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I Analysis of Algorithms

* Efficiency:
I — Running time
— Space used
* Efficiency is defined as a function of the
input size:
— Number of data elements (numbers,
points).

— The number of bits of an input number.
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The RAM model

* It is important to choose the level of detail.
e The RAM (Random Access Machine) model:

— Instructions (each taking constant time) — we
usually choose one type of instruction as a
characteristic operation that is counted:

 Arithmetic (add, subtract, multiply, etc.)
 Data movement (assign)

e Control flow (branch, subroutine call, return)
e Comparison

- Data types — integers, characters, and floats
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I Analysis of Insertion Sort

* Time to compute the running time as a
I function of the input size (exact analysis).

cost times
for | :=2 to n do cl n
key = Alj] c2 n-1
// Insert Alj] tnto AJ1..]J-1] O n-1
| = j- c3 n-1
\Nhl le 1>0 and A[I]>key do c4 >
Alil+1] = Ali] c5 > -1
| - - c6 Z:ZQ(tj—l)
Al 1 +1]: = key c/ n-1
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I Analysis of Insertion Sort/2

 The running time of an algorithm is the
I sum of the running times of each state-
ment.

* A statement with cost c that is executed
n times contributes ¢*n to the running
fime.

* The total running time T(n) of insertion
sort is
- T(n) = cl*n + c2(n-1) + c3(n-1) + c4> 1,
c52 (1) + ¢6X _,(t,-1) +c7(n-1)
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Analysis of Insertion Sort/3

* Often the performance depends on the
details of the input (not only length n).

» This is modeled by t;

o In the case of insertion sort the time t,

depends on the original sorting of the
input array.
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Performance Analysis

e Often it is sufficient to count the number of
iterations of the core (innermost) part.

— No distinction between comparisons, assignments,
etc (that means roughly the same cost for all of
them).

— Gives precise enough results.

* In some cases the cost of selected operations
dominates all other costs.
— Disk I/0 versus RAM operations.
- Database systems.
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Best/Worst/Average Case

* Analyzing insertion sort’s ¥ _ (-1

- Best case: elements already sorted, t.=1,
innermost loop is zero, total running time is
linear (time = an-+Db).

- Worst case: elements sorted in inverse
order, t.=j, total running time is quadratic
(time = an®*+bn+c).

- Average case: t,=j/2, total running time is
quadratic (time = an’*+bn+c).
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I Best/Worst/Average Case/2

— For a specific size of input size n, investigate
running times for different input instances:

6n

5n

3n

running time
I
=

2n

In
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input instance
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worst case =4321
average case =3124

best case —1234
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Best/Worst/Average Case/3

— For inputs of all sizes:

worst-case
60 average-case
5n

best-case

Running time
D =~
5 B

\®)
==

p—
=

1 23 45 6 7 8 910 11 12 ...

Input instance size
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I Best/Worst/Average Case/4

— It is an upper-bound.

— In certain application domains (e.g., air traffic
control, surgery) knowing the worst-case
time complexity is of crucial importance.

— For some algorithms worst case occurs fairly
often.

- The average case is often as bad as the worst
case.

- Finding the average case can be very difficult.

I * Worst case is usually used:
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Analysis of Linear Search

INPUT: A[l..n] — a sorted array of integers,
g — an 1nteger.
OUTPUT: j s.t. A[ljl=q. NIL 1if Vvj(1<j<n): Aljl=#q

7 =1

while j <= n and A[]j] != g do J++
if jJj <= n then return j

else return NIL

= Worst case running time: n
= Average case running time: n/2 (if present)

= Best case running time: 1
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I Binary Search

= ]dea: Left and right bound. Elements to the right
of r are bigger than search element, ...

= In each step half the range of the search space.

INPUT: A[1..n] — sorted (increasing) array of integers, g — integer.
OUTPUT: an index j such that A[j] = q. NIL, if Uj (1s/<n): A[j] # q

1l :=1; r := n

do
m := |(l+r) /2|
if A[{m] = g then return m
else if A[m] > g then r := m-1
else 1 := m+l

while 1 <= r
return NIL




Analysis of Binary Search

 How many times the loop is executed?

— With each execution the difference
between 1 and r is cut in half.

e Initially the difference is n.
 The loop stops when the difference becomes O
(less than 1) .
- How many times do you have to cut n in
half to get 0?

— log n — better than the brute-force

approach of linear search (n).
05/24/11 M. Bohlen and R. Sebastiani
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I Linear vs Binary Search

e Costs of linear search: n
I * Costs of binary search: log(n)
 Should we care?

