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Model Checking Safety Properties: M |= G¬BAD

Add reachable states until reaching a fixed-point or a “bad” state
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Problem: too many states to handle! (even for symbolic MC)

4 / 47



Model Checking Safety Properties: M |= G¬BAD

Add reachable states until reaching a fixed-point or a “bad” state

S11

S12

S13

S21

S22

S23

S31

S32

S33

S41

S42

S43

S51

S52

S53

S61

S62

S63

Problem: too many states to handle! (even for symbolic MC)

4 / 47



Model Checking Safety Properties: M |= G¬BAD

Add reachable states until reaching a fixed-point or a “bad” state

S11

S12

S13

S21

S22

S23

S31

S32

S33

S41

S42

S43

S51

S52

S53

S61

S62

S63

Problem: too many states to handle! (even for symbolic MC)

4 / 47



Model Checking Safety Properties: M |= G¬BAD

Add reachable states until reaching a fixed-point or a “bad” state

S11

S12

S13

S21

S22

S23

S31

S32

S33

S41

S42

S43

S51

S52

S53

S61

S62

S63

Problem: too many states to handle! (even for symbolic MC)

4 / 47



Model Checking Safety Properties: M |= G¬BAD

Add reachable states until reaching a fixed-point or a “bad” state

S11

S12

S13

S21

S22

S23

S31

S32

S33

S41

S42

S43

S51

S52

S53

S61

S62

S63

Problem: too many states to handle! (even for symbolic MC)

4 / 47



Model Checking Safety Properties: M |= G¬BAD

Add reachable states until reaching a fixed-point or a “bad” state

S11

S12

S13

S21

S22

S23

S31

S32

S33

S41

S42

S43

S51

S52

S53

S61

S62

S63

Problem: too many states to handle! (even for symbolic MC)

4 / 47



Model Checking Safety Properties: M |= G¬BAD

Add reachable states until reaching a fixed-point or a “bad” state

S11

S12

S13

S21

S22

S23

S31

S32

S33

S41

S42

S43

S51

S52

S53

S61

S62

S63

Problem: too many states to handle! (even for symbolic MC)

4 / 47



Model Checking Safety Properties: M |= G¬BAD

Add reachable states until reaching a fixed-point or a “bad” state

S11

S12

S13

S21

S22

S23

S31

S32

S33

S41

S42

S43

S51

S52

S53

S61

S62

S63

Problem: too many states to handle! (even for symbolic MC)

4 / 47



Model Checking Safety Properties: M |= G¬BAD

Add reachable states until reaching a fixed-point or a “bad” state

S11

S12

S13

S21

S22

S23

S31

S32

S33

S41

S42

S43

S51

S52

S53

S61

S62

S63

Problem: too many states to handle! (even for symbolic MC)

4 / 47



Idea: Abstraction
Apply a (non-injective) Abstraction Function h to M
=⇒ Build an abstract (and much smaller) system M’
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System
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T1 T2 T3 T4 T5 T6

M

M’

h h h h h h
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Abstraction & Refinement

Abstraction & Refinement
Let S be the ground (concrete) state space
Let S′ be the abstract state space
Abstraction: a (typically non-injective) map h : S 7−→ S′

h typically a many-to-one function
(typically maps 2k states into 1, for some k )

Refinement: a map r : S′ 7−→ 2S s.t. r(s′)
def
= {s ∈ S | s′ = h(s)}
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Simulation and Bisimulation

Simulation

Let M1
def
= ⟨S1, I1,R1,AP1,L1⟩ and M2

def
= ⟨S2, I2,R2,AP2,L2⟩.

Then a relation p ⊆ S1 × S2 is a simulation between M1 and M2 (M1 simulates M2) iff
for every s2 ∈ I2 exists s1 ∈ I1 s.t. ⟨s1, s2⟩ ∈ p, and
for every ⟨s1, s2⟩ ∈ p:

for every transition ⟨s2, t2⟩ ∈ R2, exists a transition ⟨s1, t1⟩ ∈ R1 s.t. ⟨t1, t2⟩ ∈ p

(Intuitively, for every transition in M2 there is a corresponding transition in M1.)

