
Automated Reasoning and Formal Verification
Module II: Formal Verification

Ch. 09: Timed and Hybrid Systems

Roberto Sebastiani

DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it
URL: https://disi.unitn.it/rseba/DIDATTICA/arfv2025/

Teaching assistant: Gabriele Masina – gabriele.masina@unitn.it

M.S. in Computer Science, Mathematics, & Artificial Intelligence Systems
Academic year 2024-2025

last update: Friday 21st February, 2025, 11:21

Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti, M. Di Natale, P. Pandya, M. Pistore, M. Roveri, C. Tinelli, and
S.Tonetta, who detain its copyright. Some exampes displayed in these slides are taken from [Clarke, Grunberg & Peled, “Model Checking”, MIT Press], and their copyright is detained by
the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly forbidden by the copyright laws without the authorization of the

authors. No copy of these slides can be displayed in public without containing this copyright notice.

1 / 107

roberto.sebastiani@unitn.it
https://disi.unitn.it/rseba/DIDATTICA/arfv2025/
gabriele.masina@unitn.it

Outline

1 Motivations
2 Timed systems: Modeling and Semantics

Timed automata
Semantics
Combination

3 Symbolic Reachability for Timed Systems
Making the state space finite
Region automata
Zone automata

4 Hybrid Systems: Modeling and Semantics
Hybrid automata

5 Symbolic Reachability for Hybrid Systems
Multi-Rate and Rectangular Hybrid Automata
Linear Hybrid Automata

6 Exercises

2 / 107

Outline

1 Motivations
2 Timed systems: Modeling and Semantics

Timed automata
Semantics
Combination

3 Symbolic Reachability for Timed Systems
Making the state space finite
Region automata
Zone automata

4 Hybrid Systems: Modeling and Semantics
Hybrid automata

5 Symbolic Reachability for Hybrid Systems
Multi-Rate and Rectangular Hybrid Automata
Linear Hybrid Automata

6 Exercises

3 / 107

Acknowledgments

Thanks for providing material to:

Rajeev Alur & colleagues (Penn University)
Paritosh Pandya (IIT Bombay)
Andrea Mattioli, Yusi Ramadian (Univ. Trento)
Marco Di Natale (Scuola Superiore S.Anna, Italy)

Disclaimer
very introductory
very-partial coverage
mostly computer-science centric

4 / 107

Acknowledgments

Thanks for providing material to:

Rajeev Alur & colleagues (Penn University)
Paritosh Pandya (IIT Bombay)
Andrea Mattioli, Yusi Ramadian (Univ. Trento)
Marco Di Natale (Scuola Superiore S.Anna, Italy)

Disclaimer
very introductory
very-partial coverage
mostly computer-science centric

4 / 107

Hybrid Modeling

Hybrid machines = State machines + Dynamic Systems

5 / 107

Hybrid Modeling: Examples

Automotive Applications
Vehicle Coordination Protocols
Interacting Autonomous Robots
Bio-molecular Regulatory Networks

6 / 107

Hybrid Modeling: Examples

Automotive Applications
Vehicle Coordination Protocols
Interacting Autonomous Robots
Bio-molecular Regulatory Networks

6 / 107

Hybrid Modeling: Examples

Automotive Applications
Vehicle Coordination Protocols
Interacting Autonomous Robots
Bio-molecular Regulatory Networks

6 / 107

Hybrid Modeling: Examples

Automotive Applications
Vehicle Coordination Protocols
Interacting Autonomous Robots
Bio-molecular Regulatory Networks

6 / 107

Outline

1 Motivations
2 Timed systems: Modeling and Semantics

Timed automata
Semantics
Combination

3 Symbolic Reachability for Timed Systems
Making the state space finite
Region automata
Zone automata

4 Hybrid Systems: Modeling and Semantics
Hybrid automata

5 Symbolic Reachability for Hybrid Systems
Multi-Rate and Rectangular Hybrid Automata
Linear Hybrid Automata

6 Exercises

7 / 107

Outline

1 Motivations
2 Timed systems: Modeling and Semantics

Timed automata
Semantics
Combination

3 Symbolic Reachability for Timed Systems
Making the state space finite
Region automata
Zone automata

4 Hybrid Systems: Modeling and Semantics
Hybrid automata

5 Symbolic Reachability for Hybrid Systems
Multi-Rate and Rectangular Hybrid Automata
Linear Hybrid Automata

6 Exercises

8 / 107

Timed Automata

9 / 107

Example: Simple light control

Requirement:

if Off and press is issued once, then the light switches on;
if Off and press is issued twice quickly, then the light gets brighter;
if Light/Bright and press is issued once, then the light switches off;

=⇒ Cannot be achieved with standard automata
10 / 107

Example: Simple light control

Solution: add real-valued clock x
x reset at first press
if next press before x reaches 3 time units, then the light will get brighter;
otherwise the light is turned off

10 / 107

Modeling: timing constraints

Finite graph + finite set of (real-valued) clocks

Vertexes are locations
Time can elapse there
Constraints (invariants)

Edges are switches
Subject to constraints
Reset clocks

Meaning of clock value: time elapsed since the last time it was reset.

11 / 107

Timed Automata
Locations l1, l2, ... (like in standard automata)

discrete part of the state
may be implemented by discrete variables

Switches (discrete transitions like in standard aut.)
Labels, aka events, actions,... (like in standard aut.)

used for synchronization

Clocks: x, y,... ∈ Q+

value: time elapsed since the last time it was reset

Guards: (x ▷◁ C) s.t. ▷◁ ∈ {≤, <,≥, >}, C ∈ N
set of clock comparisons against positive integer bounds
constrain the execution of the switch

Resets (x := 0)
set of clock assignments to 0

Invariants: (x ▷◁ C) s.t. ▷◁ ∈ {≤, <,≥, >}, C ∈ N
set of clock comparisons against positive integer bounds
ensure progress

a

l1

l2

12 / 107

Timed Automata
Locations l1, l2, ... (like in standard automata)

discrete part of the state
may be implemented by discrete variables

Switches (discrete transitions like in standard aut.)
Labels, aka events, actions,... (like in standard aut.)

used for synchronization

Clocks: x, y,... ∈ Q+

value: time elapsed since the last time it was reset

Guards: (x ▷◁ C) s.t. ▷◁ ∈ {≤, <,≥, >}, C ∈ N
set of clock comparisons against positive integer bounds
constrain the execution of the switch

Resets (x := 0)
set of clock assignments to 0

Invariants: (x ▷◁ C) s.t. ▷◁ ∈ {≤, <,≥, >}, C ∈ N
set of clock comparisons against positive integer bounds
ensure progress

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1

l2

12 / 107

Timed Automata
Locations l1, l2, ... (like in standard automata)

discrete part of the state
may be implemented by discrete variables

Switches (discrete transitions like in standard aut.)
Labels, aka events, actions,... (like in standard aut.)

used for synchronization

Clocks: x, y,... ∈ Q+

value: time elapsed since the last time it was reset

Guards: (x ▷◁ C) s.t. ▷◁ ∈ {≤, <,≥, >}, C ∈ N
set of clock comparisons against positive integer bounds
constrain the execution of the switch

Resets (x := 0)
set of clock assignments to 0

Invariants: (x ▷◁ C) s.t. ▷◁ ∈ {≤, <,≥, >}, C ∈ N
set of clock comparisons against positive integer bounds
ensure progress

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

12 / 107

Timed Automata: Example

State: ⟨li , x , y⟩

⟨l1, 4, 7⟩:

OK!

⟨l2, 2, 4⟩:

not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩:

OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩:

not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩:

not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩:

not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩:

not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩:

OK!
⟨l2, 2, 4⟩:

not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩:

OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩:

not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩:

not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩:

not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩:

not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!

⟨l2, 2, 4⟩:

not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩:

OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩:

not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩:

not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩:

not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩:

not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩:

not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩:

OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩:

not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩:

not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩:

not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩:

not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩: not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩:

OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩:

not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩:

not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩:

not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩:

not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩: not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩:

OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩:

not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩:

not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩:

not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩:

not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩: not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩:

OK!
⟨l1, 6, 2⟩

a−→ ⟨l2, 6, 0⟩:

not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩:

not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩:

not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩:

not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩: not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩: OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩:

not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩:

not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩:

not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩:

not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩: not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩: OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩:

not OK! (violates invar. in l1)
⟨l1, 3, 2⟩

a−→ ⟨l2, 3, 0⟩:

not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩:

not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩:

not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩: not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩: OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩: not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩:

not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩:

not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩:

not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩: not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩: OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩: not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩:

not OK! (violates guard & invar. in l2)
⟨l1, 4.5, 2⟩

a−→ ⟨l2, 4.5, 2⟩:

not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩:

not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩: not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩: OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩: not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩: not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩:

not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩:

not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩: not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩: OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩: not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩: not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩:

not OK! (violates reset)
⟨l1, 4, 2⟩

a−→ ⟨l2, 4, 0⟩:

not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩: not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩: OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩: not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩: not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩: not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩:

not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩: not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩: OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩: not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩: not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩: not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩:

not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩: not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩: OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩: not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩: not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩: not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩: not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩: not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩: OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩: not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩: not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩: not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩: not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩: not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩: OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩: not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩: not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩: not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩: not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩:

OK!
⟨l1, 3, 0⟩

3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩: not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩: OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩: not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩: not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩: not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩: not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩: OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩: not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩: OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩: not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩: not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩: not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩: not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩: OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩:

not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Example

State: ⟨li , x , y⟩
⟨l1, 4, 7⟩: OK!
⟨l2, 2, 4⟩: not OK! (violates invariant in l2)

Switch: ⟨li , x , y⟩
a−→ ⟨lj , x ′, y ′⟩

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 0⟩: OK!

⟨l1, 6, 2⟩
a−→ ⟨l2, 6, 0⟩: not OK! (violates invar. in l1)

⟨l1, 3, 2⟩
a−→ ⟨l2, 3, 0⟩: not OK! (violates guard & invar. in l2)

⟨l1, 4.5, 2⟩
a−→ ⟨l2, 4.5, 2⟩: not OK! (violates reset)

⟨l1, 4, 2⟩
a−→ ⟨l2, 4, 0⟩: not OK! (violates invar. in l2)

Wait (time elapse): ⟨li , x , y⟩
δ−→ ⟨li , x + δ, y + δ⟩

⟨l1, 3, 0⟩
2−→ ⟨l1, 5, 2⟩: OK!

⟨l1, 3, 0⟩
3−→ ⟨l1, 6, 3⟩: not OK! (violates invar. in l1)

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

13 / 107

Timed Automata: Formal Syntax

Timed Automaton ⟨L,L0,Σ,X ,Φ(X),E⟩
L: Set of locations
L0 ⊆ L: Set of initial locations
Σ: Set of labels
X : Set of clocks
Φ(X): Set of invariants
E ⊆ L × Σ× Φ(X)× 2X × L: Set of switches
A switch ⟨l ,a, φ, λ, l ′⟩ s.t.

l : source location
a: label
φ: clock constraints
λ ⊆ X : clocks to be reset
l ′: target location

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

14 / 107

Timed Automata: Formal Syntax

Timed Automaton ⟨L,L0,Σ,X ,Φ(X),E⟩
L: Set of locations
L0 ⊆ L: Set of initial locations
Σ: Set of labels
X : Set of clocks
Φ(X): Set of invariants
E ⊆ L × Σ× Φ(X)× 2X × L: Set of switches
A switch ⟨l ,a, φ, λ, l ′⟩ s.t.

l : source location
a: label
φ: clock constraints
λ ⊆ X : clocks to be reset
l ′: target location

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

14 / 107

Timed Automata: Formal Syntax

Timed Automaton ⟨L,L0,Σ,X ,Φ(X),E⟩
L: Set of locations
L0 ⊆ L: Set of initial locations
Σ: Set of labels
X : Set of clocks
Φ(X): Set of invariants
E ⊆ L × Σ× Φ(X)× 2X × L: Set of switches
A switch ⟨l ,a, φ, λ, l ′⟩ s.t.

l : source location
a: label
φ: clock constraints
λ ⊆ X : clocks to be reset
l ′: target location

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

14 / 107

Timed Automata: Formal Syntax

Timed Automaton ⟨L,L0,Σ,X ,Φ(X),E⟩
L: Set of locations
L0 ⊆ L: Set of initial locations
Σ: Set of labels
X : Set of clocks
Φ(X): Set of invariants
E ⊆ L × Σ× Φ(X)× 2X × L: Set of switches
A switch ⟨l ,a, φ, λ, l ′⟩ s.t.

l : source location
a: label
φ: clock constraints
λ ⊆ X : clocks to be reset
l ′: target location

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

14 / 107

Timed Automata: Formal Syntax

Timed Automaton ⟨L,L0,Σ,X ,Φ(X),E⟩
L: Set of locations
L0 ⊆ L: Set of initial locations
Σ: Set of labels
X : Set of clocks
Φ(X): Set of invariants
E ⊆ L × Σ× Φ(X)× 2X × L: Set of switches
A switch ⟨l ,a, φ, λ, l ′⟩ s.t.

l : source location
a: label
φ: clock constraints
λ ⊆ X : clocks to be reset
l ′: target location

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

14 / 107

Timed Automata: Formal Syntax

Timed Automaton ⟨L,L0,Σ,X ,Φ(X),E⟩
L: Set of locations
L0 ⊆ L: Set of initial locations
Σ: Set of labels
X : Set of clocks
Φ(X): Set of invariants
E ⊆ L × Σ× Φ(X)× 2X × L: Set of switches
A switch ⟨l ,a, φ, λ, l ′⟩ s.t.

l : source location
a: label
φ: clock constraints
λ ⊆ X : clocks to be reset
l ′: target location

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

14 / 107

Timed Automata: Formal Syntax

Timed Automaton ⟨L,L0,Σ,X ,Φ(X),E⟩
L: Set of locations
L0 ⊆ L: Set of initial locations
Σ: Set of labels
X : Set of clocks
Φ(X): Set of invariants
E ⊆ L × Σ× Φ(X)× 2X × L: Set of switches
A switch ⟨l ,a, φ, λ, l ′⟩ s.t.

l : source location
a: label
φ: clock constraints
λ ⊆ X : clocks to be reset
l ′: target location

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

14 / 107

Timed Automata: Formal Syntax

Timed Automaton ⟨L,L0,Σ,X ,Φ(X),E⟩
L: Set of locations
L0 ⊆ L: Set of initial locations
Σ: Set of labels
X : Set of clocks
Φ(X): Set of invariants
E ⊆ L × Σ× Φ(X)× 2X × L: Set of switches
A switch ⟨l ,a, φ, λ, l ′⟩ s.t.

l : source location
a: label
φ: clock constraints
λ ⊆ X : clocks to be reset
l ′: target location

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

14 / 107

Timed Automata: Formal Syntax

Timed Automaton ⟨L,L0,Σ,X ,Φ(X),E⟩
L: Set of locations
L0 ⊆ L: Set of initial locations
Σ: Set of labels
X : Set of clocks
Φ(X): Set of invariants
E ⊆ L × Σ× Φ(X)× 2X × L: Set of switches
A switch ⟨l ,a, φ, λ, l ′⟩ s.t.

l : source location
a: label
φ: clock constraints
λ ⊆ X : clocks to be reset
l ′: target location

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

14 / 107

Timed Automata: Formal Syntax

Timed Automaton ⟨L,L0,Σ,X ,Φ(X),E⟩
L: Set of locations
L0 ⊆ L: Set of initial locations
Σ: Set of labels
X : Set of clocks
Φ(X): Set of invariants
E ⊆ L × Σ× Φ(X)× 2X × L: Set of switches
A switch ⟨l ,a, φ, λ, l ′⟩ s.t.

l : source location
a: label
φ: clock constraints
λ ⊆ X : clocks to be reset
l ′: target location

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

14 / 107

Timed Automata: Formal Syntax

Timed Automaton ⟨L,L0,Σ,X ,Φ(X),E⟩
L: Set of locations
L0 ⊆ L: Set of initial locations
Σ: Set of labels
X : Set of clocks
Φ(X): Set of invariants
E ⊆ L × Σ× Φ(X)× 2X × L: Set of switches
A switch ⟨l ,a, φ, λ, l ′⟩ s.t.

l : source location
a: label
φ: clock constraints
λ ⊆ X : clocks to be reset
l ′: target location

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

14 / 107

Clock constraints and clock interpretations

Grammar of clock constraints:
φ ::= x ≤ C | x < C | x ≥ C | x > C | φ ∧ φ

s.t. C positive integer values.
=⇒ allow only comparison of a clock with a constant
clock interpretation: ν

X = ⟨x , y , z⟩, ν = ⟨1.0,1.5,0⟩
clock interpretation ν after δ time: ν + δ

δ = 0.2, ν + δ = ⟨1.2,1.7,0.2⟩
clock interpretation ν after reset λ: ν[λ]

λ = {y}, ν[y := 0] = ⟨1.0,0,0⟩

A state for a timed automaton is a pair ⟨l , ν⟩,
where l is a location and ν is a clock interpretation

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

15 / 107

Clock constraints and clock interpretations

Grammar of clock constraints:
φ ::= x ≤ C | x < C | x ≥ C | x > C | φ ∧ φ

s.t. C positive integer values.
=⇒ allow only comparison of a clock with a constant
clock interpretation: ν

X = ⟨x , y , z⟩, ν = ⟨1.0,1.5,0⟩
clock interpretation ν after δ time: ν + δ

δ = 0.2, ν + δ = ⟨1.2,1.7,0.2⟩
clock interpretation ν after reset λ: ν[λ]

λ = {y}, ν[y := 0] = ⟨1.0,0,0⟩

A state for a timed automaton is a pair ⟨l , ν⟩,
where l is a location and ν is a clock interpretation

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

15 / 107

Clock constraints and clock interpretations

Grammar of clock constraints:
φ ::= x ≤ C | x < C | x ≥ C | x > C | φ ∧ φ

s.t. C positive integer values.
=⇒ allow only comparison of a clock with a constant
clock interpretation: ν

X = ⟨x , y , z⟩, ν = ⟨1.0,1.5,0⟩
clock interpretation ν after δ time: ν + δ

δ = 0.2, ν + δ = ⟨1.2,1.7,0.2⟩
clock interpretation ν after reset λ: ν[λ]

λ = {y}, ν[y := 0] = ⟨1.0,0,0⟩

A state for a timed automaton is a pair ⟨l , ν⟩,
where l is a location and ν is a clock interpretation

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

15 / 107

Clock constraints and clock interpretations

Grammar of clock constraints:
φ ::= x ≤ C | x < C | x ≥ C | x > C | φ ∧ φ

s.t. C positive integer values.
=⇒ allow only comparison of a clock with a constant
clock interpretation: ν

X = ⟨x , y , z⟩, ν = ⟨1.0,1.5,0⟩
clock interpretation ν after δ time: ν + δ

δ = 0.2, ν + δ = ⟨1.2,1.7,0.2⟩
clock interpretation ν after reset λ: ν[λ]

λ = {y}, ν[y := 0] = ⟨1.0,0,0⟩

A state for a timed automaton is a pair ⟨l , ν⟩,
where l is a location and ν is a clock interpretation

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

15 / 107

Clock constraints and clock interpretations

Grammar of clock constraints:
φ ::= x ≤ C | x < C | x ≥ C | x > C | φ ∧ φ

s.t. C positive integer values.
=⇒ allow only comparison of a clock with a constant
clock interpretation: ν

X = ⟨x , y , z⟩, ν = ⟨1.0,1.5,0⟩
clock interpretation ν after δ time: ν + δ

δ = 0.2, ν + δ = ⟨1.2,1.7,0.2⟩
clock interpretation ν after reset λ: ν[λ]

λ = {y}, ν[y := 0] = ⟨1.0,0,0⟩

A state for a timed automaton is a pair ⟨l , ν⟩,
where l is a location and ν is a clock interpretation

(x ≥ 4)
(y ≤ 2)

a

y := 0

l1
(x ≤ 5)

l2
(x > 4)
(y ≤ 3)

15 / 107

Remark: why integer constants in clock constraints?

The constant in clock constraints are assumed to be integer w.l.o.g.:
if rationals, multiply them for their greatest common denominator, and change the time unit
accordingly
in practice, multiply by 10k (resp 2k), k being the number of precision digits (resp. bits), and
change the time unit accordingly
Ex: 1.345, 0.78, 102.32 seconds
=⇒ 1,345, 780, 102,320 milliseconds

16 / 107

Example

clocks {x , y} can be set/reset independently
x is reset to 0 from s0 to s1 on a
switches b and c happen within 1 time-unit from a because of constraints in s1 and s2

delay between b and the following d is > 2
no explicit bounds on time difference between event c − d

17 / 107

Example

clocks {x , y} can be set/reset independently
x is reset to 0 from s0 to s1 on a
switches b and c happen within 1 time-unit from a because of constraints in s1 and s2

delay between b and the following d is > 2
no explicit bounds on time difference between event c − d

17 / 107

Example

clocks {x , y} can be set/reset independently
x is reset to 0 from s0 to s1 on a
switches b and c happen within 1 time-unit from a because of constraints in s1 and s2

delay between b and the following d is > 2
no explicit bounds on time difference between event c − d

17 / 107

Example

clocks {x , y} can be set/reset independently
x is reset to 0 from s0 to s1 on a
switches b and c happen within 1 time-unit from a because of constraints in s1 and s2

delay between b and the following d is > 2
no explicit bounds on time difference between event c − d

17 / 107

Example

clocks {x , y} can be set/reset independently
x is reset to 0 from s0 to s1 on a
switches b and c happen within 1 time-unit from a because of constraints in s1 and s2

delay between b and the following d is > 2
no explicit bounds on time difference between event c − d

17 / 107

Outline

1 Motivations
2 Timed systems: Modeling and Semantics

Timed automata
Semantics
Combination

3 Symbolic Reachability for Timed Systems
Making the state space finite
Region automata
Zone automata

4 Hybrid Systems: Modeling and Semantics
Hybrid automata

5 Symbolic Reachability for Hybrid Systems
Multi-Rate and Rectangular Hybrid Automata
Linear Hybrid Automata

6 Exercises

18 / 107

Timed Automata: Semantics

Semantics of A defined in terms of a (infinite) transition system

SA
def
= ⟨Q,Q0,→,Σ⟩

Q: {⟨l , ν⟩} s.t. l location and ν clock evaluation
Q0: {⟨l , ν⟩} s.t. l ∈ L0 location and ν(X) = 0
→:

state change due to location switch
state change due to time elapse

Σ: set of labels of Σ ∪Q+

19 / 107

State change in transition system

Initial State

⟨q,0⟩
Initial state

20 / 107

State change in transition system

Time elapse

⟨q,0⟩ 1.2−→ ⟨q,1.2⟩
state change due to elapse of time

20 / 107

State change in transition system

Time Elapse, Switch and their Concatenation

⟨q,0⟩ 1.2−→ ⟨q,1.2⟩ a−→ ⟨q′,1.2⟩ ”wait δ; switch;”

=⇒ ⟨q,0⟩ 1.2+a−→ ⟨q′,1.2⟩ ”wait δ and switch;”

20 / 107

State change in transition system

Time Elapse, Switch and their Concatenation

⟨q,0⟩ 1.2−→ ⟨q,1.2⟩ a−→ ⟨q′,1.2⟩ ”wait δ; switch;”

=⇒ ⟨q,0⟩ 1.2+a−→ ⟨q′,1.2⟩ ”wait δ and switch;”

20 / 107

Example

push push

click

Switch may be turned on whenever at least 2 time units has elapsed since last “turn off”
Light automatically switches off after 9 time units.

