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Dictionaries

* A dictionary D is a dynamic data
structure with operations:

— Search(D, k) — returns a pointer x to an
element such that x.key = k (null otherwise)

— Insert(D, xX) — adds the element pointed to
by x to D

— Delete(D, x) — removes the element pointed
to by x from D

* An element has a key and data part.
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I Ordered Dictionaries

* In addition to dictionary functionality,
I we may want to support operations:

- Min(D)
- Max(D)
* and
- Predecessor(D, k)
- Successor(D, k)

* These operations require keys that are
comparable (ordered domain).
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I A List-Based Implementation

I e Unordered list 34 14 (12 (22 18

- search, min, max, predecessor, successor: O(n)

— insertion, deletion: O(1)

* Ordered list 12 14 18 (22 34

- search, insert, delete: O(n)

— min, max, predecessor, successor: O(1)
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I Refresher: Binary Search

* Narrow down the search range in stages
I - findElement(22
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I Run Time of Binary Search

halved after comparing the key with the
middle element.

* Binary search runs in O(log n) time.
 What about insertion and deletion?
— search: O(log n)
- insert, delete: O(n)
— min, max, predecessor, successor: O(1)

* The idea of a binary search can be extended
to dynamic data structures =» binary trees.

I » The range of candidate items to be searched is
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I Binary Tree ADT (C)

node {
int val;
node* left;
node* right;
struct node* parent;

}

node* root;
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I Binary Tree ADT (C)

node {

int val;

node left;

node right;
node parent;

}

node root;
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I Binary Search Trees

with the following properties:
— each internal node stores an item (k,e) of a dictionary

- keys stored at nodes in the left subtree of v are less
than or equal to k

- keys stored at nodes in the right subtree of v are
greater than or equal to k

» Example BSTs for 2, 3,5, 5, 7, 8 @\
/@\ﬁ \ @@
2 s 5 @@
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I Tree Walks

walks"

I * Keys in a BST can be printed using "tree

* Keys of each node printed between keys in the
left and right subtree — inorder tree traversal

05/24/11

InorderTreeWalk (x)

01 if x # NIL then

02 InorderTreeWalk(x.left)
03 print x.key

04 InorderTreeWalk(x.right)

M. Bohlen and R. Sebastiani
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Tree Walks/2

e InorderTreeWalk is a divide-and-conquer
algorithm.

* It prints all elements in monotonically
increasing order.

* Running time O(n).
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Tree Walks/2

* Inorder tree walk can be thought of as
a projection of the BST nodes onto a
one dimensional interval.

S | o™

@»@»@»@»@»&»@
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Tree Walks/3

Other forms of tree walk:

* A preorder tree walk processes each
node before processing its children.

* A postorder tree walk processes each
node after processing its children.

05/24/11 M. Bohlen and R. Sebastiani
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I Searching a BST

| o e
@/ \P @ \@

* To find an element with key k in a tree T
— compare k with T.key
— if k < T.key, search for k in T.left
— otherwise, search for k in T.right

05/24/11 M. Bohlen and R. Sebastiani
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I Pseudocode for BST Search

* Recursive version: divide-and-conquer

Search (T, k)

Ol if T = NIL then return NIL

02 if k = T.key then return T

03 if k < T.key

04 then return Search(T.left,k)
05 else return Search(T.right,k)

e Jterative version

05/24/11

Search (T, k)

01 x :=T

02 while x = NIL and k # x.key do
03 if k < x.key

04 then x :
05 else x :
06 return x

X.left
X.right

M. Bohlen and R. Sebastiani
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I Search Examples

I e Search(T, 11)
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I Search Examples/2
I * Search(T, 6)
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Analysis of Search

* Running time on tree of height h is O(h)

 After the insertion of n keys, the worst-
case running time of searching is O(n)

05/24/11 M. Bohlen and R. Sebastiani
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BST Minimum (Maximum)

* Find the minimum key in a tree rooted at x.

TreeMinimum(x)
01 while x.left # NIL do

02 X = X.left
03 return x

* Maximum: same, X.right instead of x.left

* Running time O(h), i.e., it is proportional to
the height of the tree.
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I Successor

greater than x.key.
* We can distinguish two cases, depending on the
right subtree of x

e Case 1: The right subtree of x is @X
non-empty (succ(x) inserted after x) \.
— successor is the leftmost / \ d
node in the right subtree. succ(x

— this can be done by retuming
TreeMinimum (x.right).

