisfies the goal: b3 |= Color(Table, c) ∧ Color(Chair , c)
=⇒ [RemoveLid(Can1),Paint(Chair ,Can1),Paint(Table,Can1)]

valid conformant plan

35 / 46

Sensorless Planning: Example

Start from b0 : Color(x ,C(x))
Apply RemoveLid(Can1) in b0 and obtain:
b1 : Color(x ,C(x)) ∧Open(Can1)

Apply Paint(Chair ,Can1) in b1 using {x/Can1, c/C(Can1)}:
b2 : Color(x ,C(x)) ∧Open(Can1) ∧ Color(Chair ,C(Can1))

Apply Paint(Table,Can1) in b2 :
b3 : Color(x ,C(x)) ∧Open(Can1) ∧ Color(Chair ,C(Can1)) ∧
Color(Table,C(Can1))

b3 Satisfies the goal: b3 |= Color(Table, c) ∧ Color(Chair , c)
=⇒ [RemoveLid(Can1),Paint(Chair ,Can1),Paint(Table,Can1)]

valid conformant plan

35 / 46

Sensorless Planning: Example

Start from b0 : Color(x ,C(x))
Apply RemoveLid(Can1) in b0 and obtain:
b1 : Color(x ,C(x)) ∧Open(Can1)

Apply Paint(Chair ,Can1) in b1 using {x/Can1, c/C(Can1)}:
b2 : Color(x ,C(x)) ∧Open(Can1) ∧ Color(Chair ,C(Can1))

Apply Paint(Table,Can1) in b2 :
b3 : Color(x ,C(x)) ∧Open(Can1) ∧ Color(Chair ,C(Can1)) ∧
Color(Table,C(Can1))

b3 Satisfies the goal: b3 |= Color(Table, c) ∧ Color(Chair , c)
=⇒ [RemoveLid(Can1),Paint(Chair ,Can1),Paint(Table,Can1)]

valid conformant plan

35 / 46

Sensorless Planning: Example

Start from b0 : Color(x ,C(x))
Apply RemoveLid(Can1) in b0 and obtain:
b1 : Color(x ,C(x)) ∧Open(Can1)

Apply Paint(Chair ,Can1) in b1 using {x/Can1, c/C(Can1)}:
b2 : Color(x ,C(x)) ∧Open(Can1) ∧ Color(Chair ,C(Can1))

Apply Paint(Table,Can1) in b2 :
b3 : Color(x ,C(x)) ∧Open(Can1) ∧ Color(Chair ,C(Can1)) ∧
Color(Table,C(Can1))

b3 Satisfies the goal: b3 |= Color(Table, c) ∧ Color(Chair , c)
=⇒ [RemoveLid(Can1),Paint(Chair ,Can1),Paint(Table,Can1)]

valid conformant plan

35 / 46

Sensorless Planning: Example

Start from b0 : Color(x ,C(x))
Apply RemoveLid(Can1) in b0 and obtain:
b1 : Color(x ,C(x)) ∧Open(Can1)

Apply Paint(Chair ,Can1) in b1 using {x/Can1, c/C(Can1)}:
b2 : Color(x ,C(x)) ∧Open(Can1) ∧ Color(Chair ,C(Can1))

Apply Paint(Table,Can1) in b2 :
b3 : Color(x ,C(x)) ∧Open(Can1) ∧ Color(Chair ,C(Can1)) ∧
Color(Table,C(Can1))

b3 Satisfies the goal: b3 |= Color(Table, c) ∧ Color(Chair , c)
=⇒ [RemoveLid(Can1),Paint(Chair ,Can1),Paint(Table,Can1)]

valid conformant plan

35 / 46

Sensorless Planning: Example

Start from b0 : Color(x ,C(x))
Apply RemoveLid(Can1) in b0 and obtain:
b1 : Color(x ,C(x)) ∧Open(Can1)

Apply Paint(Chair ,Can1) in b1 using {x/Can1, c/C(Can1)}:
b2 : Color(x ,C(x)) ∧Open(Can1) ∧ Color(Chair ,C(Can1))

