Data Structures and Algorithms

Roberto Sebastiani

roberto.sebastiani(@disi.unitn.it
http://www.dis1.unitn.it/~rseba

- Week 02 -
B.S. In Applied Computer Science

Free University of Bozen/Bolzano
academic year 2010-2011

05/24/11 M. Bohlen and R. Sebastiani

mailto:roberto.sebastiani@disi.unitn.it
http://www.disi.unitn.it/~rseba

Acknowledgements
& Copyright Notice

These slides are built on top of slides developed by Michael Boehlen.
Moreover, some material (text, figures, examples) displayed in these slides
1s courtesy of Kurt Ranalter. Some exampes displayed in these slides are

taken from [Cormen, Leiserson, Rivest and Stein, " Introduction to
Algorithms", MIT Press], and their copyright 1s detained by the authors. All

the other material 1s copyrighted by Roberto Sebastiani. Every commercial
use of this material 1s strictly forbidden by the copyright laws without the
authorization of the authors. No copy of these slides can be displayed in
public or be publicly distributed without containing this copyright notice.

05/24/11 M. Bohlen and R. Sebastiani

http://www.ifi.uzh.ch/dbtg/Staff/Boehlen/

I Data Structures and Algorithms
I Week 2

1. Complexity of algorithms
2. Asymptotic analysis

3. Correctness of algorithms
4. Special case analysis

05/24/11 M. Bohlen and R. Sebastiani

I Data Structures and Algorithms
I Week 2

1. Complexity of algorithms
2. Asymptotic analysis

3. Correctness of algorithms
4. Special case analysis

05/24/11 M. Bohlen and R. Sebastiani

I Analysis of Algorithms

* Efficiency:
I — Running time
— Space used
* Efficiency is defined as a function of the
input size:
— Number of data elements (numbers,
points).

— The number of bits of an input number.

05/24/11 M. Bohlen and R. Sebastiani

The RAM model

* It is important to choose the level of detail.
e The RAM (Random Access Machine) model:

— Instructions (each taking constant time) — we
usually choose one type of instruction as a
characteristic operation that is counted:

 Arithmetic (add, subtract, multiply, etc.)
 Data movement (assign)

e Control flow (branch, subroutine call, return)
e Comparison

- Data types — integers, characters, and floats

05/24/11 M. Bohlen and R. Sebastiani

I Analysis of Insertion Sort

* Time to compute the running time as a
I function of the input size (exact analysis).

cost times
for | :=2 to n do cl n
key = Alj] c2 n-1
// Insert Alj] tnto AJ1..]J-1] O n-1
| = j- c3 n-1
\Nhl le 1>0 and A[I]>key do c4 >
Alil+1] = Ali] c5 > -1
| - - c6 Z:ZQ(tj—l)
Al 1 +1]: = key c/ n-1

05/24/11 M. Bohlen and R. Sebastiani

I Analysis of Insertion Sort/2

 The running time of an algorithm is the
I sum of the running times of each state-
ment.

* A statement with cost c that is executed
n times contributes ¢*n to the running
fime.

* The total running time T(n) of insertion
sort is
- T(n) = cl*n + c2(n-1) + c3(n-1) + c4> 1,
c52 (1) + ¢6X _,(t,-1) +c7(n-1)

05/24/11 M. Bohlen and R. Sebastiani

Analysis of Insertion Sort/3

* Often the performance depends on the
details of the input (not only length n).

» This is modeled by t;

o In the case of insertion sort the time t,

depends on the original sorting of the
input array.

05/24/11 M. Bohlen and R. Sebastiani

Performance Analysis

e Often it is sufficient to count the number of
iterations of the core (innermost) part.

— No distinction between comparisons, assignments,
etc (that means roughly the same cost for all of
them).

— Gives precise enough results.

* In some cases the cost of selected operations
dominates all other costs.
— Disk I/0 versus RAM operations.
- Database systems.