I * Given x, find the node with the smallest key

05/24/11 M. Bohlen and R. Sebastiani
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Successor/2

* Case 2: the right subtree of x is empty
(succ(x), if any, was inserted before x).

— The successor (if any) is the lowest
ancestor of x whose left subtree contains x.

— Note: it x had a right child, then it would be
smaller than succ(x) (5 succ(x)

/
T ®
oo d\
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Successor Pseudocode

TreeSuccessor (x)

01 if x.right # NIL

02 then return TreeMinimum(x.right)
03 y := X.parent

04 whi1e y # NIL and x = y.right

05 X =Y
06 y := y.parent
03 return y

* For a tree of height h, the running time
is O(h).

* Note: no comparison among keys needed!

05/24/11 M. Bohlen and R. Sebastiani 27
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BST Insertion

* The basic idea derives from searching:

— construct an element p whose left and right
children are NULL and insert it into T

— find location in T where p belongs to (as if
searching for p.key),

— add p there

* The running time on a tree of height h
is O(h).
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BST Insertion Code (C)

* Have a "one step delayed” pointer.

node* insert( node* p, node* r) {
node* y = NULL; node* X = r;
(x !'= NULL) {
y i= X;

(x->key < p->key) x = x->right;
X = X->left;

4
(y == NULL) {r = p;p->partent=null}
(y->key < p->key) y->right = p;
y->left = p;
p->parent = u,;
r,
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BST Insertion Code (java)

* Have a "one step delayed” pointer.

node insert(node p, node r) { //insert p in r
node y = NULL; node x = r;
(x "= NULL) {
y = Xj;
(x.key < p.key) x = x.right;
X = X.left;

4
(y == NULL) {r = p; p.parent=null;}// r 1is empty
(y.key < p.key) y.right = p;
y.left = p;
p.parent =y;
r,
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I BST Insertion Example

I e Insert 8

05/24/11 M. Bohlen and R. Sebastiani
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BST Insertion: Worst Case

» In what kind of sequence should the
insertions be made to produce a BST of
height n?

05/24/11 M. Bohlen and R. Sebastiani
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BST Sorting

 Use Treelnsert and InorderTreeWalk to
sort a list of n elements, A

TreeSort(A)

01 T := NIL

02 for 1 := 1 to n

03 TreeInsert(T, BinTree(A[1]))
04 InorderTreewWalk(T)

05/24/11 M. Bohlen and R. Sebastiani
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BST Sorting/2

 Sort the following numbers
51071318

 Build a binary search tree

B H{'

e Call InorderTreeWalk
11357810

05/24/11 M. Bohlen and R. Sebastiani



Data Structures and Algorithms
Week 6

e Binary Search Trees
* Tree traversals
e Searching
e Insertion
e Deletion

e Red-Black Trees

* Properties
* Rotations
e Insertion
e Deletion

05/24/11 M. Bohlen and R. Sebastiani 36



I Deletion

I  Delete node x from a tree T

* We can distinguish three cases
- x has no child
— x has one child

— x has two children
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I Deletion Case 1

I * If x has no children: simply remove x

05/24/11 M. Bohlen and R. Sebastiani
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Deletion Case 2

* If x has exactly one child, make parent
of x point to that child and delete x.

05/24/11 M. Bohlen and R. Sebastiani
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Deletion Case 3

e If x has two children:

- find the largest child y
in the left subtree of x
(i.e. y is predecessor(x))

— Recursively remove y

(note that y has at most
one child), and

(B)
- replace x with y. / ‘\

&)

* “Specular” version with
successor(x) (CLRS)

05/24/11 M. Bohlen and R. Sebastiani
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I BST Deletion Code (C)

e Version without “parent” field

I node* delete( node* root,
node* x) {

u = root; v = NULL;

(u '=x) {
V I= u;
(x->key < u->key) u := u->left;
u := u->right;

} // v points to a parent of x (if any)
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I BST Deletion Code (C)/2