Apply Paint(Table,Can1) in b2 :
b3 : Color(x ,C(x)) ∧Open(Can1) ∧ Color(Chair ,C(Can1)) ∧
Color(Table,C(Can1))

b3 Satisfies the goal: b3 |= Color(Table, c) ∧ Color(Chair , c)
=⇒ [RemoveLid(Can1),Paint(Chair ,Can1),Paint(Table,Can1)]

valid conformant plan

35 / 46

Sensorless Planning: Example

Start from b0 : Color(x ,C(x))
Apply RemoveLid(Can1) in b0 and obtain:
b1 : Color(x ,C(x)) ∧Open(Can1)

Apply Paint(Chair ,Can1) in b1 using {x/Can1, c/C(Can1)}:
b2 : Color(x ,C(x)) ∧Open(Can1) ∧ Color(Chair ,C(Can1))

Apply Paint(Table,Can1) in b2 :
b3 : Color(x ,C(x)) ∧Open(Can1) ∧ Color(Chair ,C(Can1)) ∧
Color(Table,C(Can1))

b3 Satisfies the goal: b3 |= Color(Table, c) ∧ Color(Chair , c)
=⇒ [RemoveLid(Can1),Paint(Chair ,Can1),Paint(Table,Can1)]

valid conformant plan

35 / 46

Exercise

Provide a novel formalization of the above problem with distinct
predicates for the color of an object and for the color the paint in
a can

find step-by-step a plan with the new formalization

36 / 46

Outline

1 Time, Schedules & Resources

2 Hierarchical Planning

3 Planning & Acting in Non-Determistic Domains
Generalities
Sensorless Planning (aka Conformant Planning)
Conditional Planning (aka Contingent Planning)

37 / 46

[Recall from Ch.4]:Searching with Nondeterministic
Actions

Generalized notion of transition model
RESULTS(S,A) returns a set of possible outcomes states

Ex: RESULTS(1,SUCK)={5,7}, RESULTS(5,SUCK)={1,5}, ...
A solution is a contingency plan (aka conditional plan, strategy)

contains nested conditions on future percepts (if-then-else,
case-switch, ...)
Ex: from state 1 we can act the following contingency plan:
[SUCK, IF STATE = 5 THEN [RIGHT, SUCK] ELSE []]

Can cause loops (see later)

38 / 46

[Recall from Ch.4]:Searching with Nondeterministic
Actions [cont.]

And-Or Search Trees
In a deterministic environment, branching on agent’s choices
=⇒ OR nodes, hence OR search trees

OR nodes correspond to states
In a nondeterministic environment, branching also on
environment’s choice of outcome for each action

the agent has to handle all such outcomes
=⇒ AND nodes, hence AND-OR search trees

AND nodes correspond to actions
leaf nodes are goal, dead-end or loop OR nodes

A solution for an AND-OR search problem is a subtree s.t.:
has a goal node at every leaf
specifies one action at each of its OR nodes
includes all outcome branches at each of its AND nodes

OR tree: AND-OR tree with 1 outcome each AND node (determinism)
39 / 46

[Recall from Ch.4]: And-Or Search Trees: Example

(Part of) And-Or Search Tree for Erratic Vacuum Cleaner Example.

Solution for [SUCK, IF STATE = 5 THEN [RIGHT, SUCK] ELSE []]

(c© S. Russell & P. Norwig, AIMA)

40 / 46

[Recall from Ch.4]: AND-OR Search

Recursive Depth-First (Tree-based) AND-OR Search

(c© S. Russell & P. Norwig, AIMA)

Note: nested if-then-else can be rewritten as case-switch
41 / 46

[Recall from Ch.4]: Cyclic Solution: Example
Example: Slippery Vacuum Cleaner

Movement actions may fail: e.g., Results(1,Right) = {1,2}
A cyclic solution
Use labels: [Suck, L1 : Right, if State = 5 then L1 else Suck]
Use cycles: [Suck, While State = 5 do Right, Suck]