* Phone book with n entries:
- n = 200’000, log n = log 200’000 = 18
- n = 2M, log 2M = 21
- n = 20M, log 20M = 24
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I Suggested exercises

* Implement binary search in 3 versions:
I — As in previous slides
— Without return statements inside the loop
— Recursive

* As before, returning nil if g<all] or
q>alr] (trace the different executions)

» Implement a function printSubArray
printing only the subarray from 1 to r,

leaving blanks for the others

— use it to trace the behaviour of binary search
05/24/11 M. Bohlen and R. Sebastiani 19
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Asymptotic Analysis

* Goal: to simplify the analysis of the running
time by getting rid of details, which are
affected by specific implementation and
hardware

- “rounding” of numbers: 1,000,001 = 1,000,000
- “rounding” of functions: 3n? = n?

* Capturing the essence: how the running time
of an algorithm increases with the size of the
input in the limit.

- Asymptotically more efficient algorithms are best
for all but small inputs
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Asymptotic Notation

* The “big-Oh”
O-Notation
— asymptotic upper bound

- f(n) = O(g(n)) iff there

exists constants ¢>0 and CQ(%’(;?)
n,>0, s.t. f(n) < c g(n) . fln
for n 2 n, .

- f(n) and g(n) are

fllIlCtl_OIlS. Oover 1non- .
negative integers "y Input Size

* Used for worst-case
analysis

05/24/11 M. Bohlen and R. Sebastiani 22
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Asymptotic Notation/2

» Simple Rule: Drop lower order terms

and constant factors.

- 50 nlognis O(n logn)

- 7n - 31s O(n)

- 8n?logn + 5n% + n is O(n? log n)

* Note: Although (50 n log n) is also
O(n?), or even O(n!%), it is expected
that an approximation is of the smallest
possible order.

05/24/11 M. Bohlen and R. Sebastiani
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I Asymptotic Notation/3

* The “big-Omega”
(QQ—Notation
— asymptotic lower bound
- f(n) = Q(g(n)) iff there exists
constants c>0 and n,>0, s.t.
c g(n) < f(n) forn =2n,

 Used to describe best-case
running times or lower
bounds of algorithmic
problems.

- E.g., searching in an unsorted

array with search2 is Q(n),
with searchl it is Q(1)

f(n)
clg(n)

Running Time

[
»

n

o Input Size
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I Asymptotic Notation/4

* The “big-Theta”
I ©-Notation

- asymptoticly tight bound ) c28(n)
- f(n) = O(g(n) if there exists | £ fln)
constants c¢,>0, c¢,>0, and £ ¢ &(n)
n,>0, s.t. forn=n, =
¢, g(n) < f(n) < ¢, g(n)
Input Size

* f(n) = ©(g(n)) itt
f(n) = O(g(n)) and f(n) = Q(g(n))

* Note: O(f(n)) is often abused instead of
O(f(n))
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Asymptotic Notation/5

* Two more asymptotic notations

— "Little-Oh" notation f(n)=o0(g(n))
non-tight analogue of Big-Oh
 For every ¢>0, there exists n,>0, s.t.

f(n) < cg(n) forn=n,

 If f(n)=0(g(n)), it is said that g(n) dominates
f.

- "Little-omega" notation f(n)=w(g(n))
non-tight analogue of Big-Omega
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Asymptotic Notation/6

* Analogy with real numbers

-f(n) = 0(g(m) Of<g
-f(m) =Q@gm) Of=g
-f(m =0(gm) Of=g
-f(m) =o(g(n)) Of<g
-f(n) =wgm) Of>g

* Abuse of notation: f(n) = O(g(n))
actually means f(n) U O(g(n))

05/24/11 M. Bohlen and R. Sebastiani
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I Comparison of Running Times

* Determining the maximal problem size.
?zllgn;;li:ime 1 second |1 minute |1 hour
400n 2500 150000  |9°000°000
20n log n 4096 166’666  |7'826°087
2n?2 707 5477 42426
n 31 88 244
2 19 25 31

05/24/11
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Correctness of Algorithms

* An algorithm is correct if for every legal
input, it terminates and produces the
desired output.

» Automatic proof of correctness is not
possible.

* There are practical techniques and rigorous
formalisms that help to reason about the
correctness of (parts of) algorithms.
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Partial and Total Correctness

= Partial correctness

every legal input

IF this point is reached, THEN this is the desired output

2 G

* Total correctness

INDEED this point is reached, AND this is the desired output

every legal input

05/24/11

S
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Assertions

* To prove partial correctness we associate a
number of assertions (statements about the
state of the execution) with specific
checkpoints in the algorithm.