* X has less than 2 children
I  Fix pointer of parent of x

(u->right == NULL) {
(v == NULL) root = u->left;
(v->left == u) v->left = u->left;
v->right = u->left;
(u->Teft == NULL) {
(v == NULL) root = u->right;
(v—>left == u) v->left = u->right;
v->right = u->right;

1
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I BST Deletion Code (C)/3

p = x—>left; q = p;
(p—>right != NULL) { q:=p; p:=p->right; }
(v == NULL) root = p;

(v—>left == u) v->left = p;
v->right = p;

I * X has 2 children

p->right = u->right;
(g !'=p) {

g->right = p->left;

p->left = u->left;

}

return root
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I BST Deletion Code (java)

I e Version without “parent” field

node delete(node root, node x) {

u = root; v = NULL;
(u !'=x) {
V I= u;
(x.key < u.key) u := u.left;
u := u.right;
} // v points to a parent of x (if any)
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I BST Deletion Code (java)/2

* X has less than 2 children
 Fix pointer of parent of x

(u.right == NULL) {
(v == NULL) {root=u.left;
(v.left == u) v.left = u.left;
v.right = u.left;
(u.left == NULL) {
(v == NULL) root = u.right;
(v.left == u) v.left = u.right;
v.right = u.right;
{
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I BST Deletion Code (java)/3

I * X has 2 children

p = x.left; q = p;
(p.right !'= NULL) { q:=p; p:=p.right; }

(v == NULL) root = p;
(v.left == u) v.left = p;
v.right = p;

p.right = u.right;
(q '=p) {
g.right = p.left;
p.left = u.left;

}

return root

05/24/11 M. Bohlen and R. Sebastiani
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BST Deletion Code (java)

e Version with “parent” field

node delete(node root, key v) {

node t; //the node in the tree whose key 1is v

node s; //the node which will be deleted

node r; //the child of s

t = search(root,v);

1if (t==null) return;

if (t.1==null||t.r == null) // v has 0,1 children
s = t;

else // v has 2 children
s = succ(root,v); //other version with pred()

// now s has at most one child
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BST Deletion Code (java)

// now s has at most one child
if (s.1 '= null) r = s.1;
else r = s.r;
1if (r!'=null) r.p = s.p;
1if (s.p == null) // s 1is the root

root = r;
else if (s == s.p.1) // s is a left child
s.p.1 = r;
else // s 1is a right child
S.p.r = r;
if (s '=t) // v had 2 children
t.k = s.k;
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Balanced Binary Search Trees

* Problem: execution time for tree operations is
©O(h), which in worst case is ©(n).

 Solution: balanced search trees guarantee
small height h = O(log n).

@\@
T~
@/@@ @@@
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Suggested exercises

* Implement a binary search tree with the

following functionalities:

— init, max, min, successor, predecessor, search
(iterative & recursive), insert, delete (both
swap with succ and pred), print, print in
reverse order

— TreeSort

05/24/11 M. Bohlen and R. Sebastiani
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Suggested exercises/2

Using paper & pencil:
» draw the trees after each of the following
operations, starting from an empty tree:
1.Insert 9,5,3,7,2,4,6,8,13,11,15,10,12,16,14
2.Delete 16, 15, 5, 7, 9 (both with succ and
pred strategies)

 simulate the following operations after 1:
— Find the max and minimum
— Find the successor of 9, 8, 6
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I Red/Black Trees

the following properties:

1. Nodes (or incoming edges) are colored red or black

».  NULL leaves are black
5. The root is black

2. No two consecutive
red nodes on any
root-leaf path.

5. Same number of black
nodes on any root-leaf
path (called black height of
the tree).
05/24/11 M. Bohlen and R. Sebastiani
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I RB-Tree Properties

- n — # of internal nodes
— h — height
— bh — black height

e 2M_1<n

* bh >h/2

¢ 2V2<n +1

* h<2log(n +1) 9
e BALANCED!

05/24/11 M. Bohlen and R. Sebastiani
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RB-Tree Properties/2

» Operations on a binary-search tree
(search, insert, delete, ...) can be
accomplished in O(h) time.

* The RB-tree is a binary search tree,
whose height is bound by 2 log(n +1),
thus the operations run in O(log n).