(c© S. Russell & P. Norwig, AIMA)

42 / 46

Contingent Planning

Contingent Planning: generation of plans with conditional
branching based on percepts [see Ch.04]

appropriate for partial observability, non-determinism, or both
Main differences:

planners deal with factored representations rather than atomic
physical transition model is a collection of action schemata
the belief state represented by a logical formula instead of an
explicitly-enumerated set of states
sets of belief states represented as disjunctions of logical
formulas representing belief states

When executing a contingent plan, the agent:
maintain its belief state as a logical formula
evaluate each branch condition:

if the belief state entails the condition formula, then proceed with the
“then” branch
if the belief state entails the negation of the condition formula, then
proceed with the “else” branch

Note: The planning algorithm must guarantee that the agent never
ends in a belief state where the condition’s truth value is unknown43 / 46

Contingent Planning

Contingent Planning: generation of plans with conditional
branching based on percepts [see Ch.04]

appropriate for partial observability, non-determinism, or both
Main differences:

planners deal with factored representations rather than atomic
physical transition model is a collection of action schemata
the belief state represented by a logical formula instead of an
explicitly-enumerated set of states
sets of belief states represented as disjunctions of logical
formulas representing belief states

When executing a contingent plan, the agent:
maintain its belief state as a logical formula
evaluate each branch condition:

if the belief state entails the condition formula, then proceed with the
“then” branch
if the belief state entails the negation of the condition formula, then
proceed with the “else” branch

Note: The planning algorithm must guarantee that the agent never
ends in a belief state where the condition’s truth value is unknown43 / 46

Contingent Planning

Contingent Planning: generation of plans with conditional
branching based on percepts [see Ch.04]

appropriate for partial observability, non-determinism, or both
Main differences:

planners deal with factored representations rather than atomic
physical transition model is a collection of action schemata
the belief state represented by a logical formula instead of an
explicitly-enumerated set of states
sets of belief states represented as disjunctions of logical
formulas representing belief states

When executing a contingent plan, the agent:
maintain its belief state as a logical formula
evaluate each branch condition:

if the belief state entails the condition formula, then proceed with the
“then” branch
if the belief state entails the negation of the condition formula, then
proceed with the “else” branch

Note: The planning algorithm must guarantee that the agent never
ends in a belief state where the condition’s truth value is unknown43 / 46

Computing Result(a,b) with Conditional Steps

Three steps (aka prediction-observation-update)

1 Prediction: (same as for sensorless): b̂ = b \ Del(a) ∪ Add(a)
2 Observation prediction: determines the set of percepts that could

be observed in the predicted belief state
P def

= PossiblePercepts(b̂) def
= {p | b̂ |= Precond(p)}

3 Update: Result(b,a) = b̂ ∧
∧

p∈P bp, s.t.:

if p has one percept schema, Percept(p,Precond : c), s.t. b̂ |= c,
then bp

def
= p ∧ c

if p has k percept schemata, Percept(p,Precond : ci), s.t. b̂ |= ci
for each i = 1..k ,
then bp

def
=
∨k

i=1(p ∧ ci)

=⇒ Result(b,a) CNF formula, not simply conjunction of literals
(cubes)
=⇒ much harder to deal with
=⇒ often (over)approximations used to guantantee bi cube

44 / 46

Computing Result(a,b) with Conditional Steps

Three steps (aka prediction-observation-update)

1 Prediction: (same as for sensorless): b̂ = b \ Del(a) ∪ Add(a)
2 Observation prediction: determines the set of percepts that could

be observed in the predicted belief state
P def

= PossiblePercepts(b̂) def
= {p | b̂ |= Precond(p)}

3 Update: Result(b,a) = b̂ ∧
∧

p∈P bp, s.t.:

if p has one percept schema, Percept(p,Precond : c), s.t. b̂ |= c,
then bp

def
= p ∧ c

if p has k percept schemata, Percept(p,Precond : ci), s.t. b̂ |= ci
for each i = 1..k ,
then bp

def
=
∨k

i=1(p ∧ ci)