- E.g., A[1], ..., A[j] form an increasing sequence

 Preconditions — assertions that must be valid

before the execution of an algorithm or a
subroutine (INPUT).

 Postconditions — assertions that must be valid

after the execution of an algorithm or a
subroutine (OUTPUT).
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Loop Invariants

* Invariants: assertions that are valid every
time they are reached (many times during the
execution of an algorithm, e.g., in loops)

 We must show three things about loop
invariants:

- Initialization: it is true prior to the first iteration.

- Maintenance: if it is true before an iteration, then
it is true after the iteration.

- Termination: when a loop terminates the
invariant gives a useful property to show the
correctness of the algorithm
05/24/11 M. Bohlen and R. Sebastiani 33



Example: Binary Search/1

We want to show that g s
not in A if NIL is returneq & = 7 © == 7/

do
Invariant: m := [ (l+r) /2]
. . . . if A[m]=g then return m
DID[lI_l] A[I]<q (Ia) else if A[m]>g then r := m-1

Oid[r+1..n]: A[|]>q (ib) else 1 := m+l
e e . while 1 <= r
Initialization: [ = 1, r = n | return nTL

the invariant holds because
there are no elements to the left of [ or to the right of r.

1=1 yields [Jj,i O[1..0]: Ali]<q
this holds because [1..0] is empty
r=n yields [Jj,i O[n+1..n]: A[i]>q

this holds because [n+1..n] is empty
05/24/11 M. Bohlen and R. Sebastiani 34




I Example: Binary Search/2

05/24/11

Invariant:
Oi0[1..1-1]: Alil<qg (ia)
Oid[r+1..n]: Ali]l>q (ib)

l =1, ¥ := n;

m := |(1l+r) /2]
if A[m]=g then return m
else if A[m]>g then r := m-1
else 1 := m+l

while 1 <= r

return NIL

Maintenance: 1, r, m = [{(1+r)/20

Alm] != q & A[m] > q, r = m-1, A sorted implies
(kO[r+1..n]: A[k] > q (ib)

Alm] !'= q & A[m] < q,1 = m+1, A sorted implies
[kO[1..1-1]: A[k]<q (ia)
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I Example: Binary Search/3

 [Invariant: 1 :=1; r := n;
: . : : do
I D!D[l..l-l]. A[|].<q (!a) o= | (Lir) /2]
DID[F+1..H]Z A[I]>q (Ib) if Alm]=g then return m
else if A[m]>g then r := m-1
else 1 := m+l
while 1 <= r
e Termination: ], r, I<=r | return NIL

* Two cases:
- l:=m+1 we get [{I+1r)/20+1 > 1
- r:=m-1 we get [((1+r)/2[0-1 <r
* The range gets smaller during each iteration and the loop
will terminate when 1< =r no longer holds.
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I Example: Insertion Sort/1

Loop invariants: for § := 2 to n do
e External “for” loop ]iieif:‘j:,_i\[j]
1A[]_J_1] is sorted while i>0 and A[i]>key do
.. : . Ali+l] := A[1]
1.A[1...5-1] [J Aone i--

 Internal “while” loop:
Al1.j]: A[1...i]JA[i+1]A[i+2...j], where A[i+1] is a
placeholder for key, s.t.:
a)A[i+2...j] is sorted
b)A[1...i] is sorted
c)key <= A[Kk] forall k in {i+2...j},

d)A[i] <= A[K] forall k in {i+2...j}
05/24/11 M. Bohlen and R. Sebastiani 37



I Example: Insertion Sort/2

i. A[1...j-1] is sorted
ii.A[1...j-1] [ Acris
Internal while loop:
Al1...i]JA[i+1]A[i+2...j] s.t.
a)Ali+2...j] is sorted
b)A[1...i] is sorted
c)key<=A[k] forall kin {i+2...j},
d)A[i]<=A[Kk] forall k in {i+2...j}
Initialization:

I * External for loop

for 7 := 2 to n do
key = A[]J]
1 o:= -1
while 1>0 and A[i1i]>key do
Ali+1] := A[1i]
j___
A[i+1l] := key