Example execution

⟨off ,0,0⟩ 3.5−→ ⟨off ,3.5,3.5⟩ push−→ ⟨on,0,0⟩ 3.14−→ ⟨on,3.14,3.14⟩
push−→ ⟨on,0,3.14⟩ 3−→ ⟨on,3,6.14⟩ 2.86−→ ⟨on,5.86,9⟩ click−→ ⟨off ,0,9⟩

21 / 107

Example

push push

click

Switch may be turned on whenever at least 2 time units has elapsed since last “turn off”
Light automatically switches off after 9 time units.

Example execution

⟨off ,0,0⟩ 3.5−→ ⟨off ,3.5,3.5⟩ push−→ ⟨on,0,0⟩ 3.14−→ ⟨on,3.14,3.14⟩
push−→ ⟨on,0,3.14⟩ 3−→ ⟨on,3,6.14⟩ 2.86−→ ⟨on,5.86,9⟩ click−→ ⟨off ,0,9⟩

21 / 107

Example

push push

click

Switch may be turned on whenever at least 2 time units has elapsed since last “turn off”
Light automatically switches off after 9 time units.

Example execution

⟨off ,0,0⟩ 3.5−→ ⟨off ,3.5,3.5⟩ push−→ ⟨on,0,0⟩ 3.14−→ ⟨on,3.14,3.14⟩
push−→ ⟨on,0,3.14⟩ 3−→ ⟨on,3,6.14⟩ 2.86−→ ⟨on,5.86,9⟩ click−→ ⟨off ,0,9⟩

21 / 107

Example

push push

click

Switch may be turned on whenever at least 2 time units has elapsed since last “turn off”
Light automatically switches off after 9 time units.

Example execution

⟨off ,0,0⟩ 3.5−→ ⟨off ,3.5,3.5⟩ push−→ ⟨on,0,0⟩ 3.14−→ ⟨on,3.14,3.14⟩
push−→ ⟨on,0,3.14⟩ 3−→ ⟨on,3,6.14⟩ 2.86−→ ⟨on,5.86,9⟩ click−→ ⟨off ,0,9⟩

21 / 107

Example

push push

click

Switch may be turned on whenever at least 2 time units has elapsed since last “turn off”
Light automatically switches off after 9 time units.

Example execution

⟨off ,0,0⟩ 3.5−→ ⟨off ,3.5,3.5⟩ push−→ ⟨on,0,0⟩ 3.14−→ ⟨on,3.14,3.14⟩
push−→ ⟨on,0,3.14⟩ 3−→ ⟨on,3,6.14⟩ 2.86−→ ⟨on,5.86,9⟩ click−→ ⟨off ,0,9⟩

21 / 107

Example

push push

click

Switch may be turned on whenever at least 2 time units has elapsed since last “turn off”
Light automatically switches off after 9 time units.

Example execution

⟨off ,0,0⟩ 3.5−→ ⟨off ,3.5,3.5⟩ push−→ ⟨on,0,0⟩ 3.14−→ ⟨on,3.14,3.14⟩
push−→ ⟨on,0,3.14⟩ 3−→ ⟨on,3,6.14⟩ 2.86−→ ⟨on,5.86,9⟩ click−→ ⟨off ,0,9⟩

21 / 107

Example

push push

click

Switch may be turned on whenever at least 2 time units has elapsed since last “turn off”
Light automatically switches off after 9 time units.

Example execution

⟨off ,0,0⟩ 3.5−→ ⟨off ,3.5,3.5⟩ push−→ ⟨on,0,0⟩ 3.14−→ ⟨on,3.14,3.14⟩
push−→ ⟨on,0,3.14⟩ 3−→ ⟨on,3,6.14⟩ 2.86−→ ⟨on,5.86,9⟩ click−→ ⟨off ,0,9⟩

21 / 107

Example

push push

click

Switch may be turned on whenever at least 2 time units has elapsed since last “turn off”
Light automatically switches off after 9 time units.

Example execution

⟨off ,0,0⟩ 3.5−→ ⟨off ,3.5,3.5⟩ push−→ ⟨on,0,0⟩ 3.14−→ ⟨on,3.14,3.14⟩
push−→ ⟨on,0,3.14⟩ 3−→ ⟨on,3,6.14⟩ 2.86−→ ⟨on,5.86,9⟩ click−→ ⟨off ,0,9⟩

21 / 107

Example

push push

click

Switch may be turned on whenever at least 2 time units has elapsed since last “turn off”
Light automatically switches off after 9 time units.

Example execution

⟨off ,0,0⟩ 3.5−→ ⟨off ,3.5,3.5⟩ push−→ ⟨on,0,0⟩ 3.14−→ ⟨on,3.14,3.14⟩
push−→ ⟨on,0,3.14⟩ 3−→ ⟨on,3,6.14⟩ 2.86−→ ⟨on,5.86,9⟩ click−→ ⟨off ,0,9⟩

21 / 107

Remark: Non-Zenoness

Beware of Zeno! (paradox)

When the invariant is violated some edge
must be enabled

Automata should admit the possibility of
time to diverge

22 / 107

Outline

1 Motivations
2 Timed systems: Modeling and Semantics

Timed automata
Semantics
Combination

3 Symbolic Reachability for Timed Systems
Making the state space finite
Region automata
Zone automata

4 Hybrid Systems: Modeling and Semantics
Hybrid automata

5 Symbolic Reachability for Hybrid Systems
Multi-Rate and Rectangular Hybrid Automata
Linear Hybrid Automata

6 Exercises

23 / 107

Combination of Timed Automata

Complex system = product of interacting systems

Let A1
def
= ⟨L1,L0

1,Σ1,X1,Φ1(X1),E1⟩, A2
def
= ⟨L2,L0

2,Σ2,X2,Φ2(X2),E2⟩

Product: A1||A2
def
= ⟨L1 × L2,L0

1 × L0
2,Σ1 ∪ Σ2,X1 ∪ X2,Φ1(X1) ∪ Φ2(X2),E1||E2⟩

Transition iff:
Label a belongs to both alphabets =⇒ synchronized
blocking synchronization: a-labeled switches cannot be shot alone
Label a only in the alphabet of A1 =⇒ asynchronized
Label a only in the alphabet of A2 =⇒ asynchronized

24 / 107

Combination of Timed Automata

Complex system = product of interacting systems

Let A1
def
= ⟨L1,L0

1,Σ1,X1,Φ1(X1),E1⟩, A2
def
= ⟨L2,L0

2,Σ2,X2,Φ2(X2),E2⟩

Product: A1||A2
def
= ⟨L1 × L2,L0

1 × L0
2,Σ1 ∪ Σ2,X1 ∪ X2,Φ1(X1) ∪ Φ2(X2),E1||E2⟩

Transition iff:
Label a belongs to both alphabets =⇒ synchronized
blocking synchronization: a-labeled switches cannot be shot alone
Label a only in the alphabet of A1 =⇒ asynchronized
Label a only in the alphabet of A2 =⇒ asynchronized

24 / 107

Combination of Timed Automata

Complex system = product of interacting systems

Let A1
def
= ⟨L1,L0

1,Σ1,X1,Φ1(X1),E1⟩, A2
def
= ⟨L2,L0

2,Σ2,X2,Φ2(X2),E2⟩

Product: A1||A2
def
= ⟨L1 × L2,L0

1 × L0
2,Σ1 ∪ Σ2,X1 ∪ X2,Φ1(X1) ∪ Φ2(X2),E1||E2⟩

Transition iff:
Label a belongs to both alphabets =⇒ synchronized
blocking synchronization: a-labeled switches cannot be shot alone
Label a only in the alphabet of A1 =⇒ asynchronized
Label a only in the alphabet of A2 =⇒ asynchronized

24 / 107

Combination of Timed Automata

Complex system = product of interacting systems

Let A1
def
= ⟨L1,L0

1,Σ1,X1,Φ1(X1),E1⟩, A2
def
= ⟨L2,L0

2,Σ2,X2,Φ2(X2),E2⟩

Product: A1||A2
def
= ⟨L1 × L2,L0

1 × L0
2,Σ1 ∪ Σ2,X1 ∪ X2,Φ1(X1) ∪ Φ2(X2),E1||E2⟩

Transition iff:
Label a belongs to both alphabets =⇒ synchronized
blocking synchronization: a-labeled switches cannot be shot alone
Label a only in the alphabet of A1 =⇒ asynchronized
Label a only in the alphabet of A2 =⇒ asynchronized

24 / 107

Combination of Timed Automata

Complex system = product of interacting systems

Let A1
def
= ⟨L1,L0

1,Σ1,X1,Φ1(X1),E1⟩, A2
def
= ⟨L2,L0

2,Σ2,X2,Φ2(X2),E2⟩

Product: A1||A2
def
= ⟨L1 × L2,L0

1 × L0
2,Σ1 ∪ Σ2,X1 ∪ X2,Φ1(X1) ∪ Φ2(X2),E1||E2⟩

Transition iff:
Label a belongs to both alphabets =⇒ synchronized
blocking synchronization: a-labeled switches cannot be shot alone
Label a only in the alphabet of A1 =⇒ asynchronized
Label a only in the alphabet of A2 =⇒ asynchronized

24 / 107

Combination of Timed Automata

Complex system = product of interacting systems

Let A1
def
= ⟨L1,L0

1,Σ1,X1,Φ1(X1),E1⟩, A2
def
= ⟨L2,L0

2,Σ2,X2,Φ2(X2),E2⟩

Product: A1||A2
def
= ⟨L1 × L2,L0

1 × L0
2,Σ1 ∪ Σ2,X1 ∪ X2,Φ1(X1) ∪ Φ2(X2),E1||E2⟩

Transition iff:
Label a belongs to both alphabets =⇒ synchronized
blocking synchronization: a-labeled switches cannot be shot alone
Label a only in the alphabet of A1 =⇒ asynchronized
Label a only in the alphabet of A2 =⇒ asynchronized

24 / 107

Combination of Timed Automata

Complex system = product of interacting systems

Let A1
def
= ⟨L1,L0

1,Σ1,X1,Φ1(X1),E1⟩, A2
def
= ⟨L2,L0

2,Σ2,X2,Φ2(X2),E2⟩

Product: A1||A2
def
= ⟨L1 × L2,L0

1 × L0
2,Σ1 ∪ Σ2,X1 ∪ X2,Φ1(X1) ∪ Φ2(X2),E1||E2⟩

Transition iff:
Label a belongs to both alphabets =⇒ synchronized
blocking synchronization: a-labeled switches cannot be shot alone
Label a only in the alphabet of A1 =⇒ asynchronized
Label a only in the alphabet of A2 =⇒ asynchronized

24 / 107

Transition Product

Σ1
def
= {a,b}

Σ2
def
= {a, c}

25 / 107

Transition Product: Example

Courtesy of prof. Marco di Natale, Scuola S.Anna, Pisa, Italy
26 / 107

Example: Train-gate controller [Alur CAV’99]

Desired property: G(s2 → t2)
27 / 107

Train-gate controller: Product

28 / 107

Outline

1 Motivations
2 Timed systems: Modeling and Semantics

Timed automata
Semantics
Combination

3 Symbolic Reachability for Timed Systems
Making the state space finite
Region automata
Zone automata

4 Hybrid Systems: Modeling and Semantics
Hybrid automata

5 Symbolic Reachability for Hybrid Systems
Multi-Rate and Rectangular Hybrid Automata
Linear Hybrid Automata

6 Exercises

29 / 107

Outline

1 Motivations
2 Timed systems: Modeling and Semantics

Timed automata
Semantics
Combination

3 Symbolic Reachability for Timed Systems
Making the state space finite
Region automata
Zone automata

4 Hybrid Systems: Modeling and Semantics
Hybrid automata

5 Symbolic Reachability for Hybrid Systems
Multi-Rate and Rectangular Hybrid Automata
Linear Hybrid Automata

6 Exercises

30 / 107

Reachability Analysis

Verification of safety requirement: reachability problem
Input: a timed automaton A and a set of target locations LF ⊆ L
Problem: Determining whether LF is reachable in a timed automaton A
A location l of A is reachable if some state q with location component l is a reachable state
of the transition system SA

31 / 107

Timed/hybrid Systems: problem

Problem
The system SA associated to A has infinitely-many states & symbols.

Is finite state analysis possible?
Is reachability problem decidable?

32 / 107

Idea: Finite Partitioning

Goal
Partition the state space into finitely-many equivalence classes, so that equivalent states exhibit
(bi)similar behaviors

33 / 107

Reachability analysis

34 / 107

Timed Vs Time-Abstract Relations

Idea
Infinite transition system associated with a timed/hybrid automaton A:

SA: Labels on continuous steps are delays in Q+

UA (time-abstract): actual delays are suppressed
=⇒ all continuous steps have same label

from ”wait δ and switch” to ”wait (sometime) and switch”

35 / 107

Time-abstract transition system UA

UA (time-abstract): actual delays are suppressed
Only the change due to location switch is stated explicitly

=⇒ Cuts system into finitely many labels
UA (instead of SA) allows for capturing untimed properties (e.g., reachability, safety)

Example

A: (“wait δ; switch;”)
⟨l0,0,0⟩

1.2−→ ⟨l0,1.2,1.2⟩
a−→ ⟨l1,0,1.2⟩

0.7−→ ⟨l1,0.7,1.9⟩
b−→ ⟨l2,0.7,0⟩

SA: (“wait δ and switch;”)
⟨l0,0,0⟩

1.2+a−→ ⟨l1,0,1.2⟩
0.7+b−→ ⟨l2,0.7,0⟩

UA: (“wait (sometime) and switch;”)
⟨l0,0,0⟩

a−→ ⟨l1,0,1.2⟩
b−→ ⟨l2,0.7,0⟩

36 / 107

Time-abstract transition system UA

UA (time-abstract): actual delays are suppressed
Only the change due to location switch is stated explicitly

=⇒ Cuts system into finitely many labels
UA (instead of SA) allows for capturing untimed properties (e.g., reachability, safety)

Example

A: (“wait δ; switch;”)
⟨l0,0,0⟩

1.2−→ ⟨l0,1.2,1.2⟩
a−→ ⟨l1,0,1.2⟩

0.7−→ ⟨l1,0.7,1.9⟩
b−→ ⟨l2,0.7,0⟩

SA: (“wait δ and switch;”)
⟨l0,0,0⟩

1.2+a−→ ⟨l1,0,1.2⟩
0.7+b−→ ⟨l2,0.7,0⟩

UA: (“wait (sometime) and switch;”)
⟨l0,0,0⟩

a−→ ⟨l1,0,1.2⟩
b−→ ⟨l2,0.7,0⟩

36 / 107

Stable quotients

Idea: Collapse states which are equivalent modulo “wait & switch”
Cut to finitely many states
Stable equivalence relation
Quotient of UA = transition system [UA]

37 / 107

LF -sensitive equivalence relation

All equivalent states in a class belong to either LF or not LF

E.g.: states with different labels cannot be equivalent
38 / 107

Stable Quotient: Intuitive example

Task: plan trip from DISI to VR train station
“Take the next #5 bus to TN train station and then the 6pm train to VR”

Constraints:

It is 5.18pm
Train to VR leaves at TN train station at 6.00pm
it takes 3 minutes to walk from DISI to BUS stop
Bus #5 passes at 5.20pm or at 5.40pm
Bus #5 takes 15 minutes to reach TN train station
it takes 2 minutes to walk from BUS stop to TN train station

Time-Abstract plan (UA):
“walk to bus stop; take 5.40 #5 bus to TN train-station stop;
walk to train station; take the 6pm train to VR”

Actual (implicit) plan (A):
“wait δ1; walk to bus stop; wait δ2; take 5.40 #5 bus to TN train-station stop;
wait δ3 at bus stop; walk to train station; wait δ4; take the 6pm train to VR”
for some δ1, δ2, δ3, δ4 s.t δ1 + δ2 = 19min and δ3 + δ4 = 3min

All executions with distinct values of δi are bisimilar

39 / 107

Stable Quotient: Intuitive example

Task: plan trip from DISI to VR train station
“Take the next #5 bus to TN train station and then the 6pm train to VR”

Constraints:

It is 5.18pm
Train to VR leaves at TN train station at 6.00pm
it takes 3 minutes to walk from DISI to BUS stop
Bus #5 passes at 5.20pm or at 5.40pm
Bus #5 takes 15 minutes to reach TN train station
it takes 2 minutes to walk from BUS stop to TN train station

Time-Abstract plan (UA):
“walk to bus stop; take 5.40 #5 bus to TN train-station stop;
walk to train station; take the 6pm train to VR”

Actual (implicit) plan (A):
“wait δ1; walk to bus stop; wait δ2; take 5.40 #5 bus to TN train-station stop;
wait δ3 at bus stop; walk to train station; wait δ4; take the 6pm train to VR”
for some δ1, δ2, δ3, δ4 s.t δ1 + δ2 = 19min and δ3 + δ4 = 3min

All executions with distinct values of δi are bisimilar

39 / 107

Stable Quotient: Intuitive example

Task: plan trip from DISI to VR train station
“Take the next #5 bus to TN train station and then the 6pm train to VR”

Constraints:

It is 5.18pm
Train to VR leaves at TN train station at 6.00pm
it takes 3 minutes to walk from DISI to BUS stop
Bus #5 passes at 5.20pm or at 5.40pm
Bus #5 takes 15 minutes to reach TN train station
it takes 2 minutes to walk from BUS stop to TN train station

Time-Abstract plan (UA):
“walk to bus stop; take 5.40 #5 bus to TN train-station stop;
walk to train station; take the 6pm train to VR”

Actual (implicit) plan (A):
“wait δ1; walk to bus stop; wait δ2; take 5.40 #5 bus to TN train-station stop;
wait δ3 at bus stop; walk to train station; wait δ4; take the 6pm train to VR”
for some δ1, δ2, δ3, δ4 s.t δ1 + δ2 = 19min and δ3 + δ4 = 3min

All executions with distinct values of δi are bisimilar

39 / 107

Stable Quotient: Intuitive example

Task: plan trip from DISI to VR train station
“Take the next #5 bus to TN train station and then the 6pm train to VR”

Constraints:

It is 5.18pm
Train to VR leaves at TN train station at 6.00pm
it takes 3 minutes to walk from DISI to BUS stop
Bus #5 passes at 5.20pm or at 5.40pm
Bus #5 takes 15 minutes to reach TN train station
it takes 2 minutes to walk from BUS stop to TN train station

Time-Abstract plan (UA):
“walk to bus stop; take 5.40 #5 bus to TN train-station stop;
walk to train station; take the 6pm train to VR”

Actual (implicit) plan (A):
“wait δ1; walk to bus stop; wait δ2; take 5.40 #5 bus to TN train-station stop;
wait δ3 at bus stop; walk to train station; wait δ4; take the 6pm train to VR”
for some δ1, δ2, δ3, δ4 s.t δ1 + δ2 = 19min and δ3 + δ4 = 3min

All executions with distinct values of δi are bisimilar

39 / 107

Outline

1 Motivations
2 Timed systems: Modeling and Semantics

Timed automata
Semantics
Combination

3 Symbolic Reachability for Timed Systems
Making the state space finite
Region automata
Zone automata

4 Hybrid Systems: Modeling and Semantics
Hybrid automata

5 Symbolic Reachability for Hybrid Systems
Multi-Rate and Rectangular Hybrid Automata
Linear Hybrid Automata

6 Exercises

40 / 107

Region Equivalence over clock interpretation

Preliminary definitions & terminology

Given a clock x :
⌊x⌋ is the integral part of x (ex: ⌊3.7⌋ = 3)
fr(x) is the fractional part of x (ex: fr(3.7) = 0.7)
Cx is the maximum constant occurring in clock constraints x ▷◁ Cx

Region Equivalence: ν ∼= ν′

Given a timed automaton A, two clock interpretations ν, ν′ are region equivalent (ν ∼= ν′) iff all the
following conditions hold:
C1: For every clock x , either ⌊ν(x)⌋ = ⌊ν′(x)⌋ or ⌊ν(x)⌋, ⌊ν′(x)⌋ ≥ Cx

C2: For every clock pair x , y s.t. ν(x), ν′(x) ≤ Cx and ν(y), ν′(y) ≤ Cy ,
fr(ν(x)) ≤ fr(ν(y)) iff fr(ν′(x)) ≤ fr(ν′(y))

C3: For every clock x s.t. ν(x), ν′(x) ≤ Cx
fr(ν(x)) = 0 iff fr(ν′(x)) = 0

41 / 107

Region Equivalence over clock interpretation

Preliminary definitions & terminology

Given a clock x :
⌊x⌋ is the integral part of x (ex: ⌊3.7⌋ = 3)
fr(x) is the fractional part of x (ex: fr(3.7) = 0.7)
Cx is the maximum constant occurring in clock constraints x ▷◁ Cx

Region Equivalence: ν ∼= ν′

Given a timed automaton A, two clock interpretations ν, ν′ are region equivalent (ν ∼= ν′) iff all the
following conditions hold:
C1: For every clock x , either ⌊ν(x)⌋ = ⌊ν′(x)⌋ or ⌊ν(x)⌋, ⌊ν′(x)⌋ ≥ Cx

