Data Structures and Algorithms

Roberto Sebastiani

roberto.sebastiani(@disi.unitn.it
http://www.dis1.unitn.it/~rseba

- Week 06 -
B.S. In Applied Computer Science

Free University of Bozen/Bolzano
academic year 2010-2011

05/24/11 M. Bohlen and R. Sebastiani

mailto:roberto.sebastiani@disi.unitn.it
http://www.disi.unitn.it/~rseba

Acknowledgements
& Copyright Notice

These slides are built on top of slides developed by Michael Boehlen.
Moreover, some material (text, figures, examples) displayed in these slides
1s courtesy of Kurt Ranalter. Some examples displayed in these slides are

taken from [Cormen, Leiserson, Rivest and Stein, " Introduction to
Algorithms", MIT Press], and their copyright 1s detained by the authors. All
the other material 1s copyrighted by Roberto Sebastiani. Every commercial
use of this material 1s strictly forbidden by the copyright laws without the

authorization of the authors. No copy of these slides can be displayed in
public or be publicly distributed without containing this copyright notice.

05/24/11 M. Bohlen and R. Sebastiani

http://www.ifi.uzh.ch/dbtg/Staff/Boehlen/

Data Structures and Algorithms
Week 6

e Binary Search Trees
I * Tree traversals
e Searching
e Insertion
e Deletion

e Red-Black Trees

* Properties
* Rotations
e Insertion
e Deletion

05/24/11 M. Bohlen and R. Sebastiani 3

Data Structures and Algorithms
Week 6

e Binary Search Trees
I * Tree traversals
e Searching
e Insertion
e Deletion

e Red-Black Trees

* Properties
* Rotations
e Insertion
e Deletion

05/24/11 M. Bohlen and R. Sebastiani 4

Dictionaries

* A dictionary D is a dynamic data
structure with operations:

— Search(D, k) — returns a pointer x to an
element such that x.key = k (null otherwise)

— Insert(D, xX) — adds the element pointed to
by x to D

— Delete(D, x) — removes the element pointed
to by x from D

* An element has a key and data part.

05/24/11 M. Bohlen and R. Sebastiani

I Ordered Dictionaries

* In addition to dictionary functionality,
I we may want to support operations:

- Min(D)
- Max(D)
* and
- Predecessor(D, k)
- Successor(D, k)

* These operations require keys that are
comparable (ordered domain).

05/24/11 M. Bohlen and R. Sebastiani

I A List-Based Implementation

I e Unordered list 34 14 (12 (22 18

- search, min, max, predecessor, successor: O(n)

— insertion, deletion: O(1)

* Ordered list 12 14 18 (22 34

- search, insert, delete: O(n)

— min, max, predecessor, successor: O(1)

05/24/11 M. Bohlen and R. Sebastiani

I Refresher: Binary Search

* Narrow down the search range in stages
I - findElement(22
2 | 4 718 |9

5 12| 14| 17|19 22‘ 252728 (3337
low ntd high

2 (4 5 |7 |8 9121417192225 |27| 28 |33 |37

X X X

low mid high

(7
I
L
—]
oo
Lo
o

14| 17 | 19 22‘ 25 (27 28 33|37

low mid high

(]
I
Ln
—]
oo
o
-

141 17 (19 |22 | 25| 27| 28 | 33 | 37

Iowzm#i:high
05/24/11 M. Bohlen and R. Sebastiani

I Run Time of Binary Search

halved after comparing the key with the
middle element.

* Binary search runs in O(log n) time.
 What about insertion and deletion?
— search: O(log n)
- insert, delete: O(n)
— min, max, predecessor, successor: O(1)

* The idea of a binary search can be extended
to dynamic data structures =» binary trees.

I » The range of candidate items to be searched is

05/24/11 M. Bohlen and R. Sebastiani

I Binary Tree ADT (C)

node {
int val;
node* left;
node* right;
struct node* parent;

}

node* root;

/

oo

11

O

O

05/24/11 M. Bohlen and R. Sebastiani

root

\

12

71

69

10

I Binary Tree ADT (C)

node {

int val;

node left;

node right;
node parent;

}

node root;

05/24/11

7N,

O oo

M. Bohlen and R. Sebastiani

root

\

12

71

69

11

I Binary Search Trees

with the following properties:
— each internal node stores an item (k,e) of a dictionary