05/24/11 M. Bohlen and R. Sebastiani 10

Best/Worst/Average Case

* Analyzing insertion sort’s ¥ _ (-1

- Best case: elements already sorted, t.=1,
innermost loop is zero, total running time is
linear (time = an-+Db).

- Worst case: elements sorted in inverse
order, t.=j, total running time is quadratic
(time = an®*+bn+c).

- Average case: t,=j/2, total running time is
quadratic (time = an’*+bn+c).

05/24/11 M. Bohlen and R. Sebastiani 11

I Best/Worst/Average Case/2

— For a specific size of input size n, investigate
running times for different input instances:

6n

5n

3n

running time
I
=

2n

In

05/24/11

A B C D E F G

input instance

M. Bohlen and R. Sebastiani

worst case =4321
average case =3124

best case —1234

12

Best/Worst/Average Case/3

— For inputs of all sizes:

worst-case
60 average-case
5n

best-case

Running time
D =~
5 B

\®)
==

p—
=

1 23 45 6 7 8 910 11 12 ...

Input instance size
05/24/11 M. Bohlen and R. Sebastiani 13

I Best/Worst/Average Case/4

— It is an upper-bound.

— In certain application domains (e.g., air traffic
control, surgery) knowing the worst-case
time complexity is of crucial importance.

— For some algorithms worst case occurs fairly
often.

- The average case is often as bad as the worst
case.

- Finding the average case can be very difficult.

I * Worst case is usually used:

05/24/11 M. Bohlen and R. Sebastiani 14

Analysis of Linear Search

INPUT: A[l..n] — a sorted array of integers,
g — an 1nteger.
OUTPUT: j s.t. A[ljl=q. NIL 1if Vvj(1<j<n): Aljl=#q

7 =1

while j <= n and A[]j] != g do J++
if jJj <= n then return j

else return NIL

= Worst case running time: n
= Average case running time: n/2 (if present)

= Best case running time: 1

05/24/11 M. Bohlen and R. Sebastiani 15

I Binary Search

=]dea: Left and right bound. Elements to the right
of r are bigger than search element, ...

= In each step half the range of the search space.

INPUT: A[1..n] — sorted (increasing) array of integers, g — integer.
OUTPUT: an index j such that A[j] = q. NIL, if Uj (1s/<n): A[j] # q

1l :=1; r := n

do
m := |(l+r) /2|
if A[{m] = g then return m
else if A[m] > g then r := m-1
else 1 := m+l

while 1 <= r
return NIL

Analysis of Binary Search

 How many times the loop is executed?

— With each execution the difference
between 1 and r is cut in half.

e Initially the difference is n.
 The loop stops when the difference becomes O
(less than 1) .
- How many times do you have to cut n in
half to get 0?

— log n — better than the brute-force

approach of linear search (n).
05/24/11 M. Bohlen and R. Sebastiani

17

I Linear vs Binary Search

e Costs of linear search: n
I * Costs of binary search: log(n)
 Should we care?

* Phone book with n entries:
- n = 200’000, log n = log 200’000 = 18
- n = 2M, log 2M = 21
- n = 20M, log 20M = 24

05/24/11 M. Bohlen and R. Sebastiani

I Suggested exercises

* Implement binary search in 3 versions:
I — As in previous slides
— Without return statements inside the loop
— Recursive

* As before, returning nil if g<all] or
q>alr] (trace the different executions)

» Implement a function printSubArray
printing only the subarray from 1 to r,

leaving blanks for the others

— use it to trace the behaviour of binary search
05/24/11 M. Bohlen and R. Sebastiani 19

I Data Structures and Algorithms
I Week 2

1. Complexity of algorithms
2. Asymptotic analysis

3. Correctness of algorithms
4. Special case analysis

05/24/11 M. Bohlen and R. Sebastiani

20

Asymptotic Analysis

* Goal: to simplify the analysis of the running
time by getting rid of details, which are
affected by specific implementation and
hardware

- “rounding” of numbers: 1,000,001 = 1,000,000
- “rounding” of functions: 3n? = n?

* Capturing the essence: how the running time
of an algorithm increases with the size of the
input in the limit.