C2: For every clock pair x , y s.t. ν(x), ν′(x) ≤ Cx and ν(y), ν′(y) ≤ Cy ,
fr(ν(x)) ≤ fr(ν(y)) iff fr(ν′(x)) ≤ fr(ν′(y))

C3: For every clock x s.t. ν(x), ν′(x) ≤ Cx
fr(ν(x)) = 0 iff fr(ν′(x)) = 0

41 / 107

Region Equivalence over clock interpretation

Preliminary definitions & terminology

Given a clock x :
⌊x⌋ is the integral part of x (ex: ⌊3.7⌋ = 3)
fr(x) is the fractional part of x (ex: fr(3.7) = 0.7)
Cx is the maximum constant occurring in clock constraints x ▷◁ Cx

Region Equivalence: ν ∼= ν′

Given a timed automaton A, two clock interpretations ν, ν′ are region equivalent (ν ∼= ν′) iff all the
following conditions hold:
C1: For every clock x , either ⌊ν(x)⌋ = ⌊ν′(x)⌋ or ⌊ν(x)⌋, ⌊ν′(x)⌋ ≥ Cx

C2: For every clock pair x , y s.t. ν(x), ν′(x) ≤ Cx and ν(y), ν′(y) ≤ Cy ,
fr(ν(x)) ≤ fr(ν(y)) iff fr(ν′(x)) ≤ fr(ν′(y))

C3: For every clock x s.t. ν(x), ν′(x) ≤ Cx
fr(ν(x)) = 0 iff fr(ν′(x)) = 0

41 / 107

Region Equivalence over clock interpretation

Preliminary definitions & terminology

Given a clock x :
⌊x⌋ is the integral part of x (ex: ⌊3.7⌋ = 3)
fr(x) is the fractional part of x (ex: fr(3.7) = 0.7)
Cx is the maximum constant occurring in clock constraints x ▷◁ Cx

Region Equivalence: ν ∼= ν′

Given a timed automaton A, two clock interpretations ν, ν′ are region equivalent (ν ∼= ν′) iff all the
following conditions hold:
C1: For every clock x , either ⌊ν(x)⌋ = ⌊ν′(x)⌋ or ⌊ν(x)⌋, ⌊ν′(x)⌋ ≥ Cx

C2: For every clock pair x , y s.t. ν(x), ν′(x) ≤ Cx and ν(y), ν′(y) ≤ Cy ,
fr(ν(x)) ≤ fr(ν(y)) iff fr(ν′(x)) ≤ fr(ν′(y))

C3: For every clock x s.t. ν(x), ν′(x) ≤ Cx
fr(ν(x)) = 0 iff fr(ν′(x)) = 0

41 / 107

Region Equivalence over clock interpretation

Preliminary definitions & terminology

Given a clock x :
⌊x⌋ is the integral part of x (ex: ⌊3.7⌋ = 3)
fr(x) is the fractional part of x (ex: fr(3.7) = 0.7)
Cx is the maximum constant occurring in clock constraints x ▷◁ Cx

Region Equivalence: ν ∼= ν′

Given a timed automaton A, two clock interpretations ν, ν′ are region equivalent (ν ∼= ν′) iff all the
following conditions hold:
C1: For every clock x , either ⌊ν(x)⌋ = ⌊ν′(x)⌋ or ⌊ν(x)⌋, ⌊ν′(x)⌋ ≥ Cx

C2: For every clock pair x , y s.t. ν(x), ν′(x) ≤ Cx and ν(y), ν′(y) ≤ Cy ,
fr(ν(x)) ≤ fr(ν(y)) iff fr(ν′(x)) ≤ fr(ν′(y))

C3: For every clock x s.t. ν(x), ν′(x) ≤ Cx
fr(ν(x)) = 0 iff fr(ν′(x)) = 0

41 / 107

Conditions: C1 + C2 + C3

Cx

x

y

Cy

1 2 3 4

1

2

3

0

C1: For every clock x , either ⌊ν(x)⌋ = ⌊ν′(x)⌋ or ⌊ν(x)⌋, ⌊ν′(x)⌋ ≥ Cx

C2: For every clock pair x , y s.t. ν(x), ν′(x) ≤ Cx and ν(y), ν′(y) ≤ Cy ,
fr(ν(x)) ≤ fr(ν(y)) iff fr(ν′(x)) ≤ fr(ν′(y))

C3: For every clock x s.t. ν(x), ν′(x) ≤ Cx , fr(ν(x)) = 0 iff fr(ν′(x)) = 0
42 / 107

Conditions: C1 + C2 + C3

Cx

x

y

Cy

1 2 3 4

1

2

3

0

C1: For every clock x , either ⌊ν(x)⌋ = ⌊ν′(x)⌋ or ⌊ν(x)⌋, ⌊ν′(x)⌋ ≥ Cx

C2: For every clock pair x , y s.t. ν(x), ν′(x) ≤ Cx and ν(y), ν′(y) ≤ Cy ,
fr(ν(x)) ≤ fr(ν(y)) iff fr(ν′(x)) ≤ fr(ν′(y))

C3: For every clock x s.t. ν(x), ν′(x) ≤ Cx , fr(ν(x)) = 0 iff fr(ν′(x)) = 0
42 / 107

Conditions: C1 + C2 + C3

Cx

x

y

Cy

1 2 3 4

1

2

3

0

C1: For every clock x , either ⌊ν(x)⌋ = ⌊ν′(x)⌋ or ⌊ν(x)⌋, ⌊ν′(x)⌋ ≥ Cx

C2: For every clock pair x , y s.t. ν(x), ν′(x) ≤ Cx and ν(y), ν′(y) ≤ Cy ,
fr(ν(x)) ≤ fr(ν(y)) iff fr(ν′(x)) ≤ fr(ν′(y))

C3: For every clock x s.t. ν(x), ν′(x) ≤ Cx , fr(ν(x)) = 0 iff fr(ν′(x)) = 0
42 / 107

Conditions: C1 + C2 + C3

Cx

x

y

Cy

1 2 3 4

1

2

3

0

C1: For every clock x , either ⌊ν(x)⌋ = ⌊ν′(x)⌋ or ⌊ν(x)⌋, ⌊ν′(x)⌋ ≥ Cx

C2: For every clock pair x , y s.t. ν(x), ν′(x) ≤ Cx and ν(y), ν′(y) ≤ Cy ,
fr(ν(x)) ≤ fr(ν(y)) iff fr(ν′(x)) ≤ fr(ν′(y))

C3: For every clock x s.t. ν(x), ν′(x) ≤ Cx , fr(ν(x)) = 0 iff fr(ν′(x)) = 0
42 / 107

Regions, intuitive idea:

Cx

x

y

Cy

1 2 3 4

1

2

3

0

Intuition: ν ∼= ν′ iff they satisfy the same set of constraints in the form

xi < c, xi > c, xi = c, xi − xj < c, xi − xj > c, xi − xj = c

s.t. c ≤ Cxi
43 / 107

Region Operations

44 / 107

Properties of Regions

The region equivalence relation ∼= is a time-abstract bisimulation:
Action transitions: if ν ∼= µ and ⟨l, ν⟩ a−→ ⟨l ′, ν′⟩ for some l ′, ν′,
then there exists µ′ s.t. ν′ ∼= µ′ and ⟨l, µ⟩ a−→ ⟨l ′, µ′⟩
Wait transitions: if ν ∼= µ,
then for every δ ∈ Q+ there exists δ′ ∈ Q+ s.t. ν + δ ∼= µ+ δ′

=⇒ If ν ∼= µ, then ⟨l , ν⟩ and ⟨l , µ⟩ satisfy the same temporal-logic formulas

45 / 107

Properties of Regions

The region equivalence relation ∼= is a time-abstract bisimulation:
Action transitions: if ν ∼= µ and ⟨l, ν⟩ a−→ ⟨l ′, ν′⟩ for some l ′, ν′,
then there exists µ′ s.t. ν′ ∼= µ′ and ⟨l, µ⟩ a−→ ⟨l ′, µ′⟩
Wait transitions: if ν ∼= µ,
then for every δ ∈ Q+ there exists δ′ ∈ Q+ s.t. ν + δ ∼= µ+ δ′

=⇒ If ν ∼= µ, then ⟨l , ν⟩ and ⟨l , µ⟩ satisfy the same temporal-logic formulas

45 / 107

Properties of Regions

The region equivalence relation ∼= is a time-abstract bisimulation:
Action transitions: if ν ∼= µ and ⟨l, ν⟩ a−→ ⟨l ′, ν′⟩ for some l ′, ν′,
then there exists µ′ s.t. ν′ ∼= µ′ and ⟨l, µ⟩ a−→ ⟨l ′, µ′⟩
Wait transitions: if ν ∼= µ,
then for every δ ∈ Q+ there exists δ′ ∈ Q+ s.t. ν + δ ∼= µ+ δ′

=⇒ If ν ∼= µ, then ⟨l , ν⟩ and ⟨l , µ⟩ satisfy the same temporal-logic formulas

45 / 107

Properties of Regions

The region equivalence relation ∼= is a time-abstract bisimulation:
Action transitions: if ν ∼= µ and ⟨l, ν⟩ a−→ ⟨l ′, ν′⟩ for some l ′, ν′,
then there exists µ′ s.t. ν′ ∼= µ′ and ⟨l, µ⟩ a−→ ⟨l ′, µ′⟩
Wait transitions: if ν ∼= µ,
then for every δ ∈ Q+ there exists δ′ ∈ Q+ s.t. ν + δ ∼= µ+ δ′

=⇒ If ν ∼= µ, then ⟨l , ν⟩ and ⟨l , µ⟩ satisfy the same temporal-logic formulas

45 / 107

Time-abstract Bisimulation in Regions

Cx

x

y

Cy

1 2 3 4

1

2

3

0

46 / 107

Time-abstract Bisimulation in Regions

Cx

x

y

Cy

1 2 3 4

1

2

3

0

46 / 107

Time-abstract Bisimulation in Regions

Cx

x

y

Cy

1 2 3 4

1

2

3

0

46 / 107

Time-abstract Bisimulation in Regions

Cx

x

y

Cy

1 2 3 4

1

2

3

0

46 / 107

Time-abstract Bisimulation in Regions

Cx

x

y

Cy

1 2 3 4

1

2

3

0

46 / 107

Time-abstract Bisimulation in Regions

Cx

x

y

Cy

1 2 3 4

1

2

3

0

46 / 107

Time-abstract Bisimulation in Regions

Cx

x

y

Cy

1 2 3 4

1

2

3

0

46 / 107

Time-abstract Bisimulation in Regions

Cx

x

y

Cy

1 2 3 4

1

2

3

0

46 / 107

Time-abstract Bisimulation in Regions

Cx

x

y

Cy

1 2 3 4

1

2

3

0

46 / 107

Time-abstract Bisimulation in Regions

Cx

x

y

Cy

1 2 3 4

1

2

3

0

46 / 107

Time-abstract Bisimulation in Regions

Cx

x

y

Cy

1 2 3 4

1

2

3

0

46 / 107

Time-abstract Bisimulation in Regions

Cx

x

y

Cy

1 2 3 4

1

2

3

0

46 / 107

Time-abstract Bisimulation in Regions

Cx

x

y

Cy

1 2 3 4

1

2

3

0

46 / 107

Time-abstract Bisimulation in Regions

Cx

x

y

Cy

1 2 3 4

1

2

3

0

46 / 107

Time-abstract Bisimulation in Regions

Cx

x

y

Cy

1 2 3 4

1

2

3

0

46 / 107

Time-abstract Bisimulation in Regions

Cx

x

y

Cy

1 2 3 4

1

2

3

0

46 / 107

Time-abstract Bisimulation in Regions

Cx

x

y

Cy

1 2 3 4

1

2

3

0

46 / 107

Number of Clock Regions

Clock region: equivalence class of clock interpretations
Number of clock regions upper-bounded by

k ! · 2k · Πx∈X (2 · Cx + 2), s.t . k def
= ||X ||

finite!
exponential in the number of clocks
grows with the values of Cx

typically quite pessimistic

Example

2 clocks x,y, Cx = 2, Cy = 1
8 open regions
14 open line segments
6 corner points

=⇒ 28 regions
< 2 · 22 · (2 · 2 + 2) · (2 · 1 + 2) = 192

47 / 107

Number of Clock Regions

Clock region: equivalence class of clock interpretations
Number of clock regions upper-bounded by

k ! · 2k · Πx∈X (2 · Cx + 2), s.t . k def
= ||X ||

finite!
exponential in the number of clocks
grows with the values of Cx

typically quite pessimistic

Example

2 clocks x,y, Cx = 2, Cy = 1
8 open regions
14 open line segments
6 corner points

=⇒ 28 regions
< 2 · 22 · (2 · 2 + 2) · (2 · 1 + 2) = 192

47 / 107

Region automaton

Equivalent states = identical location + ∼=-equivalent evaluations
Equivalent Classes (regions): finite, stable, LF -sensitive
R(A): Region automaton of A

States: ⟨l, r(A)⟩ s.t. r(A) regions of A
=⇒ Finite state automaton!

Reachability problem ⟨A,LF ⟩ =⇒ Reachability problem ⟨R(A),LF ⟩
=⇒ Reachability in timed automata reduced to that in finite automata!

48 / 107

Region automaton

Equivalent states = identical location + ∼=-equivalent evaluations
Equivalent Classes (regions): finite, stable, LF -sensitive
R(A): Region automaton of A

States: ⟨l, r(A)⟩ s.t. r(A) regions of A
=⇒ Finite state automaton!

Reachability problem ⟨A,LF ⟩ =⇒ Reachability problem ⟨R(A),LF ⟩
=⇒ Reachability in timed automata reduced to that in finite automata!

48 / 107

Region automaton

Equivalent states = identical location + ∼=-equivalent evaluations
Equivalent Classes (regions): finite, stable, LF -sensitive
R(A): Region automaton of A

States: ⟨l, r(A)⟩ s.t. r(A) regions of A
=⇒ Finite state automaton!

Reachability problem ⟨A,LF ⟩ =⇒ Reachability problem ⟨R(A),LF ⟩
=⇒ Reachability in timed automata reduced to that in finite automata!

48 / 107

Region automaton

Equivalent states = identical location + ∼=-equivalent evaluations
Equivalent Classes (regions): finite, stable, LF -sensitive
R(A): Region automaton of A

States: ⟨l, r(A)⟩ s.t. r(A) regions of A
=⇒ Finite state automaton!

Reachability problem ⟨A,LF ⟩ =⇒ Reachability problem ⟨R(A),LF ⟩
=⇒ Reachability in timed automata reduced to that in finite automata!

48 / 107

Region automaton

Equivalent states = identical location + ∼=-equivalent evaluations
Equivalent Classes (regions): finite, stable, LF -sensitive
R(A): Region automaton of A

States: ⟨l, r(A)⟩ s.t. r(A) regions of A
=⇒ Finite state automaton!

Reachability problem ⟨A,LF ⟩ =⇒ Reachability problem ⟨R(A),LF ⟩
=⇒ Reachability in timed automata reduced to that in finite automata!

48 / 107

Example: Region graph of a simple timed automata

May be further reduced (e.g., collapsing B, C, D into one state)

49 / 107

Example: Region graph of a simple timed automata

May be further reduced (e.g., collapsing B, C, D into one state)

49 / 107

Complexity of Reasoning with Timed Automata

Reachability in Timed Automata

Decidable!
Linear with number of locations
Exponential in the number of clocks
Grows with the values of Cx

Overall, PSPACE-Complete

Language-containment with Timed Automata

Undecidable!

50 / 107

Complexity of Reasoning with Timed Automata

Reachability in Timed Automata

Decidable!
Linear with number of locations
Exponential in the number of clocks
Grows with the values of Cx

Overall, PSPACE-Complete

Language-containment with Timed Automata

Undecidable!

50 / 107

Outline

1 Motivations
2 Timed systems: Modeling and Semantics

Timed automata
Semantics
Combination

3 Symbolic Reachability for Timed Systems
Making the state space finite
Region automata
Zone automata

4 Hybrid Systems: Modeling and Semantics
Hybrid automata

5 Symbolic Reachability for Hybrid Systems
Multi-Rate and Rectangular Hybrid Automata
Linear Hybrid Automata

6 Exercises

51 / 107

Zone Automata

Collapse regions by convex unions of clock regions
Clock Zone φ: set/conjunction of clock constraints in the form (xi ▷◁ c), (xi − xj ▷◁ c),
▷◁ ∈ {>,<,=,≥,≤}, c ∈ Z
φ is a convex set in the k-dimensional euclidean space

possibly unbounded

=⇒ Contains all possible relationship for all clock value in a set
Symbolic state: ⟨l , φ⟩

l: location
φ: clock zone

x

y

52 / 107

Zone Automata

Collapse regions by convex unions of clock regions
Clock Zone φ: set/conjunction of clock constraints in the form (xi ▷◁ c), (xi − xj ▷◁ c),
▷◁ ∈ {>,<,=,≥,≤}, c ∈ Z
φ is a convex set in the k-dimensional euclidean space

possibly unbounded

=⇒ Contains all possible relationship for all clock value in a set
Symbolic state: ⟨l , φ⟩

l: location
φ: clock zone

x

y

52 / 107

Zone Automata

Collapse regions by convex unions of clock regions
Clock Zone φ: set/conjunction of clock constraints in the form (xi ▷◁ c), (xi − xj ▷◁ c),
▷◁ ∈ {>,<,=,≥,≤}, c ∈ Z
φ is a convex set in the k-dimensional euclidean space

possibly unbounded

=⇒ Contains all possible relationship for all clock value in a set
Symbolic state: ⟨l , φ⟩

l: location
φ: clock zone

x

y

52 / 107

Zone Automata

Collapse regions by convex unions of clock regions
Clock Zone φ: set/conjunction of clock constraints in the form (xi ▷◁ c), (xi − xj ▷◁ c),
▷◁ ∈ {>,<,=,≥,≤}, c ∈ Z
φ is a convex set in the k-dimensional euclidean space

possibly unbounded

=⇒ Contains all possible relationship for all clock value in a set
Symbolic state: ⟨l , φ⟩

l: location
φ: clock zone

x

y

52 / 107

Zone Automata

Collapse regions by convex unions of clock regions
Clock Zone φ: set/conjunction of clock constraints in the form (xi ▷◁ c), (xi − xj ▷◁ c),
▷◁ ∈ {>,<,=,≥,≤}, c ∈ Z
φ is a convex set in the k-dimensional euclidean space

possibly unbounded

=⇒ Contains all possible relationship for all clock value in a set
Symbolic state: ⟨l , φ⟩

l: location
φ: clock zone

x

y

52 / 107

Zone Automata

Definition: Zone Automaton

Given a Timed Automaton A def
= ⟨L,L0,Σ,X ,Φ(X),E⟩,

the Zone Automaton Z(A) is a transition system ⟨Q,Q0,Σ,→⟩ s.t.
Q: set of all symbolic states of A (a symbolic state is ⟨l, φ⟩)
Q0 def

= {⟨l, [X := 0]⟩ | l ∈ L0}
Σ: set of labels/events in A
→: set of “wait&switch” symbolic transitions, in the form: ⟨l, φ⟩ a−→ ⟨l ′, succ(φ, e)⟩
succ(φ, e): successor of φ after (waiting and) executing the switch e def

= ⟨l, a, ψ, λ, l ′⟩

succ(⟨l , φ⟩,e) def
= ⟨l ′, succ(φ,e)⟩

53 / 107

Zone Automata

Definition: Zone Automaton

Given a Timed Automaton A def
= ⟨L,L0,Σ,X ,Φ(X),E⟩,

the Zone Automaton Z(A) is a transition system ⟨Q,Q0,Σ,→⟩ s.t.
Q: set of all symbolic states of A (a symbolic state is ⟨l, φ⟩)
Q0 def

= {⟨l, [X := 0]⟩ | l ∈ L0}
Σ: set of labels/events in A
→: set of “wait&switch” symbolic transitions, in the form: ⟨l, φ⟩ a−→ ⟨l ′, succ(φ, e)⟩
succ(φ, e): successor of φ after (waiting and) executing the switch e def

= ⟨l, a, ψ, λ, l ′⟩

succ(⟨l , φ⟩,e) def
= ⟨l ′, succ(φ,e)⟩

53 / 107

Zone Automata

Definition: Zone Automaton

Given a Timed Automaton A def
= ⟨L,L0,Σ,X ,Φ(X),E⟩,

the Zone Automaton Z(A) is a transition system ⟨Q,Q0,Σ,→⟩ s.t.
Q: set of all symbolic states of A (a symbolic state is ⟨l, φ⟩)
Q0 def

= {⟨l, [X := 0]⟩ | l ∈ L0}
Σ: set of labels/events in A
→: set of “wait&switch” symbolic transitions, in the form: ⟨l, φ⟩ a−→ ⟨l ′, succ(φ, e)⟩
succ(φ, e): successor of φ after (waiting and) executing the switch e def

= ⟨l, a, ψ, λ, l ′⟩

succ(⟨l , φ⟩,e) def
= ⟨l ′, succ(φ,e)⟩

53 / 107

Zone Automata

Definition: Zone Automaton

Given a Timed Automaton A def
= ⟨L,L0,Σ,X ,Φ(X),E⟩,

the Zone Automaton Z(A) is a transition system ⟨Q,Q0,Σ,→⟩ s.t.
Q: set of all symbolic states of A (a symbolic state is ⟨l, φ⟩)
Q0 def

= {⟨l, [X := 0]⟩ | l ∈ L0}
Σ: set of labels/events in A
→: set of “wait&switch” symbolic transitions, in the form: ⟨l, φ⟩ a−→ ⟨l ′, succ(φ, e)⟩
succ(φ, e): successor of φ after (waiting and) executing the switch e def

= ⟨l, a, ψ, λ, l ′⟩

succ(⟨l , φ⟩,e) def
= ⟨l ′, succ(φ,e)⟩

53 / 107

Zone Automata

Definition: Zone Automaton

Given a Timed Automaton A def
= ⟨L,L0,Σ,X ,Φ(X),E⟩,

the Zone Automaton Z(A) is a transition system ⟨Q,Q0,Σ,→⟩ s.t.
Q: set of all symbolic states of A (a symbolic state is ⟨l, φ⟩)
Q0 def

= {⟨l, [X := 0]⟩ | l ∈ L0}
Σ: set of labels/events in A
→: set of “wait&switch” symbolic transitions, in the form: ⟨l, φ⟩ a−→ ⟨l ′, succ(φ, e)⟩
succ(φ, e): successor of φ after (waiting and) executing the switch e def

= ⟨l, a, ψ, λ, l ′⟩

succ(⟨l , φ⟩,e) def
= ⟨l ′, succ(φ,e)⟩

53 / 107

Zone Automata

Definition: Zone Automaton

Given a Timed Automaton A def
= ⟨L,L0,Σ,X ,Φ(X),E⟩,

the Zone Automaton Z(A) is a transition system ⟨Q,Q0,Σ,→⟩ s.t.
Q: set of all symbolic states of A (a symbolic state is ⟨l, φ⟩)
Q0 def

= {⟨l, [X := 0]⟩ | l ∈ L0}
Σ: set of labels/events in A
→: set of “wait&switch” symbolic transitions, in the form: ⟨l, φ⟩ a−→ ⟨l ′, succ(φ, e)⟩
succ(φ, e): successor of φ after (waiting and) executing the switch e def

= ⟨l, a, ψ, λ, l ′⟩

succ(⟨l , φ⟩,e) def
= ⟨l ′, succ(φ,e)⟩

53 / 107

Zone Automata: Symbolic Transitions

Definition: succ(φ,e)

Let e def
= ⟨l ,a, ψ, λ, l ′⟩, and ϕ, ϕ′ the invariants in l , l ′

Then
succ(φ,e) def

= (((φ ∧ ϕ)⇑ ∧ϕ) ∧ ψ)[λ := 0]

∧: standard conjunction/intersection
⇑: projection to infinity: ψ⇑ def

= {ν + δ | ν ∈ ψ, δ ∈ [0,+∞)}
[λ := 0]: reset projection: ψ[λ := 0] def

= {ν[λ := 0] | ν ∈ ψ}
note: φ is considered “immediately before entering l”

54 / 107

Zone Automata: Symbolic Transitions (cont.)