Example of p (spy game): “follower M1 keeps escaper M2 at eyesight”

Bisimulation

P is a bisimulation between M and M ′ iff it is both a simulation between M and M ′ and between
M ′ and M.
We say that M and M ′ bisimulate each other.
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Example I

Ground

System
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System
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Does M simulate M’? No: e.g., no arc from S23 to any S3i .
Does M’ simulate M? Yes
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Example II

Ground

System
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Does M simulate M’? Yes
Does M’ simulate M? No: e.g., no arc from T 4 to T 3.
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Example III
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Existential Abstraction (Over-Approximation)
An Abstraction from M to M’ is an Existential Abstraction (aka Over-Approximation) iff M ′

simulates M
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Model Checking with Existential Abstractions

Preservation Theorem
Let φ be a universally-quantified property (e.g., in LTL or ACTL)
Let M ′ simulate M

Then we have that
M ′ |= φ =⇒ M |= φ

Intuition: if M has a countermodel, then M’ simulates it
The converse does not hold

M |= φ ̸=⇒ M ′ |= φ

=⇒ The abstract counter-example may be spurious
(e.g., in previous figure, T1 → T 2 → T 3 → T4 → T 5 → T 6)

12 / 47



Bisimulation Abstraction
An Abstraction from M to M’ is a Bisimulation Abstraction iff
M simulates M ′ and M ′ simulates M
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Model Checking with Bisimulation Abstractions

Preservation Theorem
Let φ be any ACTL/LTL property
Let M simulate M ′ and M ′ simulate M

Then we have that
M ′ |= φ ⇐⇒ M |= φ
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Counter-Example Guided Abstraction Refinement - CEGAR

General Schema:

Model

Checking

M,p,h

M’,p Spurious

No

counter
example

h’

M ̸|= pM |= p

Yes: Real:
Check

Abstraction Refinement

Counterex.
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A Popular Abstraction for Symbolic MC of G¬BAD I

A.k.a. “Localization Reduction”
Partition Boolean variables into visible (V) and invisible (I) ones

The abstract model built on visible variables only.
Invisible variables are made inputs (no updates in the transition relation)
All variables occurring in “¬BAD” must be visible

The abstraction function maps each state to its projection over V.
=⇒ Group ground states with same visible part to a single abstract state.

visible invisible
x1 x2 x3 x4

S11 : 0 0 0 0
S12 : 0 0 0 1
S13 : 0 0 1 0
S14 : 0 0 1 1

 =⇒
[

T1 : 0 0
]
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A Popular Abstraction for Symbolic MC of G¬BAD II

M’ can be computed efficiently if M is in functional form
(e.g. sequential circuits).

next(x1) := f1(x1, x2, x3, x4)
next(x2) := f2(x1, x2, x3, x4)
next(x3) := f3(x1, x2, x3, x4)
next(x4) := f4(x1, x2, x3, x4)

 =⇒
[

next(x1) := f1(x1, x2, x3, x4)
next(x2) := f2(x1, x2, x3, x4)

]

Note: The next values of invisible variables, next(x3) and next(x4), can assume every value
nondeterministically
=⇒ do not constrain the transition relation

Since M ′ obviously simulates M, this is an Existential Abstraction
M ′ |= φ =⇒ M |= φ

may produce spurious counter-examples
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Checking the Abstract Counter-Example I

The problem

Let c0, ..., cm counter-example in the abstract space
Note: each ci is a truth assignment on the visible variables

Problem: check if there exist a corresponding ground counterexample s0, ..., sm s.t.
ci = h(si), for every i
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Checking the Abstract Counter-Example II

Idea
Simulate the counterexample on the concrete model
Use Bounded Model Checking:

Φ
def
= I(s0) ∧

m−1∧
i=0

R(si , si+1) ∧
m∧

i=0

visible(si) = ci

If satisfiable, the counter example is real, otherwise it is spurious

Note: much more efficient than the direct BMC problem:

Φ
def
= I(s0) ∧

m−1∧
i=0

R(si , si+1) ∧
m∨

i=0

¬BADi

=⇒ cuts a 2(m+1)·|V | factor from the Boolean search space.
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The cause of spurious counter-examples I

Problem
There is a state in the abstract counter-example (failure state) s.t. two different and
un-connected kinds of ground states are mapped into it:

Deadend states: reachable states which do not allow to proceed along a refinement of the
abstract counter-example
Bad states: un-reachable states which allow to proceed along a refinement of the abstract
counter-example
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The cause of spurious counter-examples II
For the spurious counter-example: T 1 → T 2 → T 3 → T 4 → T 5 → T 6
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The cause of spurious counter-examples III

Problem
There is a state in the abstract counter-example (failure state) s.t. two different and
un-connected kinds of ground states are mapped into it:

Deadend states: reachable states which do not allow to proceed along a refinement of the
abstract counter-example
Bad states: un-reachable states which allow to proceed along a refinement of the abstract
counter-example

Solution: Refine the abstraction function.