=⇒ Result(b,a) CNF formula, not simply conjunction of literals
(cubes)
=⇒ much harder to deal with
=⇒ often (over)approximations used to guantantee bi cube

44 / 46

Computing Result(a,b) with Conditional Steps

Three steps (aka prediction-observation-update)

1 Prediction: (same as for sensorless): b̂ = b \ Del(a) ∪ Add(a)
2 Observation prediction: determines the set of percepts that could

be observed in the predicted belief state
P def

= PossiblePercepts(b̂) def
= {p | b̂ |= Precond(p)}

3 Update: Result(b,a) = b̂ ∧
∧

p∈P bp, s.t.:

if p has one percept schema, Percept(p,Precond : c), s.t. b̂ |= c,
then bp

def
= p ∧ c

if p has k percept schemata, Percept(p,Precond : ci), s.t. b̂ |= ci
for each i = 1..k ,
then bp

def
=
∨k

i=1(p ∧ ci)

=⇒ Result(b,a) CNF formula, not simply conjunction of literals
(cubes)
=⇒ much harder to deal with
=⇒ often (over)approximations used to guantantee bi cube

44 / 46

Computing Result(a,b) with Conditional Steps

Three steps (aka prediction-observation-update)

1 Prediction: (same as for sensorless): b̂ = b \ Del(a) ∪ Add(a)
2 Observation prediction: determines the set of percepts that could

be observed in the predicted belief state
P def

= PossiblePercepts(b̂) def
= {p | b̂ |= Precond(p)}

3 Update: Result(b,a) = b̂ ∧
∧

p∈P bp, s.t.:

if p has one percept schema, Percept(p,Precond : c), s.t. b̂ |= c,
then bp

def
= p ∧ c

if p has k percept schemata, Percept(p,Precond : ci), s.t. b̂ |= ci
for each i = 1..k ,
then bp

def
=
∨k

i=1(p ∧ ci)

=⇒ Result(b,a) CNF formula, not simply conjunction of literals
(cubes)
=⇒ much harder to deal with
=⇒ often (over)approximations used to guantantee bi cube

44 / 46

Contingent Planning: Example

Possible contingent plan for previous problem described below
variables in the plan to be considered existentially quantified
ex (2nd row): “if there exists some color c that is the color of the
table and the chair, then do nothing” (goal reached)

“Color(Table,c)”, “Color(Chair,c)’ and “Color(Can,c)” percepts
=⇒ must be matched against percept schemata

(c© S. Russell & P. Norwig, AIMA)

45 / 46

Contingent Planning: Example

Possible contingent plan for previous problem described below
variables in the plan to be considered existentially quantified
ex (2nd row): “if there exists some color c that is the color of the
table and the chair, then do nothing” (goal reached)

“Color(Table,c)”, “Color(Chair,c)’ and “Color(Can,c)” percepts
=⇒ must be matched against percept schemata

(c© S. Russell & P. Norwig, AIMA)

45 / 46

Exercises

Try to draw an execution the conditiona plan in previous slide
against an imaginary phisical state of the wrld of your choice

track step by step the belief states, the logical inferences, the
actions performed

Is the above plan (from AIMA book) correct?
If so, explain why it is correct
If not so, explain why it is not correct, and find a correct one

46 / 46

Exercises

Try to draw an execution the conditiona plan in previous slide
against an imaginary phisical state of the wrld of your choice

track step by step the belief states, the logical inferences, the
actions performed

Is the above plan (from AIMA book) correct?
If so, explain why it is correct
If not so, explain why it is not correct, and find a correct one

46 / 46

	Time, Schedules & Resources
	Hierarchical Planning
	Planning & Acting in Non-Determistic Domains
	Generalities
	Sensorless Planning (aka Conformant Planning)
	Conditional Planning (aka Contingent Planning)