- keys stored at nodes in the left subtree of v are less
than or equal to k

- keys stored at nodes in the right subtree of v are
greater than or equal to k

» Example BSTs for 2, 3,5, 5, 7, 8 @\
/@\ﬁ \ @@
2 s 5 @@

05/24/11 M. Bohlen and R. Sebastiani 12

I * A binary search tree (BST) is a binary tree T

Data Structures and Algorithms
Week 6

e Binary Search Trees
* Tree traversals
e Searching
e Insertion
e Deletion

e Red-Black Trees

* Properties
* Rotations
e Insertion
e Deletion

05/24/11 M. Bohlen and R. Sebastiani 13

I Tree Walks

walks"

I * Keys in a BST can be printed using "tree

* Keys of each node printed between keys in the
left and right subtree — inorder tree traversal

05/24/11

InorderTreeWalk (x)

01 if x # NIL then

02 InorderTreeWalk(x.left)
03 print x.key

04 InorderTreeWalk(x.right)

M. Bohlen and R. Sebastiani

14

Tree Walks/2

e InorderTreeWalk is a divide-and-conquer
algorithm.

* It prints all elements in monotonically
increasing order.

* Running time O(n).

05/24/11 M. Bohlen and R. Sebastiani

15

Tree Walks/2

* Inorder tree walk can be thought of as
a projection of the BST nodes onto a
one dimensional interval.

S | o™

@»@»@»@»@»&»@

05/24/11 M. Bohlen and R. Sebastiani

16

Tree Walks/3

Other forms of tree walk:

* A preorder tree walk processes each
node before processing its children.

* A postorder tree walk processes each
node after processing its children.

05/24/11 M. Bohlen and R. Sebastiani

17

Data Structures and Algorithms
Week 6

e Binary Search Trees
* Tree traversals
e Searching
e Insertion
e Deletion

e Red-Black Trees

* Properties
* Rotations
e Insertion
e Deletion

05/24/11 M. Bohlen and R. Sebastiani 18

I Searching a BST

| o e
@/ \P @ \@

* To find an element with key k in a tree T
— compare k with T.key
— if k < T.key, search for k in T.left
— otherwise, search for k in T.right

05/24/11 M. Bohlen and R. Sebastiani

19

I Pseudocode for BST Search

* Recursive version: divide-and-conquer

Search (T, k)

Ol if T = NIL then return NIL

02 if k = T.key then return T

03 if k < T.key

04 then return Search(T.left,k)
05 else return Search(T.right,k)

e Jterative version

05/24/11

Search (T, k)

01 x :=T

02 while x = NIL and k # x.key do
03 if k < x.key

04 then x :
05 else x :
06 return x

X.left
X.right

M. Bohlen and R. Sebastiani

20

I Search Examples

I e Search(T, 11)

05/24/11 M. Bohlen and R. Sebastiani

21

I Search Examples/2
I * Search(T, 6)

05/24/11 M. Bohlen and R. Sebastiani

2

Analysis of Search

* Running time on tree of height h is O(h)

 After the insertion of n keys, the worst-
case running time of searching is O(n)

05/24/11 M. Bohlen and R. Sebastiani

23

BST Minimum (Maximum)

* Find the minimum key in a tree rooted at x.

TreeMinimum(x)
01 while x.left # NIL do

02 X = X.left
03 return x

* Maximum: same, X.right instead of x.left

* Running time O(h), i.e., it is proportional to
the height of the tree.

05/24/11 M. Bohlen and R. Sebastiani 24

I Successor

greater than x.key.
* We can distinguish two cases, depending on the
right subtree of x

e Case 1: The right subtree of x is @X
non-empty (succ(x) inserted after x) \.
— successor is the leftmost / \ d
node in the right subtree. succ(x

— this can be done by retuming
TreeMinimum (x.right).

I * Given x, find the node with the smallest key

05/24/11 M. Bohlen and R. Sebastiani

25

Successor/2

* Case 2: the right subtree of x is empty
(succ(x), if any, was inserted before x).

— The successor (if any) is the lowest
ancestor of x whose left subtree contains x.

— Note: it x had a right child, then it would be
smaller than succ(x) (5 succ(x)

/
T ®
oo d\

05/24/11 M. Bohlen and R. Sebastiani

26

Successor Pseudocode

TreeSuccessor (x)

01 if x.right # NIL

02 then return TreeMinimum(x.right)
03 y := X.parent

04 whi1e y # NIL and x = y.right

05 X =Y
06 y := y.parent
03 return y

* For a tree of height h, the running time
is O(h).