1. identify the failure state and its deadend and bad states
2. refine the abstraction function s.t. deadend and bad states are mapped into different abstract

state

32 / 47



Identify the failure state and its deadend & bad states

The failure state is the state of maximum index f in the abstract counter-example s.t. the
following formula is satisfiable:

ΦD
def
= I(s0) ∧

f−1∧
i=0

R(si , si+1) ∧
f∧

i=0

visible(si) = ci

The (restriction on index f of the) models of ΦD identify the deadend states {d1, ...,dk}
can be identified by projected AllSAT enumeration over variables sf

The bad states {b1, ...,bn} are identified by the (restriction on index f of the) models of the
following formula:

ΦB
def
= R(sf , sf+1) ∧ visible(sf ) = cf ∧ visible(sf+1) = cf+1

can be identified by projected AllSAT enumeration over variables sf
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Identify the failure state and its deadend & bad states

For the spurious counter-example: T 1 → T 2 → T 3 → T 4 → T 5 → T 6
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Refinement: Separate deadend & bad states

The state separation problem

Input: sets D def
= {d1, ...,dk} and B def

= {b1, ...,bn} of states
Output: (possibly smallest) set U ⊆ I of invisible variables s.t.

∀di ∈ D, ∀bj ∈ B, ∃u ∈ U s.t . di(u) ̸= bj(u)

=⇒ the truth values of U allow for separating each pair ⟨di ,bj⟩
=⇒ The refinement h′ is obtained by adding U to V.
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Example

visible, invisible

x1 x2 x3 x4 x5 x6 x7

d1 0 1 0 0 1 0 1
d2 0 1 0 1 1 1 0
b1 0 1 0 1 1 1 1
b2 0 1 0 0 0 0 1

differentiating d1,b1: make x4 visible
differentiating d1,b2: make x5 visible
differentiating d2,b1: make x7 visible
differentiating d2,b2: already different

=⇒ U = {x4, x5, x7}, h′ keeps only x6 invisible

Goal: Keep U as small as possible!

36 / 47
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Two Separation Methods

Separation based on Decision-Tree Learning
Not optimal.
Polynomial.

ILP-based separation
Minimal separating set.
Computationally expensive.
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Separation with decision tree (Example)

Idea: expand the decision tree until no ⟨di ,bj⟩ pair belongs to set.

x1 x2 x3 x4 x5 x6 x7

d1 0 1 0 0 1 0 1
d2 0 1 0 1 1 1 0
b1 0 1 0 1 1 1 1
b2 0 1 0 0 0 0 1

{d1,d2,b1,b2}

differentiating d1,b1: x4

differentiating d1,b2: x5

differentiating d2,b1: x7
=⇒ U = {x4, x5, x7}

38 / 47
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x1 x2 x3 x4 x5 x6 x7
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d2 0 1 0 1 1 1 0
b1 0 1 0 1 1 1 1
b2 0 1 0 0 0 0 1
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Separation with 0-1 ILP

Idea
Encode the problem as a 0-1 ILP problem

min
∑
xk∈I

vk , subject to :

∑
xk ∈I

d(xk )̸=b(xk )

vk ≥ 1 ∀d ∈ D, ∀b ∈ B,

intuition: vk = ⊤ iff xk must me made visible
one constraint for every pair ⟨di ,bj⟩
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Separation with 0-1 ILP: Example
x1 x2 x3 x4 x5 x6 x7

d1 0 1 0 0 1 0 1
d2 0 1 0 1 1 1 0
b1 0 1 0 1 1 1 1
b2 0 1 0 0 0 0 1

x1 x2 x3 x4 x5 x6 x7

d1 0 1 0 0 1 0 1
d2 0 1 0 1 1 1 0
b1 0 1 0 1 1 1 1
b2 0 1 0 0 0 0 1

min {v4 + v5 + v6 + v7} subject to :
v4+ v6 ≥ 1 // separating d1,b1

v5 ≥ 1 // separating d1,b2
v7 ≥ 1 // separating d2,b1

v4+ v5+ v6+ v7 ≥ 1 // separating d2,b2

=⇒ return {v4, v5, v7} =⇒ U = {x4, x5, x7}
or return {v5, v6, v7} =⇒ U = {x5, x6, x7}
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Ex: Simulation

Consider the following pair of ground and abstract machines M and M′, and the abstraction α : M 7−→ M′ which, for
every j ∈ {1, ..., 6}, maps Sj1,Sj2,Sj3 into Tj .