- Provided that we can maintain red-black

tree properties spending no more than
O(h) time on each insertion or deletion.
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Rotation

& £

right rotation of > <eft rotation of A

05/24/11 M. Bohlen and R. Sebastiani
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I Right Rotation

RightRotate(B)
I 01 A := B.left

02 B.left := A.right
03 B.left.parent := B

04 if (B B.parent.left) B.parent.left := A
05 if (B B.parent.right) B.ﬂarent.right 3=
06 A.parent := B.parent

07 A.right := B
08 B.parent := A

A

— "
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I The Effect of a Rotation

- Yaeq, bep, cey
we can state the invariant
—a<=A<=b<=B<=c

 After right rotation

— Depth(a) decreases by 1

— Depth(3) stays the same

— Depth(y) increases by 1
 Left rotation: symmetric

e Rotation takes O(1) time

I * Maintains inorder key ordering

05/24/11 M. Bohlen and R. Sebastiani
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I Insertion in the RB-Trees
RBInsert(T,n)

Insert n into T using the binary search tree

01

02
03
04
05
06

05/24/11

insertion procedure
n.left := NULL
n.right := NULL
n.color := red
h.parent = R;
RBInsertFixup(n)

@ﬁ/@iﬂ

M. Bohlen and R. Sebastiani
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Insertion

* Let
- n = the new node g
- p = n.parent
- g = p.parent p

* In the following assume:

-p = g.left A
-u = g.right (uncle)

» Case 0: p.color = black

— No properties of the tree violated = done.

05/24/11 M. Bohlen and R. Sebastiani
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Insertion: remark

* Let
- n = the new node
- p = n.parent
- g = p.parent p

* If there is no parent p
— n is the new root
— n.color = black
* If there is no grandparent g
— p is the root = p is black — case 0

05/24/11 M. Bohlen and R. Sebastiani
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Insertion

* Hereafter we assume p is a left child
p=g.left (swap right w. left otherwise)

» Three cases (p.color is red):

0. p.color = black — no violation = do nothing
1. n's uncle u is red
2. n's uncle u is black and n is a right child

3. n's uncle u is black an n is a left child

05/24/11 M. Bohlen and R. Sebastiani
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I Insertion: Case 1

e Case 1
I - n’s uncle u is red
e Action
- p.color := black
- u.color := black
- g.color := red
_ = g

* the tree rooted at g is balanced (black
depth of all descendants unchanged)

 If root is red, make it black = no
violation

05/24/11 M. Bohlen and R. Sebastiani
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I Insertion: Case 2

I = Case 2

= n’s uncle u is black
and n is a right child

*(g,p,n not in a line)
= Action

= LeftRotate(p) Z&
"n :=p

= Note
* The result is a case 3.
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Insertion: Case 3
= Case 3

= n’s uncle u is black ; i
and n is a left child -
*(g,p,n in a line) P ()u g
= Action J
= p.color := black Z/X

= g.color := red
= RightRotate(qg)

" Note: the tree rooted at g is balanced (black
depth of all descendents unchanged).

05/24/11 M. Bohlen and R. Sebastiani
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I Insertion: Mirror cases

 All three cases are handled analogously
I if p is a right child.

» Exchange left and right in all three
cases.

05/24/11 M. Bohlen and R. Sebastiani
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Insertion: Case 2 and 3 mirrored

= Case 2m
" n’s uncle u is black and n is a left child
= Action

*RightRotate(p)
‘n 1=p
" Case 3m
" n’s uncle u is black and n is a right child
= Action
« p.color := black
« g.color := red

 LeftRotate(qg)
05/24/11 M. Bohlen and R. Sebastiani
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Insertion Summary

 If two red nodes are adjacent, we do either

— a restructuring (with one or two rotations) and
stop (cases 2 and 3), or

- recursively propagate red upwards (case 1)
— if finally the root is red, make it black = no violation

* A restructuring takes constant time and is

performed at most once. It reorganizes an off-
balanced section of the tree

* Propagations may continue up the tree and are
executed O(log n) times (height of the tree)

* The running time of an insertion is O(log n).
05/24/11 M. Bohlen and R. Sebastiani 71



I An Insertion Example

* Inserting "REDSOX" into an empty tree
|
D ®
@ G
®

 Now, let us insert "CUBS"

05/24/11 M. Bohlen and R. Sebastiani
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I Insert C (case 0)

| c c
@ - O ®
©® G © @
®

05/24/11 M. Bohlen and R. Sebastiani
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I Insert U (case 2, mirror)

BT
e
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f?
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Insert B (case 3)

05/24/11 M. Bohlen and R. Sebastiani
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Insert B/2
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Insert S (case 1)
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Insert S/2 (case 3 mirror)

z@ 5 A
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Deletion

» We first apply binary search tree deletion.