* Note: no comparison among keys needed!

05/24/11 M. Bohlen and R. Sebastiani 27

Data Structures and Algorithms
Week 6

e Binary Search Trees
* Tree traversals
e Searching
e Insertion
e Deletion

e Red-Black Trees

* Properties
* Rotations
e Insertion
e Deletion

05/24/11 M. Bohlen and R. Sebastiani 28

BST Insertion

* The basic idea derives from searching:

— construct an element p whose left and right
children are NULL and insert it into T

— find location in T where p belongs to (as if
searching for p.key),

— add p there

* The running time on a tree of height h
is O(h).

05/24/11 M. Bohlen and R. Sebastiani 29

BST Insertion Code (C)

* Have a "one step delayed” pointer.

node* insert(node* p, node* r) {
node* y = NULL; node* X = r;
(x !'= NULL) {
y i= X;

(x->key < p->key) x = x->right;
X = X->left;

4
(y == NULL) {r = p;p->partent=null}
(y->key < p->key) y->right = p;
y->left = p;
p->parent = u,;
r,

05/24/11 M. Bohlen and R. Sebastiani

BST Insertion Code (java)

* Have a "one step delayed” pointer.

node insert(node p, node r) { //insert p in r
node y = NULL; node x = r;
(x "= NULL) {
y = Xj;
(x.key < p.key) x = x.right;
X = X.left;

4
(y == NULL) {r = p; p.parent=null;}// r 1is empty
(y.key < p.key) y.right = p;
y.left = p;
p.parent =y;
r,

05/24/11 M. Bohlen and R. Sebastiani 31

I BST Insertion Example

I e Insert 8

05/24/11 M. Bohlen and R. Sebastiani

32

BST Insertion: Worst Case

» In what kind of sequence should the
insertions be made to produce a BST of
height n?

05/24/11 M. Bohlen and R. Sebastiani

33

BST Sorting

 Use Treelnsert and InorderTreeWalk to
sort a list of n elements, A

TreeSort(A)

01 T := NIL

02 for 1 := 1 to n

03 TreeInsert(T, BinTree(A[1]))
04 InorderTreewWalk(T)

05/24/11 M. Bohlen and R. Sebastiani

34

BST Sorting/2

 Sort the following numbers
51071318

 Build a binary search tree

B H{'

e Call InorderTreeWalk
11357810

05/24/11 M. Bohlen and R. Sebastiani

Data Structures and Algorithms
Week 6

e Binary Search Trees
* Tree traversals
e Searching
e Insertion
e Deletion

e Red-Black Trees

* Properties
* Rotations
e Insertion
e Deletion

05/24/11 M. Bohlen and R. Sebastiani 36

I Deletion

I Delete node x from a tree T

* We can distinguish three cases
- x has no child
— x has one child

— x has two children

05/24/11 M. Bohlen and R. Sebastiani

I Deletion Case 1

I * If x has no children: simply remove x

05/24/11 M. Bohlen and R. Sebastiani

38

Deletion Case 2

* If x has exactly one child, make parent
of x point to that child and delete x.

05/24/11 M. Bohlen and R. Sebastiani

39

Deletion Case 3

e If x has two children:

- find the largest child y
in the left subtree of x
(i.e. y is predecessor(x))

— Recursively remove y

(note that y has at most
one child), and

(B)
- replace x with y. / ‘\

&)

* “Specular” version with
successor(x) (CLRS)

05/24/11 M. Bohlen and R. Sebastiani

40

I BST Deletion Code (C)

e Version without “parent” field

I node* delete(node* root,
node* x) {

u = root; v = NULL;

(u '=x) {
V I= u;
(x->key < u->key) u := u->left;
u := u->right;

} // v points to a parent of x (if any)

05/24/11 M. Bohlen and R. Sebastiani 41

I BST Deletion Code (C)/2

* X has less than 2 children
I Fix pointer of parent of x

(u->right == NULL) {
(v == NULL) root = u->left;
(v->left == u) v->left = u->left;
v->right = u->left;
(u->Teft == NULL) {
(v == NULL) root = u->right;
(v—>left == u) v->left = u->right;
v->right = u->right;

1

05/24/11 M. Bohlen and R. Sebastiani 42

I BST Deletion Code (C)/3

p = x—>left; q = p;
(p—>right != NULL) { q:=p; p:=p->right; }
(v == NULL) root = p;