- Asymptotically more efficient algorithms are best
for all but small inputs

05/24/11 M. Bohlen and R. Sebastiani 21

Asymptotic Notation

* The “big-Oh”
O-Notation
— asymptotic upper bound

- f(n) = O(g(n)) iff there

exists constants ¢>0 and CQ(%’(;?)
n,>0, s.t. f(n) < c g(n) . fln
for n 2 n, .

- f(n) and g(n) are

fllIlCtl_OIlS. Oover 1non- .
negative integers "y Input Size

* Used for worst-case
analysis

05/24/11 M. Bohlen and R. Sebastiani 22

Running Time

Asymptotic Notation/2

» Simple Rule: Drop lower order terms

and constant factors.

- 50 nlognis O(n logn)

- 7n - 31s O(n)

- 8n?logn + 5n% + n is O(n? log n)

* Note: Although (50 n log n) is also
O(n?), or even O(n!%), it is expected
that an approximation is of the smallest
possible order.

05/24/11 M. Bohlen and R. Sebastiani

23

I Asymptotic Notation/3

* The “big-Omega”
(QQ—Notation
— asymptotic lower bound
- f(n) = Q(g(n)) iff there exists
constants c>0 and n,>0, s.t.
c g(n) < f(n) forn =2n,

 Used to describe best-case
running times or lower
bounds of algorithmic
problems.

- E.g., searching in an unsorted

array with search2 is Q(n),
with searchl it is Q(1)

f(n)
clg(n)

Running Time

[
»

n

o Input Size

05/24/11 M. Bohlen and R. Sebastiani 24

I Asymptotic Notation/4

* The “big-Theta”
I ©-Notation

- asymptoticly tight bound) c28(n)
- f(n) = O(g(n) if there exists | £ fln)
constants c¢,>0, c¢,>0, and £ ¢ &(n)
n,>0, s.t. forn=n, =
¢, g(n) < f(n) < ¢, g(n)
Input Size

* f(n) = ©(g(n)) itt
f(n) = O(g(n)) and f(n) = Q(g(n))

* Note: O(f(n)) is often abused instead of
O(f(n))

05/24/11 M. Bohlen and R. Sebastiani 25

Asymptotic Notation/5

* Two more asymptotic notations

— "Little-Oh" notation f(n)=o0(g(n))
non-tight analogue of Big-Oh
 For every ¢>0, there exists n,>0, s.t.

f(n) < cg(n) forn=n,

 If f(n)=0(g(n)), it is said that g(n) dominates
f.

- "Little-omega" notation f(n)=w(g(n))
non-tight analogue of Big-Omega

05/24/11 M. Bohlen and R. Sebastiani 26

Asymptotic Notation/6

* Analogy with real numbers

-f(n) = 0(g(m) Of<g
-f(m) =Q@gm) Of=g
-f(m =0(gm) Of=g
-f(m) =o(g(n)) Of<g
-f(n) =wgm) Of>g

* Abuse of notation: f(n) = O(g(n))
actually means f(n) U O(g(n))

05/24/11 M. Bohlen and R. Sebastiani

27

I Comparison of Running Times

* Determining the maximal problem size.
?zllgn;;li:ime 1 second |1 minute |1 hour
400n 2500 150000 |9°000°000
20n log n 4096 166’666 |7'826°087
2n?2 707 5477 42426
n 31 88 244
2 19 25 31

05/24/11

M. Bohlen and R. Sebastiani

28

I Data Structures and Algorithms
I Week 2

1. Complexity of algorithms
2. Asymptotic analysis

3. Correctness of algorithms
4. Special case analysis

05/24/11 M. Bohlen and R. Sebastiani

29

Correctness of Algorithms

* An algorithm is correct if for every legal
input, it terminates and produces the
desired output.

» Automatic proof of correctness is not
possible.

* There are practical techniques and rigorous
formalisms that help to reason about the
correctness of (parts of) algorithms.