Initial zone: values before entering the location

Intersection with invariant ϕ: values allowed to enter the location

Projection to infinity: values allowed to enter the location, after
waiting unbounded time

Intersection with invariant ϕ: values allowed to enter the location,
after waiting a legal amount of time

Intersection with guard ψ: values allowed to enter the location,
after waiting a legal amount of time, from which the switch can be
shot

Reset projection λ: values ..., after reset

=⇒ Final!

succ(φ,e) def

= (((φ ∧ ϕ)⇑ ∧ϕ) ∧ ψ)[λ := 0]
55 / 107

Zone Automata: Symbolic Transitions (cont.)

Initial zone: values before entering the location

Intersection with invariant ϕ: values allowed to enter the location

Projection to infinity: values allowed to enter the location, after
waiting unbounded time

Intersection with invariant ϕ: values allowed to enter the location,
after waiting a legal amount of time

Intersection with guard ψ: values allowed to enter the location,
after waiting a legal amount of time, from which the switch can be
shot

Reset projection λ: values ..., after reset

=⇒ Final!

ϕ

succ(φ,e) def

= (((φ ∧ ϕ)⇑ ∧ϕ) ∧ ψ)[λ := 0]
55 / 107

Zone Automata: Symbolic Transitions (cont.)

Initial zone: values before entering the location

Intersection with invariant ϕ: values allowed to enter the location

Projection to infinity: values allowed to enter the location, after
waiting unbounded time

Intersection with invariant ϕ: values allowed to enter the location,
after waiting a legal amount of time

Intersection with guard ψ: values allowed to enter the location,
after waiting a legal amount of time, from which the switch can be
shot

Reset projection λ: values ..., after reset

=⇒ Final!

φ
ϕ

succ(φ,e) def

= (((φ ∧ ϕ)⇑ ∧ϕ) ∧ ψ)[λ := 0]
55 / 107

Zone Automata: Symbolic Transitions (cont.)

Initial zone: values before entering the location

Intersection with invariant ϕ: values allowed to enter the location

Projection to infinity: values allowed to enter the location, after
waiting unbounded time

Intersection with invariant ϕ: values allowed to enter the location,
after waiting a legal amount of time

Intersection with guard ψ: values allowed to enter the location,
after waiting a legal amount of time, from which the switch can be
shot

Reset projection λ: values ..., after reset

=⇒ Final!

succ(φ,e) def

= (((φ ∧ ϕ)⇑ ∧ϕ) ∧ ψ)[λ := 0]
55 / 107

Zone Automata: Symbolic Transitions (cont.)

Initial zone: values before entering the location

Intersection with invariant ϕ: values allowed to enter the location

Projection to infinity: values allowed to enter the location, after
waiting unbounded time

Intersection with invariant ϕ: values allowed to enter the location,
after waiting a legal amount of time

Intersection with guard ψ: values allowed to enter the location,
after waiting a legal amount of time, from which the switch can be
shot

Reset projection λ: values ..., after reset

=⇒ Final!

succ(φ,e) def

= (((φ ∧ ϕ)⇑ ∧ϕ) ∧ ψ)[λ := 0]
55 / 107

Zone Automata: Symbolic Transitions (cont.)

Initial zone: values before entering the location

Intersection with invariant ϕ: values allowed to enter the location

Projection to infinity: values allowed to enter the location, after
waiting unbounded time

Intersection with invariant ϕ: values allowed to enter the location,
after waiting a legal amount of time

Intersection with guard ψ: values allowed to enter the location,
after waiting a legal amount of time, from which the switch can be
shot

Reset projection λ: values ..., after reset

=⇒ Final!

φ

succ(φ,e) def

= (((φ ∧ ϕ)⇑ ∧ϕ) ∧ ψ)[λ := 0]
55 / 107

Zone Automata: Symbolic Transitions (cont.)

Initial zone: values before entering the location

Intersection with invariant ϕ: values allowed to enter the location

Projection to infinity: values allowed to enter the location, after
waiting unbounded time

Intersection with invariant ϕ: values allowed to enter the location,
after waiting a legal amount of time

Intersection with guard ψ: values allowed to enter the location,
after waiting a legal amount of time, from which the switch can be
shot

Reset projection λ: values ..., after reset

=⇒ Final!

succ(φ,e) def

= (((φ ∧ ϕ)⇑ ∧ϕ) ∧ ψ)[λ := 0]
55 / 107

Zone Automata: Symbolic Transitions (cont.)

Initial zone: values before entering the location

Intersection with invariant ϕ: values allowed to enter the location

Projection to infinity: values allowed to enter the location, after
waiting unbounded time

Intersection with invariant ϕ: values allowed to enter the location,
after waiting a legal amount of time

Intersection with guard ψ: values allowed to enter the location,
after waiting a legal amount of time, from which the switch can be
shot

Reset projection λ: values ..., after reset

=⇒ Final!

ψ

succ(φ,e) def

= (((φ ∧ ϕ)⇑ ∧ϕ) ∧ ψ)[λ := 0]
55 / 107

Zone Automata: Symbolic Transitions (cont.)

Initial zone: values before entering the location

Intersection with invariant ϕ: values allowed to enter the location

Projection to infinity: values allowed to enter the location, after
waiting unbounded time

Intersection with invariant ϕ: values allowed to enter the location,
after waiting a legal amount of time

Intersection with guard ψ: values allowed to enter the location,
after waiting a legal amount of time, from which the switch can be
shot

Reset projection λ: values ..., after reset

=⇒ Final!

succ(φ,e) def

= (((φ ∧ ϕ)⇑ ∧ϕ) ∧ ψ)[λ := 0]
55 / 107

Zone Automata: Symbolic Transitions (cont.)

Initial zone: values before entering the location

Intersection with invariant ϕ: values allowed to enter the location

Projection to infinity: values allowed to enter the location, after
waiting unbounded time

Intersection with invariant ϕ: values allowed to enter the location,
after waiting a legal amount of time

Intersection with guard ψ: values allowed to enter the location,
after waiting a legal amount of time, from which the switch can be
shot

Reset projection λ: values ..., after reset

=⇒ Final!

succ(φ,e) def

= (((φ ∧ ϕ)⇑ ∧ϕ) ∧ ψ)[λ := 0]
55 / 107

Zone Automata: Symbolic Transitions (cont.)

Initial zone: values before entering the location

Intersection with invariant ϕ: values allowed to enter the location

Projection to infinity: values allowed to enter the location, after
waiting unbounded time

Intersection with invariant ϕ: values allowed to enter the location,
after waiting a legal amount of time

Intersection with guard ψ: values allowed to enter the location,
after waiting a legal amount of time, from which the switch can be
shot

Reset projection λ: values ..., after reset

=⇒ Final!

succ(φ,e) def

= (((φ ∧ ϕ)⇑ ∧ϕ) ∧ ψ)[λ := 0]
55 / 107

Zone Automata: Symbolic Transitions (cont.)

Initial zone: values before entering the location

Intersection with invariant ϕ: values allowed to enter the location

Projection to infinity: values allowed to enter the location, after
waiting unbounded time

Intersection with invariant ϕ: values allowed to enter the location,
after waiting a legal amount of time

Intersection with guard ψ: values allowed to enter the location,
after waiting a legal amount of time, from which the switch can be
shot

Reset projection λ: values ..., after reset

=⇒ Final!

succ(φ,e) def

= (((φ ∧ ϕ)⇑ ∧ϕ) ∧ ψ)[λ := 0]
55 / 107

Example: Zone Automata, Symbolic Transitions

Initial zone: (x ≥ 0) ∧ (x ≤ 2) ∧
(y ≥ 0) ∧ (y ≤ 3) ∧ (y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ : (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (x ≤ 2) ∧ (y ≥ 1) ∧
(y ≤ 3) ∧ (y − x ≤ 2)

Projection to infinity:
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ: (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with guard ψ : (y ≥ 4)
=⇒ (y ≥ 4) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Reset projection λ def
= {y := 0}

=⇒ (x ≥ 2) ∧ (x ≤ 6) ∧ (y ≥ 0) ∧ (y ≤ 0)

=⇒ Final!

56 / 107

Example: Zone Automata, Symbolic Transitions

Initial zone: (x ≥ 0) ∧ (x ≤ 2) ∧
(y ≥ 0) ∧ (y ≤ 3) ∧ (y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ : (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (x ≤ 2) ∧ (y ≥ 1) ∧
(y ≤ 3) ∧ (y − x ≤ 2)

Projection to infinity:
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ: (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with guard ψ : (y ≥ 4)
=⇒ (y ≥ 4) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Reset projection λ def
= {y := 0}

=⇒ (x ≥ 2) ∧ (x ≤ 6) ∧ (y ≥ 0) ∧ (y ≤ 0)

=⇒ Final!

ϕ

56 / 107

Example: Zone Automata, Symbolic Transitions

Initial zone: (x ≥ 0) ∧ (x ≤ 2) ∧
(y ≥ 0) ∧ (y ≤ 3) ∧ (y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ : (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (x ≤ 2) ∧ (y ≥ 1) ∧
(y ≤ 3) ∧ (y − x ≤ 2)

Projection to infinity:
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ: (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with guard ψ : (y ≥ 4)
=⇒ (y ≥ 4) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Reset projection λ def
= {y := 0}

=⇒ (x ≥ 2) ∧ (x ≤ 6) ∧ (y ≥ 0) ∧ (y ≤ 0)

=⇒ Final!

φ
ϕ

56 / 107

Example: Zone Automata, Symbolic Transitions

Initial zone: (x ≥ 0) ∧ (x ≤ 2) ∧
(y ≥ 0) ∧ (y ≤ 3) ∧ (y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ : (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (x ≤ 2) ∧ (y ≥ 1) ∧
(y ≤ 3) ∧ (y − x ≤ 2)

Projection to infinity:
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ: (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with guard ψ : (y ≥ 4)
=⇒ (y ≥ 4) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Reset projection λ def
= {y := 0}

=⇒ (x ≥ 2) ∧ (x ≤ 6) ∧ (y ≥ 0) ∧ (y ≤ 0)

=⇒ Final!

56 / 107

Example: Zone Automata, Symbolic Transitions

Initial zone: (x ≥ 0) ∧ (x ≤ 2) ∧
(y ≥ 0) ∧ (y ≤ 3) ∧ (y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ : (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (x ≤ 2) ∧ (y ≥ 1) ∧
(y ≤ 3) ∧ (y − x ≤ 2)

Projection to infinity:
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ: (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with guard ψ : (y ≥ 4)
=⇒ (y ≥ 4) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Reset projection λ def
= {y := 0}

=⇒ (x ≥ 2) ∧ (x ≤ 6) ∧ (y ≥ 0) ∧ (y ≤ 0)

=⇒ Final!

56 / 107

Example: Zone Automata, Symbolic Transitions

Initial zone: (x ≥ 0) ∧ (x ≤ 2) ∧
(y ≥ 0) ∧ (y ≤ 3) ∧ (y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ : (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (x ≤ 2) ∧ (y ≥ 1) ∧
(y ≤ 3) ∧ (y − x ≤ 2)

Projection to infinity:
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ: (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with guard ψ : (y ≥ 4)
=⇒ (y ≥ 4) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Reset projection λ def
= {y := 0}

=⇒ (x ≥ 2) ∧ (x ≤ 6) ∧ (y ≥ 0) ∧ (y ≤ 0)

=⇒ Final!

φ

56 / 107

Example: Zone Automata, Symbolic Transitions

Initial zone: (x ≥ 0) ∧ (x ≤ 2) ∧
(y ≥ 0) ∧ (y ≤ 3) ∧ (y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ : (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (x ≤ 2) ∧ (y ≥ 1) ∧
(y ≤ 3) ∧ (y − x ≤ 2)

Projection to infinity:
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ: (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with guard ψ : (y ≥ 4)
=⇒ (y ≥ 4) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Reset projection λ def
= {y := 0}

=⇒ (x ≥ 2) ∧ (x ≤ 6) ∧ (y ≥ 0) ∧ (y ≤ 0)

=⇒ Final!

56 / 107

Example: Zone Automata, Symbolic Transitions

Initial zone: (x ≥ 0) ∧ (x ≤ 2) ∧
(y ≥ 0) ∧ (y ≤ 3) ∧ (y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ : (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (x ≤ 2) ∧ (y ≥ 1) ∧
(y ≤ 3) ∧ (y − x ≤ 2)

Projection to infinity:
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ: (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with guard ψ : (y ≥ 4)
=⇒ (y ≥ 4) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Reset projection λ def
= {y := 0}

=⇒ (x ≥ 2) ∧ (x ≤ 6) ∧ (y ≥ 0) ∧ (y ≤ 0)

=⇒ Final!

ψ

56 / 107

Example: Zone Automata, Symbolic Transitions

Initial zone: (x ≥ 0) ∧ (x ≤ 2) ∧
(y ≥ 0) ∧ (y ≤ 3) ∧ (y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ : (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (x ≤ 2) ∧ (y ≥ 1) ∧
(y ≤ 3) ∧ (y − x ≤ 2)

Projection to infinity:
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ: (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with guard ψ : (y ≥ 4)
=⇒ (y ≥ 4) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Reset projection λ def
= {y := 0}

=⇒ (x ≥ 2) ∧ (x ≤ 6) ∧ (y ≥ 0) ∧ (y ≤ 0)

=⇒ Final!

56 / 107

Example: Zone Automata, Symbolic Transitions

Initial zone: (x ≥ 0) ∧ (x ≤ 2) ∧
(y ≥ 0) ∧ (y ≤ 3) ∧ (y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ : (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (x ≤ 2) ∧ (y ≥ 1) ∧
(y ≤ 3) ∧ (y − x ≤ 2)

Projection to infinity:
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ: (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with guard ψ : (y ≥ 4)
=⇒ (y ≥ 4) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Reset projection λ def
= {y := 0}

=⇒ (x ≥ 2) ∧ (x ≤ 6) ∧ (y ≥ 0) ∧ (y ≤ 0)

=⇒ Final!

56 / 107

Example: Zone Automata, Symbolic Transitions

Initial zone: (x ≥ 0) ∧ (x ≤ 2) ∧
(y ≥ 0) ∧ (y ≤ 3) ∧ (y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ : (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (x ≤ 2) ∧ (y ≥ 1) ∧
(y ≤ 3) ∧ (y − x ≤ 2)

Projection to infinity:
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ: (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with guard ψ : (y ≥ 4)
=⇒ (y ≥ 4) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Reset projection λ def
= {y := 0}

=⇒ (x ≥ 2) ∧ (x ≤ 6) ∧ (y ≥ 0) ∧ (y ≤ 0)

=⇒ Final!

56 / 107

Example: Zone Automata, Symbolic Transitions

Initial zone: (x ≥ 0) ∧ (x ≤ 2) ∧
(y ≥ 0) ∧ (y ≤ 3) ∧ (y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ : (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (x ≤ 2) ∧ (y ≥ 1) ∧
(y ≤ 3) ∧ (y − x ≤ 2)

Projection to infinity:
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with invariant ϕ: (y ≥ 1) ∧ (y ≤ 5)
=⇒ (x ≥ 0) ∧ (y ≥ 1) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Intersection with guard ψ : (y ≥ 4)
=⇒ (y ≥ 4) ∧ (y ≤ 5) ∧
(y − x ≥ −1) ∧ (y − x ≤ 2)

Reset projection λ def
= {y := 0}

=⇒ (x ≥ 2) ∧ (x ≤ 6) ∧ (y ≥ 0) ∧ (y ≤ 0)

=⇒ Final!

56 / 107

Remark on succ(φ,e)

In the above definition of succ(φ,e), φ is considered “immediately before entering l”:

succ(φ,e) def
= (((φ ∧ ϕ)⇑ ∧ϕ) ∧ ψ)[λ := 0]

Alternative definition of succ(φ,e), φ is considered “immediately after entering l”:

succ(φ,e) def
= (((φ⇑ ∧ϕ) ∧ ψ)[λ := 0] ∧ ϕ′)

no initial intersection with the invariant ϕ of source location l
(here φ is assumed to be already the result of such intersection)
final intersection with the invariant ϕ′ of target location l ′

57 / 107

Remark on succ(φ,e)

In the above definition of succ(φ,e), φ is considered “immediately before entering l”:

succ(φ,e) def
= (((φ ∧ ϕ)⇑ ∧ϕ) ∧ ψ)[λ := 0]

Alternative definition of succ(φ,e), φ is considered “immediately after entering l”:

succ(φ,e) def
= (((φ⇑ ∧ϕ) ∧ ψ)[λ := 0] ∧ ϕ′)

no initial intersection with the invariant ϕ of source location l
(here φ is assumed to be already the result of such intersection)
final intersection with the invariant ϕ′ of target location l ′

57 / 107

Symbolic Reachability Analysis

1: function Reachable (A, LF) // A def
= ⟨L,L0,Σ,X ,Φ(X),E⟩

2: Reachable = ∅
3: Frontier = {⟨li , {X = 0}⟩ | li ∈ L0}
4: while (Frontier ̸= ∅) do
5: extract ⟨l , φ⟩ from Frontier
6: if (l ∈ LF and φ ̸= ⊥) then
7: return True
8: end if
9: if (̸ ∃ ⟨l , φ′⟩ ∈ Reachable s.t . φ ⊆ φ′) then

10: add ⟨l , φ⟩ to Reachable
11: for e ∈ outcoming(l) do
12: add succ(φ,e) to Frontier
13: end for
14: end if
15: end while
16: return False

58 / 107

Canonical Data-structures for Zones: DBMs

Difference-bound Matrices (DBMs)

Matrix representation of constraints
bounds on a single clock
differences between 2 clocks

Reduced form computed by all-pairs shortest path algorithm
(e.g. Floyd-Warshall)
Reduced DBM is canonical:
equivalent sets of constraints produce the same reduced DBM
Operations s.a reset, time-successor, inclusion, intersection are efficient

=⇒ Popular choice in timed-automata-based tools

59 / 107

Difference-bound matrices, DBMs

DBM: matrix (k + 1)× (k + 1), k being the number of clocks
added an implicit fake variable x0

def
= 0 s.t. xi ▷◁ c =⇒ xi − x0 ▷◁ c

each element is a pair (value,{0, 1}), s.t “{0, 1}” means “{<,≤}”

Example:
(0 ≤ x1) ∧(0 < x2) ∧(x1 < 2) ∧(x2 < 1) ∧(x1 − x2 ≥ 0)
(x0 − x1 ≤ 0) ∧(x0 − x2 < 0) ∧(x1 − x0 < 2) ∧(x2 − x0 < 1) ∧(x2 − x1 ≤ 0)

60 / 107

Difference-bound matrices, DBMs

DBM: matrix (k + 1)× (k + 1), k being the number of clocks
added an implicit fake variable x0

def
= 0 s.t. xi ▷◁ c =⇒ xi − x0 ▷◁ c

each element is a pair (value,{0, 1}), s.t “{0, 1}” means “{<,≤}”

Example:
(0 ≤ x1) ∧(0 < x2) ∧(x1 < 2) ∧(x2 < 1) ∧(x1 − x2 ≥ 0)
(x0 − x1 ≤ 0) ∧(x0 − x2 < 0) ∧(x1 − x0 < 2) ∧(x2 − x0 < 1) ∧(x2 − x1 ≤ 0)

60 / 107

Difference-bound matrices, DBMs

DBM: matrix (k + 1)× (k + 1), k being the number of clocks
added an implicit fake variable x0

def
= 0 s.t. xi ▷◁ c =⇒ xi − x0 ▷◁ c

each element is a pair (value,{0, 1}), s.t “{0, 1}” means “{<,≤}”

Example:
(0 ≤ x1) ∧(0 < x2) ∧(x1 < 2) ∧(x2 < 1) ∧(x1 − x2 ≥ 0)
(x0 − x1 ≤ 0) ∧(x0 − x2 < 0) ∧(x1 − x0 < 2) ∧(x2 − x0 < 1) ∧(x2 − x1 ≤ 0)

60 / 107

Difference-bound matrices, DBMs

DBM: matrix (k + 1)× (k + 1), k being the number of clocks
added an implicit fake variable x0

def
= 0 s.t. xi ▷◁ c =⇒ xi − x0 ▷◁ c

each element is a pair (value,{0, 1}), s.t “{0, 1}” means “{<,≤}”

Example:
(0 ≤ x1) ∧(0 < x2) ∧(x1 < 2) ∧(x2 < 1) ∧(x1 − x2 ≥ 0)
(x0 − x1 ≤ 0) ∧(x0 − x2 < 0) ∧(x1 − x0 < 2) ∧(x2 − x0 < 1) ∧(x2 − x1 ≤ 0)

60 / 107

Difference-bound matrices, DBMs (cont.)