(v—>left == u) v->left = p;
v->right = p;

I * X has 2 children

p->right = u->right;
(g !'=p) {

g->right = p->left;

p->left = u->left;

}

return root

05/24/11 M. Bohlen and R. Sebastiani 43

I BST Deletion Code (java)

I e Version without “parent” field

node delete(node root, node x) {

u = root; v = NULL;
(u !'=x) {
V I= u;
(x.key < u.key) u := u.left;
u := u.right;
} // v points to a parent of x (if any)

05/24/11 M. Bohlen and R. Sebastiani 44

I BST Deletion Code (java)/2

* X has less than 2 children
 Fix pointer of parent of x

(u.right == NULL) {
(v == NULL) {root=u.left;
(v.left == u) v.left = u.left;
v.right = u.left;
(u.left == NULL) {
(v == NULL) root = u.right;
(v.left == u) v.left = u.right;
v.right = u.right;
{

05/24/11 M. Bohlen and R. Sebastiani 45

I BST Deletion Code (java)/3

I * X has 2 children

p = x.left; q = p;
(p.right !'= NULL) { q:=p; p:=p.right; }

(v == NULL) root = p;
(v.left == u) v.left = p;
v.right = p;

p.right = u.right;
(q '=p) {
g.right = p.left;
p.left = u.left;

}

return root

05/24/11 M. Bohlen and R. Sebastiani

46

BST Deletion Code (java)

e Version with “parent” field

node delete(node root, key v) {

node t; //the node in the tree whose key 1is v

node s; //the node which will be deleted

node r; //the child of s

t = search(root,v);

1if (t==null) return;

if (t.1==null||t.r == null) // v has 0,1 children
s = t;

else // v has 2 children
s = succ(root,v); //other version with pred()

// now s has at most one child

05/24/11 M. Bohlen and R. Sebastiani 47

BST Deletion Code (java)

// now s has at most one child
if (s.1 '= null) r = s.1;
else r = s.r;
1if (r!'=null) r.p = s.p;
1if (s.p == null) // s 1is the root

root = r;
else if (s == s.p.1) // s is a left child
s.p.1 = r;
else // s 1is a right child
S.p.r = r;
if (s '=t) // v had 2 children
t.k = s.k;

05/24/11 M. Bohlen and R. Sebastiani 48

Balanced Binary Search Trees

* Problem: execution time for tree operations is
©O(h), which in worst case is ©(n).

 Solution: balanced search trees guarantee
small height h = O(log n).

@\@
T~
@/@@ @@@

05/24/11 M. Bohlen and R. Sebastiani 49

Suggested exercises

* Implement a binary search tree with the

following functionalities:

— init, max, min, successor, predecessor, search
(iterative & recursive), insert, delete (both
swap with succ and pred), print, print in
reverse order

— TreeSort

05/24/11 M. Bohlen and R. Sebastiani

50

Suggested exercises/2

Using paper & pencil:
» draw the trees after each of the following
operations, starting from an empty tree:
1.Insert 9,5,3,7,2,4,6,8,13,11,15,10,12,16,14
2.Delete 16, 15, 5, 7, 9 (both with succ and
pred strategies)

 simulate the following operations after 1:
— Find the max and minimum
— Find the successor of 9, 8, 6

05/24/11 M. Bohlen and R. Sebastiani 51

Data Structures and Algorithms
Week 6

e Binary Search Trees
* Tree traversals
e Searching
e Insertion
e Deletion

e Red-Black Trees

* Properties
* Rotations
e Insertion
e Deletion

05/24/11 M. Bohlen and R. Sebastiani 52

Data Structures and Algorithms
Week 6

e Binary Search Trees
* Tree traversals
e Searching
e Insertion
e Deletion

e Red-Black Trees

* Properties
e Rotations
e Insertion
e Deletion

05/24/11 M. Bohlen and R. Sebastiani 53

I Red/Black Trees

the following properties:

1. Nodes (or incoming edges) are colored red or black

». NULL leaves are black
5. The root is black

2. No two consecutive
red nodes on any
root-leaf path.

5. Same number of black
nodes on any root-leaf
path (called black height of
the tree).
05/24/11 M. Bohlen and R. Sebastiani

I = A red-black tree is a binary search tree with

I RB-Tree Properties

- n — # of internal nodes
— h — height
— bh — black height

e 2M_1<n

* bh >h/2

¢ 2V2<n +1

* h<2log(n +1) 9
e BALANCED!