— We can easily delete a node that has at least one nil
child

— If the key to be deleted is stored at a node u with two
children, we replace its content with the content of the
largest node v of the left subtree and delete v instead.

(Du OL
OO "= O G
©l160. 0 (2) O
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Deletion Algorithm

1. Remove u

2. If u.color = red, we are done. Else, assume that
v (replacement of u) gets additional black color:

— If v.color = red then v.color := black and we are
done!

— Else v’ s color is “double black”.

S S

Vv
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Deletion Algorithm/2

* How to eliminate double black edges?

- The intuitive idea is to perform a color
compensation

 Find a red edge nearby, and change the pair
(red, double black) into (black, black)

- Two cases: restructuring and recoloring
— Restructuring resolves the problem locally,

while recoloring may propagate it upward.

 Hereafter we assume v is a left child
(swap right and left otherwise)

05/24/11 M. Bohlen and R. Sebastiani
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Eliminating double-back nodes

* Hereafter we assume v is a left child
(swap right with left otherwise)

e Four cases:

0.v is the root = do nothing

1.v’s sibling s is red

2.[recoloring] v’s sibling s is black and both children of s
are black

3.v’s sibling s is black, s’s left child is red, and s’s right
child is black

4.[restructuring] v’s sibling s is black, and s’s right child
is red (regardless s's left child)
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I Deletion: Case 1

- v’s sibling s is red (= p is black)

I e Case 1

 Action
P
- s.color (:)
- p.color

black )
red Y S
- LeftRotation(p)

- s = p.right
* Note
— This is now a case 2, 3, 4
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I Deletion Case 2 (recoloring)

e Case 2
I - v’s sibling s is black and both children of
s are black
* Action P ‘o8
- s.color := red vV S ‘ V S
_vew
* Note

— We reduce the black depth of both subtrees
of p by 1. P becomes “more” black.
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I Deletion: Case 2 (recoloring)

 If parent becomes double black, continue
I upward.
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I Deletion: Case 3

- v’s sibling s is black, s’s left child is red, and s’s
right child is black.
P

e Action
- s.left.color = black v@ S

- s.color = red
- RightRotation(s) £

- S = p.right (:)(:)
* Note: This is now a case 4
(z's children must be black by construction)

I e Case 3
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I Deletion: Case 4 (restructuring)

- v’s sibling s is black and s’s right child is red

I * Case 4
(regardless s's left child)

e Action
- s.color = p.color
- p.color = black
- s.right.color = black

- LeftRotate(p)
- v.color = black // single
* Note

- Terminates after restructuring
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I Delete 9

e
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Delete 9/2

» Case 2 (sibling is black with black
children) — recoloring
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I Delete 8
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I Delete 7: restructuring
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How long does it take?

* Deletion in a RB-tree takes O(log n)

— Maximum three rotations and O(log n)
recolorings
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Suggested exercises

* Add left-rotate and right-rotate to the
implementation of binary trees
* Implement a red-black search tree with

the following functionalities:
- (...), insert, delete
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Suggested exercises/2

Using paper & pencil:

» draw the RB-trees after each of the
following operations, starting from an
empty tree:

1.Insert 1,2,3,4,5,6,7,8,9,10,11,12
2.Delete 12,11,10,9,8,7,6,5,4,3,2,1
* Try insertions and deletions at random
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I Other Balanced Trees

11

2-3-4 Red-Black

e Red-Black trees
I are related to

2-3-4 trees
(non-binary)

R
e AVL-trees have % /Q
simpler algo- \ /q
rithms, but may

f lot of
bt Q£
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I Next Week
I * Hashing
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