05/24/11 M. Bohlen and R. Sebastiani 30

Partial and Total Correctness

= Partial correctness

every legal input

IF this point is reached, THEN this is the desired output

2 G

* Total correctness

INDEED this point is reached, AND this is the desired output

every legal input

05/24/11

S

M. Bohlen and R. Sebastiani

/

Output

/

Output

31

Assertions

* To prove partial correctness we associate a
number of assertions (statements about the
state of the execution) with specific
checkpoints in the algorithm.

- E.g., A[1], ..., A[j] form an increasing sequence

 Preconditions — assertions that must be valid

before the execution of an algorithm or a
subroutine (INPUT).

 Postconditions — assertions that must be valid

after the execution of an algorithm or a
subroutine (OUTPUT).

05/24/11 M. Bohlen and R. Sebastiani 32

Loop Invariants

* Invariants: assertions that are valid every
time they are reached (many times during the
execution of an algorithm, e.g., in loops)

 We must show three things about loop
invariants:

- Initialization: it is true prior to the first iteration.

- Maintenance: if it is true before an iteration, then
it is true after the iteration.

- Termination: when a loop terminates the
invariant gives a useful property to show the
correctness of the algorithm
05/24/11 M. Bohlen and R. Sebastiani 33

Example: Binary Search/1

We want to show that g s
not in A if NIL is returneq & = 7 © == 7/

do
Invariant: m := [(l+r) /2]
. . . . if A[m]=g then return m
DID[lI_l] A[I]<q (Ia) else if A[m]>g then r := m-1

Oid[r+1..n]: A[|]>q (ib) else 1 := m+l
e e . while 1 <= r
Initialization: [= 1, r = n | return nTL

the invariant holds because
there are no elements to the left of [or to the right of r.

1=1 yields [Jj,i O[1..0]: Ali]<q
this holds because [1..0] is empty
r=n yields [Jj,i O[n+1..n]: A[i]>q

this holds because [n+1..n] is empty
05/24/11 M. Bohlen and R. Sebastiani 34

I Example: Binary Search/2

05/24/11

Invariant:
Oi0[1..1-1]: Alil<qg (ia)
Oid[r+1..n]: Ali]l>q (ib)

l =1, ¥ := n;

m := |(1l+r) /2]
if A[m]=g then return m
else if A[m]>g then r := m-1
else 1 := m+l

while 1 <= r

return NIL

Maintenance: 1, r, m = [{(1+r)/20

Alm] != q & A[m] > q, r = m-1, A sorted implies
(kO[r+1..n]: A[k] > q (ib)

Alm] !'= q & A[m] < q,1 = m+1, A sorted implies
[kO[1..1-1]: A[k]<q (ia)

M. Bohlen and R. Sebastiani 35

I Example: Binary Search/3

 [Invariant: 1 :=1; r := n;
: . : : do
I D!D[l..l-l]. A[|].<q (!a) o= | (Lir) /2]
DID[F+1..H]Z A[I]>q (Ib) if Alm]=g then return m
else if A[m]>g then r := m-1
else 1 := m+l
while 1 <= r
e Termination:], r, I<=r | return NIL

* Two cases:
- l:=m+1 we get [{I+1r)/20+1 > 1
- r:=m-1 we get [((1+r)/2[0-1 <r
* The range gets smaller during each iteration and the loop
will terminate when 1< =r no longer holds.

05/24/11 M. Bohlen and R. Sebastiani 36

I Example: Insertion Sort/1

Loop invariants: for § := 2 to n do
e External “for” loop]iieif:‘j:,_i\[j]
1A[]_J_1] is sorted while i>0 and A[i]>key do
.. : . Ali+l] := A[1]
1.A[1...5-1] [J Aone i--