Use all-pairs shortest paths, check DBM
Add xi − xi ≤ 0 for each i
Idea: given xi − xj ▷◁ c, xi − xk ▷◁ c1 and xk − xj ▷◁ c2 s.t. ▷◁∈ {≤, <},
then c is updated with c1 + c2 if c1 + c2 < c
Satisfiable (no negative loops) =⇒ a non-empty clock zone
Canonical: matrices with tightest possible constraints

Canonical DBMs represent clock zones:
equivalent sets of constraints ⇐⇒ same reduced DBM

61 / 107

Canonical Data-structures for Zones: DBMs

=⇒ they have the same reduced DBM
62 / 107

Complexity Issues

In theory:
Zone automaton might be exponentially bigger than the region automaton

In practice:
Fewer reachable vertices =⇒ performances much improved

63 / 107

Timed Automata: summary

Only continuous variables are timers
Invariants and Guards: x ▷◁ const , ▷◁∈ {<,>,≤,≥}
Actions: x:=0
Reachability is decidable
Clustering of regions into zones desirable in practice
Tools: Uppaal, Kronos, RED ...
Symbolic representation: matrices

64 / 107

Decidable Problems with Timed Automata

Model checking branching-time properties of timed automata
Reachability in rectangular automata
Timed bisimilarity: are two given timed automata bisimilar?
Optimization: Compute shortest paths (e.g. minimum time reachability) in timed automata
with costs on locations and edges
Controller synthesis: Computing winning strategies in timed automata with controllable and
uncontrollable transitions

65 / 107

Outline

1 Motivations
2 Timed systems: Modeling and Semantics

Timed automata
Semantics
Combination

3 Symbolic Reachability for Timed Systems
Making the state space finite
Region automata
Zone automata

4 Hybrid Systems: Modeling and Semantics
Hybrid automata

5 Symbolic Reachability for Hybrid Systems
Multi-Rate and Rectangular Hybrid Automata
Linear Hybrid Automata

6 Exercises

66 / 107

Hybrid Systems

Hybrid (Dynamical) System

A dynamical system that exhibits both continuous and discrete dynamic behavior
=⇒ Can both:

flow (described by differential equations) and
jump (described by a state machine or automaton).

Mostly used to model Cyber-Physical Systems (CPSs)
a physical (chemical, biological...) mechanism is controlled by computer-based algorithms
physical and software components are deeply intertwined

Most popular formalism: Hybrid Automata and variants

67 / 107

Hybrid Systems

Hybrid (Dynamical) System

A dynamical system that exhibits both continuous and discrete dynamic behavior
=⇒ Can both:

flow (described by differential equations) and
jump (described by a state machine or automaton).

Mostly used to model Cyber-Physical Systems (CPSs)
a physical (chemical, biological...) mechanism is controlled by computer-based algorithms
physical and software components are deeply intertwined

Most popular formalism: Hybrid Automata and variants

67 / 107

Hybrid Systems

Hybrid (Dynamical) System

A dynamical system that exhibits both continuous and discrete dynamic behavior
=⇒ Can both:

flow (described by differential equations) and
jump (described by a state machine or automaton).

Mostly used to model Cyber-Physical Systems (CPSs)
a physical (chemical, biological...) mechanism is controlled by computer-based algorithms
physical and software components are deeply intertwined

Most popular formalism: Hybrid Automata and variants

67 / 107

Hybrid Sysmem: Example

68 / 107

Outline

1 Motivations
2 Timed systems: Modeling and Semantics

Timed automata
Semantics
Combination

3 Symbolic Reachability for Timed Systems
Making the state space finite
Region automata
Zone automata

4 Hybrid Systems: Modeling and Semantics
Hybrid automata

5 Symbolic Reachability for Hybrid Systems
Multi-Rate and Rectangular Hybrid Automata
Linear Hybrid Automata

6 Exercises

69 / 107

Hybrid Automata

Locations, Switches, Labels (like in standard aut.)
Continuous variables: X def

= {x1, x2, ..., xk} ∈ R
value evolves with time
e.g., distance, speed, pressure, temperature, ...

Guards: g(X) ≥ 0
sets of inequalities (equalities) on functions on X
constrain the execution of the switch

Jump Transformations J(X ,X ′)

discrete transformation on the values of X
Invariants: X ∈ Invl(X)

set of invariant constraints on X
ensure progress

Continuous Flow: dX
dt ∈ flowl(X)

set of degree-1 differential (in)equalities
describe continuous dynamics

Initial: X ∈ Initl(X)

initial conditions (Initl(X) = ⊥ iff l ̸∈ L0)

a

l2

l1

70 / 107

Hybrid Automata

Locations, Switches, Labels (like in standard aut.)
Continuous variables: X def

= {x1, x2, ..., xk} ∈ R
value evolves with time
e.g., distance, speed, pressure, temperature, ...

Guards: g(X) ≥ 0
sets of inequalities (equalities) on functions on X
constrain the execution of the switch

Jump Transformations J(X ,X ′)

discrete transformation on the values of X
Invariants: X ∈ Invl(X)

set of invariant constraints on X
ensure progress

Continuous Flow: dX
dt ∈ flowl(X)

set of degree-1 differential (in)equalities
describe continuous dynamics

Initial: X ∈ Initl(X)

initial conditions (Initl(X) = ⊥ iff l ̸∈ L0)

a

l2

l1

70 / 107

Hybrid Automata

Locations, Switches, Labels (like in standard aut.)
Continuous variables: X def

= {x1, x2, ..., xk} ∈ R
value evolves with time
e.g., distance, speed, pressure, temperature, ...

Guards: g(X) ≥ 0
sets of inequalities (equalities) on functions on X
constrain the execution of the switch

Jump Transformations J(X ,X ′)

discrete transformation on the values of X
Invariants: X ∈ Invl(X)

set of invariant constraints on X
ensure progress

Continuous Flow: dX
dt ∈ flowl(X)

set of degree-1 differential (in)equalities
describe continuous dynamics

Initial: X ∈ Initl(X)

initial conditions (Initl(X) = ⊥ iff l ̸∈ L0)

g(X) ≥ 0

a

l2

l1

70 / 107

Hybrid Automata

Locations, Switches, Labels (like in standard aut.)
Continuous variables: X def

= {x1, x2, ..., xk} ∈ R
value evolves with time
e.g., distance, speed, pressure, temperature, ...

Guards: g(X) ≥ 0
sets of inequalities (equalities) on functions on X
constrain the execution of the switch

Jump Transformations J(X ,X ′)

discrete transformation on the values of X
Invariants: X ∈ Invl(X)

set of invariant constraints on X
ensure progress

Continuous Flow: dX
dt ∈ flowl(X)

set of degree-1 differential (in)equalities
describe continuous dynamics

Initial: X ∈ Initl(X)

initial conditions (Initl(X) = ⊥ iff l ̸∈ L0)

g(X) ≥ 0

a

J(X ,X ′)

l2

l1

70 / 107

Hybrid Automata

Locations, Switches, Labels (like in standard aut.)
Continuous variables: X def

= {x1, x2, ..., xk} ∈ R
value evolves with time
e.g., distance, speed, pressure, temperature, ...

Guards: g(X) ≥ 0
sets of inequalities (equalities) on functions on X
constrain the execution of the switch

Jump Transformations J(X ,X ′)

discrete transformation on the values of X
Invariants: X ∈ Invl(X)

set of invariant constraints on X
ensure progress

Continuous Flow: dX
dt ∈ flowl(X)

set of degree-1 differential (in)equalities
describe continuous dynamics

Initial: X ∈ Initl(X)

initial conditions (Initl(X) = ⊥ iff l ̸∈ L0)

g(X) ≥ 0

a

J(X ,X ′)

l2

X ∈ Invl2(X)

l1

X ∈ Invl1(X)

70 / 107

Hybrid Automata

Locations, Switches, Labels (like in standard aut.)
Continuous variables: X def

= {x1, x2, ..., xk} ∈ R
value evolves with time
e.g., distance, speed, pressure, temperature, ...

Guards: g(X) ≥ 0
sets of inequalities (equalities) on functions on X
constrain the execution of the switch

Jump Transformations J(X ,X ′)

discrete transformation on the values of X
Invariants: X ∈ Invl(X)

set of invariant constraints on X
ensure progress

Continuous Flow: dX
dt ∈ flowl(X)

set of degree-1 differential (in)equalities
describe continuous dynamics

Initial: X ∈ Initl(X)

initial conditions (Initl(X) = ⊥ iff l ̸∈ L0)

g(X) ≥ 0

a

J(X ,X ′)

l2

dX
dt ∈flowl1(X)
X ∈ Invl2(X)

l1

dX
dt ∈flowl1(X)
X ∈ Invl1(X)

70 / 107

Hybrid Automata

Locations, Switches, Labels (like in standard aut.)
Continuous variables: X def

= {x1, x2, ..., xk} ∈ R
value evolves with time
e.g., distance, speed, pressure, temperature, ...

Guards: g(X) ≥ 0
sets of inequalities (equalities) on functions on X
constrain the execution of the switch

Jump Transformations J(X ,X ′)

discrete transformation on the values of X
Invariants: X ∈ Invl(X)

set of invariant constraints on X
ensure progress

Continuous Flow: dX
dt ∈ flowl(X)

set of degree-1 differential (in)equalities
describe continuous dynamics

Initial: X ∈ Initl(X)

initial conditions (Initl(X) = ⊥ iff l ̸∈ L0)

g(X) ≥ 0

a

J(X ,X ′)

l2
X ∈ Initl2(X)
dX
dt ∈flowl1(X)
X ∈ Invl2(X)

l1
X ∈ Initl1(X)
dX
dt ∈flowl1(X)
X ∈ Invl1(X)

70 / 107

Hybrid Automata A = ⟨L,L0,X ,Σ,Φ(X),E⟩

L: Set of locations,
L0 ∈ L: Set of initial locations (s.t. Initl(X) = ⊥ iff l ̸∈ L0)
X : Set of k continuous variables
Φ(X): Set of Constraints on X
Σ: Set of synchronization labels (alphabet)
E : Set of edges
State space: L × Rk ,

state: ⟨l, ψ⟩ s.t. l ∈ L and ψ ∈ Rk

region ψ: subset of Rk

For each location l :
Initial states: region Initl(X)
Invariant: region Invl(X)
Continuous dynamics: dX

dt ∈ flowl(X)

For each edge e from location l to location l ′

Guard: region g(X) ≥ 0
Update relation “Jump” J(X ,X ′) over Rk × Rk

Synchronization label a ∈ Σ (communication information)
71 / 107

Hybrid Automata A = ⟨L,L0,X ,Σ,Φ(X),E⟩

L: Set of locations,
L0 ∈ L: Set of initial locations (s.t. Initl(X) = ⊥ iff l ̸∈ L0)
X : Set of k continuous variables
Φ(X): Set of Constraints on X
Σ: Set of synchronization labels (alphabet)
E : Set of edges
State space: L × Rk ,

state: ⟨l, ψ⟩ s.t. l ∈ L and ψ ∈ Rk

region ψ: subset of Rk

For each location l :
Initial states: region Initl(X)
Invariant: region Invl(X)
Continuous dynamics: dX

dt ∈ flowl(X)

For each edge e from location l to location l ′

Guard: region g(X) ≥ 0
Update relation “Jump” J(X ,X ′) over Rk × Rk

Synchronization label a ∈ Σ (communication information)
71 / 107

Hybrid Automata A = ⟨L,L0,X ,Σ,Φ(X),E⟩

L: Set of locations,
L0 ∈ L: Set of initial locations (s.t. Initl(X) = ⊥ iff l ̸∈ L0)
X : Set of k continuous variables
Φ(X): Set of Constraints on X
Σ: Set of synchronization labels (alphabet)
E : Set of edges
State space: L × Rk ,

state: ⟨l, ψ⟩ s.t. l ∈ L and ψ ∈ Rk

region ψ: subset of Rk

For each location l :
Initial states: region Initl(X)
Invariant: region Invl(X)
Continuous dynamics: dX

dt ∈ flowl(X)

For each edge e from location l to location l ′

Guard: region g(X) ≥ 0
Update relation “Jump” J(X ,X ′) over Rk × Rk

Synchronization label a ∈ Σ (communication information)
71 / 107

Hybrid Automata A = ⟨L,L0,X ,Σ,Φ(X),E⟩

L: Set of locations,
L0 ∈ L: Set of initial locations (s.t. Initl(X) = ⊥ iff l ̸∈ L0)
X : Set of k continuous variables
Φ(X): Set of Constraints on X
Σ: Set of synchronization labels (alphabet)
E : Set of edges
State space: L × Rk ,

state: ⟨l, ψ⟩ s.t. l ∈ L and ψ ∈ Rk

region ψ: subset of Rk

For each location l :
Initial states: region Initl(X)
Invariant: region Invl(X)
Continuous dynamics: dX

dt ∈ flowl(X)

For each edge e from location l to location l ′

Guard: region g(X) ≥ 0
Update relation “Jump” J(X ,X ′) over Rk × Rk

Synchronization label a ∈ Σ (communication information)
71 / 107

Remark: Degree of flowl(X)

Continuous dynamics described w.l.o.g. with sets of degree-1 differential (in)equalities
flowl(X)

Sets/conjunctions of higher-degree differential (in)equalities can be reduced to degree 1 by
renaming
Ex:

(a1
d2s
dt2 + a2

ds
dt + a3s + a4 ▷◁ 0), ▷◁ ∈ {≤, <,≥, >,=}

⇓
(v = ds

dt) ∧ (a1
dv
dt + a2v + a3s + a4 ▷◁ 0), ▷◁ ∈ {≤, <,≥, >,=}

72 / 107

(Finite) Executions of Hybrid Automata

State: pair ⟨l ,X ⟩ such that X ∈ Invl(X)
Initialization: ⟨l ,X ⟩ such that X ∈ Initl(X)

Two types of state updates (transitions)
Discrete switches: ⟨l,X ⟩ a−→ ⟨l ′,X ′⟩
if there there is an a-labeled edge e from l to l ′ s.t.

X , X ′ satisfy Invl (X) and Invl′ (X) respectively
X satisfies the guard of e (i.e. g(X) ≥ 0) and
⟨X ,X ′⟩ satisfies the jump condition of e (i.e., ⟨X ,X ′⟩ ∈ J(X ,X ′))

Continuous flows: ⟨l,X ⟩ f−→ ⟨l,X ′⟩
f (t) def

= ⟨f1(t), ..., fk (t)⟩ : [0, δ] 7−→ Rk is a continuous function s.t.
f (0) = X
f (δ) = X ′

for every t ∈ [0, δ], f (t) ∈ Invl (X)
for every t ∈ [0, δ], df (t)

dt ∈ flowl (X)

73 / 107

(Finite) Executions of Hybrid Automata

State: pair ⟨l ,X ⟩ such that X ∈ Invl(X)
Initialization: ⟨l ,X ⟩ such that X ∈ Initl(X)

Two types of state updates (transitions)
Discrete switches: ⟨l,X ⟩ a−→ ⟨l ′,X ′⟩
if there there is an a-labeled edge e from l to l ′ s.t.

X , X ′ satisfy Invl (X) and Invl′ (X) respectively
X satisfies the guard of e (i.e. g(X) ≥ 0) and
⟨X ,X ′⟩ satisfies the jump condition of e (i.e., ⟨X ,X ′⟩ ∈ J(X ,X ′))

Continuous flows: ⟨l,X ⟩ f−→ ⟨l,X ′⟩
f (t) def

= ⟨f1(t), ..., fk (t)⟩ : [0, δ] 7−→ Rk is a continuous function s.t.
f (0) = X
f (δ) = X ′

for every t ∈ [0, δ], f (t) ∈ Invl (X)
for every t ∈ [0, δ], df (t)

dt ∈ flowl (X)

73 / 107

(Finite) Executions of Hybrid Automata

State: pair ⟨l ,X ⟩ such that X ∈ Invl(X)
Initialization: ⟨l ,X ⟩ such that X ∈ Initl(X)

Two types of state updates (transitions)
Discrete switches: ⟨l,X ⟩ a−→ ⟨l ′,X ′⟩
if there there is an a-labeled edge e from l to l ′ s.t.

X , X ′ satisfy Invl (X) and Invl′ (X) respectively
X satisfies the guard of e (i.e. g(X) ≥ 0) and
⟨X ,X ′⟩ satisfies the jump condition of e (i.e., ⟨X ,X ′⟩ ∈ J(X ,X ′))

Continuous flows: ⟨l,X ⟩ f−→ ⟨l,X ′⟩
f (t) def

= ⟨f1(t), ..., fk (t)⟩ : [0, δ] 7−→ Rk is a continuous function s.t.
f (0) = X
f (δ) = X ′

for every t ∈ [0, δ], f (t) ∈ Invl (X)
for every t ∈ [0, δ], df (t)

dt ∈ flowl (X)

73 / 107

(Finite) Executions of Hybrid Automata

State: pair ⟨l ,X ⟩ such that X ∈ Invl(X)
Initialization: ⟨l ,X ⟩ such that X ∈ Initl(X)

Two types of state updates (transitions)
Discrete switches: ⟨l,X ⟩ a−→ ⟨l ′,X ′⟩
if there there is an a-labeled edge e from l to l ′ s.t.

X , X ′ satisfy Invl (X) and Invl′ (X) respectively
X satisfies the guard of e (i.e. g(X) ≥ 0) and
⟨X ,X ′⟩ satisfies the jump condition of e (i.e., ⟨X ,X ′⟩ ∈ J(X ,X ′))

Continuous flows: ⟨l,X ⟩ f−→ ⟨l,X ′⟩
f (t) def

= ⟨f1(t), ..., fk (t)⟩ : [0, δ] 7−→ Rk is a continuous function s.t.
f (0) = X
f (δ) = X ′

for every t ∈ [0, δ], f (t) ∈ Invl (X)
for every t ∈ [0, δ], df (t)

dt ∈ flowl (X)

73 / 107

(Finite) Executions of Hybrid Automata

State: pair ⟨l ,X ⟩ such that X ∈ Invl(X)
Initialization: ⟨l ,X ⟩ such that X ∈ Initl(X)

Two types of state updates (transitions)
Discrete switches: ⟨l,X ⟩ a−→ ⟨l ′,X ′⟩
if there there is an a-labeled edge e from l to l ′ s.t.

X , X ′ satisfy Invl (X) and Invl′ (X) respectively
X satisfies the guard of e (i.e. g(X) ≥ 0) and
⟨X ,X ′⟩ satisfies the jump condition of e (i.e., ⟨X ,X ′⟩ ∈ J(X ,X ′))

Continuous flows: ⟨l,X ⟩ f−→ ⟨l,X ′⟩
f (t) def

= ⟨f1(t), ..., fk (t)⟩ : [0, δ] 7−→ Rk is a continuous function s.t.
f (0) = X
f (δ) = X ′

for every t ∈ [0, δ], f (t) ∈ Invl (X)
for every t ∈ [0, δ], df (t)

dt ∈ flowl (X)

73 / 107

(Finite) Executions of Hybrid Automata

State: pair ⟨l ,X ⟩ such that X ∈ Invl(X)
Initialization: ⟨l ,X ⟩ such that X ∈ Initl(X)

Two types of state updates (transitions)
Discrete switches: ⟨l,X ⟩ a−→ ⟨l ′,X ′⟩
if there there is an a-labeled edge e from l to l ′ s.t.

X , X ′ satisfy Invl (X) and Invl′ (X) respectively
X satisfies the guard of e (i.e. g(X) ≥ 0) and
⟨X ,X ′⟩ satisfies the jump condition of e (i.e., ⟨X ,X ′⟩ ∈ J(X ,X ′))

Continuous flows: ⟨l,X ⟩ f−→ ⟨l,X ′⟩
f (t) def

= ⟨f1(t), ..., fk (t)⟩ : [0, δ] 7−→ Rk is a continuous function s.t.
f (0) = X
f (δ) = X ′

for every t ∈ [0, δ], f (t) ∈ Invl (X)
for every t ∈ [0, δ], df (t)

dt ∈ flowl (X)

73 / 107

(Finite) Executions of Hybrid Automata

State: pair ⟨l ,X ⟩ such that X ∈ Invl(X)
Initialization: ⟨l ,X ⟩ such that X ∈ Initl(X)

Two types of state updates (transitions)
Discrete switches: ⟨l,X ⟩ a−→ ⟨l ′,X ′⟩
if there there is an a-labeled edge e from l to l ′ s.t.

X , X ′ satisfy Invl (X) and Invl′ (X) respectively
X satisfies the guard of e (i.e. g(X) ≥ 0) and
⟨X ,X ′⟩ satisfies the jump condition of e (i.e., ⟨X ,X ′⟩ ∈ J(X ,X ′))

Continuous flows: ⟨l,X ⟩ f−→ ⟨l,X ′⟩
f (t) def

= ⟨f1(t), ..., fk (t)⟩ : [0, δ] 7−→ Rk is a continuous function s.t.
f (0) = X
f (δ) = X ′

for every t ∈ [0, δ], f (t) ∈ Invl (X)
for every t ∈ [0, δ], df (t)

dt ∈ flowl (X)

73 / 107

(Finite) Executions of Hybrid Automata

State: pair ⟨l ,X ⟩ such that X ∈ Invl(X)
Initialization: ⟨l ,X ⟩ such that X ∈ Initl(X)

Two types of state updates (transitions)
Discrete switches: ⟨l,X ⟩ a−→ ⟨l ′,X ′⟩
if there there is an a-labeled edge e from l to l ′ s.t.