05/24/11 M. Bohlen and R. Sebastiani

I e Some measures

55

RB-Tree Properties/2

» Operations on a binary-search tree
(search, insert, delete, ...) can be
accomplished in O(h) time.

* The RB-tree is a binary search tree,
whose height is bound by 2 log(n +1),
thus the operations run in O(log n).

- Provided that we can maintain red-black

tree properties spending no more than
O(h) time on each insertion or deletion.

05/24/11 M. Bohlen and R. Sebastiani 56

Data Structures and Algorithms
Week 6

e Binary Search Trees
* Tree traversals
e Searching
e Insertion
e Deletion

e Red-Black Trees

* Properties
e Rotations
e Insertion
e Deletion

05/24/11 M. Bohlen and R. Sebastiani 57

Rotation

& £

right rotation of > <eft rotation of A

05/24/11 M. Bohlen and R. Sebastiani

58

I Right Rotation

RightRotate(B)
I 01 A := B.left

02 B.left := A.right
03 B.left.parent := B

04 if (B B.parent.left) B.parent.left := A
05 if (B B.parent.right) B.ﬂarent.right 3=
06 A.parent := B.parent

07 A.right := B
08 B.parent := A

A

— "

05/24/11 M. Bohlen and R. Sebastiani

I The Effect of a Rotation

- Yaeq, bep, cey
we can state the invariant
—a<=A<=b<=B<=c

 After right rotation

— Depth(a) decreases by 1

— Depth(3) stays the same

— Depth(y) increases by 1
 Left rotation: symmetric

e Rotation takes O(1) time

I * Maintains inorder key ordering

05/24/11 M. Bohlen and R. Sebastiani

60

Data Structures and Algorithms
Week 6

e Binary Search Trees
* Tree traversals
e Searching
e Insertion
e Deletion

e Red-Black Trees

* Properties
* Rotations
e Insertion
e Deletion

05/24/11 M. Bohlen and R. Sebastiani 61

I Insertion in the RB-Trees
RBInsert(T,n)

Insert n into T using the binary search tree

01

02
03
04
05
06

05/24/11

insertion procedure
n.left := NULL
n.right := NULL
n.color := red
h.parent = R;
RBInsertFixup(n)

@ﬁ/@iﬂ

M. Bohlen and R. Sebastiani

A

62

Insertion

* Let
- n = the new node g
- p = n.parent
- g = p.parent p

* In the following assume:

-p = g.left A
-u = g.right (uncle)

» Case 0: p.color = black

— No properties of the tree violated = done.

05/24/11 M. Bohlen and R. Sebastiani

63

Insertion: remark

* Let
- n = the new node
- p = n.parent
- g = p.parent p

* If there is no parent p
— n is the new root
— n.color = black
* If there is no grandparent g
— p is the root = p is black — case 0

05/24/11 M. Bohlen and R. Sebastiani

64

Insertion

* Hereafter we assume p is a left child
p=g.left (swap right w. left otherwise)

» Three cases (p.color is red):

0. p.color = black — no violation = do nothing
1. n's uncle u is red
2. n's uncle u is black and n is a right child

3. n's uncle u is black an n is a left child

05/24/11 M. Bohlen and R. Sebastiani

65

I Insertion: Case 1

e Case 1
I - n’s uncle u is red
e Action
- p.color := black
- u.color := black
- g.color := red
_ = g

* the tree rooted at g is balanced (black
depth of all descendants unchanged)

 If root is red, make it black = no
violation

05/24/11 M. Bohlen and R. Sebastiani

66

I Insertion: Case 2

I = Case 2

= n’s uncle u is black
and n is a right child

*(g,p,n not in a line)
= Action

= LeftRotate(p) Z&
"n :=p

= Note
* The result is a case 3.

05/24/11 M. Bohlen and R. Sebastiani

Insertion: Case 3
= Case 3

= n’s uncle u is black ; i
and n is a left child -
*(g,p,n in a line) P ()u g
= Action J
= p.color := black Z/X

= g.color := red
= RightRotate(qg)

" Note: the tree rooted at g is balanced (black
depth of all descendents unchanged).

05/24/11 M. Bohlen and R. Sebastiani

68

I Insertion: Mirror cases

 All three cases are handled analogously
I if p is a right child.

» Exchange left and right in all three
cases.