 Internal “while” loop:
Al1.j]: A[1...i]JA[i+1]A[i+2...j], where A[i+1] is a
placeholder for key, s.t.:
a)A[i+2...j] is sorted
b)A[1...i] is sorted
c)key <= A[Kk] forall k in {i+2...j},

d)A[i] <= A[K] forall k in {i+2...j}
05/24/11 M. Bohlen and R. Sebastiani 37

I Example: Insertion Sort/2

i. A[1...j-1] is sorted
ii.A[1...j-1] [Acris
Internal while loop:
Al1...i]JA[i+1]A[i+2...j] s.t.
a)Ali+2...j] is sorted
b)A[1...i] is sorted
c)key<=A[k] forall kin {i+2...j},
d)A[i]<=A[Kk] forall k in {i+2...j}
Initialization:

I * External for loop

for 7 := 2 to n do
key = A[]J]
1 o:= -1
while 1>0 and A[i1i]>key do
Ali+1] := A[1i]
j___
A[i+1l] := key

* j=2: A[1...1] O A°¢ and is trivially sorted

o i=j-1: A[1...i], key, A[i+2,...j] s.t. key=A[j]
a)Ali+2...j] is empty, and thus trivially sorted,
b)A[1...i] is sorted (invariant of outer loop)

c)trivial since {i+2...j} empty
d)trivial since {i+2...j} empty

05/24/11 M. Bohlen and R. Sebastiani 38

Example: Insertion Sort/3

External for loop

i. A[1...j-1] is sorted

ii. A[1...j-1] [0 Acris
Internal while loop:
All1..i]A[i+1]Afi+2...j] s.t.
a)A[i+2...j] is sorted
b)A[1...i] is sorted
c)key<=A[k] forall kin {i+2...j},
d)A[i]<=A[Kk] forall k in {i+2...j}

Maintenance: A —» A

05/24/11

for j :
key = A[]J]
1 o:= -1
while 1>0 and A[i1i]>key do
A[i+1] Ali]
j___
A[i+1]

2 to n do

key

If i.,ii. then A'[1...j]0A ¢ sorted (by termination of internal while loop)
i=1i-1, A'[1...i-1]=A[1...i-1], and A'[i+1...j]=A[]A[i+2...]]

a)If a) then A'[i+1...j] sorted because of d)

b)If b) then obviously A'[1...i-1] sorted

o)If ¢) then key<=A'[k] forall k in {i+1,...j}

d)If d) then A[i-1] <=A'[k] forall k in {i+1,...j} because of a)

M. Bohlen and R. Sebastiani

39

External for loop

i. A[1...j-1] is sorted

ii. A[1...j-1] [0 Acris
Internal while loop:
All1..i]A[i+1]Afi+2...j] s.t.
a)A[i+2...j] is sorted
b)A[1...i] is sorted
c)key<=A[k] forall kin {i+2...j},
d)A[i]<=A[Kk] forall k in {i+2...j}

Termination:

Example: Insertion Sort/4

for 7 := 2 to n do
key = A[]J]
1 o:= -1
while 1>0 and A[i1i]>key do
Ali+1] := A[1i]
j___
A[i+1l] := key

j=n+1: due to i. and ii. A[1...n] is sorted and A[1...n] [J A°ri

e A[l...i]JA[i+1]A[i+2...j] s.t. i<=0 or A[i] <=key, a)-d) hold
thus, after “A[i+1]:=key” A[1..j] is sorted

05/24/11

M. Bohlen and R. Sebastiani 40

I Suggested exercises

correctness of insertion, selection and
bubble sort.

* Do the same also for the versions of the
algorithms in reverse order.

* Add to the implementations of the above
algorithms, for both inner and outer
loops, a call to some method which
aborts if the loop invariant is violated

I » Apply the same process to prove the

05/24/11 M. Bohlen and R. Sebastiani 41

I Data Structures and Algorithms
I Week 2

1. Complexity of algorithms
2. Asymptotic analysis

3. Correctness of algorithms
4. Special case analysis

05/24/11 M. Bohlen and R. Sebastiani

42

I Special Case Analysis

 Consider extreme cases and make sure
I our solution works in all cases.

* The problem: identify special cases.

e This is related to INPUT and OUTPUT
specifications.