X , X ′ satisfy Invl (X) and Invl′ (X) respectively
X satisfies the guard of e (i.e. g(X) ≥ 0) and
⟨X ,X ′⟩ satisfies the jump condition of e (i.e., ⟨X ,X ′⟩ ∈ J(X ,X ′))

Continuous flows: ⟨l,X ⟩ f−→ ⟨l,X ′⟩
f (t) def

= ⟨f1(t), ..., fk (t)⟩ : [0, δ] 7−→ Rk is a continuous function s.t.
f (0) = X
f (δ) = X ′

for every t ∈ [0, δ], f (t) ∈ Invl (X)
for every t ∈ [0, δ], df (t)

dt ∈ flowl (X)

73 / 107

(Finite) Executions of Hybrid Automata

State: pair ⟨l ,X ⟩ such that X ∈ Invl(X)
Initialization: ⟨l ,X ⟩ such that X ∈ Initl(X)

Two types of state updates (transitions)
Discrete switches: ⟨l,X ⟩ a−→ ⟨l ′,X ′⟩
if there there is an a-labeled edge e from l to l ′ s.t.

X , X ′ satisfy Invl (X) and Invl′ (X) respectively
X satisfies the guard of e (i.e. g(X) ≥ 0) and
⟨X ,X ′⟩ satisfies the jump condition of e (i.e., ⟨X ,X ′⟩ ∈ J(X ,X ′))

Continuous flows: ⟨l,X ⟩ f−→ ⟨l,X ′⟩
f (t) def

= ⟨f1(t), ..., fk (t)⟩ : [0, δ] 7−→ Rk is a continuous function s.t.
f (0) = X
f (δ) = X ′

for every t ∈ [0, δ], f (t) ∈ Invl (X)
for every t ∈ [0, δ], df (t)

dt ∈ flowl (X)

73 / 107

(Finite) Executions of Hybrid Automata

State: pair ⟨l ,X ⟩ such that X ∈ Invl(X)
Initialization: ⟨l ,X ⟩ such that X ∈ Initl(X)

Two types of state updates (transitions)
Discrete switches: ⟨l,X ⟩ a−→ ⟨l ′,X ′⟩
if there there is an a-labeled edge e from l to l ′ s.t.

X , X ′ satisfy Invl (X) and Invl′ (X) respectively
X satisfies the guard of e (i.e. g(X) ≥ 0) and
⟨X ,X ′⟩ satisfies the jump condition of e (i.e., ⟨X ,X ′⟩ ∈ J(X ,X ′))

Continuous flows: ⟨l,X ⟩ f−→ ⟨l,X ′⟩
f (t) def

= ⟨f1(t), ..., fk (t)⟩ : [0, δ] 7−→ Rk is a continuous function s.t.
f (0) = X
f (δ) = X ′

for every t ∈ [0, δ], f (t) ∈ Invl (X)
for every t ∈ [0, δ], df (t)

dt ∈ flowl (X)

73 / 107

(Finite) Executions of Hybrid Automata

State: pair ⟨l ,X ⟩ such that X ∈ Invl(X)
Initialization: ⟨l ,X ⟩ such that X ∈ Initl(X)

Two types of state updates (transitions)
Discrete switches: ⟨l,X ⟩ a−→ ⟨l ′,X ′⟩
if there there is an a-labeled edge e from l to l ′ s.t.

X , X ′ satisfy Invl (X) and Invl′ (X) respectively
X satisfies the guard of e (i.e. g(X) ≥ 0) and
⟨X ,X ′⟩ satisfies the jump condition of e (i.e., ⟨X ,X ′⟩ ∈ J(X ,X ′))

Continuous flows: ⟨l,X ⟩ f−→ ⟨l,X ′⟩
f (t) def

= ⟨f1(t), ..., fk (t)⟩ : [0, δ] 7−→ Rk is a continuous function s.t.
f (0) = X
f (δ) = X ′

for every t ∈ [0, δ], f (t) ∈ Invl (X)
for every t ∈ [0, δ], df (t)

dt ∈ flowl (X)

73 / 107

(Finite) Executions of Hybrid Automata

State: pair ⟨l ,X ⟩ such that X ∈ Invl(X)
Initialization: ⟨l ,X ⟩ such that X ∈ Initl(X)

Two types of state updates (transitions)
Discrete switches: ⟨l,X ⟩ a−→ ⟨l ′,X ′⟩
if there there is an a-labeled edge e from l to l ′ s.t.

X , X ′ satisfy Invl (X) and Invl′ (X) respectively
X satisfies the guard of e (i.e. g(X) ≥ 0) and
⟨X ,X ′⟩ satisfies the jump condition of e (i.e., ⟨X ,X ′⟩ ∈ J(X ,X ′))

Continuous flows: ⟨l,X ⟩ f−→ ⟨l,X ′⟩
f (t) def

= ⟨f1(t), ..., fk (t)⟩ : [0, δ] 7−→ Rk is a continuous function s.t.
f (0) = X
f (δ) = X ′

for every t ∈ [0, δ], f (t) ∈ Invl (X)
for every t ∈ [0, δ], df (t)

dt ∈ flowl (X)

73 / 107

Example: Gate for a railroad controller

lower

raise

lower
raise

Open
θ = 90
dθ
dt = 0

Raising
θ ≤ 90

dθ
dt ∈ [8, 10]

Closed
θ = 0

dθ
dt = 0

Lowering
θ ≥ 0

dθ
dt ∈ [−10,−9]

(θ = 90)

(θ = 90)

(θ = 0)

74 / 107

Example: Gate for a railroad controller

10 20 30

90

0 t

loweringOpen closed lowering raising Open

?l
o
w

er

?l
o
w

er

?r
ai

se

?r
ai

se
raising Open

θ

75 / 107

Outline

1 Motivations
2 Timed systems: Modeling and Semantics

Timed automata
Semantics
Combination

3 Symbolic Reachability for Timed Systems
Making the state space finite
Region automata
Zone automata

4 Hybrid Systems: Modeling and Semantics
Hybrid automata

5 Symbolic Reachability for Hybrid Systems
Multi-Rate and Rectangular Hybrid Automata
Linear Hybrid Automata

6 Exercises

76 / 107

General Symbolic-Reachability Schema
1: F = R = I(X)
2: while (F ̸= ∅) do
3: if (R intersects F) then
4: return True
5: else
6: if (Image(F) ⊆ R) then
7: return False
8: else
9: Rold = R

10: R = R ∪ Image(F)
11: F = R \ Rold
12: end if
13: end if
14: end while

I: initial; F: Final; R: Reachable; Image(F): successors of F
need a data type to representt state sets (regions)
Termination may or may not be guaranteed

77 / 107

Symbolic Representations

Necessary operations on Regions
Union
Intersection
Negation
Projection
Renaming
Equality/containment test
Emptiness test

Different choices for different classes of problems
BDDs for Boolean variables in hardware verification
DBMs in Timed automata
Polyhedra in Linear Hybrid Automata
...

78 / 107

Symbolic Representations

Necessary operations on Regions
Union
Intersection
Negation
Projection
Renaming
Equality/containment test
Emptiness test

Different choices for different classes of problems
BDDs for Boolean variables in hardware verification
DBMs in Timed automata
Polyhedra in Linear Hybrid Automata
...

78 / 107

Reachability for Hybrid Systems

Same algorithm works in principle
Problem: What is a suitable representation of regions?

Region: subset of Rk

Main problem: handling continuous dynamics

Precise solutions available for restricted continuous dynamics
Timed automata
Multi-rate & Rectangular Hybrid Automata (reduced to Timed aut.)
Linear Hybrid Automata

Even for linear systems, over-approximations of reachable set needed

79 / 107

Reachability for Hybrid Systems

Same algorithm works in principle
Problem: What is a suitable representation of regions?

Region: subset of Rk

Main problem: handling continuous dynamics

Precise solutions available for restricted continuous dynamics
Timed automata
Multi-rate & Rectangular Hybrid Automata (reduced to Timed aut.)
Linear Hybrid Automata

Even for linear systems, over-approximations of reachable set needed

79 / 107

Reachability for Hybrid Systems

Same algorithm works in principle
Problem: What is a suitable representation of regions?

Region: subset of Rk

Main problem: handling continuous dynamics

Precise solutions available for restricted continuous dynamics
Timed automata
Multi-rate & Rectangular Hybrid Automata (reduced to Timed aut.)
Linear Hybrid Automata

Even for linear systems, over-approximations of reachable set needed

79 / 107

Reachability for Hybrid Systems

Same algorithm works in principle
Problem: What is a suitable representation of regions?

Region: subset of Rk

Main problem: handling continuous dynamics

Precise solutions available for restricted continuous dynamics
Timed automata
Multi-rate & Rectangular Hybrid Automata (reduced to Timed aut.)
Linear Hybrid Automata

Even for linear systems, over-approximations of reachable set needed

79 / 107

Reachability Analysis for Dynamical Systems

Goal: Given an initial region, compute whether a bad state can be reached
Key step: compute Reach(X) for a given set X under dX

dt = f (X)

Notation: (hereafter we often use “dX ” or “Ẋ ” as a shortcut of “ dX
dt ”

80 / 107

Outline

1 Motivations
2 Timed systems: Modeling and Semantics

Timed automata
Semantics
Combination

3 Symbolic Reachability for Timed Systems
Making the state space finite
Region automata
Zone automata

4 Hybrid Systems: Modeling and Semantics
Hybrid automata

5 Symbolic Reachability for Hybrid Systems
Multi-Rate and Rectangular Hybrid Automata
Linear Hybrid Automata

6 Exercises

81 / 107

Simple Hybrid Automata: Multi-Rate and Rectangular

Two simple forms of Hybrid Automata

Multi-Rate Automata
Rectangular Automata
Idea: can be reduced to Timed Automata
Typically used as over-approximations of complex hybrid automata

82 / 107

Multi-rate Automata

Modest extension of timed automata
Dynamics of the form dX

dt = const
Guards and invariants: x < const , x > const
Resets: x := const

Simple translation to timed automata by shifting and scaling:
if xi := di then rename it with a fresh var vi s.t. vi + di = xi

if dxi
dt = ci , then rename it with a fresh var ui s.t. ci · ui = xi

shift & rescale constants in constraints accordingly

83 / 107

Multi-rate Automata

Modest extension of timed automata
Dynamics of the form dX

dt = const
Guards and invariants: x < const , x > const
Resets: x := const

Simple translation to timed automata by shifting and scaling:
if xi := di then rename it with a fresh var vi s.t. vi + di = xi

if dxi
dt = ci , then rename it with a fresh var ui s.t. ci · ui = xi

shift & rescale constants in constraints accordingly

83 / 107

Multi-rate Automata

Modest extension of timed automata
Dynamics of the form dX

dt = const
Guards and invariants: x < const , x > const
Resets: x := const

Simple translation to timed automata by shifting and scaling:
if xi := di then rename it with a fresh var vi s.t. vi + di = xi

if dxi
dt = ci , then rename it with a fresh var ui s.t. ci · ui = xi

shift & rescale constants in constraints accordingly

83 / 107

Multi-rate Automata

Modest extension of timed automata
Dynamics of the form dX

dt = const
Guards and invariants: x < const , x > const
Resets: x := const

Simple translation to timed automata by shifting and scaling:
if xi := di then rename it with a fresh var vi s.t. vi + di = xi

if dxi
dt = ci , then rename it with a fresh var ui s.t. ci · ui = xi

shift & rescale constants in constraints accordingly

83 / 107

Multi-rate Automata

Modest extension of timed automata
Dynamics of the form dX

dt = const
Guards and invariants: x < const , x > const
Resets: x := const

Simple translation to timed automata by shifting and scaling:
if xi := di then rename it with a fresh var vi s.t. vi + di = xi

if dxi
dt = ci , then rename it with a fresh var ui s.t. ci · ui = xi

shift & rescale constants in constraints accordingly

83 / 107

Rectangular Automata (simplified)

More interesting extension of timed automata
Dynamics of the form dX

dt ∈ [const1, const2] (ẋ ∈ [const1, const2])
Guards and invariants: x < const , x > const
Jumps: x := const

Translation to multi-rate automata (hints). For each x :
Introduce xM , xm describing the greatest/least possible x values
flow: substitute ẋ < cu with ẋM = cu and ẋ > cl with ẋm = cl

invariants: substitute Invl(x) with Invl(xM), Invl(xm)
guards: substitute x > c with xM > c, add jump xm := c (if none)
guards: substitute x < c with xm < c, add jump xM := c (if none)
jump: if x := c, then both xM := c and xm := c

84 / 107

Rectangular Automata (simplified)

More interesting extension of timed automata
Dynamics of the form dX

dt ∈ [const1, const2] (ẋ ∈ [const1, const2])
Guards and invariants: x < const , x > const
Jumps: x := const

Translation to multi-rate automata (hints). For each x :
Introduce xM , xm describing the greatest/least possible x values
flow: substitute ẋ < cu with ẋM = cu and ẋ > cl with ẋm = cl

invariants: substitute Invl(x) with Invl(xM), Invl(xm)
guards: substitute x > c with xM > c, add jump xm := c (if none)
guards: substitute x < c with xm < c, add jump xM := c (if none)
jump: if x := c, then both xM := c and xm := c

84 / 107

Rectangular Automata (simplified)

More interesting extension of timed automata
Dynamics of the form dX

dt ∈ [const1, const2] (ẋ ∈ [const1, const2])
Guards and invariants: x < const , x > const
Jumps: x := const

Translation to multi-rate automata (hints). For each x :
Introduce xM , xm describing the greatest/least possible x values
flow: substitute ẋ < cu with ẋM = cu and ẋ > cl with ẋm = cl

invariants: substitute Invl(x) with Invl(xM), Invl(xm)
guards: substitute x > c with xM > c, add jump xm := c (if none)
guards: substitute x < c with xm < c, add jump xM := c (if none)
jump: if x := c, then both xM := c and xm := c

84 / 107

Rectangular Automata (simplified)

More interesting extension of timed automata
Dynamics of the form dX

dt ∈ [const1, const2] (ẋ ∈ [const1, const2])
Guards and invariants: x < const , x > const
Jumps: x := const

Translation to multi-rate automata (hints). For each x :
Introduce xM , xm describing the greatest/least possible x values
flow: substitute ẋ < cu with ẋM = cu and ẋ > cl with ẋm = cl

invariants: substitute Invl(x) with Invl(xM), Invl(xm)
guards: substitute x > c with xM > c, add jump xm := c (if none)
guards: substitute x < c with xm < c, add jump xM := c (if none)
jump: if x := c, then both xM := c and xm := c

84 / 107

Rectangular Automata (simplified)

More interesting extension of timed automata
Dynamics of the form dX

dt ∈ [const1, const2] (ẋ ∈ [const1, const2])
Guards and invariants: x < const , x > const
Jumps: x := const

Translation to multi-rate automata (hints). For each x :
Introduce xM , xm describing the greatest/least possible x values
flow: substitute ẋ < cu with ẋM = cu and ẋ > cl with ẋm = cl

invariants: substitute Invl(x) with Invl(xM), Invl(xm)
guards: substitute x > c with xM > c, add jump xm := c (if none)
guards: substitute x < c with xm < c, add jump xM := c (if none)
jump: if x := c, then both xM := c and xm := c

84 / 107

Rectangular Automata (simplified)

More interesting extension of timed automata
Dynamics of the form dX

dt ∈ [const1, const2] (ẋ ∈ [const1, const2])
Guards and invariants: x < const , x > const
Jumps: x := const

Translation to multi-rate automata (hints). For each x :
Introduce xM , xm describing the greatest/least possible x values
flow: substitute ẋ < cu with ẋM = cu and ẋ > cl with ẋm = cl

invariants: substitute Invl(x) with Invl(xM), Invl(xm)
guards: substitute x > c with xM > c, add jump xm := c (if none)
guards: substitute x < c with xm < c, add jump xM := c (if none)
jump: if x := c, then both xM := c and xm := c

84 / 107

Rectangular Automata (simplified)

More interesting extension of timed automata
Dynamics of the form dX

dt ∈ [const1, const2] (ẋ ∈ [const1, const2])
Guards and invariants: x < const , x > const
Jumps: x := const

Translation to multi-rate automata (hints). For each x :
Introduce xM , xm describing the greatest/least possible x values
flow: substitute ẋ < cu with ẋM = cu and ẋ > cl with ẋm = cl

invariants: substitute Invl(x) with Invl(xM), Invl(xm)
guards: substitute x > c with xM > c, add jump xm := c (if none)
guards: substitute x < c with xm < c, add jump xM := c (if none)
jump: if x := c, then both xM := c and xm := c

84 / 107

Example: Gate for a railroad controller

Rectangular Automaton

lower

raise

lower
raise

Open
θ = 90
dθ
dt = 0

Raising
θ ≤ 90

dθ
dt ∈ [8, 10]

Closed
θ = 0

dθ
dt = 0

Lowering
θ ≥ 0

dθ
dt ∈ [−10,−9]

(θ = 90)

(θ = 90)

(θ = 0)

85 / 107

Example: Gate for a railroad controller

Multi-rate Automaton

lower

raise

lower
raise

Open
θm = 90, θM = 90
dθm

dt = 0, dθM
dt = 0

Raising
θm ≤ 90, θM ≤ 90
dθm

dt = 8, dθM
dt = 10

Closed
θm = 0, θM = 0

dθm
dt = 0, dθM

dt = 0

Lowering
θm ≥ 0, θM ≥ 0

dθm
dt = −10, dθM

dt = −9

θM ≥ 90
θm ≤ 90
θM := 90
θm := 90

θM ≥ 90
θm ≤ 90
θM := 90
θm := 90

θM ≥ 0
θm ≤ 0
θM := 0
θm := 0

86 / 107

Example: Gate for a railroad controller

Rectangular automaton

10 20 30

90

0 t

loweringOpen closed lowering raising Open

?l
o
w

er

?l
o
w

er

?r
ai

se

?r
ai

se

raising Open

θ

87 / 107

Example: Gate for a railroad controller

Multi-rate automaton

10 20 30

90

0 t

loweringOpen closed lowering raising Open

?l
o
w

er

?l
o
w

er

?r
ai

se

?r
ai

se

raising Open

θ

θM

θM

θM

θM

θm

θm

θm

θm

88 / 107

Outline

1 Motivations
2 Timed systems: Modeling and Semantics

Timed automata
Semantics
Combination

3 Symbolic Reachability for Timed Systems
Making the state space finite
Region automata
Zone automata

4 Hybrid Systems: Modeling and Semantics
Hybrid automata

5 Symbolic Reachability for Hybrid Systems
Multi-Rate and Rectangular Hybrid Automata
Linear Hybrid Automata

6 Exercises

89 / 107

Linear Hybrid Automata

Polyhedron φ: set/conjunction of linear inequalities on X in the form (A · X ≥ B), s.t.
A ∈ Rm × Rk and B ∈ Rm for some m.
φ is a convex set in the k-dimensional euclidean space

possibly unbounded

=⇒ Contains all possible values for all variables in a set
Symbolic state: ⟨l , φ⟩

l: location
φ: polyhedron

(generalization of zone automata)

x

y

90 / 107

Linear Hybrid Automata

Polyhedron φ: set/conjunction of linear inequalities on X in the form (A · X ≥ B), s.t.
A ∈ Rm × Rk and B ∈ Rm for some m.
φ is a convex set in the k-dimensional euclidean space

possibly unbounded

=⇒ Contains all possible values for all variables in a set
Symbolic state: ⟨l , φ⟩

l: location
φ: polyhedron

(generalization of zone automata)

x

y

90 / 107

Linear Hybrid Automata

Polyhedron φ: set/conjunction of linear inequalities on X in the form (A · X ≥ B), s.t.
A ∈ Rm × Rk and B ∈ Rm for some m.
φ is a convex set in the k-dimensional euclidean space

possibly unbounded

=⇒ Contains all possible values for all variables in a set
Symbolic state: ⟨l , φ⟩

l: location
φ: polyhedron

(generalization of zone automata)

x

y

90 / 107

Linear Hybrid Automata

Polyhedron φ: set/conjunction of linear inequalities on X in the form (A · X ≥ B), s.t.
A ∈ Rm × Rk and B ∈ Rm for some m.
φ is a convex set in the k-dimensional euclidean space

possibly unbounded

=⇒ Contains all possible values for all variables in a set
Symbolic state: ⟨l , φ⟩

l: location
φ: polyhedron

(generalization of zone automata)

x

y

90 / 107

Linear Hybrid Automata A = ⟨L,L0,X ,Σ,Φ(X),E⟩

State space: L × Rk ,
state: ⟨l, ψ⟩ s.t. l ∈ L and ψ ∈ Rk

polyhedron ψ: subset of Rk in the form A · X ≥ B

For each edge e from location l to location l ′

Guard: region (A · X ≥ B): polyhedron on X
Update relation “Jump” J(X ,X ′): X ′ := T · X + B, T ∈ Rk × Rk , B ∈ R
Synchronization label a ∈ Σ (communication information)

For each location l :
Initial states: region Initl(X): polyhedron on X
Invariant: region Invl(X): polyhedron on X
Continuous dynamics flowl(X): polyhedron on dX

dt

Continuous Dynamics

Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first
derivatives
Es: dx

dt ≥ 3, dx
dt = dy

dt , 2.1 dx
dt − 3.5 dy

dt + 1.7 dz
dt ≥ 3.1, ...

91 / 107

Linear Hybrid Automata A = ⟨L,L0,X ,Σ,Φ(X),E⟩

State space: L × Rk ,
state: ⟨l, ψ⟩ s.t. l ∈ L and ψ ∈ Rk

polyhedron ψ: subset of Rk in the form A · X ≥ B

For each edge e from location l to location l ′

Guard: region (A · X ≥ B): polyhedron on X
Update relation “Jump” J(X ,X ′): X ′ := T · X + B, T ∈ Rk × Rk , B ∈ R
Synchronization label a ∈ Σ (communication information)

For each location l :
Initial states: region Initl(X): polyhedron on X
Invariant: region Invl(X): polyhedron on X
Continuous dynamics flowl(X): polyhedron on dX

dt

Continuous Dynamics

Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first
derivatives
Es: dx

dt ≥ 3, dx
dt = dy

dt , 2.1 dx
dt − 3.5 dy

dt + 1.7 dz
dt ≥ 3.1, ...

91 / 107

Linear Hybrid Automata A = ⟨L,L0,X ,Σ,Φ(X),E⟩

State space: L × Rk ,
state: ⟨l, ψ⟩ s.t. l ∈ L and ψ ∈ Rk

polyhedron ψ: subset of Rk in the form A · X ≥ B

For each edge e from location l to location l ′

Guard: region (A · X ≥ B): polyhedron on X
Update relation “Jump” J(X ,X ′): X ′ := T · X + B, T ∈ Rk × Rk , B ∈ R
Synchronization label a ∈ Σ (communication information)

For each location l :
Initial states: region Initl(X): polyhedron on X
Invariant: region Invl(X): polyhedron on X
Continuous dynamics flowl(X): polyhedron on dX

dt

Continuous Dynamics

Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first
derivatives
Es: dx

dt ≥ 3, dx
dt = dy

dt , 2.1 dx
dt − 3.5 dy

dt + 1.7 dz
dt ≥ 3.1, ...