05/24/11 M. Bohlen and R. Sebastiani

69

Insertion: Case 2 and 3 mirrored

= Case 2m
" n’s uncle u is black and n is a left child
= Action

*RightRotate(p)
‘n 1=p
" Case 3m
" n’s uncle u is black and n is a right child
= Action
« p.color := black
« g.color := red

 LeftRotate(qg)
05/24/11 M. Bohlen and R. Sebastiani

70

Insertion Summary

 If two red nodes are adjacent, we do either

— a restructuring (with one or two rotations) and
stop (cases 2 and 3), or

- recursively propagate red upwards (case 1)
— if finally the root is red, make it black = no violation

* A restructuring takes constant time and is

performed at most once. It reorganizes an off-
balanced section of the tree

* Propagations may continue up the tree and are
executed O(log n) times (height of the tree)

* The running time of an insertion is O(log n).
05/24/11 M. Bohlen and R. Sebastiani 71

I An Insertion Example

* Inserting "REDSOX" into an empty tree
|
D ®
@ G
®

 Now, let us insert "CUBS"

05/24/11 M. Bohlen and R. Sebastiani

72

I Insert C (case 0)

| c c
@ - O ®
©® G © @
®

05/24/11 M. Bohlen and R. Sebastiani

®

73

I Insert U (case 2, mirror)

BT
e

05/24/11 M. Bohlen and R. Sebastiani 74

f?

05/24/11 M. Bohlen and R. Sebastiani

75

Insert B (case 3)

05/24/11 M. Bohlen and R. Sebastiani

76

Insert B/2

05/24/11 M. Bohlen and R. Sebastiani

77

Insert S (case 1)

05/24/11 M. Bohlen and R. Sebastiani

78

Insert S/2 (case 3 mirror)

z@ 5 A

05/24/11 M. Bohlen and R. Sebastiani

79

Data Structures and Algorithms
Week 6

e Binary Search Trees
* Tree traversals
e Searching
e Insertion
e Deletion

e Red-Black Trees

* Properties
* Rotations
e Insertion
e Deletion

05/24/11 M. Bohlen and R. Sebastiani 80

Deletion

» We first apply binary search tree deletion.

— We can easily delete a node that has at least one nil
child

— If the key to be deleted is stored at a node u with two
children, we replace its content with the content of the
largest node v of the left subtree and delete v instead.

(Du OL
OO "= O G
©l160. 0 (2) O

05/24/11 M. Bohlen and R. Sebastiani 81

Deletion Algorithm

1. Remove u

2. If u.color = red, we are done. Else, assume that
v (replacement of u) gets additional black color:

— If v.color = red then v.color := black and we are
done!

— Else v’ s color is “double black”.

S S

Vv

05/24/11 M. Bohlen and R. Sebastiani 82

Deletion Algorithm/2

* How to eliminate double black edges?

- The intuitive idea is to perform a color
compensation

 Find a red edge nearby, and change the pair
(red, double black) into (black, black)

- Two cases: restructuring and recoloring
— Restructuring resolves the problem locally,

while recoloring may propagate it upward.

 Hereafter we assume v is a left child
(swap right and left otherwise)

05/24/11 M. Bohlen and R. Sebastiani

83

Eliminating double-back nodes

* Hereafter we assume v is a left child
(swap right with left otherwise)

e Four cases:

0.v is the root = do nothing

1.v’s sibling s is red

2.[recoloring] v’s sibling s is black and both children of s
are black

3.v’s sibling s is black, s’s left child is red, and s’s right
child is black

4.[restructuring] v’s sibling s is black, and s’s right child
is red (regardless s's left child)

05/24/11 M. Bohlen and R. Sebastiani

84

I Deletion: Case 1

- v’s sibling s is red (= p is black)

I e Case 1

 Action
P
- s.color (:)
- p.color

black)
red Y S
- LeftRotation(p)

- s = p.right
* Note
— This is now a case 2, 3, 4

05/24/11 M. Bohlen and R. Sebastiani

85

I Deletion Case 2 (recoloring)

e Case 2
I - v’s sibling s is black and both children of
s are black
* Action P ‘o8
- s.color := red vV S ‘ V S
_vew
* Note

— We reduce the black depth of both subtrees
of p by 1. P becomes “more” black.

05/24/11 M. Bohlen and R. Sebastiani

86

I Deletion: Case 2 (recoloring)

 If parent becomes double black, continue
I upward.