05/24/11 M. Bohlen and R. Sebastiani

43

I Special Cases

* empty data structure .
(array, file, list, ...) -

 single element data o

structure

* completely filled data

structure

* entering a function
* termination of a

function

05/24/11

Zero, empty string
negative number
border of domain

start of loop
end of loop

first iteration of
loop

M. Bohlen and R. Sebastiani

44

I Sortedness

* The following algorithm checks whether
I an array is sorted.

INPUT: A[l..n] — an array 1ntegers.
OUTPUT: TRUE 1f A 1s sorted; FALSE otherwise

for 1 := 1 to n

if A[i] > A[i+1] then return FALSE
return TRUE

* Analyze the algorithm by considering
special cases.

05/24/11 M. Bohlen and R. Sebastiani 45

Sortedness/2

OUTPUT: TRUE 1f A 1s sorted; FALSE otherwise
for 1 :=1 to n

if A[i] > A[i+1] then return FALSE
return TRUE

I INPUT: A[l..n] — an array 1ntegers.

 Start of loop, i=1 = OK
* End of loop, i=n = ERROR (tries to access A[n+1])

05/24/11 M. Bohlen and R. Sebastiani 46

Sortedness/3

INPUT: A[l..n] — an array integers.
OUTPUT: TRUE 1f A 1s sorted; FALSE otherwise
for 1 := 1 to n-1
if A[i] > A[i+1] then return FALSE
return TRUE

Start of loop, i=1 = OK

End of loop, i=n-1 = OK

First iteration, from i=1 to i=2 = OK

A=[1,1,1] = ERROR (if A[i]=A[i+1] for some i)

05/24/11 M. Bohlen and R. Sebastiani 47

Sortedness/4

INPUT: A[l..n] — an array integers.
OUTPUT: TRUE 1if A 1s sorted; FALSE otherwise

for 1 := 1 to n-1
if A[1] > A[i1i+]1] then return FALSE
return TRUE

Start of loop, i=1 = OK

End of loop, i=n-1 = OK

First iteration, from i=1 to i=2 = OK
A=[1,1,1] = OK

Empty data structure, n=0 =» ? (for loop)
A=[-1,0,1,-3] = OK

05/24/11 M. Bohlen and R. Sebastiani 48

I Binary Search, Variant1

= Analyze the following algorithm by considering
I special cases.

1l :=1; r := n

do
m := |(1l+r) /2]
if A[lm] = g then return m
else if A[m] > g then r := m-1
else 1 := m+1l

while 1 < r

return NIL

05/24/11 M. Bohlen and R. Sebastiani

Binary Search, Variantl

1l := 1, r := n

do
m := |(l+r) /2]
if A[m] = g then return m
else if A[m] > g then r := m-1
else 1 := m+l

while 1 < r

return NIL

 Start of loop = OK
* End of loop, I=r = Error! Ex: search 3in [3 5 7]

05/24/11 M. Bohlen and R. Sebastiani

50

I Binary Search, Variant1

1l := 1, r := n

do
m := |(l+r) /2]
if A[m] = g then return m
else if A[m] > g then r := m-1
else 1 := m+1

while 1 <= r

return NIL

Start of loop =» OK

End of loop, I=r = OK

First iteration = OK

A=[1,1,1] =» OK

Empty data structure, n=0 =» Error! Tries to access A[0]
One-element data structure, n=1=» OK

05/24/11 M. Bohlen and R. Sebastiani 51

I Binary Search, Variant1

1l := 1, r := n

If r < 1 then return NIL,

do
m := | (1+r) /2|
if A[m] = g then return m
else if A[m] > g then r := m-1
else 1 := m+l

while 1 <= r

return NIL

Start of loop = OK

End of loop, I=r = OK

First iteration = OK

A=[1,1,1] & OK

Empty data structure, n=0 =» OK
One-element data structure, n=1=» OK

05/24/11 M. Bohlen and R. Sebastiani

52

Suggested exercises

* Apply the same special-case analysis to
the two versions of binary search in next
slides

* Define an algorithm to merge two sorted

arrays into one:
— Describe its complexity
— Prove its correctness via loop invariants
— Analyze special cases (be careful!)