91 / 107

Linear Hybrid Automata A = ⟨L,L0,X ,Σ,Φ(X),E⟩

State space: L × Rk ,
state: ⟨l, ψ⟩ s.t. l ∈ L and ψ ∈ Rk

polyhedron ψ: subset of Rk in the form A · X ≥ B

For each edge e from location l to location l ′

Guard: region (A · X ≥ B): polyhedron on X
Update relation “Jump” J(X ,X ′): X ′ := T · X + B, T ∈ Rk × Rk , B ∈ R
Synchronization label a ∈ Σ (communication information)

For each location l :
Initial states: region Initl(X): polyhedron on X
Invariant: region Invl(X): polyhedron on X
Continuous dynamics flowl(X): polyhedron on dX

dt

Continuous Dynamics

Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first
derivatives
Es: dx

dt ≥ 3, dx
dt = dy

dt , 2.1 dx
dt − 3.5 dy

dt + 1.7 dz
dt ≥ 3.1, ...

91 / 107

Linear Hybrid Automata A = ⟨L,L0,X ,Σ,Φ(X),E⟩

State space: L × Rk ,
state: ⟨l, ψ⟩ s.t. l ∈ L and ψ ∈ Rk

polyhedron ψ: subset of Rk in the form A · X ≥ B

For each edge e from location l to location l ′

Guard: region (A · X ≥ B): polyhedron on X
Update relation “Jump” J(X ,X ′): X ′ := T · X + B, T ∈ Rk × Rk , B ∈ R
Synchronization label a ∈ Σ (communication information)

For each location l :
Initial states: region Initl(X): polyhedron on X
Invariant: region Invl(X): polyhedron on X
Continuous dynamics flowl(X): polyhedron on dX

dt

Continuous Dynamics

Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first
derivatives
Es: dx

dt ≥ 3, dx
dt = dy

dt , 2.1 dx
dt − 3.5 dy

dt + 1.7 dz
dt ≥ 3.1, ...

91 / 107

Linear Hybrid Automata A = ⟨L,L0,X ,Σ,Φ(X),E⟩

State space: L × Rk ,
state: ⟨l, ψ⟩ s.t. l ∈ L and ψ ∈ Rk

polyhedron ψ: subset of Rk in the form A · X ≥ B

For each edge e from location l to location l ′

Guard: region (A · X ≥ B): polyhedron on X
Update relation “Jump” J(X ,X ′): X ′ := T · X + B, T ∈ Rk × Rk , B ∈ R
Synchronization label a ∈ Σ (communication information)

For each location l :
Initial states: region Initl(X): polyhedron on X
Invariant: region Invl(X): polyhedron on X
Continuous dynamics flowl(X): polyhedron on dX

dt

Continuous Dynamics

Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first
derivatives
Es: dx

dt ≥ 3, dx
dt = dy

dt , 2.1 dx
dt − 3.5 dy

dt + 1.7 dz
dt ≥ 3.1, ...

91 / 107

Linear Hybrid Automata A = ⟨L,L0,X ,Σ,Φ(X),E⟩

State space: L × Rk ,
state: ⟨l, ψ⟩ s.t. l ∈ L and ψ ∈ Rk

polyhedron ψ: subset of Rk in the form A · X ≥ B

For each edge e from location l to location l ′

Guard: region (A · X ≥ B): polyhedron on X
Update relation “Jump” J(X ,X ′): X ′ := T · X + B, T ∈ Rk × Rk , B ∈ R
Synchronization label a ∈ Σ (communication information)

For each location l :
Initial states: region Initl(X): polyhedron on X
Invariant: region Invl(X): polyhedron on X
Continuous dynamics flowl(X): polyhedron on dX

dt

Continuous Dynamics

Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first
derivatives
Es: dx

dt ≥ 3, dx
dt = dy

dt , 2.1 dx
dt − 3.5 dy

dt + 1.7 dz
dt ≥ 3.1, ...

91 / 107

Linear Hybrid Automata A = ⟨L,L0,X ,Σ,Φ(X),E⟩

State space: L × Rk ,
state: ⟨l, ψ⟩ s.t. l ∈ L and ψ ∈ Rk

polyhedron ψ: subset of Rk in the form A · X ≥ B

For each edge e from location l to location l ′

Guard: region (A · X ≥ B): polyhedron on X
Update relation “Jump” J(X ,X ′): X ′ := T · X + B, T ∈ Rk × Rk , B ∈ R
Synchronization label a ∈ Σ (communication information)

For each location l :
Initial states: region Initl(X): polyhedron on X
Invariant: region Invl(X): polyhedron on X
Continuous dynamics flowl(X): polyhedron on dX

dt

Continuous Dynamics

Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first
derivatives
Es: dx

dt ≥ 3, dx
dt = dy

dt , 2.1 dx
dt − 3.5 dy

dt + 1.7 dz
dt ≥ 3.1, ...

91 / 107

Linear Hybrid Automata A = ⟨L,L0,X ,Σ,Φ(X),E⟩

State space: L × Rk ,
state: ⟨l, ψ⟩ s.t. l ∈ L and ψ ∈ Rk

polyhedron ψ: subset of Rk in the form A · X ≥ B

For each edge e from location l to location l ′

Guard: region (A · X ≥ B): polyhedron on X
Update relation “Jump” J(X ,X ′): X ′ := T · X + B, T ∈ Rk × Rk , B ∈ R
Synchronization label a ∈ Σ (communication information)

For each location l :
Initial states: region Initl(X): polyhedron on X
Invariant: region Invl(X): polyhedron on X
Continuous dynamics flowl(X): polyhedron on dX

dt

Continuous Dynamics

Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first
derivatives
Es: dx

dt ≥ 3, dx
dt = dy

dt , 2.1 dx
dt − 3.5 dy

dt + 1.7 dz
dt ≥ 3.1, ...

91 / 107

Linear Hybrid Automata A = ⟨L,L0,X ,Σ,Φ(X),E⟩

State space: L × Rk ,
state: ⟨l, ψ⟩ s.t. l ∈ L and ψ ∈ Rk

polyhedron ψ: subset of Rk in the form A · X ≥ B

For each edge e from location l to location l ′

Guard: region (A · X ≥ B): polyhedron on X
Update relation “Jump” J(X ,X ′): X ′ := T · X + B, T ∈ Rk × Rk , B ∈ R
Synchronization label a ∈ Σ (communication information)

For each location l :
Initial states: region Initl(X): polyhedron on X
Invariant: region Invl(X): polyhedron on X
Continuous dynamics flowl(X): polyhedron on dX

dt

Continuous Dynamics

Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first
derivatives
Es: dx

dt ≥ 3, dx
dt = dy

dt , 2.1 dx
dt − 3.5 dy

dt + 1.7 dz
dt ≥ 3.1, ...

91 / 107

Linear Hybrid Automata A = ⟨L,L0,X ,Σ,Φ(X),E⟩

State space: L × Rk ,
state: ⟨l, ψ⟩ s.t. l ∈ L and ψ ∈ Rk

polyhedron ψ: subset of Rk in the form A · X ≥ B

For each edge e from location l to location l ′

Guard: region (A · X ≥ B): polyhedron on X
Update relation “Jump” J(X ,X ′): X ′ := T · X + B, T ∈ Rk × Rk , B ∈ R
Synchronization label a ∈ Σ (communication information)

For each location l :
Initial states: region Initl(X): polyhedron on X
Invariant: region Invl(X): polyhedron on X
Continuous dynamics flowl(X): polyhedron on dX

dt

Continuous Dynamics

Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first
derivatives
Es: dx

dt ≥ 3, dx
dt = dy

dt , 2.1 dx
dt − 3.5 dy

dt + 1.7 dz
dt ≥ 3.1, ...

91 / 107

Example: Gate for a railroad controller

lower

raise

lower
raise

Open
θ = 90
dθ
dt = 0

Raising
θ ≤ 90

dθ
dt ∈ [8, 10]

Closed
θ = 0

dθ
dt = 0

Lowering
θ ≥ 0

dθ
dt ∈ [−10,−9]

(θ = 90)

(θ = 90)

(θ = 0)

92 / 107

Reachability Computation: Key Steps

Compute “discrete” successors of ⟨l , ψ⟩
Compute “continuous” successor of ⟨l , ψ⟩
Check if ψ intersects with “bad” region
Check if newly-found ψ is covered by already-visited polyhedra ψ1, ..., ψn (expensive!)

93 / 107

Reachability Computation: Key Steps

Compute “discrete” successors of ⟨l , ψ⟩
Compute “continuous” successor of ⟨l , ψ⟩
Check if ψ intersects with “bad” region
Check if newly-found ψ is covered by already-visited polyhedra ψ1, ..., ψn (expensive!)

93 / 107

Reachability Computation: Key Steps

Compute “discrete” successors of ⟨l , ψ⟩
Compute “continuous” successor of ⟨l , ψ⟩
Check if ψ intersects with “bad” region
Check if newly-found ψ is covered by already-visited polyhedra ψ1, ..., ψn (expensive!)

93 / 107

Reachability Computation: Key Steps

Compute “discrete” successors of ⟨l , ψ⟩
Compute “continuous” successor of ⟨l , ψ⟩
Check if ψ intersects with “bad” region
Check if newly-found ψ is covered by already-visited polyhedra ψ1, ..., ψn (expensive!)

93 / 107

Computing Discrete Successors of ⟨l , ψ⟩

Intersect ψ with the guard ϕ
=⇒ result is a polyhedron
Apply linear transformation of J to the result
=⇒ result is a polyhedron
Intersect with the invariant of target location l ′

=⇒ result is a polyhedron

94 / 107

Computing Discrete Successors of ⟨l , ψ⟩

Intersect ψ with the guard ϕ
=⇒ result is a polyhedron
Apply linear transformation of J to the result
=⇒ result is a polyhedron
Intersect with the invariant of target location l ′

=⇒ result is a polyhedron

94 / 107

Computing Discrete Successors of ⟨l , ψ⟩

Intersect ψ with the guard ϕ
=⇒ result is a polyhedron
Apply linear transformation of J to the result
=⇒ result is a polyhedron
Intersect with the invariant of target location l ′

=⇒ result is a polyhedron

94 / 107

Computing Time Successor

Consider maximum and minimum rates between derivatives (external vertices in the flow
polyhedron)
Apply these extremal rates for computing the projection to infinity (to be intersected with
invariant)

Hint: dy
dx =

dy
dt
dx
dt

, s.t. maxx,y
dy
dx = maxx,y

dy
dt
dx
dt

and minx,y
dy
dx = minx,y

dy
dt
dx
dt

dy/dt

dx/dt

(1,4)

(3,2)

x

y

95 / 107

Computing Time Successor

Consider maximum and minimum rates between derivatives (external vertices in the flow
polyhedron)
Apply these extremal rates for computing the projection to infinity (to be intersected with
invariant)

Hint: dy
dx =

dy
dt
dx
dt

, s.t. maxx,y
dy
dx = maxx,y

dy
dt
dx
dt

and minx,y
dy
dx = minx,y

dy
dt
dx
dt

dy/dt

dx/dt

(1,4)

(3,2)

min dy/dx = 2/3

max dy/dx = 4

x

y

95 / 107

Linear Hybrid Automata: Symbolic Transitions

Definition: succ(φ,e)

Let e def
= ⟨l ,a, ψ, J, l ′⟩, and ϕ, ϕ′ the invariants in l , l ′

Then
succ(φ,e) def

= J(((φ∧ϕ)⇑ ∧ϕ) ∧ ψ)

(φ immediately before entering the location)

succ(φ,e) def
= J((φ⇑ ∧ϕ) ∧ ψ) ∧ ϕ′

(φ immediately after entering the location):
∧: standard conjunction/intersection
⇑: continuous successor ψ⇑
J: Jump transformation J(X)

def
= T · X + B

note: φ is considered “immediately after entering l”

96 / 107

Linear Hybrid Automata: Symbolic Transitions (cont.)

Initial zone: values allowed to enter location l
Projection to infinity: ... after waiting unbounded
time
Intersection with invariant ϕ: ... waiting a legal
amount of time
Intersection with guard ψ: ... from which the
switch can be shot
Jump J: ..., after jump
Intersection with invariant ϕ′: ... values allowed
to enter location l ′

=⇒ Final!

x

y

succ(φ,e) def

= J((φ⇑ ∧ϕ) ∧ ψ) ∧ ϕ′

97 / 107

Linear Hybrid Automata: Symbolic Transitions (cont.)

Initial zone: values allowed to enter location l
Projection to infinity: ... after waiting unbounded
time
Intersection with invariant ϕ: ... waiting a legal
amount of time
Intersection with guard ψ: ... from which the
switch can be shot
Jump J: ..., after jump
Intersection with invariant ϕ′: ... values allowed
to enter location l ′

=⇒ Final!

x

y

succ(φ,e) def

= J((φ⇑ ∧ϕ) ∧ ψ) ∧ ϕ′

97 / 107

Linear Hybrid Automata: Symbolic Transitions (cont.)

Initial zone: values allowed to enter location l
Projection to infinity: ... after waiting unbounded
time
Intersection with invariant ϕ: ... waiting a legal
amount of time
Intersection with guard ψ: ... from which the
switch can be shot
Jump J: ..., after jump
Intersection with invariant ϕ′: ... values allowed
to enter location l ′

=⇒ Final!

min dy/dx = 2/3

max dy/dx = 4

x

y

succ(φ,e) def

= J((φ⇑ ∧ ϕ) ∧ ψ) ∧ ϕ′

97 / 107

Linear Hybrid Automata: Symbolic Transitions (cont.)

Initial zone: values allowed to enter location l
Projection to infinity: ... after waiting unbounded
time
Intersection with invariant ϕ: ... waiting a legal
amount of time
Intersection with guard ψ: ... from which the
switch can be shot
Jump J: ..., after jump
Intersection with invariant ϕ′: ... values allowed
to enter location l ′

=⇒ Final!

min dy/dx = 2/3

max dy/dx = 4

x

y

succ(φ,e) def

= J((φ⇑ ∧ϕ) ∧ ψ) ∧ ϕ′

97 / 107

Linear Hybrid Automata: Symbolic Transitions (cont.)

Initial zone: values allowed to enter location l
Projection to infinity: ... after waiting unbounded
time
Intersection with invariant ϕ: ... waiting a legal
amount of time
Intersection with guard ψ: ... from which the
switch can be shot
Jump J: ..., after jump
Intersection with invariant ϕ′: ... values allowed
to enter location l ′

=⇒ Final!

φ

min dy/dx = 2/3

max dy/dx = 4

x

y

succ(φ,e) def

= J((φ⇑ ∧ϕ) ∧ ψ) ∧ ϕ′

97 / 107

Linear Hybrid Automata: Symbolic Transitions (cont.)

Initial zone: values allowed to enter location l
Projection to infinity: ... after waiting unbounded
time
Intersection with invariant ϕ: ... waiting a legal
amount of time
Intersection with guard ψ: ... from which the
switch can be shot
Jump J: ..., after jump
Intersection with invariant ϕ′: ... values allowed
to enter location l ′

=⇒ Final!

x

y

succ(φ,e) def

= J((φ⇑ ∧ ϕ) ∧ ψ) ∧ ϕ′

97 / 107

Linear Hybrid Automata: Symbolic Transitions (cont.)

Initial zone: values allowed to enter location l
Projection to infinity: ... after waiting unbounded
time
Intersection with invariant ϕ: ... waiting a legal
amount of time
Intersection with guard ψ: ... from which the
switch can be shot
Jump J: ..., after jump
Intersection with invariant ϕ′: ... values allowed
to enter location l ′

=⇒ Final!

ψ

x

y

succ(φ,e) def

= J((φ⇑ ∧ ϕ) ∧ ψ) ∧ ϕ′

97 / 107

Linear Hybrid Automata: Symbolic Transitions (cont.)

Initial zone: values allowed to enter location l
Projection to infinity: ... after waiting unbounded
time
Intersection with invariant ϕ: ... waiting a legal
amount of time
Intersection with guard ψ: ... from which the
switch can be shot
Jump J: ..., after jump
Intersection with invariant ϕ′: ... values allowed
to enter location l ′

=⇒ Final!

x

y

succ(φ,e) def

= J((φ⇑ ∧ ϕ) ∧ ψ) ∧ ϕ′

97 / 107

Linear Hybrid Automata: Symbolic Transitions (cont.)

Initial zone: values allowed to enter location l
Projection to infinity: ... after waiting unbounded
time
Intersection with invariant ϕ: ... waiting a legal
amount of time
Intersection with guard ψ: ... from which the
switch can be shot
Jump J: ..., after jump
Intersection with invariant ϕ′: ... values allowed
to enter location l ′

=⇒ Final!

x

y

succ(φ,e) def

= J((φ⇑ ∧ ϕ) ∧ ψ) ∧ ϕ′

97 / 107

Linear Hybrid Automata: Symbolic Transitions (cont.)

Initial zone: values allowed to enter location l
Projection to infinity: ... after waiting unbounded
time
Intersection with invariant ϕ: ... waiting a legal
amount of time
Intersection with guard ψ: ... from which the
switch can be shot
Jump J: ..., after jump
Intersection with invariant ϕ′: ... values allowed
to enter location l ′

=⇒ Final!

x

y

succ(φ,e) def

= J((φ⇑ ∧ ϕ) ∧ ψ) ∧ ϕ′

97 / 107

Linear Hybrid Automata: Symbolic Transitions (cont.)

Initial zone: values allowed to enter location l
Projection to infinity: ... after waiting unbounded
time
Intersection with invariant ϕ: ... waiting a legal
amount of time
Intersection with guard ψ: ... from which the
switch can be shot
Jump J: ..., after jump
Intersection with invariant ϕ′: ... values allowed
to enter location l ′

=⇒ Final!

φ’

x

y

succ(φ,e) def

= J((φ⇑ ∧ ϕ) ∧ ψ) ∧ ϕ′

97 / 107

Linear Hybrid Automata: Symbolic Transitions (cont.)

Initial zone: values allowed to enter location l
Projection to infinity: ... after waiting unbounded
time
Intersection with invariant ϕ: ... waiting a legal
amount of time
Intersection with guard ψ: ... from which the
switch can be shot
Jump J: ..., after jump
Intersection with invariant ϕ′: ... values allowed
to enter location l ′

=⇒ Final!

x

y

succ(φ,e) def

= J((φ⇑ ∧ ϕ) ∧ ψ) ∧ ϕ′

97 / 107

Linear Hybrid Automata: Symbolic Transitions (cont.)

Initial zone: values allowed to enter location l
Projection to infinity: ... after waiting unbounded
time
Intersection with invariant ϕ: ... waiting a legal
amount of time
Intersection with guard ψ: ... from which the
switch can be shot
Jump J: ..., after jump
Intersection with invariant ϕ′: ... values allowed
to enter location l ′

=⇒ Final!

x

y

succ(φ,e) def

= J((φ⇑ ∧ ϕ) ∧ ψ) ∧ ϕ′

97 / 107

Symbolic Reachability Analysis

1: function Reachable (A, F) // A def
= ⟨L,L0,Σ,X ,Φ(X),E⟩,F def

= {⟨li , ϕi⟩}i
2: Reachable = ∅
3: Frontier = {⟨l , Initl(X)⟩ | l ∈ L0}
4: while (Frontier ̸= ∅) do
5: extract ⟨l , φ⟩ from Frontier
6: if ((φ ∧ ϕ) ̸= ⊥ for some ⟨l , ϕ⟩ ∈ F) then
7: return True
8: end if
9: if (̸ ∃ ⟨l , φ′⟩ ∈ Reachable s.t . φ ⊆ φ′) then

10: add ⟨l , φ⟩ to Reachable
11: for e ∈ outcoming(l) do
12: add succ(φ,e) to Frontier
13: end for
14: end if
15: end while
16: return False
=⇒ same schema as with zone automata

98 / 107

Summary: Linear Hybrid Automata

Strategy implemented in HyTech
Core computation: manipulation of polyhedra
Bottlenecks

proliferation of polyhedra (unions)
computing with high-dimension polyhedra

Many case studies

99 / 107

Outline

1 Motivations
2 Timed systems: Modeling and Semantics

Timed automata
Semantics
Combination

3 Symbolic Reachability for Timed Systems
Making the state space finite
Region automata
Zone automata

4 Hybrid Systems: Modeling and Semantics
Hybrid automata

5 Symbolic Reachability for Hybrid Systems
Multi-Rate and Rectangular Hybrid Automata
Linear Hybrid Automata

6 Exercises

100 / 107

Ex: Execution of a Timed System

Consider only the following piece of a timed automaton A, x1 and x2 being clocks.

L1

(x1 ≤ 2)
L2

(x2 ≤ 3)

e1 : (x1 ≥ 1) a

e2 : x1 := 0 b (x2 ≥ 2)

(a) In general, what is the minimum amount of time from an occurrence of event b and the subsequent occurrence of the
event a?

[Solution: 1 time unit.]

(b) Write a legal execution from state ⟨L1, 0.0, 2.0⟩ to state ⟨L1, 0.0, 3.0⟩.

[Solution:

⟨L1, 0.0, 2.0⟩
1.0−→ ⟨L1, 1.0, 3.0⟩

a−→ ⟨L2, 1.0, 3.0⟩
0.0−→ ⟨L2, 1.0, 3.0⟩

b−→ ⟨L1, 0.0, 3.0⟩]

(c) Is it possible to have a legal execution in which switches e2, e1, e2 are shot consecutively (possibly interleaved by time
elapses), without being interleaved by other switches? If yes, write one such execution. If not, explain why.

[Solution:

Yes: ⟨L2, ..., 2.0⟩
b−→ ⟨L1, 0.0, 2.0⟩

1.0−→ ⟨L1, 1.0, 3.0⟩
a−→ ⟨L2, 1.0, 3.0⟩

0.0−→ ⟨L2, 1.0, 3.0⟩
b−→ ⟨L1, 0.0, 3.0⟩

Note: if the guard of e2 were strictly greater than 2, this would not be possible.]