05/24/11 M. Bohlen and R. Sebastiani

87

I Deletion: Case 3

- v’s sibling s is black, s’s left child is red, and s’s
right child is black.
P

e Action
- s.left.color = black v@ S

- s.color = red
- RightRotation(s) £

- S = p.right (:)(:)
* Note: This is now a case 4
(z's children must be black by construction)

I e Case 3

05/24/11 M. Bohlen and R. Sebastiani 88

I Deletion: Case 4 (restructuring)

- v’s sibling s is black and s’s right child is red

I * Case 4
(regardless s's left child)

e Action
- s.color = p.color
- p.color = black
- s.right.color = black

- LeftRotate(p)
- v.color = black // single
* Note

- Terminates after restructuring
05/24/11 M. Bohlen and R. Sebastiani 89

I Delete 9

e

05/24/11 M. Bohlen and R. Sebastiani

90

Delete 9/2

» Case 2 (sibling is black with black
children) — recoloring

05/24/11 M. Bohlen and R. Sebastiani

91

I Delete 8

05/24/11

M. Bohlen and R. Sebastiani

S

I Delete 7: restructuring

05/24/11 M. Bohlen and R. Sebastiani

e

How long does it take?

* Deletion in a RB-tree takes O(log n)

— Maximum three rotations and O(log n)
recolorings

05/24/11 M. Bohlen and R. Sebastiani

94

Suggested exercises

* Add left-rotate and right-rotate to the
implementation of binary trees
* Implement a red-black search tree with

the following functionalities:
- (...), insert, delete

05/24/11 M. Bohlen and R. Sebastiani

95

Suggested exercises/2

Using paper & pencil:

» draw the RB-trees after each of the
following operations, starting from an
empty tree:

1.Insert 1,2,3,4,5,6,7,8,9,10,11,12
2.Delete 12,11,10,9,8,7,6,5,4,3,2,1
* Try insertions and deletions at random

05/24/11 M. Bohlen and R. Sebastiani 96

I Other Balanced Trees

11

2-3-4 Red-Black

e Red-Black trees
I are related to

2-3-4 trees
(non-binary)

R
e AVL-trees have % /Q
simpler algo- \ /q
rithms, but may

f lot of
bt Q£

05/24/11 M. Bohlen and R. Sebastiani 97

I Next Week
I * Hashing

05/24/11

M. Bohlen and R. Sebastiani

98

	Slide 1
	Slide 2
	Algorithms and Complexity Week 6
	Slide 4
	Dictionaries
	Ordered Dictionaries
	A List-Based Implementation
	Refresher: Binary Search
	Run Time of Binary Search
	Binary Tree ADT
	Slide 11
	Binary Search Trees
	Slide 13
	Tree Walks
	Slide 15
	Tree Walks/2
	Tree Walks/3
	Slide 18
	Searching a BST
	Pseudocode for BST Search
	Search Examples
	Search Examples (2)
	Analysis of Search
	BST Minimum (Maximum)
	Successor
	Successor/2
	Successor Pseudocode
	Slide 28
	BST Insertion
	BST Insertion Code
	Slide 31
	BST Insertion Example
	BST Insertion: Worst Case
	BST Sorting
	BST Sorting/2
	Slide 36
	Deletion
	Deletion Case 1
	Deletion Case 2
	Deletion Case 3
	BST Deletion Code
	BST Deletion Code/2
	BST Deletion Code/3
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Balanced Binary Search Trees
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Red/Black Trees
	RB-Tree Properties
	RB-Tree Properties/2
	Slide 57
	Rotation
	Right Rotation
	The Effect of a Rotation
	Slide 61
	Insertion in the RB-Trees
	Slide 63
	Insertion
	Slide 65
	Insertion: Case 1
	Insertion: Case 2
	Insertion: Case 3
	Insertion: Mirror cases
	Insertion: Case 2 and 3 mirrored
	Insertion Summary
	An Insertion Example
	Example C
	Example U
	Example U/2
	Example B
	Example B/2
	Example S
	Example S/2
	Slide 80
	Slide 81
	Deletion Algorithm
	Deletion Algorithm/2
	Slide 84
	Slide 85
	Slide 86
	Deletion: Case 2
	Deletion: Case 3
	Deletion: Case 4
	A Deletion Example
	A Deletion Example/2
	A Deletion Example/3
	A Deletion Example/4
	How long does it take?
	Slide 95
	Slide 96
	Other Balanced Trees
	Next Week