* j=2: A[1...1] O A°¢ and is trivially sorted

o i=j-1: A[1...i], key, A[i+2,...j] s.t. key=A[j]
a)Ali+2...j] is empty, and thus trivially sorted,
b)A[1...i] is sorted (invariant of outer loop)

c)trivial since {i+2...j} empty
d)trivial since {i+2...j} empty
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Example: Insertion Sort/3

External for loop

i. A[1...j-1] is sorted

ii. A[1...j-1] [0 Acris
Internal while loop:
All1..i]A[i+1]Afi+2...j] s.t.
a)A[i+2...j] is sorted
b)A[1...i] is sorted
c)key<=A[k] forall kin {i+2...j},
d)A[i]<=A[Kk] forall k in {i+2...j}

Maintenance: A —» A

05/24/11

for j :
key = A[]J]
1 o:= -1
while 1>0 and A[i1i]>key do
A[i+1] Ali]
j___
A[i+1]

2 to n do

key

If i.,ii. then A'[1...j]0A ¢ sorted (by termination of internal while loop)
i=1i-1, A'[1...i-1]=A[1...i-1], and A'[i+1...j]=A[]A[i+2...]]

a)If a) then A'[i+1...j] sorted because of d)

b)If b) then obviously A'[1...i-1] sorted

o)If ¢) then key<=A'[k] forall k in {i+1,...j}

d)If d) then A[i-1] <=A'[k] forall k in {i+1,...j} because of a)

M. Bohlen and R. Sebastiani
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External for loop

i. A[1...j-1] is sorted

ii. A[1...j-1] [0 Acris
Internal while loop:
All1..i]A[i+1]Afi+2...j] s.t.
a)A[i+2...j] is sorted
b)A[1...i] is sorted
c)key<=A[k] forall kin {i+2...j},
d)A[i]<=A[Kk] forall k in {i+2...j}

Termination:

Example: Insertion Sort/4

for 7 := 2 to n do
key = A[]J]
1 o:= -1
while 1>0 and A[i1i]>key do
Ali+1] := A[1i]
j___
A[i+1l] := key

j=n+1: due to i. and ii. A[1...n] is sorted and A[1...n] [J A°ri

e A[l...i]JA[i+1]A[i+2...j] s.t. i<=0 or A[i] <=key, a)-d) hold
thus, after “A[i+1]:=key” A[1..j] is sorted

05/24/11
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I Suggested exercises

correctness of insertion, selection and
bubble sort.

* Do the same also for the versions of the
algorithms in reverse order.

* Add to the implementations of the above
algorithms, for both inner and outer
loops, a call to some method which
aborts if the loop invariant is violated

I » Apply the same process to prove the

05/24/11 M. Bohlen and R. Sebastiani 41
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I Special Case Analysis

 Consider extreme cases and make sure
I our solution works in all cases.

* The problem: identify special cases.

e This is related to INPUT and OUTPUT
specifications.

05/24/11 M. Bohlen and R. Sebastiani
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I Special Cases

* empty data structure .
(array, file, list, ...) -

 single element data o

structure

* completely filled data

structure

* entering a function
* termination of a

function

05/24/11

Zero, empty string
negative number
border of domain

start of loop
end of loop

first iteration of
loop

M. Bohlen and R. Sebastiani
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I Sortedness

* The following algorithm checks whether
I an array is sorted.

INPUT: A[l..n] — an array 1ntegers.
OUTPUT: TRUE 1f A 1s sorted; FALSE otherwise

for 1 := 1 to n

if A[i] > A[i+1] then return FALSE
return TRUE

* Analyze the algorithm by considering
special cases.

05/24/11 M. Bohlen and R. Sebastiani 45



Sortedness/2

OUTPUT: TRUE 1f A 1s sorted; FALSE otherwise
for 1 :=1 to n

if A[i] > A[i+1] then return FALSE
return TRUE

I INPUT: A[l..n] — an array 1ntegers.

 Start of loop, i=1 = OK
* End of loop, i=n = ERROR (tries to access A[n+1])
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Sortedness/3

INPUT: A[l..n] — an array integers.
OUTPUT: TRUE 1f A 1s sorted; FALSE otherwise
for 1 := 1 to n-1
if A[i] > A[i+1] then return FALSE
return TRUE

Start of loop, i=1 = OK

End of loop, i=n-1 = OK

First iteration, from i=1 to i=2 = OK

A=[1,1,1] = ERROR (if A[i]=A[i+1] for some i)
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Sortedness/4

INPUT: A[l..n] — an array integers.
OUTPUT: TRUE 1if A 1s sorted; FALSE otherwise

for 1 := 1 to n-1
if A[1] > A[i1i+]1] then return FALSE
return TRUE

Start of loop, i=1 = OK

End of loop, i=n-1 = OK

First iteration, from i=1 to i=2 = OK
A=[1,1,1] = OK

Empty data structure, n=0 =» ? (for loop)
A=[-1,0,1,-3] = OK

05/24/11 M. Bohlen and R. Sebastiani 48



I Binary Search, Variant1

= Analyze the following algorithm by considering
I special cases.