101 / 107

Ex: Execution of a Timed System

Consider only the following piece of a timed automaton A, x1 and x2 being clocks.

L1

(x1 ≤ 2)
L2

(x2 ≤ 3)

e1 : (x1 ≥ 1) a

e2 : x1 := 0 b (x2 ≥ 2)

(a) In general, what is the minimum amount of time from an occurrence of event b and the subsequent occurrence of the
event a?

[Solution: 1 time unit.]
(b) Write a legal execution from state ⟨L1, 0.0, 2.0⟩ to state ⟨L1, 0.0, 3.0⟩.

[Solution:

⟨L1, 0.0, 2.0⟩
1.0−→ ⟨L1, 1.0, 3.0⟩

a−→ ⟨L2, 1.0, 3.0⟩
0.0−→ ⟨L2, 1.0, 3.0⟩

b−→ ⟨L1, 0.0, 3.0⟩]

(c) Is it possible to have a legal execution in which switches e2, e1, e2 are shot consecutively (possibly interleaved by time
elapses), without being interleaved by other switches? If yes, write one such execution. If not, explain why.

[Solution:

Yes: ⟨L2, ..., 2.0⟩
b−→ ⟨L1, 0.0, 2.0⟩

1.0−→ ⟨L1, 1.0, 3.0⟩
a−→ ⟨L2, 1.0, 3.0⟩

0.0−→ ⟨L2, 1.0, 3.0⟩
b−→ ⟨L1, 0.0, 3.0⟩

Note: if the guard of e2 were strictly greater than 2, this would not be possible.]

101 / 107

Ex: Execution of a Timed System

Consider only the following piece of a timed automaton A, x1 and x2 being clocks.

L1

(x1 ≤ 2)
L2

(x2 ≤ 3)

e1 : (x1 ≥ 1) a

e2 : x1 := 0 b (x2 ≥ 2)

(a) In general, what is the minimum amount of time from an occurrence of event b and the subsequent occurrence of the
event a? [Solution: 1 time unit.]

(b) Write a legal execution from state ⟨L1, 0.0, 2.0⟩ to state ⟨L1, 0.0, 3.0⟩.

[Solution:

⟨L1, 0.0, 2.0⟩
1.0−→ ⟨L1, 1.0, 3.0⟩

a−→ ⟨L2, 1.0, 3.0⟩
0.0−→ ⟨L2, 1.0, 3.0⟩

b−→ ⟨L1, 0.0, 3.0⟩]

(c) Is it possible to have a legal execution in which switches e2, e1, e2 are shot consecutively (possibly interleaved by time
elapses), without being interleaved by other switches? If yes, write one such execution. If not, explain why.

[Solution:

Yes: ⟨L2, ..., 2.0⟩
b−→ ⟨L1, 0.0, 2.0⟩

1.0−→ ⟨L1, 1.0, 3.0⟩
a−→ ⟨L2, 1.0, 3.0⟩

0.0−→ ⟨L2, 1.0, 3.0⟩
b−→ ⟨L1, 0.0, 3.0⟩

Note: if the guard of e2 were strictly greater than 2, this would not be possible.]

101 / 107

Ex: Execution of a Timed System

Consider only the following piece of a timed automaton A, x1 and x2 being clocks.

L1

(x1 ≤ 2)
L2

(x2 ≤ 3)

e1 : (x1 ≥ 1) a

e2 : x1 := 0 b (x2 ≥ 2)

(a) In general, what is the minimum amount of time from an occurrence of event b and the subsequent occurrence of the
event a? [Solution: 1 time unit.]

(b) Write a legal execution from state ⟨L1, 0.0, 2.0⟩ to state ⟨L1, 0.0, 3.0⟩.

[Solution:

⟨L1, 0.0, 2.0⟩
1.0−→ ⟨L1, 1.0, 3.0⟩

a−→ ⟨L2, 1.0, 3.0⟩
0.0−→ ⟨L2, 1.0, 3.0⟩

b−→ ⟨L1, 0.0, 3.0⟩]
(c) Is it possible to have a legal execution in which switches e2, e1, e2 are shot consecutively (possibly interleaved by time

elapses), without being interleaved by other switches? If yes, write one such execution. If not, explain why.

[Solution:

Yes: ⟨L2, ..., 2.0⟩
b−→ ⟨L1, 0.0, 2.0⟩

1.0−→ ⟨L1, 1.0, 3.0⟩
a−→ ⟨L2, 1.0, 3.0⟩

0.0−→ ⟨L2, 1.0, 3.0⟩
b−→ ⟨L1, 0.0, 3.0⟩

Note: if the guard of e2 were strictly greater than 2, this would not be possible.]

101 / 107

Ex: Execution of a Timed System

Consider only the following piece of a timed automaton A, x1 and x2 being clocks.

L1

(x1 ≤ 2)
L2

(x2 ≤ 3)

e1 : (x1 ≥ 1) a

e2 : x1 := 0 b (x2 ≥ 2)

(a) In general, what is the minimum amount of time from an occurrence of event b and the subsequent occurrence of the
event a? [Solution: 1 time unit.]

(b) Write a legal execution from state ⟨L1, 0.0, 2.0⟩ to state ⟨L1, 0.0, 3.0⟩. [Solution:

⟨L1, 0.0, 2.0⟩
1.0−→ ⟨L1, 1.0, 3.0⟩

a−→ ⟨L2, 1.0, 3.0⟩
0.0−→ ⟨L2, 1.0, 3.0⟩

b−→ ⟨L1, 0.0, 3.0⟩]

(c) Is it possible to have a legal execution in which switches e2, e1, e2 are shot consecutively (possibly interleaved by time
elapses), without being interleaved by other switches? If yes, write one such execution. If not, explain why.

[Solution:

Yes: ⟨L2, ..., 2.0⟩
b−→ ⟨L1, 0.0, 2.0⟩

1.0−→ ⟨L1, 1.0, 3.0⟩
a−→ ⟨L2, 1.0, 3.0⟩

0.0−→ ⟨L2, 1.0, 3.0⟩
b−→ ⟨L1, 0.0, 3.0⟩

Note: if the guard of e2 were strictly greater than 2, this would not be possible.]

101 / 107

Ex: Execution of a Timed System

Consider only the following piece of a timed automaton A, x1 and x2 being clocks.

L1

(x1 ≤ 2)
L2

(x2 ≤ 3)

e1 : (x1 ≥ 1) a

e2 : x1 := 0 b (x2 ≥ 2)

(a) In general, what is the minimum amount of time from an occurrence of event b and the subsequent occurrence of the
event a? [Solution: 1 time unit.]

(b) Write a legal execution from state ⟨L1, 0.0, 2.0⟩ to state ⟨L1, 0.0, 3.0⟩. [Solution:

⟨L1, 0.0, 2.0⟩
1.0−→ ⟨L1, 1.0, 3.0⟩

a−→ ⟨L2, 1.0, 3.0⟩
0.0−→ ⟨L2, 1.0, 3.0⟩

b−→ ⟨L1, 0.0, 3.0⟩]
(c) Is it possible to have a legal execution in which switches e2, e1, e2 are shot consecutively (possibly interleaved by time

elapses), without being interleaved by other switches? If yes, write one such execution. If not, explain why.

[Solution:

Yes: ⟨L2, ..., 2.0⟩
b−→ ⟨L1, 0.0, 2.0⟩

1.0−→ ⟨L1, 1.0, 3.0⟩
a−→ ⟨L2, 1.0, 3.0⟩

0.0−→ ⟨L2, 1.0, 3.0⟩
b−→ ⟨L1, 0.0, 3.0⟩

Note: if the guard of e2 were strictly greater than 2, this would not be possible.]

101 / 107

Ex: Execution of a Timed System

Consider only the following piece of a timed automaton A, x1 and x2 being clocks.

L1

(x1 ≤ 2)
L2

(x2 ≤ 3)

e1 : (x1 ≥ 1) a

e2 : x1 := 0 b (x2 ≥ 2)

(a) In general, what is the minimum amount of time from an occurrence of event b and the subsequent occurrence of the
event a? [Solution: 1 time unit.]

(b) Write a legal execution from state ⟨L1, 0.0, 2.0⟩ to state ⟨L1, 0.0, 3.0⟩. [Solution:

⟨L1, 0.0, 2.0⟩
1.0−→ ⟨L1, 1.0, 3.0⟩

a−→ ⟨L2, 1.0, 3.0⟩
0.0−→ ⟨L2, 1.0, 3.0⟩

b−→ ⟨L1, 0.0, 3.0⟩]
(c) Is it possible to have a legal execution in which switches e2, e1, e2 are shot consecutively (possibly interleaved by time

elapses), without being interleaved by other switches? If yes, write one such execution. If not, explain why. [Solution:

Yes: ⟨L2, ..., 2.0⟩
b−→ ⟨L1, 0.0, 2.0⟩

1.0−→ ⟨L1, 1.0, 3.0⟩
a−→ ⟨L2, 1.0, 3.0⟩

0.0−→ ⟨L2, 1.0, 3.0⟩
b−→ ⟨L1, 0.0, 3.0⟩

Note: if the guard of e2 were strictly greater than 2, this would not be possible.]

101 / 107

Ex: Timed Automata: Regions
Consider the following timed automaton A.

L1

(x1 ≤ 2)
L2

(x2 ≤ 3)

(x1 ≥ 1) a x2 := 0

x1 := 0 b (x2 ≥ 2)

Considere the correponding Region automaton R(A). For each of the following pairs of states of A, say if the two states
belong to the same region.

(a) s0 = (L1, 2.5, 3.2), s1 = (L1, 2.5, 3.7)

[Solution: yes]

(b) s0 = (L1, 1.5, 2.2), s1 = (L1, 1.5, 2.7)

[Solution: no]

(c) s0 = (L2, 0.5, 1.4), s1 = (L2, 0.5, 1.0)

[Solution: no]

(d) s0 = (L2, 1.7, 0.5), s1 = (L2, 1.5, 0.1)

[Solution: yes]

(2.5,3.2)

(1.5,2.7)

(1.5,2.2)

(0.5,1.0)

(0.5,1.4)

(2.5,3.7)

(1.5,0.1)

(1.7,0.5)

2

3

x1

x2

102 / 107

Ex: Timed Automata: Regions
Consider the following timed automaton A.

L1

(x1 ≤ 2)
L2

(x2 ≤ 3)

(x1 ≥ 1) a x2 := 0

x1 := 0 b (x2 ≥ 2)

Considere the correponding Region automaton R(A). For each of the following pairs of states of A, say if the two states
belong to the same region.

(a) s0 = (L1, 2.5, 3.2), s1 = (L1, 2.5, 3.7)
[Solution: yes]

(b) s0 = (L1, 1.5, 2.2), s1 = (L1, 1.5, 2.7)

[Solution: no]

(c) s0 = (L2, 0.5, 1.4), s1 = (L2, 0.5, 1.0)

[Solution: no]

(d) s0 = (L2, 1.7, 0.5), s1 = (L2, 1.5, 0.1)

[Solution: yes]

(2.5,3.2)

(1.5,2.7)

(1.5,2.2)

(0.5,1.0)

(0.5,1.4)

(2.5,3.7)

(1.5,0.1)

(1.7,0.5)

2

3

x1

x2

102 / 107

Ex: Timed Automata: Regions
Consider the following timed automaton A.

L1

(x1 ≤ 2)
L2

(x2 ≤ 3)

(x1 ≥ 1) a x2 := 0

x1 := 0 b (x2 ≥ 2)

Considere the correponding Region automaton R(A). For each of the following pairs of states of A, say if the two states
belong to the same region.

(a) s0 = (L1, 2.5, 3.2), s1 = (L1, 2.5, 3.7)
[Solution: yes]

(b) s0 = (L1, 1.5, 2.2), s1 = (L1, 1.5, 2.7)
[Solution: no]

(c) s0 = (L2, 0.5, 1.4), s1 = (L2, 0.5, 1.0)

[Solution: no]

(d) s0 = (L2, 1.7, 0.5), s1 = (L2, 1.5, 0.1)

[Solution: yes]

(2.5,3.2)

(1.5,2.7)

(1.5,2.2)

(0.5,1.0)

(0.5,1.4)

(2.5,3.7)

(1.5,0.1)

(1.7,0.5)

2

3

x1

x2

102 / 107

Ex: Timed Automata: Regions
Consider the following timed automaton A.

L1

(x1 ≤ 2)
L2

(x2 ≤ 3)

(x1 ≥ 1) a x2 := 0

x1 := 0 b (x2 ≥ 2)

Considere the correponding Region automaton R(A). For each of the following pairs of states of A, say if the two states
belong to the same region.

(a) s0 = (L1, 2.5, 3.2), s1 = (L1, 2.5, 3.7)
[Solution: yes]

(b) s0 = (L1, 1.5, 2.2), s1 = (L1, 1.5, 2.7)
[Solution: no]

(c) s0 = (L2, 0.5, 1.4), s1 = (L2, 0.5, 1.0)
[Solution: no]

(d) s0 = (L2, 1.7, 0.5), s1 = (L2, 1.5, 0.1)

[Solution: yes]

(2.5,3.2)

(1.5,2.7)

(1.5,2.2)

(0.5,1.0)

(0.5,1.4)

(2.5,3.7)

(1.5,0.1)

(1.7,0.5)

2

3

x1

x2

102 / 107

Ex: Timed Automata: Regions
Consider the following timed automaton A.

L1

(x1 ≤ 2)
L2

(x2 ≤ 3)

(x1 ≥ 1) a x2 := 0

x1 := 0 b (x2 ≥ 2)

Considere the correponding Region automaton R(A). For each of the following pairs of states of A, say if the two states
belong to the same region.

(a) s0 = (L1, 2.5, 3.2), s1 = (L1, 2.5, 3.7)
[Solution: yes]

(b) s0 = (L1, 1.5, 2.2), s1 = (L1, 1.5, 2.7)
[Solution: no]

(c) s0 = (L2, 0.5, 1.4), s1 = (L2, 0.5, 1.0)
[Solution: no]

(d) s0 = (L2, 1.7, 0.5), s1 = (L2, 1.5, 0.1)
[Solution: yes]

(2.5,3.2)

(1.5,2.7)

(1.5,2.2)

(0.5,1.0)

(0.5,1.4)

(2.5,3.7)

(1.5,0.1)

(1.7,0.5)

2

3

x1

x2

102 / 107

Ex: Timed Automata: Zones
Consider the following switch e in a timed automaton, x and y being clocks:

L1

y ≥ 4
y ≤ 6

L2

x > 5 a y := 0

and let Z1
def
= ⟨L1, φ⟩ s.t φ def

= (x ≥ 2) ∧ (x ≤ 3) ∧ (y ≥ 2) ∧ (y ≤ 5) ∧ (y − x ≤ 2). Compute succ(Z1, e), drawing the
process on the cartesian space ⟨x , y⟩.

[Solution: The solution is succ(Z1, e) = ⟨Z2,⊥⟩. In fact, the zone reached by waiting in L1 has empty intersection with
the guard, as displayed in figure:

y ≤ 5

y ≥ 2

x > 5

y − x ≥ 1y − x ≤ 2

x ≤ 3x ≥ 2

y

x

φ

y ≤ 6

y ≥ 4

φ′

]

103 / 107

Ex: Timed Automata: Zones
Consider the following switch e in a timed automaton, x and y being clocks:

L1

y ≥ 4
y ≤ 6

L2

x > 5 a y := 0

and let Z1
def
= ⟨L1, φ⟩ s.t φ def

= (x ≥ 2) ∧ (x ≤ 3) ∧ (y ≥ 2) ∧ (y ≤ 5) ∧ (y − x ≤ 2). Compute succ(Z1, e), drawing the
process on the cartesian space ⟨x , y⟩.
[Solution: The solution is succ(Z1, e) = ⟨Z2,⊥⟩. In fact, the zone reached by waiting in L1 has empty intersection with
the guard, as displayed in figure:

y ≤ 5

y ≥ 2

x > 5

y − x ≥ 1y − x ≤ 2

x ≤ 3x ≥ 2

y

x

φ

y ≤ 6

y ≥ 4

φ′

] 103 / 107

Difference Bound Matrices

Consider the zone:
φ

def
= (x1 ≤ 3) ∧ (x2 ≤ 2) ∧ (x3 ≤ 5)∧

(x1 − x3 ≤ 2) ∧ (x2 − x1 ≤ −2) ∧ (x3 − x1 ≤ 3) ∧ (x3 − x2 ≤ 1)

(a) Compute the corresponding DBM
(b) Compute the reduced DBM

104 / 107

Difference Bound Matrices

[Solution: φ
def
= (x1 ≤ 3) ∧ (x2 ≤ 2) ∧ (x3 ≤ 5)∧

(x1 − x3 ≤ 2) ∧ (x2 − x1 ≤ −2) ∧ (x3 − x1 ≤ 3) ∧ (x3 − x2 ≤ 1)

Initial DBM:
x0 x1 x2 x3

x0 ⟨∞,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩
x1 ⟨3,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩ ⟨2,≤⟩
x2 ⟨2,≤⟩ ⟨−2,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩
x3 ⟨5,≤⟩ ⟨3,≤⟩ ⟨1,≤⟩ ⟨∞,≤⟩

x0

x1

x2

x3

2
3

3

∞

∞

5
−2

∞

2
∞ ∞

1

Reduced DBM:
x0 x1 x2 x3

x0 ⟨0,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩
x1 ⟨3,≤⟩ ⟨0,≤⟩ ⟨3,≤⟩ ⟨2,≤⟩
x2 ⟨1,≤⟩ ⟨−2,≤⟩ ⟨0,≤⟩ ⟨0,≤⟩
x3 ⟨2,≤⟩ ⟨−1,≤⟩ ⟨1,≤⟩ ⟨0,≤⟩

x0

x1

x2

x3

2
−1

3

∞

∞

2
−2

3

1
∞ 0

1

]

105 / 107

Difference Bound Matrices

[Solution: φ
def
= (x1 ≤ 3) ∧ (x2 ≤ 2) ∧ (x3 ≤ 5)∧

(x1 − x3 ≤ 2) ∧ (x2 − x1 ≤ −2) ∧ (x3 − x1 ≤ 3) ∧ (x3 − x2 ≤ 1)
Initial DBM:

x0 x1 x2 x3
x0 ⟨∞,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩
x1 ⟨3,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩ ⟨2,≤⟩
x2 ⟨2,≤⟩ ⟨−2,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩
x3 ⟨5,≤⟩ ⟨3,≤⟩ ⟨1,≤⟩ ⟨∞,≤⟩

x0

x1

x2

x3

2
3

3

∞

∞

5
−2

∞

2
∞ ∞

1

Reduced DBM:
x0 x1 x2 x3

x0 ⟨0,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩
x1 ⟨3,≤⟩ ⟨0,≤⟩ ⟨3,≤⟩ ⟨2,≤⟩
x2 ⟨1,≤⟩ ⟨−2,≤⟩ ⟨0,≤⟩ ⟨0,≤⟩
x3 ⟨2,≤⟩ ⟨−1,≤⟩ ⟨1,≤⟩ ⟨0,≤⟩

x0

x1

x2

x3

2
−1

3

∞

∞

2
−2

3

1
∞ 0

1

]

105 / 107

Difference Bound Matrices

[Solution: φ
def
= (x1 ≤ 3) ∧ (x2 ≤ 2) ∧ (x3 ≤ 5)∧

(x1 − x3 ≤ 2) ∧ (x2 − x1 ≤ −2) ∧ (x3 − x1 ≤ 3) ∧ (x3 − x2 ≤ 1)
Initial DBM:

x0 x1 x2 x3
x0 ⟨∞,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩
x1 ⟨3,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩ ⟨2,≤⟩
x2 ⟨2,≤⟩ ⟨−2,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩
x3 ⟨5,≤⟩ ⟨3,≤⟩ ⟨1,≤⟩ ⟨∞,≤⟩

x0

x1

x2

x3

2
3

3

∞

∞

5
−2

∞

2
∞ ∞

1

Reduced DBM:
x0 x1 x2 x3

x0 ⟨0,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩ ⟨∞,≤⟩
x1 ⟨3,≤⟩ ⟨0,≤⟩ ⟨3,≤⟩ ⟨2,≤⟩
x2 ⟨1,≤⟩ ⟨−2,≤⟩ ⟨0,≤⟩ ⟨0,≤⟩
x3 ⟨2,≤⟩ ⟨−1,≤⟩ ⟨1,≤⟩ ⟨0,≤⟩

x0

x1

x2

x3

2
−1

3

∞

∞

2
−2

3

1
∞ 0

1

]

105 / 107

Hybrid Automata

A railway-crossing gate, whose dynamics is represented by the hybrid automaton in the figure, receives from a controller
two possible input signals {lower,raise}. (θ, in degrees, represents the angle between the bar and the ground.)
When the gate is open the controller receives a signal “incoming” when a train is incoming, it waits a fixed amount of time
∆t , then it sends the gate the lower order.
It is known that an incoming train takes an amount of time within the interval [70,100] time units to get from the remote
sensor to the gate.
Compute the maximum amount of time ∆t which guarantees that the train does not reach the gate before the bar is
completely lowered, and briefly explain why.

lower

raise

lower
raise

Open
θ = 90
dθ
dt = 0

Raising
θ ≤ 90

dθ
dt ∈ [8, 10]

Closed
θ = 0

dθ
dt = 0

Lowering
θ ≥ 0

dθ
dt ∈ [−10,−9]

(θ = 90)

(θ = 90)

(θ = 0)

106 / 107

Hybrid Automata

[Solution: ∆t is 60 time units. In fact, the maximum value of ∆t the controller can afford waiting is given by the minimum
time the train may take to reach the gate (70), minus the maximum time taken by the bar to lower, that is, the time taken to
lower the angle from 90 to 0 at the lowest absolute speed (90/|-9|). Overall, we have thus ∆t = 70 − 90/(| − 9|) = 60.]

107 / 107

	Motivations
	Timed systems: Modeling and Semantics
	Timed automata
	Semantics
	Combination

	Symbolic Reachability for Timed Systems
	Making the state space finite
	Region automata
	Zone automata

	Hybrid Systems: Modeling and Semantics
	Hybrid automata

	Symbolic Reachability for Hybrid Systems
	Multi-Rate and Rectangular Hybrid Automata
	Linear Hybrid Automata

	Exercises