05/24/11 M. Bohlen and R. Sebastiani

53

I Binary Search, Variant2

special cases.

I = Analyze the following algorithm by considering

1 := 1, r := n
while 1 < r do {

m := |(l+r) /2|

i1f A[m] <= g

then 1 := m+l else r := m

}
if A[l-1] = g

then return g else return NIL

05/24/11 M. Bohlen and R. Sebastiani 54

I Binary Search, Variant3

= Analyze the following algorithm by considering
special cases.

1l = 1; r := n
while 1 <= r do
m := |(1+r) /2]
if Alm] <= g
then 1 := m+l else r := m
if A[l1-1] = g
then return g else return NIL

05/24/11 M. Bohlen and R. Sebastiani 55

I Insert Sort, slight variant

= Analyze the following algorithm by considering
special cases.

" Hint: beware of lazy evaluations

INPUT: A[l..n] — an array of integers
OUTPUT: permutation of A s.t. A[1l]<A[2]<...<A[n]
for j 2 to n do

key := A[j]; 1 := j-1;

while A[i] > key and i > 0 do
A[i+1] := A[1]; 1--;
A[i+1] := key

05/24/11 M. Bohlen and R. Sebastiani 56

I Merge

= Analyze the following algorithm by considering
special cases.

INPUT: A[l..nl1l], B[1l..n2] sorted arrays of
integers
OUTPUT: permutation C of A.B s.t.
C[1]<C[2]<...=2C[n1+n2]
i:=1;73:=1;
for k:= 1 to nl+n2 do
If A[i]<=B[j]
Then C[k]=A[1];i=1+1;
Else C[k]=B[j];j=j+1;
Return C,;

05/24/11 M. Bohlen and R. Sebastiani

57

Merge/2

INPUT: A[l..nl], B[1l..n2] sorted arrays of
integers
OUTPUT: permutation C of A.B s.t.
C[1]<C[2]L...<C[n1+n2]
1=1;1=1;
for k:= 1 to nl1+n2 do
If j>n2 or (i<=nl and A[i]<=B[]])
Then C[k]=A[1];i=1+1;
Else C[k]=B[j];j=j+1;
Return C,;

05/24/11 M. Bohlen and R. Sebastiani

58

Summary

* Algorithmic complexity
* Asymptotic analysis
— Big O notation
— Growth of functions and asymptotic notation

* Correctness of algorithms
— Pre/Post conditions
— Invariants

» Special case analysis

05/24/11 M. Bohlen and R. Sebastiani

59

I Next Week

» Divide-and-conquer
I * Merge sort

» Writing recurrences to analyze the
running time of recursive algorithms.

05/24/11 M. Bohlen and R. Sebastiani

60

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Analysis of Algorithms
	The RAM model
	Analysis of Insertion Sort
	Analysis of Insertion Sort/2
	Analysis of Insertion Sort/3
	Performance Analysis
	Best/Worst/Average Case
	Best/Worst/Average Case/2
	Best/Worst/Average Case/3
	Best/Worst/Average Case/4
	Analysis of Linear Search
	Binary Search
	Analysis of Binary Search
	Linear Search vs Binary Search
	Slide 19
	Slide 20
	Asymptotic Analysis
	Asymptotic Notation
	Asymptotic Notation/3
	Asymptotic Notation/2
	Asymptotic Notation/4
	Asymptotic Notation/5
	Asymptotic Notation/6
	Comparison of Running Times
	Slide 29
	Correctness of Algorithms
	Partial and Total Correctness
	Assertions
	Loop Invariants
	Example: Binary Search/1
	Example: Binary Search/2
	Example: Binary Search/3
	Slide 37
	Example: Insertion Sort/2
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Special Case Analysis
	Special Cases
	Sortedness
	Sortedness/2
	Slide 47
	Slide 48
	Binary Search, Variant1
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Binary Search, Variant2
	Binary Search, Variant3
	Slide 56
	Slide 57
	Slide 58
	Summary
	Next Week