Ground

System

Abstract

System

S11

S12

S13

S21

S22

S23

S31

S32

S33

S41

S42

S43

S51

S52

S53

S61

S62

S63

T1 T2 T3 T4 T5 T6

M

M’
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Ex: Simulation [cont.]

For each of the following facts, say which is true and which is false.
(a) M simulates M ′.

[ Solution: False. E.g.,: if M is in S23, M ′ is in T 2 and M ′ switches to T 3, there is no
transition in M from S23 to any state S3i , i ∈ {1,2,3}. ]

(b) M ′ simulates M.
[ Solution: true ]

(c) for every j ∈ {1, ...,6} and i ∈ {1, ...,3}, if Tj is reachable in M ′, then Sji is reachable in M
[ Solution: False. E.g., T 4 is reachable but S42 is not. ]

(d) for every j ∈ {1, ...,6} and i ∈ {1, ...,3}, if Sji is reachable in M, then Tj is reachable in M ′.
[ Solution: true ]
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Ex: Abstraction-based MC

Consider the following pair of ground and abstract machines M and M′, and the abstraction α : M 7−→ M′ which makes
the variable z invisible.

M:

MODULE main
VAR
x : boolean;
y : boolean;
z : boolean;

ASSIGN
init(x) := FALSE;
init(y) := FALSE;
init(z) := TRUE;

TRANS
(next(x) <-> y) &
(next(y) <-> z) &
(next(z) <-> x)

M′:

MODULE main
VAR
x : boolean;
y : boolean;
z : boolean;

ASSIGN
init(x) := FALSE;
init(y) := FALSE;

TRANS
(next(x) <-> y) &
(next(y) <-> z)

44 / 47



Ex: Abstraction-based MC [cont.]

(a) Draw the FSM’s for M and M′ (n.b.: in M′ only x and y are state variables).
[ Solution: (We label states with xyz and xy . respectively. “z = 0” and “z = 1” are comments.)

001 010 100

00. 01. 10. 11.

M

M’

z=0

z=1
z=0

z=1

z=1

z=0

z=0

z=1 ]
(b) Does M simulate M′? [ Solution: No. E.g. the M′ execution looping on (00) cannot be simulated in M. ]
(c) Does M′ simulate M? [ Solution: Yes ]
(d) Is α a suitable abstraction for solving the MC problem M |= G¬(x ∧ y)?

If yes, explain why. If no, produce a spurious counter-example.
[ Solution: No, since M |= G¬(x ∧ y) but M′ ̸|= G¬(x ∧ y). A spurious counter-example is
C def

= (00) =⇒ (01) =⇒ (11). ]
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Ex: Abstraction-based MC [cont.]

(e) Use the SAT-based refinement technique to show that the abstract counter-example C def
= (00) =⇒ (01) =⇒ (11) is

spurious.
[ Solution: We generate the following formula and feed it to a SAT solver:

(¬x0 ∧ ¬y0 ∧ z0) ∧ // I(x0, y0, z0) ∧
((x1 ↔ y0) ∧ (y1 ↔ z0) ∧ (z1 ↔ x0)) ∧ // T (x0, y0, z0, x1, y1, z1) ∧
((x2 ↔ y1) ∧ (y2 ↔ z1) ∧ (z2 ↔ x1)) ∧ // T (x1, y1, z1, x2, y2, z2) ∧
(¬x0 ∧ ¬y0) ∧ // (visible(s0) = c0)∧
(¬x1 ∧ y1) ∧ // (visible(s1) = c1)∧
( x2 ∧ y2) // (visible(s2) = c2)

=⇒ {¬x0,¬y0, z0,¬x1, y1,¬z1, x2,¬y2,¬z2} are unit-propagated due to the first three rows
=⇒ UNSAT
=⇒ spurious counter-example.
]

46 / 47



Ex: Separation problem

In a counter-example-guided-abstraction-refinement model checking process using localization reduction, variables
x3, x4, x5, x6, x7, x8 are made invisible.
Suppose the process has identified a spurious counterexample with an abstract failure state [00], two ground deadend
states d1, d2 and two ground bad states b1, b2 as described in the following table:

x1 x2 x3 x4 x5 x6 x7 x8
d1 0 0 0 0 0 1 1 1
d2 0 0 0 1 1 1 1 0
b1 0 0 1 1 1 1 0 1
b2 0 0 0 1 0 0 0 0

Identify a minimum-size subset of invisible variables which must be made visible in the next abstraction to avoid the
above failure. Briefly explain why.
[ Solution: The minimum-size subset is {x7}. In fact, if x7 is made visible, then both d1, d2 are made different from both
b1, b2. ]
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