1l :=1; r := n

do
m := |(1l+r) /2]
if A[lm] = g then return m
else if A[m] > g then r := m-1
else 1 := m+1l

while 1 < r

return NIL

05/24/11 M. Bohlen and R. Sebastiani



Binary Search, Variantl

1l := 1, r := n

do
m := |(l+r) /2]
if A[m] = g then return m
else if A[m] > g then r := m-1
else 1 := m+l

while 1 < r

return NIL

 Start of loop = OK
* End of loop, I=r = Error! Ex: search 3in [3 5 7]

05/24/11 M. Bohlen and R. Sebastiani
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I Binary Search, Variant1

1l := 1, r := n

do
m := |(l+r) /2]
if A[m] = g then return m
else if A[m] > g then r := m-1
else 1 := m+1

while 1 <= r

return NIL

Start of loop =» OK

End of loop, I=r = OK

First iteration = OK

A=[1,1,1] =» OK

Empty data structure, n=0 =» Error! Tries to access A[0]
One-element data structure, n=1=» OK
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I Binary Search, Variant1

1l := 1, r := n

If r < 1 then return NIL,

do
m := | (1+r) /2|
if A[m] = g then return m
else if A[m] > g then r := m-1
else 1 := m+l

while 1 <= r

return NIL

Start of loop = OK

End of loop, I=r = OK

First iteration = OK

A=[1,1,1] & OK

Empty data structure, n=0 =» OK
One-element data structure, n=1=» OK

05/24/11 M. Bohlen and R. Sebastiani
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Suggested exercises

* Apply the same special-case analysis to
the two versions of binary search in next
slides

* Define an algorithm to merge two sorted

arrays into one:
— Describe its complexity
— Prove its correctness via loop invariants
— Analyze special cases (be careful!)

05/24/11 M. Bohlen and R. Sebastiani
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I Binary Search, Variant2

special cases.

I = Analyze the following algorithm by considering

1 := 1, r := n
while 1 < r do {

m := |(l+r) /2|

i1f A[m] <= g

then 1 := m+l else r := m

}
if A[l-1] = g

then return g else return NIL
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I Binary Search, Variant3

= Analyze the following algorithm by considering
special cases.

1l = 1; r := n
while 1 <= r do
m := |(1+r) /2]
if Alm] <= g
then 1 := m+l else r := m
if A[l1-1] = g
then return g else return NIL
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I Insert Sort, slight variant

= Analyze the following algorithm by considering
special cases.

" Hint: beware of lazy evaluations

INPUT: A[l..n] — an array of integers
OUTPUT: permutation of A s.t. A[1l]<A[2]<...<A[n]
for j 2 to n do

key := A[j]; 1 := j-1;

while A[i] > key and i > 0 do
A[i+1] := A[1]; 1--;
A[i+1] := key
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I Merge

= Analyze the following algorithm by considering
special cases.

INPUT: A[l..nl1l], B[1l..n2] sorted arrays of
integers
OUTPUT: permutation C of A.B s.t.
C[1]<C[2]<...=2C[n1+n2]
i:=1;73:=1;
for k:= 1 to nl+n2 do
If A[i]<=B[j]
Then C[k]=A[1];i=1+1;
Else C[k]=B[j];j=j+1;
Return C,;
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Merge/2

INPUT: A[l..nl], B[1l..n2] sorted arrays of
integers
OUTPUT: permutation C of A.B s.t.
C[1]<C[2]L...<C[n1+n2]
1=1;1=1;
for k:= 1 to nl1+n2 do
If j>n2 or (i<=nl and A[i]<=B[]])
Then C[k]=A[1];i=1+1;
Else C[k]=B[j];j=j+1;
Return C,;
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Summary

* Algorithmic complexity
* Asymptotic analysis
— Big O notation
— Growth of functions and asymptotic notation

* Correctness of algorithms
— Pre/Post conditions
— Invariants

» Special case analysis
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I Next Week

» Divide-and-conquer
I * Merge sort

» Writing recurrences to analyze the
running time of recursive algorithms.
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